
Exploring weak scalability for FEM

calculations on a GPU-enhanced cluster

Dominik Göddeke a,∗,1, Robert Strzodka b,2,
Jamaludin Mohd-Yusof c, Patrick McCormick c,3,

Sven H.M. Buijssen a, Matthias Grajewski a and Stefan Turek a

aInstitute of Applied Mathematics, University of Dortmund

bStanford University, Max Planck Center

cComputer, Computational and Statistical Sciences Division,

Los Alamos National Laboratory

Abstract

The first part of this paper surveys co-processor approaches for commodity based
clusters in general, not only with respect to raw performance, but also in view of
their system integration and power consumption. We then extend previous work
on a small GPU cluster by exploring the heterogeneous hardware approach for a
large-scale system with up to 160 nodes. Starting with a conventional commodity
based cluster we leverage the high bandwidth of graphics processing units (GPUs)
to increase the overall system bandwidth that is the decisive performance factor
in this scenario. Thus, even the addition of low-end, out of date GPUs leads to
improvements in both performance- and power-related metrics.

Key words: graphics processors, heterogeneous computing, parallel multigrid
solvers, commodity based clusters, Finite Elements
PACS: 02.70.-c (Computational Techniques (Mathematics)), 02.70.Dc (Finite
Element Analysis), 07.05.Bx (Computer Hardware and Languages), 89.20.Ff
(Computer Science and Technology)

∗ Corresponding author. Address: Vogelpothsweg 87, 44227 Dortmund, Germany.
Email: dominik.goeddeke@math.uni-dortmund.de, phone: (+49) 231 755-7218, fax:
-5933
1 Supported by the German Science Foundation (DFG), project TU102/22-1
2 Supported by a Max Planck Center for Visual Computing and Communication
fellowship
3 Partially supported by the U.S. Department of Energy’s Office of Advanced Sci-
entific Computing Research.

Preprint of an article accepted for publication in ’Parallel Computing’, Sep. 21 2007

1 Introduction

Commodity based clusters dominate the Top500 supercomputer list in the
number of deployed systems [21]. The mass production of commodity compo-
nents offers advantages in acquisition costs, availability and extensibility, mod-
ularity and compatibility. However, these metrics do not tell the whole story.
The inefficiency of today’s CPUs for high performance computing (HPC) tasks
in general and Finite Element computations in particular leads to low perfor-
mance and high power consumption per node, requiring many nodes for large
problems and thus additional infrastructure for accommodating, connecting
and cooling that many components. In addition, very high numbers of nodes
cause the administration and maintenance costs to increase super-linearly.

Several research projects and companies have attempted to increase the per-
formance and reduce the relative power consumption of commodity based
clusters with more specialized co-processors. As the application area of these
co-processors is restricted, the hardware designers have more freedom in the
exploration of the different tradeoffs in designs:

• General purpose HPC vs. application-specific hardware.

The former caters to the needs of more customers, promising larger pro-
duction lots; the latter allows higher performance and power efficiency for a
specific application. In this paper we consider the general purpose approach.
However, general purpose here refers to various HPC workloads , not the
full diversity of all CPU applications.

• Low vs. high memory bandwidth to the co-processor.

Data processing capabilities usually exceed data transfer capabilities. Im-
proving compute performance (more transistors) is much cheaper than im-
proving memory performance (pin limits). Data intensive applications such
as sparse linear algebra problems benefit greatly from high bandwidth ac-
cess to the co-processor, but such connections inflate the power budget. In
particular, power-aware co-processors must restrict the off-chip bandwidth
and thus achieve high efficiency only on compute intensive applications like
dense linear algebra problems. As we deal with sparse linear algebra prob-
lems in this paper, a high bandwidth connection to the co-processor is re-
quired.

• Processor vs. system interconnects for the co-processors.

Examples for the former are Hypertransport couplings of CPUs and FPGAs.
In such couplings the co-processor has little or no dedicated off-chip memory
and shares the main memory with the CPU, see Figure 1 on the left. De-
pending on the co-processor, the connection sometimes allows direct inter-
action with the CPU’s cache. The integration can go even further, forming
a System-on-Chip (SoC) on the same die. In this paper, we are interested
in co-processors that can be connected as add-on boards via standardized

2

slots, typically PCI/PCI-X/PCIe. When working with co-processors with
high bandwidth to their on-board memory (see previous item), the bus to
the host system becomes a bottleneck as shown in Figure 1 on the right.
Strategies for dealing with this bottleneck are discussed in Section 2.3.

Fig. 1. Interconnects and bandwidth between host and coprocessor. Left: processor
interconnects. Right: System interconnects.

Adding co-processors to an existing homogeneous commodity based cluster
turns it into a heterogeneous system. In this context we distinguish between
local and global heterogeneity. In the case of solely local heterogeneity the
nodes contain different types of processors but the hardware configuration
of all nodes is the same. Global heterogeneity means that the nodes differ in
their configurations, e.g. some have been enhanced with an accelerator of some
kind and others with a different one or not at all. As we concentrate on the
scalability of a GPU enhanced cluster in this paper, we assume that all nodes
are configured equally.

In this case the co-processor code can be tested on a single node and later
the same code can be run on each node in the cluster. We apply a minimally

invasive integration of the accelerator into an existing MPI-based code: The
changes are reduced to a minimum and the hardware dependent code is
accessed through the same calls as the CPU code. For the user it is sufficient to
change a parameter file to enable hardware acceleration and no modifications
to application code are required. More details on the hardware integration
and remaining limitations of our cluster are discussed in Section 2.3 and 2.4.

1.1 Paper overview

This introductory section presents related work on co-processors for HPC clus-
ters. The necessary background on graphics processors and challenges in build-
ing GPU clusters are discussed in Section 1.3. Section 2.1 lists the hardware
details of the cluster we use for our scalability tests. Sections 2.2 and 2.3 de-
scribe our software approach for including GPU acceleration in a minimally

3

invasive way . We address limitations of the available GPUs in Section 2.4.
Section 3 contains the discussion of our results with respect to weak scal-
ability, bandwidth, acceleration, power consumption and portability of our
approach. We conclude with suggestions for future work in Section 4 and a
comprehensive bibliography.

1.2 Heterogeneous clusters and related work

In this section we present related work on heterogeneous HPC clusters that
have been successfully deployed. We discuss them in three classes depending
on the specialization area of the co-processors.

• Clusters with dedicated HPC accelerators.

These clusters contain co-processors targeted explicitly at HPC workloads.
This class incurs higher acquisition costs due to smaller volume but as the
entire product is focusing on HPC deployment the software integration of
these hardware accelerators is smoother. Moreover, a strong emphasis is
put on power efficiency and reliability, which is particularly important for
large-scale systems and offers the possibility to significantly improve the
performance/watt ratio of clusters. Two prominent representatives of this
class are:
· GRAPE supercomputer, MDGrape-3 supercomputer.

The GRAPE series of processors is highly specialized for certain computa-
tion patterns arising in the solution of astrophysical (GRAPE) and molec-
ular dynamics (MDGrape) problems. Application-specific hardware like
this greatly outperforms general purpose hardware in both performance
and power efficiency. The newest generation, the MDGrape-3 deployed at
Japan’s Research Institute of Physical and Chemical Research (RIKEN)
in 2006, is the first system to perform more than one petaflops. Because
of its specialization, the MDGrape-3 chip consumes only 0.1 Watt per gi-
gaflop, but the price for this efficiency is the restriction to the designated
computation patterns [11].

· TSUBAME cluster accelerated by ClearSpeed Advance Accelerator Boards.

The TSUBAME cluster at the Tokyo Institute of Technology was up-
graded with these boards in 2006 [34]. With the help of a highly tuned
implementation of the BLAS library tailored for the co-processors, the
cluster now delivers a 24% increase in LINPACK performance while re-
quiring only 1% more overall power [6]. Consequently, no upgrade to the
cooling system was necessary and additional maintenance is kept to a
minimum. The two CSX600 chips on the boards (which are connected
via PCI-X) are general purpose and very power efficient; together with
1GiB of memory connected at 6.4GB/s they consume only 25 Watt while
delivering 50 gigaflops in double precision. Due to the connection band-

4

width, the chips perform best at compute intensive applications and are
less suitable if data movement dominates the problem.

• Clusters with FPGAs.

Field Programmable Gate Arrays (FPGAs) can be configured to perform
arbitrary computations in hardware, which offers many possibilities for ap-
plication acceleration ranging from low level hardware pipeline design for
certain time critical computations to high level application specific instruc-
tion set extensions of a soft processor core running in the FPGA. The main
strength of FPGAs is the very high spatial parallelism and connectivity;
performance gains and power efficiency thus depend on the exploitation
of these features. This poses a software development problem as the spa-
tial/structural approaches to FPGAs conflict with the temporal program-
ming models for CPUs. Application programmers are usually not willing to
resolve such problems themselves and thus commercially available systems
either target certain application areas and provide hardware accelerated
libraries for them or greatly simplify the design flow and deduce the spa-
tial configuration from temporal high level languages. One example of this
approach is the Cray XD1 Supercomputer [7].

• Clusters with multimedia co-processors.

These co-processors originate from the large graphics, video and gaming
market that generates very favorable price/performance ratios. Although
high bandwidth connections to the co-processors dissipate a lot of power,
the resulting high performance on data intensive applications can still im-
prove the power efficiency of a cluster (cf. Section 3.3). While multimedia
and HPC applications share common requirements, user interfaces can dif-
fer significantly and a transition layer must be designed to reformulate the
problem in HPC terms. Three examples of these types of clusters are:
· Cell BE cluster.

The Cell BE processor [29] ships either in blades (offered for instance
by IBM), in PCIe add-on cards (offered by Mercury Computer Systems),
or in the PlayStation 3 gaming console from Sony (see next paragraph).
Mercury’s Cell Accelerator Board delivers 179 gigaflops in single precision
and consumes up to 210 Watts, including 1 GiB 4 of high-bandwidth XDR
memory, 4GiB of memory connected with a 22.4GB/s bus to the Cell BE
chip and its own Gigabit ethernet interface [20]. Prototype clusters with
Cell processors have been demonstrated since 2005.

· PlayStation cluster.

The National Center for Supercomputing Applications and the computer
science department at the University of Illinois connected 65 PlayStation
2 consoles in 2003 to form a Linux HPC cluster [23]. First prototypes
of Linux clusters comprising PlayStation 3 consoles have been assembled
[4,5,22]. In addition, Terra Soft Solutions offers PlayStation clusters with

4 International standard IEC60027-2: G= 109, Gi= 230 and similar for Ki, Mi.

5

a complete developer toolchain commercially.
· GPU cluster.

GPU-enhanced systems have traditionally been deployed for scientific vi-
sualization. One of the largest examples is ’gauss’, a 256 node cluster in-
stalled by GraphStream at Lawrence Livermore National Laboratory [15].
Several parallel non-graphics applications have been ported to GPU clus-
ters: Fan et al. present a parallel GPU implementation of flow simula-
tion using the Lattice Boltzmann model [10]. Their implementation is 4.6
times faster than an SSE-optimized CPU implementation, but they do
not discuss the impact of GPUs’ limited precision. The parallel efficiency
degrades to 66% on 32 nodes. Stanford’s Folding@Home distributed com-
puting project has recently deployed a dual-GPU 16 node cluster achieving
speed-ups of 40 over extremely tuned SSE kernels [26].

After the successful application of the above co-processors in mid-range clus-
ters with a few dozen nodes, these hardware configurations can be considered
for large-scale systems. However, apart from the TSUBAME cluster, this has
not yet been attempted, because of scalability and return-on-investment con-
cerns. To the best of our knowledge, the ’gauss’ system (the only GPU cluster
as large as ours) is solely used for visualization. In the TSUBAME cluster the
ClearSpeed co-processor driver intercepts the standard calls of BLAS or FFT
libraries and replaces them with hardware accelerated versions. Modifications
of the application code are not required and the return-on-investment can be
estimated in advance by counting library calls. The domain of dense linear
algebra is very well suited for this approach.

For sparse matrices, which typically arise in Finite Element simulations, there
is less standardization and the integration of hardware co-processor becomes
more challenging. The reluctance to deal with the non-standard hardware-
software interaction is usually so high that even promises of significant speed-
ups in heterogeneous systems have not been convincing enough to deploy
large-scale systems. In Section 2.2 we will outline our strategy for parallel
multigrid solvers with decoupled local smoothing, which allows the integration
of hardware accelerators without changes to application codes, and minimal
modifications otherwise.

1.3 Graphics processor units and graphics clusters

Instead of another introduction to general purpose computations on graphics
processors (GPGPU), we address several common misconceptions. For readers
new to the subject, many elaborate introductory articles are available [16,25,
31]. The community website has a wealth of information, including a paper
archive, conference tutorials and code examples [14].

6

Allegedly, the limitation of GPUs to single precision has prevented broad
adoption in scientific computing. While this is certainly true for some applica-
tions, the high number of lower precision processing elements can be exploited
even in view of high accuracy requirements. Mixed precision methods and high
precision emulation techniques have both been demonstrated to match the co-
processor approach very well [8, 13, 33]. Moreover, both AMD and NVIDIA
have already annouced double precision lines of their products.

GPUs also have a reputation of being hard to program for non-graphics appli-
cations. First, the algorithms have to be adapted to the parallel programming
paradigm, but this is necessary in general for parallel architectures, e.g. mul-
ticore processors. Second, early adopters of GPGPU had to struggle with the
coding of scientific applications in term of graphics primitives. Over the past
few years, several academic and commercial programming abstractions and
interfaces have emerged, greatly simplifying programming of GPUs:

• The vendors themselves provide either a low-level interface to the hardware,
allowing direct access to the processing elements in an assembly-like fash-
ion (CTM by AMD/ATI [27]), or a C-like programming environment that
basically allows the program to spawn threads with limited inter-thread syn-
chronization and communication capabilities across the processing elements
(CUDA by NVIDIA [24]).

• BrookGPU, Sh and Accelerator are three examples of compilers and libraries
for stream programming that hide most of the graphics-specific details and
let the programmer focus on developing parallel algorithms [3, 19, 32].

• Similarly, several companies like Acceleware and RapidMind have started to
offer programming environments and combined hardware software solutions
to leverage GPUs.

Building a GPU cluster from scratch based on the workstation form factor
(3U, rack-mountable) using commodity components is slightly more compli-
cated than building a conventional cluster. When designing the nodes, one
has to consider the GPUs in the power budget and infrastructure, as current
high-end models consume as much as 140W (G80, NVIDIA) or 180W (R600,
ATI), with high amperage loads, and many clusters are designed to run two or
more boards per node. Money is well invested on reliable cooling solutions and
the air flow design inside the nodes is even more important than for conven-
tional clusters. Careful planning is necessary when deciding on the mainboards
and the graphics boards: To increase the density of the cluster installation,
preferably more than one GPU needs to be installed in each node, requiring
at least two PCIe slots with full x16 support to avoid creating an artificial
bottleneck. Professional graphics boards (FireGL/FireStream models by ATI,
Quadro series by NVIDIA) allegedly promise higher MTBF and MTBM, but
cost more than twice as much as equivalent consumer cards. Many vendors
offer more dense GPU clusters optimized for visualization purposes.

7

Special cases are NVIDIA’s QuadroPlex visual computing system and the
Tesla GPU computing solution, both of which are high density solutions com-
prising up to four high-end GPUs in an external chassis with its individual
power supply, connected to the host node via one PCIe x16 card and a ca-
ble. The server model of the QuadroPlex is only 1U high, consumes 1.2 kW
and contains four Quadro FX 5600 GPUs with 1.5GiB of memory each. The
designs include proprietary NVIDIA chips that multiplex the PCIe lanes and
handle the routing of traffic to the GPUs. Thus, full bandwidth to each of
the GPUs is available as long as data transfers are not performed simultane-
ously. These designs are especially useful when upgrading an existing cluster
with GPUs, as pure CPU-based clusters are often very dense installations, and
adding GPUs to 1U nodes after the fact is largely impossible.

Finally, the technical numbers of GPUs alone often generate unrealistic ex-
pectations about the capabilities of the hardware. For instance, AMD’s R600
chip can perform multiply-add instructions at 480 gigaflops and offers 74GB/s
of bandwidth for streaming access, the cached performance is even better [30].
While synthetic benchmarks indeed come close to these numbers, actual ap-
plications are not a chain of these ideal configurations, similar to CPUs. More-
over, note that the ratio of the peak numbers gives 480 gigaflops/74GB/s =
26 flop/4B, which means that the peak streaming bandwidth and the peak
computation are balanced if 26 operations are performed for each read/write
access to an off-chip single float (4B). Data intensive applications such as the
Finite Element computations we target require far fewer operations on each
data item. For instance, our matrix-vector multiplication (cf. Section 2.2) has
an arithmetic intensity of one. Therefore the speed-up on the GPU depends
on the superiority of the graphics cards’ bandwidth instead of the parallelism

in the GPUs. This is not to imply that it is impossible to achieve significant
performance improvements with GPUs but rather that a factor of 5 is much
more common than 20 when comparing with an optimized CPU program [25].

2 System Components and Solution Scheme

2.1 Hardware configuration

For the test cases in this paper we use 160 compute nodes and one master
node of the DQ visualization cluster at Los Alamos National Laboratory’s
Advanced Computing Lab. Each node has the following configuration:

CPU: Dual Intel EM64T, 3.4GHz, 1MiB L2 cache, 800ṀHz FSB, 600W
power supply,

RAM: 8GiB (5.5GiB available), 6.4GB/s shared bandwidth (theoretical),

8

INTERCONNECT: PCI-X based InfiniBand cards with 1.25GB/s peak
(∼780MB/s benchmarked);

GPU: NVIDIA Quadro FX1400, 350MHz, max. 75W,
RAM: 128MiB, 19.2GB/s bandwidth,
INTERCONNECT: PCIe bus with 4GB/s peak (∼1.2GB/s benchmarked).

The InfiniBand interconnect is not cascaded; instead the switch provides full
bandwidth between all the nodes. At the time of deployment, it cost approxi-
mately $430 to add one FX1400 to a node. In comparison, a new cluster node
with an identical configuration but without a GPU cost approximately $4, 000,
not counting infrastructure such as free ports of the InfiniBand switch. No ad-
ditional cooling infrastructure was required to support the graphics cards, and
the cluster has proved to be as stable as systems without graphics cards. Addi-
tional maintenance tasks are limited to the occasional installation of updated
device drivers for the GPUs.

The graphics cards in DQ are two generations old and current cards signif-
icantly surpass both computational performance and memory capacity, see
Section 1.3. We use this hardware configuration because it is the only one
available to us allowing scalability tests with so many nodes. Accordingly, we
do not expect these GPUs to gain much performance, but rather help to pro-
vide insights into the behavior of large-scale heterogeneous systems that can
be used in the planning of future clusters.

2.2 Solution procedure

It is well known that unstructured, fully adapted grids offer maximum flexibil-
ity in the discretization of PDEs and require an ’optimal’ number of degrees of
freedom to achieve prescribed accuracy goals. The price for this is high though,
since such grids lead to an almost ’stochastic’ numbering of the unknowns.
The resulting linear algebra components, such as matrix-vector multiplica-
tion, perform very poorly on modern CPUs due to memory indirections and
the implied cache thrashing; performance numbers less than 1% of the peak
compute rates and less than 10% of the peak memory bandwidth on com-
modity architectures are common. In particular, performance gets worse as
systems become larger. This holds true for the broad range of linear systems
arising from Finite Element, Finite Volume or Finite Difference discretiza-
tions of PDEs (like the Poisson problem, cf. Section 3.1). On the other hand,
generalized tensor-product grids (linewise numbering of the unknowns with
fixed connectivity of the elements) yield banded matrices with a priori known
structure, and allow for the design of much faster linear algebra components
that explicitly take the matrix structure into account. Obviously, covering an
arbitrary domain with one tensor-product grid is by far not flexible enough

9

and inflates the amount of unknowns required to achieve prescribed accu-
racy goals. This is the first observation that lead to the development of the
Feast package [2, 18, 35]. Feast covers the computational domain with an
unstructured coarse mesh of patches called macros. Each macro is then refined
independently in a generalized tensor-product fashion, and combined with r-
and patchwise h-adaptivity and anisotropic refinement strategies, much of the
flexibility of completely unstructured grids is recovered. In summary, Feast

exploits locally structured parts of the discretization to achieve almost optimal
(serial) performance with respect to the available bandwidth (cf. Section 1.3)
by providing carefully tuned linear algebra components tailored to the dis-
cretization properties.

In parallel computations, the macros are distributed among the available
nodes. The macros are coupled by special (inner) boundary conditions with
implicit overlap: Only data on the macro edges needs to be exchanged and
averaged to perform global operations. Adjacent macros on the same node
communicate directly, neighboring macros on different nodes via MPI. In or-
der to avoid the degradation of powerful multigrid smoothers in parallel and
the poor scalability of pure domain decomposition techniques, Feast uses
a global, data-parallel multigrid solver which executes the cheapest possible
cycle and employs local multigrid solvers on each macro as smoothers. This ap-
proach is highly advantageous: The global solution procedure is as decoupled
as possible, with the bulk of the work being performed locally. Synchroniza-
tion between neighboring macros only takes place after smoothing, in the grid
transfer operations and the coarse grid solver of the global multigrid iteration.
This leads to very good scalability by design, since computation almost always
dominates communication except for degenerate cases.

To solve the coarse grid problems, the local multigrid uses preconditioned
conjugate gradient iterations, and the global solver an optimized sparse LU
solver from the UMFPACK package [9]. Finally, the cascaded multigrid scheme
is used as a preconditioner to a global Krylov subspace method, which is
beneficial with respect to robustness of the scheme as a whole. Without it, we
would either need more multigrid steps or a configuration with more expensive
F-cycles in the parallel multigrid or both, resulting in more communication [2].
These three nested loops can be summarized as follows:

global BiCGStab, preconditioned by
global multigrid (V-cycle, 1+1 steps), smoothed by

local multigrid (F-cycle, 4+4 steps), smoothed by
local Jacobi

10

2.3 Integration of hardware accelerators

Even though the Feast project was started long before accelerators came
into focus, the two main design features described above are crucial to mak-
ing hardware acceleration possible. First, without explicitly taking the matrix
structure into account, linear algebra components can not be implemented
efficiently on GPUs (the accelerator in the scope of this paper). Memory indi-
rections lead to more cache misses on GPUs (smaller caches) than on CPUs.
Second, the decoupled solution scheme that performs the bulk of the work
locally, without interruptions by communication, allows inclusion of the hard-
ware co-processors on the node level. The local acceleration of the multigrid
solvers is completely independent of the global solution process and all MPI
communication. There is always enough local work to amortize the data trans-
fer and configuration overhead of the co-processors. This minimally invasive
integration is applicable for a wide class of accelerators. As we only have a
GPU cluster available to evaluate the benefits with respect to weak scalabil-
ity, power and performance, we have to restrict our tests to this hardware
configuration.

Figure 2 illustrates this approach. Here, we only very briefly summarize the
ideas and focus on the changes to the Feast kernel while treating the GPU-
based multigrid solver as a black box. For a more detailed description of the
implementation and a discussion of various tradeoffs, we refer to previous
work [12].

Fig. 2. Illustration of the hardware integration

The GPU local smoother implements the same interface as the existing Feast

smoothers; hence it can be selected and configured via a small change in a
parameter file, in the same way as conventional smoothers. A lean interface
layer accepts pointers to Feast data in memory, converts it to single precision
and passes it to the multigrid solver on the GPU. All implementation-specific
details (OpenGL, shaders etc.) are completely hidden by encapsulating the
GPU solver in a library, even from the main Feast kernel. Consequently,
backend implementations for other hardware can be added with little effort

11

and can be developed independently of Feast.

The inner multigrid iteration described in the previous Section is executed
either on the CPU(s) or the GPU on each node. If the solver executes on the
CPU(s) then the GPU is completely idle. If the solver executes on the GPU,
then one of the CPUs is also involved in the processing to some extent: It or-
chestrates the computation on the GPU, solves very small inner problems for
which the transfer overhead is too large to justify an execution on the GPU,
and is involved in the computation of local contributions to global matrix-
vector and vector-vector operations, including the necessary MPI communica-
tion. As the inner multigrid is only a small part of the global preconditioner,
mainly solving residual systems of the global multigrid, the restriction of the
GPU to single precision has no effect on the final accuracy (cf. Section 3.1).
The scheme can be interpreted as a mixed precision iterative refinement ap-
proach. For a more detailed analysis of mixed precision solvers of this type
even for very ill-conditioned systems we refer to a previous publication [13].

2.4 Limitations of DQ’s GPUs

Perhaps the most critical aspect in the coupling of the accelerators and the
nodes is the data transfer between them, because the data typically has to
travel through a bandwidth bottleneck(compare the PCIe interconnect and
GPU bandwidth in Section 2.1 and see also Figure 1 on the right). The de-
coupled approach that performs as much (local) computation as numerically
feasible before data has to be exchanged alleviates this problem: The overhead
of data transfer to the GPU can only be amortized by a faster execution time
if there is enough local work between communication phases of the accelerator
with the host.

The GPUs in our DQ cluster are unfortunately one generation of technology
older than the rest of the system, so we do not expect substantial speed-ups.
Comparing the peak bandwidths alone, we expect a factor of 19.2/6.4 = 3.0
for the accelerated parts of the solution procedure minus the time to transfer
data via the PCIe bus and other related overhead. Despite being restricted to
these old GPUs, we want to gain insight into and predict the behavior of more
modern versions. The observed peak bandwidth roughly doubles with each
generation of GPUs (Quadro FX1000 9.6GB/s, Quadro FX1400 19.2GB/s,
Quadro FX4500 33.6GB/s, Quadro FX5600 76.8GB/s). Thus, we want to
lower the bandwidth requirements of the computation on the old GPUs. Ad-
ditionally, these GPUs have only very limited on-board memory and run into
problems when storing the full matrix data for large problems (cf. Section 3.6);
the data required for a multigrid solver on a large macro just barely fits into
the video memory. On better GPUs with more local memory, we can store

12

the matrix data for more than one macro, and we still have enough memory
available to software-pipeline the code to reduce delays due to data transfer
(see [12] for previous work on few, but more powerful GPUs).

We therefore implemented two versions of the matrix-vector multiplication on
the GPU. The first one, labeled var, transfers all nine bands of the matrix and
hence requires a lot of (PCIe and memory) bandwidth and storage. The sec-
ond one, labeled const, assumes that the bands are almost constant and only
stores a stencil and the 81 values deviating from it (values of the macro edges,
vertices and the interior for each matrix band). The actual matrix entries are
reconstructed during each matrix-vector multiplication, substantially reduc-
ing bandwidth and storage requirements while slightly increasing the compu-
tational overhead. This second implementation relies on an equidistant dis-
cretization and is no longer applicable for macros that are not parallelogram-
shaped or use anisotropic refinement. We should point out that we use a similar
bandwidth-friendly implementation on the CPU so no artificial advantage is
given to the GPU. For rectangular grids, a simple Jacobi smoother suffices for
the inner multigrid. More powerful smoothers are currently only available on
the CPU. Hence, the results presented in this paper are prototypical, and we
will be able to treat more realistic configurations on better GPUs once these
smoothers are implemented. We do not expect qualitatively different results
compared to the simple test cases in this paper, as these improvements do not
affect the global solver.

3 Results

3.1 Test procedure

For the scalability tests in this paper we solve the Poisson problem −∆u = f

on a rectangular domain Ω ⊆ R
2 with Dirichlet boundary conditions. This

is a fundamental model problem for all elliptic PDEs of second order, and
an important building block in advanced applications such as fluid dynamics
or structural mechanics. The discretization based on the refined macros uses
conforming bilinear Finite Elements. We define an analytic test function u0 =
−(x2+y2)·x on Ω and prescribe the right hand side as the analytical Laplacian
of this function. Thus we know that u0 is the exact analytical solution for the
continuous PDE, and we can measure the integral L2 error of the computed
solution against it. All solvers are configured to reduce the initial residuals by
six orders of magnitude.

The computations are executed on one master node and up to 160 compute
nodes of the cluster DQ (cf. Section 2.1), which is the maximum number of

13

nodes available to us. In order to investigate the weak scalability of the co-
processor enhanced cluster we keep the load per node constant and increase the
number of nodes. The load per node is chosen to use as much of the available
main memory as possible. In addition to scalability, we are interested in the
total time to solution for various configurations of the CPU(s) and GPU, and
in the difference between the two matrix-vector products (cf. Section 2.4).

For all test series we have confirmed that despite the limitation of the GPU
to single precision calculations, the results are accurate both in terms of final
residuals and measured L2 errors.

3.2 Notation

For the different test configurations we use the following notation:

AgPm Cn LR M or BcPm Cn LR M

A ∈ {0, 1} is the number of GPUs used per node,
B ∈ {0, 1, 2} is the number of CPUs used per node,
P ∈ {0, . . . , 16} is the number of macros per node,
C ∈ {8, . . . , 160} is the number of compute nodes,
R ∈ {9, 10} is the refinement level per macro, yielding (2R + 1)2 unknowns,
M ∈ {const, var} is the type of matrix-vector multiplication.

Examples: 1g8m 16n L10 const denotes a 16 node configuration where each
GPU computes 8 macros with 1Mi DOFs (degrees of freedom) each, using
the stencil-based matrix-vector multiplication; 2c32m 64n L9 var is a 64 node
configuration where both CPUs in each node are used and each one computes
16 macros (32 per node) with 0.25Mi DOFs each. A 1g 1c configuration is
not considered because previous results show that it behaves very similarly to
the GPU only (1g 0c) configuration [12]. The total number of unknowns can
be derived from R, C and P . Except for one test configuration, we always use
the fixed numbers of 2Mi (L9) or 8Mi (L10) unknowns per node. The largest
overall problem size of the runs is therefore 1280Mi DOFs.

3.3 Weak scalability and power considerations

Figure 3 compares the weak scalability of the DQ cluster using CPUs or GPUs.
The test series increases the number of nodes (unknowns) from C = 8 (64Mi)
to C = 160 (1280Mi). We compare the configurations where either only the
GPU, only one CPU or both CPUs are active. All three test cases scale very

14

 0

 20

 40

 60

 80

 100

 120

 140

 160

 8 16 32 64 96 128 160

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

Number of nodes

2c8m_Cn_L10_const
1g8m_Cn_L10_const
1c8m_Cn_L10_const

Fig. 3. Performance gains by the GPU and weak scalability (constant workload of
8 Mi DOFs per node).

well, and the rather outdated GPU outperforms even two (newer) CPUs by
66%. The reason for the advantage of the GPU becomes clearer in the next
Section.

Under full load, the base node consumes approximately 315W and the GPU
consumes 75W, so the addition of the GPUs increases the power requirements
of the cluster by 20%, which is substantially smaller than the increase in
performance. Newer generation GPUs generally not only improve raw perfor-
mance but also performance per Watt, so adding GPUs to an existing cluster
is clearly a worthwhile alternative to a more traditional cluster extension in
this metric. The improvements in performance per dollar (and in performance
gain per invested dollar) are also remarkable. Due to the limitations of the
GPUs (cf. Section 2.4), we are not able to perform any meaningful tests for
strong scalability as well. Feast has been shown to scale well [2], and we have
previously performed limited strong scalability tests on few, but more pow-
erful GPUs [12]. Thus, we can assume that the strong scalability holds true
on more GPU nodes as well. Under this assumption, we can estimate how an
accelerated GPU cluster will scale in the metric ’energy to solution’. As we
do not have exact numbers, we calculate an energy efficiency ratio for strong
scalability, which we define as the ratio of modified and base system speed di-
vided by the same ratio for power consumption (higher values are better). For
the outdated GPUs in DQ, we achieve an efficiency ratio of 1.67 (doubling of
speed, 20% increase in power consumption). The ratio for doubling the number
of unaccelerated nodes is 1.0 (doubling execution speed, two times the power
consumption) plus some epsilon as each node requires only half the amount of
memory and hence slightly less power. We estimate 5W/GB power consump-
tion for the memory modules in DQ. The higher power consumption of newer
GPUs is balanced by their speed: NVIDIA’s Quadro FX 4500 GPUs consume
95W each and execute the test problems of this paper (without the stencil-
based matrix-vector multiplication) three times faster than the CPUs [12],
achieving an efficiency ratio of roughly 3.0/1.3 = 2.3. Consequently, GPUs are

15

also favorable in view of the costs related to operating a cluster, not only in
terms of acquisition cost.

3.4 Impact of system bandwidth

 0

 20

 40

 60

 80

 100

 120

 140

 160

 8 16 32 64 96 128 160

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

Number of nodes

1g8m_Cn_L10_const
1c8m_Cn_L10_const

2c16m_(C/2)n_L10_const

Fig. 4. Impact of system bandwidth (constant workload of 8 Mi and 16 Mi DOFs
per node).

Figure 4 compares configurations with the same number of unknowns per
processor whereas in Figure 3 the number of unknowns per node is constant.
Thus, if speed of data access were the same, then the 1c8m Cn and the 2c16m -
C/2n should perform equally. However, the chipset in DQ’s nodes shares the
memory bus among the processors and the solution of the Poisson problem
is bandwidth bound, such that the 2c16m C/2n configurations perform far
worse. The 2c16m C/2n configuration performs slightly better for fewer nodes
because domain boundary macros that require less arithmetic work are par-
titioned more evenly.

Similarly, the success of the GPU configurations has less to do with the par-
allelism in the GPU than with the superior bandwidth on the graphics card.
The critical performance factor for this type of problem in a cluster is the over-
all system bandwidth, and the graphics cards add a lot of bandwidth to the
system. Theoretically, the bandwidth increases by a factor of 19.2/6.4 = 3.0.
The impact of this advantage, however, is reduced by the low bandwidth con-
nection of the graphics card to the main memory. Here the ’interconnect’
between the distributed memories becomes the bottleneck. Therefore, the ar-
rangement on chipsets with integrated GPUs, featuring shared memory for
the CPU and GPU, is attractive for heterogeneous scientific computing, but
these chipsets are currently low cost solutions with weak GPUs and narrow
buses from the GPU to the memory. With specialized graphics memory chips
(GDDR-GDDR3), their direct placement on the board and shorter paths, high
signal quality and thus superior bandwidth is clearly easier to achieve in the
proprietary layout of the graphics card than for the standardized memory

16

modules used in PCs. While desirable, high performance integrated chipsets
are not as easy to design as one might think at first. Both AMD and Intel pur-
sue a closer coupling of co-processors to the main memory with their Torrenza
and Geneseo technologies [1,17] (cf. Section 1.2), so substantial improvement
can be expected in the near future.

3.5 Impact of macro size and type of matrix-vector product

 0

 20

 40

 60

 80

 100

 120

 140

 160

 8 16 32 64 96 128 160

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

Number of nodes

2c8m_Cn_L10_const
2c8m_Cn_L10_var

2c32m_Cn_L9_const
2c32m_Cn_L9_var

 0

 20

 40

 60

 80

 100

 120

 140

 160

 8 16 32 64 96 128 160

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

Number of nodes

1g8m_Cn_L10_const
1g8m_Cn_L10_var

1g32m_Cn_L9_const
1g32m_Cn_L9_var

Fig. 5. Impact of macro size and type of matrix-vector product on the CPU (left)
and the GPU (right), constant workload of 8 Mi DOFs per node.

Figure 5 (left) compares the scheduling of eight L10 macros against 32 L9
macros per node with both CPUs active, and the difference between the
stencil-based and the full matrix-vector product. Figure 5 (right) makes the
same comparisons for the GPU.

For the CPU and the bandwidth-friendly stencil-based matrix-vector product,
we see that it makes almost no difference whether the problem is partitioned
with macros of 1Mi unknowns or with four times the amount of macros with
0.25Mi unknowns each. The overhead of having four times as many calls into
the inner multigrid solver is equaled by the reduced bandwidth requirement
for the smaller macros, as a higher percentage of the operations is performed
in cache. For the full matrix-vector product, the increased bandwidth require-
ments for the larger macros have a higher impact, and consequently, the com-
putation takes 10% longer for the larger macros and the stencil-based compu-
tations are almost twice as fast due to the reduced bandwidth requirement.
The effect is similar to a reduction of system bandwidth, see Section 3.4.

The numbers on the GPU tell a different story. The configuration with four
times as many macros of one fourth the size is two times slower for the stencil-
based matrix-vector product. Because the high number of macros implies a
configuration overhead for the GPU, less parallel work is available in each
step and the data is transferred via the PCIe bottleneck more frequently, but
in smaller batches. In case of the full matrix-vector product more local work

17

must be done on the small macros (L9 var) and the communication overhead
is a smaller fraction of the overall execution time. Therefore, the distance
between L9 const and L9 var is smaller than expected from pure bandwidth
considerations and the same comparison on the CPU.

The graph of the L10 var configuration has several flaws. First, there is more
parallel work in the L10 macros, so the L10 var should be faster than the
L9 var configuration, while the two runs are switched in the graph. Second, in
contrast to the other graphs, there is a higher variance for different numbers
of nodes. The limited memory of the graphics cards is probably responsible for
this strikingly different behavior. If data cannot be represented locally it must
be moved back and forth through the narrow connection between the host
and device memory (cf. Figure 1, right). Theoretically, there is (just) enough
video memory for a L10 var macro, but we do not have sufficient control over
its allocation and usage on the GPU to verify this. We attribute this problem
to the memory capacity nonetheless, because graphics cards with more local
memory perform very well in the L10 var configuration, as could be tested on
up to 16 nodes [12].

Despite the anomalous timings discussed above, the graphs clearly demon-
strate that the heterogeneous cluster enhancement with GPUs scales very
well. Given more local memory on the graphics card these results should ex-
tend to the full matrix-vector product case, which is required for less regular
grids and local operators other than the Laplacian.

3.6 Portability of the results to better hardware

A potential bottleneck of (massively) parallel multigrid solvers is the coarse
grid solver on the unrefined macro mesh (see Section 2.2), which we perform
on the master node while all compute nodes are idle. Since in our case it
contributes less than 1% to the total runtime, we could add many more nodes
before different approaches to solve the coarse grid problems, such as algebraic
multigrid or even a parallel solve on multiple nodes, will become necessary.

As Feast’s partitioning works with minimal overlap and data is only ex-
changed over macro edges residing on neighboring nodes, the net communi-
cation time is small. Separate timing measurements show that more time is
spent in calls to MPI barrier() for global synchronization than in the (asyn-
chronous) movement of data between neighboring nodes. However, a much
faster execution by the accelerator would increase the ratio between commu-
nication and computation. Similar to Amdahl’s Law, further accelerating the
computation results in quickly diminishing returns as soon as the computation
is not the most time-consuming part. As we do not have enough newer graph-

18

ics cards available to quantify the effect, we perform an ’inverse’ experiment:
Instead of increasing the communication to computation ratio of the cluster
by newer and faster GPUs, we study the current GPUs with reduced network
performance.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 8 16 32 64 96 128 160

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

Number of nodes

2c8m_Cn_L10_const_IB
1g8m_Cn_L10_const_IB

2c8m_Cn_L10_const_gigE
1g8m_Cn_L10_const_gigE

Fig. 6. Comparison of the performance using Infiniband and Ethernet interconnects.

Figure 6 shows that the type of interconnect has no significant impact on the
weak scalability. Both the CPU and the GPU-accelerated runs suffer equally
from the reduced network performance. Ultimately, the reduced computation
time of ever faster accelerators must lead to the situation where the communi-
cation becomes the bottleneck, but we expect that we could continue to insert
newer generation GPUs for several years and the current network would not
have to be replaced. This is just another statement of the paradigm that data
movement is expensive while computation is cheap.

The Ethernet results suffer from an additional penalty because the nodes are
not fully connected; instead, some of the switches are cascaded. In addition,
not all nodes are connected with 1 Gbps Ethernet, as a small number of
them use the even narrower 100BaseT interconnects. Separate measurements
with the MPI ping pong benchmark indicate more than a factor of ten in
performance between the Infiniband and Ethernet subsystems. This helps to
understand the faster execution for less than 32 nodes, but does not affect the
discussion in the previous paragraph.

3.7 Future hardware

In this last Section, we discuss the anticipated impact of future hardware fea-
tures on our approach. General limitations of the applicability of GPUs in
scientific computing are discussed by Sheaffer et al. [28]. If we were design-
ing a new cluster from the ground up, more than one GPU per node would
certainly improve performance. We could easily assign an MPI job to each of
them, and benefit from the fast shared memory communication between two

19

processes on the same node. The benefits from high density GPU solutions
such as NVIDIA’s Tesla technology are similar. If at some point a direct, fast
connection from board to board becomes available (SLI and Crossfire tech-
nology does not help here), we could only benefit from it if these GPUs were
supporting double precision as well. We could then perform the correction
iteration and shared memory communication in a much more efficient way,
using the CPU(s) only for MPI communication. Similarly, RDMA support for
GPUs would enable direct InfiniBand messages to and from video memory,
bypassing the operating system. The most significant speed-up would result
in removing the PCIe bottleneck. Both Intel and AMD have announced a
more powerful coupling of processors, co-processors and main memory (see
Section 3.4) and access to main memory through these designs is expected to
be much faster and more flexible.

4 Conclusions and Future Work

We have demonstrated that a heterogeneous cluster with GPUs as co-processors
scales favorably with the number of nodes and is also beneficial in metrics such
as performance, power, performance/power, energy consumption and perfor-
mance/dollar. We emphasize that this can be achieved without a fundamental
refactoring of the initial homogeneous software package; in fact only 1% of
the code has been modified to allow the interaction with the accelerator [12].
Restrictions of the GPU, such as data handling and precision, have absolutely
no effect on the application code, and the accuracy of results is unaffected.
Our tests are limited due to shortcomings of the outdated, available graphics
cards, but from previous work we know that the general case can be handled
equally well in this heterogeneous setup with newer graphics cards. In fact, the
reduced memory requirements of an implementation tailored for orthogonal
grids allows us to quantify the effects of system bandwidth, weak scalabil-
ity and energy consumption even better. We believe that investigations like
ours are important, as heterogeneous computing on a large scale is largely
unexplored, at least in the Finite Element community.

In the future, we plan to use the results from this and previous work to accel-
erate real world applications with our heterogeneous approach. As the overall
approach is independent of the type of accelerator, we will also investigate
other co-processors of interest, such as the Cell.

20

Acknowledgements

We would like to thank our colleagues at Dortmund University and Los Alamos
National Laboratory for help and support, in particular Brian Barrett, Chris-
tian Becker, Markus Geveler, Susanne Kilian, Jason Mastaler, John Patchett,
Thomas Rohkämper, Galen Shipman and Hilmar Wobker. Thanks to NVIDIA
and ATI for donating hardware that was used in developing the serial version of
the GPU backend, and thanks to Mark Harris and Mike Houston for clarifying
hardware details. We also thank the anonymous reviewers for their valuable
and thoughtful suggestions on improving the paper.

References

[1] AMD, Inc., Torrenza technology, http://enterprise.amd.com/us-en/

AMD-Business/Technology-Home/Torrenza.aspx (2006).

[2] C. Becker, Strategien und Methoden zur Ausnutzung der High-Performance-
Computing-Ressourcen moderner Rechnerarchitekturen für Finite Element
Simulationen und ihre Realisierung in FEAST (Finite Element Analysis &
Solution Tools), Ph.D. thesis, Universität Dortmund, Fachbereich Mathematik
(2007).

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
P. Hanrahan, Brook for GPUs: Stream computing on graphics hardware, ACM
Transactions on Graphics (TOG) 23 (3) (2004) 777–786.

[4] A. Buttari, J. Dongarra, J. Kurzak, Limitations of the PlayStation 3 for high
performance cluster computing, Tech. rep., University of Tennessee Computer
Science, CS-07-594 (2007).

[5] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra, G. Bosilca, SCOP3: A rough
guide to scientific computing on the PlayStation 3, Tech. rep., Innovative
Computing Laboratory, University of Tennessee Knoxville, UT-CS-07-595
(2007).

[6] ClearSpeed Technology, Inc., ClearSpeed Advance Accelerator Boards, www.

clearspeed.com/products/cs advance/ (2006).

[7] Cray Inc., Cray XD1 supercomputer, www.cray.com/products/xd1 (2006).

[8] G. Da Graça, D. Defour, Implementation of float-float operators on graphics
hardware, in: 7th Conference on Real Numbers and Computers, RNC7, 2006.

[9] T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern
multifrontal method, ACM Transactions on Mathematical Software 30 (2)
(2004) 165–195.

21

[10] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, GPU cluster for high
performance computing, in: SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, 2004.

[11] Genomic Sciences Center, RIKEN, The GRAPE series of processors, http:

//mdgrape.gsc.riken.

jp/, http://www.metrix.co.jp/grapeseries.html, http://www.riken.jp/
engn/r-world/info/release/press/2006/060619/index.html.

[12] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker, C. Becker,
S. Turek, Using GPUs to improve multigrid solver performance on a cluster,
accepted for publication in the International Journal of Computational Science
and Engineering.

[13] D. Göddeke, R. Strzodka, S. Turek, Performance and accuracy of hardware-
oriented native-, emulated- and mixed-precision solvers in FEM simulations,
International Journal of Parallel, Emergent and Distributed Systems 22 (4)
(2007) 221–256.

[14] GPGPU, General-purpose computation using graphics hardware, http://www.
gpgpu.org (2007).

[15] GraphStream, Inc., GraphStream scalable computing platform (SCP), http:
//www.graphstream.com/ (2006).

[16] M. Harris, Mapping computational concepts to GPUs, in: M. Pharr (ed.),
GPUGems 2 : Programming Techniques for High-Performance Graphics and
General-Purpose Computation, chap. 31, Addison-Wesley, 2005, pp. 493–508.

[17] Intel, Inc., Geneseo: PCI Express technology advancement, http://www.intel.
com/technology/pciexpress/devnet/innovation.htm (2006).

[18] S. Kilian, ScaRC: Ein verallgemeinertes Gebietszerlegungs-/Mehrgitterkonzept
auf Parallelrechnern, Ph.D. thesis, Universität Dortmund, Fachbereich
Mathematik (2001).

[19] M. McCool, S. Du Toit, T. S. Popa, B. Chan, K. Moule, Shader algebra, ACM
Transactions on Graphics (TOG) 23 (3) (2004) 787–795.

[20] Mercury Computer Systems, Inc., Cell BE accelerator boards, http:

//www.mc.com/microsites/cell/, http://www.mc.com/microsites/cell/

ProductDetails.aspx?id=2590.

[21] H. Meuer, E. Strohmaier, J. J. Dongarra, H. D. Simon, Top500 supercomputer
sites, http://www.top500.org/ (2007).

[22] F. Mueller, J. Weston, NSCU PlayStation 3 computing cluster, http://www.
csc.ncsu.edu/news/news item.php?id=464.

[23] National Center for Supercomputing Applications, Computer Science,
University of Illinois, Scientific computing on the PlayStation 2, http://

arrakis.ncsa.uiuc.edu/ps2.

22

[24] NVIDIA Corporation, NVIDIA CUDA compute unified device architecture
programming guide, http://developer.nvidia.com/cuda (Jan. 2007).

[25] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
T. J. Purcell, A survey of general-purpose computation on graphics hardware,
Computer Graphics Forum 26 (1) (2007) 80–113.

[26] V. Pande, Stanford University, Folding@Home on ATI GPUs, http://folding.
stanford.edu/FAQ-ATI.html (2006).

[27] M. Peercy, M. Segal, D. Gerstmann, A performance-oriented data parallel
virtual machine for GPUs, in: ACM SIGGRAPH 2006 Conference Abstracts
and Applications, 2006.

[28] J. W. Sheaffer, D. P. Luebke, K. Skadron, A hardware redundancy and recovery
mechanism for reliable scientific computation on graphics processors, in: T. Aila,
M. Segal (eds.), Graphics Hardware 2007, 2007.

[29] Sony, Toshiba, IBM, Cell BE processor and
blade systems, http://www-03.ibm.com/technology/splash/qs20/, http:

//www.ibm.com/developerworks/power/cell.

[30] Stanford University Graphics Lab, GPUbench – how much does your
GPU bench?, http://graphics.stanford.edu/projects/gpubench/results
(2006).

[31] R. Strzodka, M. Doggett, A. Kolb, Scientific computation for simulations on
programmable graphics hardware, Simulation Modelling Practice and Theory,
Special Issue: Programmable Graphics Hardware 13 (8) (2005) 667–680.

[32] D. Tarditi, S. Puri, J. Oglesby, Accelerator: Using data parallelism to program
GPUs for general-purpose uses, in: Proceedings of the 12th international
conference on architectural support for programming languages and operating
systems 2006, 2006.

[33] A. Thall, Extended-precision floating-point numbers for GPU computation, in:
SIGGRAPH ’06: ACM SIGGRAPH 2006 research posters, 2006.

[34] Tokyo Institute of Technology, Global scientific information and computing
center, http://www.gsic.titech.ac.jp/.

[35] S. Turek, C. Becker, S. Kilian, Hardware–oriented numerics and concepts for
PDE software, Future Generation Computer Systems 22 (1-2) (2003) 217–238.

23

