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A Reissner-Nordström black hole (BH) is superradiantly unstable against spherical perturbations of a

charged scalar field enclosed in a cavity, with a frequency lower than a critical value. We use numerical

relativity techniques to follow the development of this unstable system—dubbed a charged BH bomb—

into the nonlinear regime, solving the full Einstein-Maxwell-Klein-Gordon equations, in spherical

symmetry. We show that (i) the process stops before all the charge is extracted from the BH, and (ii) the

system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose

phase is oscillating at the (final) critical frequency. For a low scalar field charge q, the final state is

approached smoothly and monotonically. For large q, however, the energy extraction overshoots, and an

explosive phenomenon, akin to a bosenova, pushes some energy back into the BH. The charge extraction,

by contrast, does not reverse.

DOI: 10.1103/PhysRevLett.116.141101

Introduction.—A remarkable feature of rotating (Kerr)

black holes (BHs) is that they may, classically, give away

energy and angular momentum. A bosonic field can be the

extraction mediator. Its waves, with sufficiently slowly

rotating phases, are amplified when scattering off a

corotating BH [1–9]. Trapping these superradiantly scat-

tered waves around the BH, the bosonic field piles up

exponentially into a gravitating macroscopic Bose-

Einstein-type condensate. It has been conjectured that an

explosive phenomenon ensues, dubbed a BH bomb [3].

Understanding the explosion and final state of the BH

bomb has been an open issue since the 1970s [10].

The BH bomb proposal was based on linear studies of the

superradiant instability. The conjectured explosive regime,

however, is nonlinear, and numerical evolutions using

the full Einstein equations are mandatory to probe it.

Unfortunately, the growth rates of superradiant instabilities

for rotating BHs are too small [7,11], rendering the numeri-

cal evolution of the rotating BH bomb a tour de force with

current numerical relativity (NR) technology [12,13]. But

suggestive progress has come from two other types of

nonlinear studies. First, considering a test bosonic field

with nonlinear dynamics on the Kerr BH [14,15] produced

evidence that an explosive event indeed occurs, akin to the

bosenova observed in condensed matter systems [16].

Second, hairy BH solutions with a stationary geometry of

the fully nonlinear Einstein-bosonic field systemwere found

precisely at the threshold of the instability [17,18].

In the absence of the NR technology to address the

rotating BH bomb, we are led to the more favorable

situation that occurs for charged (Reissner-Nordström)

BHs. An analogue process to superradiant scattering can

take place, by which Coulomb energy and charge are

extracted from the BH by a charged bosonic field [19,20].

This occurs for sufficiently small frequency waves and for a

field with the same charge (sign) as the BH. Introducing a

trapping mechanism, a charged BH bomb forms. On the

one hand, linear studies show that the growth rates of such

charged superradiant instability can be much larger than for

their rotating counterparts [21–23]. On the other hand, the

instability can occur within spherical symmetry, in contrast

with the rotating case that breaks even axial symmetry.

These features make the study of the charged BH bomb

amenable with current NR techniques.

In this Letter, we report NR simulations, using the full

Einstein equations, of the charged BH bomb. As a simple

model, we take a charged scalar field (SF) as the bosonic

mediator and enclose the BH-SF system in a cavity, as a

trapping mechanism. We find that the nonlinear regime

may be, albeit needs not be, explosive. Moreover, we

establish that, regardless of how explosive the nonlinear

regime is, the generic final state is a hairy BH: a charged

horizon surrounded by a SF condensate storing part of the

charge and energy of the initial BH and with a phase

oscillating at the threshold frequency of the superradiant

instability. Hairy BHs of this sort have been recently

constructed and shown to be stable [24].

Framework.—We consider the Einstein-Maxwell-Klein-

Gordon (EMKG) system described by the action

S ¼
R

d4x
ffiffiffiffiffiffi

−g
p

L, with Lagrangian density
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L ¼ R − FαβF
αβ

16π
−
1

2
DαΦðDα

ΦÞ� − μ2

2
jΦj2; ð1Þ

where R is the Ricci scalar, Fαβ ≡∇αAβ −∇βAα, Aα is the

electromagnetic potential, Dα is the gauge covariant

derivative, Dα ≡∇α − iqAα, and q and μ are the charge

and the mass of the scalar field. Newton’s constant, the

speed of light, and 4πϵ0 are set to 1 in our units.

To address numerically the EMKG system, we use a

generalized BSSN formulation [25,26] adapted to spherical

symmetry [27–29], and the code described in Refs. [30,31].

This codewas upgraded to account for Maxwell’s equations

and energy-momentum tensor. The 3þ 1 metric split reads

ds2 ¼ −ðα2 þ βrβrÞdt2 þ 2βrdtdrþ e4χ ½adr2 þ br2dΩ2�,
where the lapse α, shift component βr, and the (spatial)

metric functions χ, a, b depend on t, r. The electric field

Eμ ¼ Fμνnν has only a radial component, and the magnetic

fieldBμ ¼ ⋆Fμνnν vanishes,wheren
μ is the 4-velocity of the

Eulerian observer [32]. Spherical symmetry implies we only

have to consider the equations for the electric potential
ð3Þφ ¼ −Aμnμ and the radial component of both the vector

potential Ar and the electric field Er.

At r ¼ rm (mirror) and beyond, the SF Φ is required to

vanish. This leads to a discontinuity in the Φ derivatives. In

our scheme, however, the consequent constraint violation

does not propagate towards r < rm.We further impose parity

boundary conditions at the origin (puncture) for the SF.

Initial data and parameters.—The EMKG system

admits as a solution the Reissner-Nordström BH with

Arnowitt, Deser and Misner massM and chargeQ together

with a vanishing SF. We take the initial data to describe one

such BH with M ¼ 1 and Q ¼ 0.9. The former will set the

main scale in the problem. Perturbing such a BH with a

spherical scalar wave Φ ¼ e−iwtfðrÞ yields a superradiant

instability if (i) w < wc ≡ qϕH, where ϕH is the electric

potential at the horizon, and (ii) the perturbation is trapped

by imposing reflecting boundary conditions for the SF at

the spherical surface r ¼ rm (sufficiently) outside the

horizon.

To trigger the instability, we set as the SF initial data a

Gaussian distribution of the form Φ ¼ A0e
−ðr−r0Þ2=λ2 , with

A0 ¼ 3 × 10−4, r0 ¼ 7M, and λ ¼
ffiffiffi

2
p

and set the mirror at

rm ¼ 14.2M. The SF mass is fixed to μ ¼ 0.1=M, and we

focus on models with different values of the SF charge qM,

namely, qM ¼ 0.8, 5, 20, and 40.

The logarithmic numerical grid extends from the origin

to r ¼ 104M and uses a maximum resolution of

Δr ¼ 0.025M. Simulations with varying resolutions have

shown the expected second-order convergence of the code.

An analysis of constraint violations, which we have

observed to be always around 10−5 outside the horizon

and converging away at the expected second-order rate

together with a broader survey of the parameter space is

presented as Supplemental Material [33].

Physical quantities.—The extraction of energy and

charge from the BH by the superradiant instability is

compatible with the second law of thermodynamics.

This can be checked by monitoring the irreducible mass

[35] of the BH computed in terms of the apparent horizon

(AH) area AAH on each time slice as Mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AAH=ð16πÞ
p

.

For the initial RN BH,Mini
irr ≃ 0.718M, and we will see that

the final BH has a larger Mirr for all cases.

The energy transfer from the BH to the SF can be

established by computing the energy stored in the latter.

This is given by the (spatial) volume integral

ESF ¼
Z

rm

rAH

ESFdV; ð2Þ

where ESF is the projection of the stress-energy tensor of the

scalar field along the normal direction to the t ¼ constant

surfaces [36].

The charge transfer, on the other hand, is monitored by

tracking both the SF charge using a formula similar to

Eq. (2) replacing ESF by the charge density and the BH

charge QBH evaluated at the AH as [32]

QBH ¼ ðr2e6χ
ffiffiffiffiffiffiffiffi

ab2
p

ErÞjAH: ð3Þ

Finally, to establish the nature of the final BH, we

compute the electric potential at the AH and the corre-

sponding critical frequency wc ¼ qϕH as ϕH ¼ αð3Þφ−
βrarjr¼rAH

, where ar ¼ γrrA
r and γrr is the corresponding

component of the spatial metric [37].

Numerical evolutions and final state.—Solving numeri-

cally the EMKG system, we obtain a time series for the

evolution of the SF real and imaginary parts at a chosen

observation point, say, robs ¼ 10M. This is illustrated in

Fig. 1 for two values of qM.

0 500 1000 1500 2000
t/M

-1×10
-2

-5×10
-3

0

5×10
-3

1×10
-2

 Φ

qM = 5

0 500 1000 1500 2000
t/M

-1×10
-2

-5×10
-3

0

5×10
-3

1×10
-2

 Φ
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FIG. 1. Time evolution of the SF real part extracted at

robs ¼ 10M, for qM ¼ 5 (top) and 40 (bottom). The imaginary

part is analogous (but with opposite phase at late times).
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Figure 1 demonstrates the existence of two distinct

phases in the SF evolution. The first phase is the super-

radiant growth phase known from linear theory. During

this phase, the SF is amplified, extracting energy and

charge from the BH, and its amplitude grows exponentially

jΦj ∼ et=τ; a numerical fit for the e-folding time τ is

reported in Table I. The second phase, however, is outside

the scope of linear or test field theory. It is the saturation

and equilibrium phase: superradiant extraction stalls at

t=M ∼ 500 (∼100) for qM ¼ 5 (40), and the amplification

stops. Then, after a more or less tumultuous period—to be

addressed below—the SF amplitude remains constant for

arbitrarily long evolution times. An equilibrium state

between the SF and the BH is reached.

To establish the nature of this equilibrium state, we

perform a fast Fourier transform to obtain the oscillating

frequency spectrum. The angular frequency ωfin
SF for the

single mode of oscillation in the final SF condensate is

Mωfin
SF ¼ 0.642 (3.130) for qM ¼ 5 (40). Then, computing

the critical frequency ωfin
c from the horizon electric poten-

tial of the final BH, we obtain precisely the same value; see

Table I. Thus, these configurations are hairy BHs that exist

at the threshold of the superradiant instability.

Charged hairy BHs in a cavity at the threshold of the

superradiant instability have been recently constructed by

Dolan et al. [24] for the model (1) with μ ¼ 0. Therein, it

was established the existence of different families of such

hairy BHs with different numbers of nodes N for the SF

amplitude between the horizon and the mirror. But only the

solutions with N ¼ 0 are stable against perturbations. In

Fig. 2, we exhibit snapshots of the SF amplitude radial

profile at different time steps for qM ¼ 40. It can be

observed that whereas during the evolution the scalar

amplitude exhibits several maxima and minima (and nodes

exist), the final configuration has no nodes. A qualitative

difference between the final state hairy BHs presented here

and the stationary solutions in Ref. [24] is that the radial

profiles here have a local maximum between the horizon

and the mirror, which is due to the nonzero mass term.

Indeed, simulations with μ ¼ 0 show no such maximum

(cf. the Supplemental Material [33]). Nevertheless, the

evolutions presented here, together with the results in

Ref. [24], establish that the hairy BHs dynamically

obtained in this work are stable configurations.

Charge and energy extraction.—We now consider in

more detail the energy and charge transfer from the initial

BH to the SF. The second column in Table I shows that the

e-folding time of the instability during the growth phase

decreases with increasing qM. This is in agreement with

what can be observed in the top panel of Fig. 3 exhibiting

the time evolution of the SF energy: comparing the curves

for qM ¼ 0.8 and 5 during the superradiant growth phase,

the slope is larger for larger qM. For both these cases, the

SF energy increase is essentially monotonic until the

saturation and equilibrium phase is reached. Also, one

observes that the final SF energy is larger for smaller qM.

The corresponding quantitative values are given in the sixth

column of Table I. Considering that the initial perturbation

has larger energy for large qM (cf. the fifth column of

Table I), the ratio between the final to initial SF energy

TABLE I. Summary of physical quantities for the runs with different qM (first column): e-folding time during the growth phase

(second column), final oscillation frequency of the SF phase and final critical frequency (third and fourth columns), initial and final SF

energy and their ratio (fifth to seventh columns), and final BH irreducible mass and ratio of the final to initial BH and SF charge (eighth

to tenth columns).

qM τ=M Mωfin
SF Mωfin

c Eini
SF=M Efin

SF=M Efin
SF=E

ini
SF Mfin

irr =M Qfin
BH=Q Qfin

SF=Q

0.8 4.8E02 0.277 0.278 3.00E-05 1.32E-01 4.40E03 0.728 45% 55%

5.0 1.1E02 0.642 0.642 4.31E-05 3.93E-02 9.12E02 0.875 6.0% 94%

20.0 4.8E01 1.756 1.757 3.13E-04 1.31E-02 4.19E01 0.924 1.0% 99%

40.0 2.9E01 3.130 3.129 8.95E-04 8.02E-03 8.96E00 0.942 0.1% 99.9%

2 4 6 8 10 12 14

r/M

0

0.2

0.4

0.6

0.8

1

| 
|

t = 0
t = 10
t = 60
t = 1000

FIG. 2. One-dimensional (top panel) and 2D (bottom panels)

snapshots of the normalized SF radial profile for qM ¼ 40 at

times t=M ¼ 0, 10, 60, 1000. The small white circles near the

origin in the 2D panels mark the AH.
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varies from ∼4.4 × 103 to ∼9.0, when qM increases from

qM ¼ 0.8 to 40. Thus, energy extraction is more efficient

for lower charge coupling corresponding to a longer and

smoother superradiant growth.

An opposite trend is observed for the charge, as exhibited

in the last two columns of Table I and the bottom panel of

Fig. 3. This figure shows a perfect charge exchange

between the BH and the SF. Furthermore, the final charge

in the scalar field (BH) increases (decreases) with increas-

ing qM, in agreement with the last two columns of Table I.

Thus, the charge extraction is more efficient for higher

charge coupling. This observation, together with the

remarks on the energy, are consistent with the computation

of the irreducible mass shown in the eighth column of

Table I, where one observes that Mfin
irr approaches M as

qM grows.

Bosenova.—The superradiant growth phase for

qM ¼ 20, 40 is detailed in Fig. 4. Whereas for models

with small enough electric charge (up to qM ∼ 10), the

equilibrium phase is reached under a monotonic trend of

energy extraction; for larger values of qM, the energy

extracted clearly overshoots the final equilibrium value.

Strong oscillations of the SF energy follow before they get

damped and the system relaxes to the equilibrium phase. In

this process, some of the extracted energy is pushed back

into the BH. But the charge extraction is never reversed

(Fig. 4, inset). This agitated and reversed (relatively steady)

behavior of the SF energy (charge), mimics that described

in Refs. [14,15] for the energy (angular momentum) of a

test, but nonlinear, SF on the Kerr background, where it was

argued that it is an explosion of the amplified SF—akin to a

bosenova—that pushes some energy back to the BH. A

more detailed analysis of this phenomenon will appear

somewhere else, but we show in the Supplemental Material

[33] that changing the values of μ and rm does not change

qualitatively the results above.

Implications.—We have reported the first fully nonlinear

evolution of a BH bomb. Our numerical simulations

establish dynamically that the final state of the superradiant

instability in our setup is a hairy BH: a charged horizon

surrounded by a scalar field condensate, whose real and

imaginary parts oscillate with opposite phases at the critical

frequency determined by the horizon electric potential.

Together with the frequency domain perturbation analysis

of Ref. [24], our results have demonstrated that these BHs

are stable against superradiance, despite having wc ≠ 0,

i.e., nonzero horizon charge. Thus, for these hairy BHs,

perturbations with w < wc of the same bosonic field that

constitutes the background hair are not unstable modes.

These hairy BHs may be considered as the charged

counterparts of the hairy rotating solutions found in

Refs. [17,18]. The major difference between the mirror

imposed here and the mass term therein is that the latter is

only reflective for w < μ. Thus, if there are sufficiently low-

frequency modes (which are the ones amplified by super-

radience anyway), these are gravitationally trapped, and the

mirror is a good model for the mass term. A further

parallelism between the two cases is the bosenovalike

explosion exhibited here and the one discussed for a

nonlinear field on the Kerr background. This supports

the proposal that such rotating hairy BHs play a decisive

role in the nonlinear development of the rotating BH bomb

in asymptotically flat spacetimes, either as long-lived

intermediate states or as end points. Dis(proving) it is an

outstanding open question (see also [38]).
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FIG. 3. Top panel: Time evolution of the SF energy displayed in

logarithmic scale. Bottom panel: Time evolution of the charge for

both the SF and the BH. The inset enlarges the early phase of the

evolution, for clarity.
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FIG. 4. Bosenova of the qM ¼ 20, 40 models. The extracted

energy overshoots the final equilibrium value and strong oscil-

lations follow. The inset shows the SF charge for qM ¼ 40.
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