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Explosion Gas Bubbles Near 

Simple Boundaries 

Finite element analyses of explosion gas bubbles show that including the compressibility 
of the surrounding media leads to appreciable differences in key areas of the bubble's 
behavior. In order to more fully understand the behavior of bubbles created by detonations 
near simple boundaries, analyses incorporating fluid compressibility were conducted at 
various stand-off distances from simple rigid and constant pressure surface boundaries. 
The results from these analyses serve to characterize the behavior of the bubbles for the 
charge type, charge weight, and hydrostatic pressure used in the analyses. © 1997 John 
Wiley & Sons, Inc. 

INTRODUCTION 

When an explosive is detonated underwater, the 
explosive material is very rapidly converted into 
gaseous reaction products, which in most cases 

maintain a closed, simply connected topology for 
a relatively long period of time. The ability of this 

explosion gas bubble to contribute significantly 
to damage to nearby marine structures has been 
recognized for some time; much of the pioneering 

research into explosion gas bubbles dates back to 
the second world war. Many of the more important 

papers from this time can be found in a collection 

published by the Office of Naval Research, De
partment of the Navy (Hartmann and Hill, 1950). 

The propagation of the detonation wave front 

through an explosive is so rapid that the gas prod
ucts directly behind this wave front are not in pres

sure equilibrium with the gases further behind the 
wave front. The gases behind the detonation wave 
front in fact have a pressure profile similar to a 

step increase followed by an exponential type de
cay, with the highest pressure immediately behind 
the detonation wave front and the decay length 
increasing with propagation distance. As the deto-
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nation wave front reaches the boundary between 
the explosive and the surrounding fluid, a high 

pressure step-exponential type shock wave is 
transmitted to and propagates through this fluid. 

An appreciable fraction of the total explosion gas 
product energy is lost to the surrounding fluid 
through radiation of this initial shock wave. How

ever, about half of the initial internal energy of 
the explosive remains in the gas bubble (Cole, 
1948). In a relatively short period of time (the 

remaining phenomena described take place on a 
much longer time scale than completion of detona

tion and radiation of the initial shock wave) the 

explosion gas products are nearly in pressure equi
librium, with a pressure significantly higher than 

the hydrodynamic pressure in the surrounding 
fluid. The gas bubble thus begins expanding 
against the surrounding fluid. (This expansion be

gins as soon as the detonation front reaches the 
explosive boundary, but the time scale allows us 
to imagine the bubble gases as being homogeneous 

at the start ofthis expansion.) The initial pressure 
within the bubble and the outward velocity of the 
bubble boundary are relatively large and the sur
rounding water is relatively easily displaced, so 
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the bubble continues expanding beyond the point 

at which its internal pressure would be equal to 

the hydrostatic pressure in the surrounding fluid. 

This pressure difference between the bubble pres

sure and the pressure in the surrounding fluid 

when the bubble boundary velocity reaches zero 

thus causes the bubble to begin contracting. 

Just as the initial conditions (bubble's initial 

pressure and boundary velocity and momentum 

field of surrounding fluid) causes the bubble to 

expand well beyond the point at which it would 

be in pressure equilibrium with the fluid media, 

the new "initial" conditions in the bubble gases 

and the surrounding fluid when the bubble reaches 

its maximum expansion (bubble boundary velocity 

equal to zero) causes the bubble to begin con

tracting and to continue contracting beyond the 

point at which its internal pressure would equal 

the hydrostatic pressure in the fluid. Eventually 

the pressure in the gas bubble is great enough 

that the momentum field in the surrounding fluid 

cannot cause further contraction; the bubble is 

compressed by more remote fluid. This is only 

significant when the bubble is near maximum vol

ume, but this secondary pressure pulse phenom

ena leads to an energy loss of about one-third of 

the remaining bubble energy (Cole, 1948). When 

the bubble reaches its resultant minimum volume, 

the pressure in the bubble is again significantly 

higher than hydrostatic pressure in the sur

rounding fluid and the stage is set for another 

expansion-contraction cycle. As many as 10 such 

cycles have been observed (Cole, 1948). 

Additional phenomena occur when an under

water explosion takes place near a boundary. Near 

a rigid boundary, the fluid on the side of the bubble 

near the boundary when the bubble is expanding 

from its minimum volume is not displaced as easily 

as fluid away from the boundary, leading to move

ment away from the boundary. However, the bub

ble rapidly expands to the point where its internal 

pressure is less than hydrostatic, and only a small 

displacement away from the rigid boundary occurs 

during this period. When the bubble pressure falls 

below hydrostatic pressure, the fluid remote from 

the rigid boundary more readily accelerates to

ward the bubble boundary. The bubble thus moves 

closer to the wall. Because the bubble spends most 

of its time in this state, significant momentum is 

imparted to a large volume of fluid when the bub

ble is large. As the bubble then begins contracting, 

this fluid momentum becomes concentrated in a 

small amount of fluid near the bubble, and as the 

bubble contracts it is accelerated toward the wall. 

Because the bubble spends most of its time in 

the "below hydrostatic pressure" condition, the 

motion toward the wall gently exceeds the initial 

motion away from the wall (Cole, 1948). The oppo

site takes place for a free surface: the fluid momen

tum field dictates that the bubble initially move 

toward the surface, but then move rapidly away 

from the surface. In this article we quantitatively 

examine the effects of plane rigid wall and constant 

pressure boundaries on an explosion gas bubble, 

using the finite element method. An Euclerian 

finite element mesh, in which the finite element 

mesh is stationary and material flows through the 

mesh, was utilized. The finite element program 

MSC/DYTRAN (MacNeal-Schwendler Corpo

ration, 1995) was used for these analyses. 

NUMERICAL APPROACH 

The finite element program MSC/DYTRAN 

(MacNeal-Schwendler Corporation, 1995) has 

both Lagrangian and Eulerian processors; only the 

hydrodynamic multimaterial Eulerian processor 

has been used in the analyses described in this 

article. This Eulerian processor uses the basic con

servation equations, in conjunction with constitu

tive equations and a material transport scheme, to 

compute the solution in space. 

The control volume method is used, with each 

element as a separate control volume. The basic 

conservation equations for a hydrodynamic mate

rial expressed in the control volume formulation 

are 

ifff pdv=-ff p(u·dS), at vol surf 

ifff pudv=-ff pu(u·dS), (1) at vol surf 

iff f pe dV = - f J pe(u' dS), at vol surf 

for conservation of mass, momentum, and energy, 

respectively. A one point approximation (the 

value of each property at the geometric center of 

each element) is used to calculate these integrals, 

in conjunction with the interpolated velocity val

ues at the faces between adjacent element. 

The material transport scheme used in this pro

gram is a first-order "donor-acceptor" scheme in 

which transported quantities are subtracted from 

donor elements and added to acceptor elements 

based upon donor element values and the interpo-



lated velocity at the common element face. Thus, 

for transport from element m to element n, 

1 
Uface = 2" (um + un), (2) 

and during time step dt the volume transport is 

dV = Uface • dS dt. (3) 

The mass, momentum, and energy transport from 

element m to element n during this time step is 

then 

dM= PmdV, 

d(M) = Pm Urn dV, 

dE = Pm em dV. 

(4) 

The solution in time is computed using an ex

plicit central finite difference method; the time 

step is calculated internally at each time step to 

satisfy the requirement that 

dL 
dt=s-

c + u' 
(5) 

where s is the safety factor «1), L is the smallest 

characteristic element length, c is the wave veloc

ity, and u is the particle velocity. 

PROBLEM DESCRIPTION 

Two different basic problems were analyzed. The 

geometry of the first problem was chosen to corre

spond to one of a set of experiments conducted 

at the Woods Hole Oceanographic Institute during 

and shortly after the second world war (Swift and 

Decius, 1950). This experiment measured the max

imum bubble radius and the bubble oscillation 

period resulting from detonation of a small (0.299 

kg TNT equivalent including booster) TNT charge 

located at a depth of 178.6 m in seawater. Because 

there was no nearby boundary in this experiment, 

it approximates the simplest possible case in which 

the boundary is located at infinity. This problem 

was used to examine both the adequacy of the 

state equations used and the reasonableness of 

the modeling assumptions (described below) in 

approximating the underlying physics of the deep 
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P (atm) = 101325 Pa 

P 1025 kg/rn.3 

g 9.80665 m/s 2 

Pm P (atm) + pgh 

Charge 
(0.299 kg TNT) 

FIGURE 1 Problem geometry for the spherical bub

ble problem. 

explosion problem. The geometry of this essen

tially free-field problem is illustrated in Fig. 1. 

The other problem studied consists of a 10.24 kg 

cylindrical TNT charge detonated in seawater at 

a depth of 1000 m at various stand-off distances 

from a plane constant pressure surface or rigid 

wall boundary, as illustrated in Fig. 2. The charge 

was assumed to be cylindrical with a diameter to 

height ratio of one for convenience. Underwater 

explosion experiments also typically use cylindri

cal shaped charges, for practical reasons. The deto

nation initiation point within the charge was as

sumed to be at the midpoint of the axis of the 

charge. High-order detonation was assumed to oc

cur without a significant weight of booster 

charge material. 

A number of simplifying modeling assumptions 

were made for both of these problems. Because 

experimental results show that very deep charges 

undergo little migration due to gravity (Cole, 

1948), gravity was neglected except for its effect 

on the hydrostatic pressure at the depth of the 

charge. All of the fluid surrounding the charge 

was then assumed to initially have this hydrostatic 

pressure. The fluid was assumed to be compress

ible but inviscid and irrotational. 

I Charge (10.24 kg TNT) 

ii {Free-Field Maximum Radius 

I I ~ P (atm) = 101325 Pa 
I I/' P = 1025 kg/m3 

I r ) g = 9.B0665 m/s2 I 
I I\. 
I I ~ - /' h = 1000 m 

I I 
I I P 00 = P (atrn) + pgh 

I I 

Boundary (various standoffs shown) 

FIGURE 2 Problem geometry for the bubble near the 

boundary problem. 
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COMPLETE MODEL 

REGION NEAR CHARGE 

FIGURE 3 Finite element model for the spherical bubble problem. 

Heat transfer between the surrounding fluid 

and the explosion product gases were assumed to 

be negligible over the time frame of the problem, 

and as a result vaporization of seawater at the 

interface between the two was assumed to be insig

nificant. Mass transfer between the seawater and 

the explosion product gases, a fraction of which 

would be water vapor, was also assumed to be neg

ligible. 

MODEL DESCRIPTION 

The TNT in these problems was modeled using the 

J ones-Wilkins-Lee equation of state, with state 

equation parameters taken from the Lawrence 

Livermore National Laboratories Explosives 

Handbook (Dobratz, 1981). This state equation 

provides a relationship between the pressure in 

the explosion product gases behind the detonation 

front and the density and specific internal energy 

of these gases. At any moment in time, the pres

sure within a small region in the explosion product 

gases is given by 

(6) 

where E is the specific internal energy per unit 

mass; Po is the reference density; p is the overall 

material density; Y] is the pi Po ; and A , B , w, R1 , and 



R2 are sta te equation parameters for the explosive 

[numerical values given by Dobratz (1981)]. A 

spherical detonation wave front traveling outward 

from the initiation point at the center of the charge 

at a velocity of 6930 m /s was used. 

The seawater was modeled using a polynomial 

equation of state; parameters for this state equa

tion were obtained by fittin g published data to this 

state equation form (Chisum and Shin , 1995). This 

state equation accounts for changes in the pressure 

of the seawater due to density changes (compress

ibility) and specific internal energy changes (from 

work done on or by the seawater). In compression , 

the seawater pressure is given by 

P = alIL + a2IL2 + a3IL3 + (bo + bilL + b2IL2) PoE , 

(7) 

y 

t 
z " ~ x 

(a) 

(c) 
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and in tension, the pressure is given by 

where IL = YJ - 1 (the acoustic condensation) and 

a i, a2, a3, bo, b l , and h are state equation parame

ters for the seawater [numerical values given by 

Chisum and Shin (1995)]. A minimum pressure of 

zero was defined for the seawater, so that if at any 

time during the transient analyses the flow was 

such as to give a portion of the seawater a negative 

total (hydrostatic plus dynamic) pressure, all of 

the seawater would flow out of that region and a 

void would be created. 

To initialize the pressure in the seawater to the 

hydrostatic pressure for the two problems ana

lyzed, the specific internal energy rather than the 

~ -- -- ------------------------ -;-- -, 

Z " ~ X 

(b) 

(d) 

FIGURE 4 Finite element model for the bubble near the boundary problem (typical). 
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FIGURE 5 Radius versus time behavior for the spherical bubble problem. 

acoustic condensation was adjusted. This allows 

the proper hydrostatic pressure to be set accu

rately. In these problems, the change in density 

caused by the seawater head is so small (owing to 

the relatively incompressible nature of seawater) 

that significant round-off errors are introduced by 

using the acoustic condensation to set the hydro

static pressure. 

Because gravity was neglected except for its 

effect on the hydrostatic pressure in the fluid, 

which was assumed to be uniform and equal to 

the hydrostatic pressure at the depth of the charge, 

the first (Swift and Decius, 1950) problem is essen

tially spherically symmetric. To model this I-di

mensional problem with the 3-dimensional finite 

element program MSC/DYTRAN, a tall, thin pyr

amid shaped volume of fluid (with a 1: 10 base to 

height ratio) was used. A very large volume of 

fluid was modeled to prevent reflection from the 

boundary from affecting the explosion gas bubble 

during the time frame of the analysis. Because 

gradients are small well away from the bubble, a 

nonuniform mesh spacing was used. Figure 3 

shows the overall geometry of the finite element 

model used for this problem, as well as a close up of 

the model in the area near the charge. A detailed 

description of this finite element model is given 

by Chisum and Shin (1995). 

The cylindrical charge in the second problem 

was placed with its axis normal to the plane bound

ary. With this orientation, the problem is axially 

symmetric, with the symmetry axis being the axis 

of the charge. To model this axially symmetric 

problem with the 3-dimensional finite element 

program MSC/DYTRAN, a wedge shaped vol

ume comprising 2° of arc was modeled. During 

model development, it was found to be necessary 

to include a fairly large region of fluid remote 

from the area of interest near the charge to get 

acceptable results. This was probably due to the 

inaccuracies inherent in modeling a "nonre

flecting" boundary and to the sensitivity of the 

bubble motion at the start of the collapse phase 

to the surrounding flow field, because this is when 

the flow begins reversing direction. This a very 

large (400-m radius) volume of fluid was modeled; 

this radius was large enough that no reflection 

from this boundary could reach the bubble during 

the time frame ofthe analysis, so the remote (non

plane) boundaries of the model were left as no

flow (rigid wall) boundaries. The plane symmetry 

boundaries at :::':::1° were also left as no-flow bound

aries, as the flow in adjacent wedge segments 

would preclude flow across these boundaries. 

Because of the large volume of surrounding 

fluid modeled for this problem, several different 

model regimes were defined. A number of differ

ent analyses were conducted at different stand-off 



distances from the boundary of interest; a typical 

finite element analysis model that was used is 

shown in Fig. 4. The overall geometry of this model 

is shown in Fig. 4(a); in this figure the vertical (y 

direction) line segment is the axisymmetric sym

metry axis, and the narrow triangular area perpen

dicular to this axis is the constant pressure surface 

or rigid wall boundary. An expanded view of the 

area where these intersect [i.e., the lower left cor

ner of Fig. 4(a)] is shown in Fig. 4(b). In this figure, 

the second triangular area above the bottom trian

gular area bisects the axis of the charge. 

The finite element mesh used in this analysis is 

shown in Fig. 4(c), and consists of 30,183 Eulerian 

elements. Initially, 32 of these elements contain 

TNT, and the remainder contain seawater. Figure 

4( d) shows an expanded view of the region near 

the charge [the lower left corner of Fig. 4(c)]. The 

lower boundary in this figure, parallel to the x 

axis, is the constant pressure surface or rigid wall 

boundary of interest. For the analysis model 

shown in Fig. 4, the boundary of interest is located 

97.5 cm below the initial center of the 20-cm high, 

20-cm diameter explosive charge. 

NUMERICAL RESULTS 
AND DISCUSSION 

The radius verus time behavior predicted for the 

explosion product gas bubble of the first problem 

[the free-field bubble at 178.6 m, corresponding 

to one of Swift and Decius's (1950) experiments] 

is shown in Fig. 5. Also shown in this figure for 

comparison purposes are the experimentally de

termined first and second maximum bubble radius 

and period. Excellent agreement is seen between 

the experimental and finite element analysis re

sults for the first maximum bubble radius and 

bubble period, indicating that the state equations, 

state equation parameters, and modeling assump

tions (used for both the first and second prob

lems) adequately model the underlying physics 

of the problem, up until the time of the first 

bubble minimum. 

Also plotted in Fig. 5 is the radius versus time 

behavior predicted by Herring's (1950) approxi

mate analytical solution to this problem, obtained 

by separating variables in the energy equation and 

numerically integrating the resulting expression: 

( 3Po )1I2 JT da 
t = 2Po TO [(rmax/a)3 -1]112' 

(9) 
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In this analysis, Herring assumed that the fluid 

surrounding the explosion gas bubble is incom

pressible and neglected the internal energy of the 

gas. For convenience, the maximum radius of the 

bubble is used as a substitute for the initial velocity 

of the bubble's bounding surface and is given the 

same value as the maximum radius from the finite 

element analysis. The initial radius of the bubble 

was taken as zero for simplicity. This curve was 

plotted to show that the shape of the radius versus 

time curve predicted by finite element analysis is in 

qualitative agreement with that from the analytical 

solution of the simplified problem. 

One clear distinction is apparent between these 

two curves: there is a considerable energy loss 

between pulsations in the finite element analysis, 

as evidenced by the decreasing maximum radius 

and period of the bubble. This is due to acoustic 

radiation when the bubble is near minimum radius. 

As there is no such energy loss mechanism in the 

analytical solution, the pulsations for this solution 

are just mirror images of the first pulsation. Figure 

6 shows the pressure, impulse, and fluid velocity 

predicted by finite element analysis at a point lo

cated at a distance equal to two maximum first 

bubble radii from the center of the bubble. The 

considerable impulse caused by the relatively low 

pressure but long duration bubble pulse emitted 

near the first bubble minimum is clearly seen in 

this plot. As the relatively long period of time 

between the impact of the initial shock wave and 

the secondary bubble pulse may cause the second

ary pressure pulse to reinforce the bending mode 

vibration initiated in a target marine structure by 

the initial shock wave, this secondary pressure 

pulse could potentially cause significant damage 

to a target. 

The experiment conducted by Swift and Decius 

(1950) also measured the second bubble maximum 

radius and oscillation period, and the measured 

values were even smaller than those predicted by 

our finite element analysis as shown in Fig. 5. This 

indicates that an energy loss mechanism, in addi

tion to acoustic radiation appears to be important 

in this case. A likely explanation for this was given 

by Hicks (1970), who noted that in photographs 

taken of deep (nonmigrating) explosion gas bub

bles, the bubble is unstable near its minimum ra

dius and numerous needlelike fluid jets penetrate 

into the gas bubble; this fluid spray can then sig

nificantly cool the hot bubble gases. Cole (1948) 

provided photographs illustrating this phenomena. 

This phenomena is not seen when the bubble is 

migrating, e.g., when it is near a boundary. 
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FIGURE 6 Pressure, impulse, and fluid velocity at a point two maximum free-field radii 

from the charge center for the spherical bubble problem. 

The close agreement between Swift and Decius' 

(1950) experimental results and our finite element 

analysis results indicates that our state equations, 

methods, and assumptions seem to be adequate 

at least up to the time of the first bubble minimum. 

Beyond that time, they mayor may not be accurate 

for cases in which there is a boundary near the 

bubble. Analyses for the bubble near a simple 

boundary problem was thus restricted to the first 

bubble pulsation. 

To assist in quantification of analysis results 

for the bubble near a simple boundary problem, 

a free-field (no nearby boundary) analysis was 

conducted using an axisymmetric, half-symmetry 



model. In this 23,670 element model, all elements 

below the plane bisecting the charge axis were 

eliminated. This symmetry plane was then made 

a no-flow boundary. This analysis showed that the 

bubble resulting from detonation of the cylindrical 

80.0 
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charge became very nearly spherical shortly after 

detonation and remained so throughout the tran

sient analysis. A maximum bubble radius of 70.65 

cm was predicted, and the minimum radius of22.32 

cm occurred at 14.47 ms after detonation. These 
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distance from the boundary (nondimensionalized) for the bubble near the boundary problem. 

quantities were used for comparison with analyses 
in which a rigid wall or constant pressure surface 

was present. 
The dimensionless parameter h* was defined as 

the stand-off distance between the center of the 

charge and the nearest point on the plane constant 

pressure or rigid wall boundary, in units of maxi

mum free-field radii. Analyses were conducted at 

stand-off distances of h* = 1.062, 1.168, 1.380, 

1.698, 2.017, 2.654, 4.034, and 8.068; the typical 

model shown in Fig. 4 is for h* = 1.380. The num

ber of Eulerian elements used in these models 

ranged from 28,680 for h* = 1.062, to 50,368 for 

h* = 8.068. Using the peak wave velocity seen in 

the fluid during these analyses together with the 

free-field period, it was determined that a plane 

constant pressure or rigid wall boundary could 

have no effect beyond an h* value of 40 during 

the first expansion-contraction cycle. 

Typical finite element analysis results for bub
ble "volume equivalent spherical radius" (the ra

dius of a spherical bubble with the same volume 

as the actual bubble) and center of mass displace
ment time histories are illustrated in Fig. 7. The 

cases shown in this figure are for a constant pres
sure surface and a rigid wall located at 1.380 maxi

mum free-field radii from the center of the charge. 

The free-field radius versus time behavior is also 

shown in this figure. In this and subsequent 

graphs, displacements are considered to be posi

tive if they are toward the boundary and negative 

if away from the boundary. Figure 7 shows the 

significant impact these boundaries can have on 

the radius, period, and migration of the bubble. 

In addition to the expected initial migration away 

from and subsequent migration toward the rigid 

boundary (and the opposite for the constant 

pressure boundary), the effect of the finite wave 
speed in a compressible media can be seen in the 

displacement versus time curve. There was no dis

placement until the initial shock wave reencoun

tered the bubble after reflecting off the boundary 

(with a sign change at a constant pressure 

boundary). 



Finite element analysis results for the variation 

of the first bubble period with stand-off distance 

to the two types of boundaries modeled are given 

in Fig. 8. For convenience, the abscissa coordinates 

in this figure are the inverses of the stand-off dis

tances nondimensionalized by the maximum free

field radius, i.e., lIh*; the ordinate coordinates 

are the bubble periods nondimensionalized by the 

free-field period. Also plotted in Fig. 8 for compar

ison purposes is the nondimensional bubble period 

(T*) versus the nondimensional inverse stand-off 

distance relationship predicted from an approxi

mate analysis by Herring (1950). In Herring's anal

ysis, the fluid is assumed to be incompressible, the 

gas bubble is assumed to have negligible internal 

energy and to remain spherical, and terms of order 
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(lIh*2) and higher are neglected. Herring's for

mula for the bubble period is 

T' = T (1 + rave) 
- 4h 

(10) 

where T' is the modified period in the presence 

of a boundary, T is the free-field period, rave is the 

average bubble radius over oscillation, h is the 

stand-off distance to the boundary, and the upper 

sign is for a rigid wall, the lower for a constant 

pressure boundary. 

Our finite element nondimensional period ver

sus nondimensional inverse stand-off distance (T* 

versus lIh*) curve has about the same slope as 
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FIGURE 9 Bubble displacement at the first minimum and peak velocity versus the inverse 

stand-off distance from the boundary (nondimensionalized) for the bubble near the bound
ary problem. 
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FIGURE 10 Equivalent spherical radius extrema versus the inverse stand-off distance to 

the boundary (nondimensionalized) for the bubble near the boundary problem. 

the curve predicted by Herring's incompressible 

analysis over much of the stand-off range of inter

est. However, because of the finite wave speed in 

the real, compressible fluid we know that for very 

remote boundaries (h* > 40) the boundary can 

have no effect on the first period of the bubble. 

Thus, not only must the real T* versus lIh* curve 

leave the point where Ilh* equals zero with a zero 

slope, there must be a finite range of lIh* values 

for which the slope of this curve is zero. 

The fact that the linear part of the constant 

pressure surface part of this curve is offset further 

from Herring's prediction than the linear part of 

the rigid wall part of the curve, is probably due, 

at least in part, to the initial migration of the bub

ble. For the typical case shown in Fig. 7 when the 

bubble begins its collapse (i.e., it is at the "station

ary point" where its volume is at a maximum), it 

is somewhat closer to the plane boundary surface 

for the constant pressure boundary case than for 

the rigid wall boundary case. The nondimensional 

period plotted in Fig. 8 is plotted as a function of 

the nondimensional initial inverse stand-off dis

tance, not the inverse stand-off distance at the time 

the bubble reaches its maximum volume. 

The displacement of the bubble center of mass 

at the time of the first minimum and the peak 

velocity of the bubble center of mass are plotted 

as a function ofthe inverse stand-off distance, non

dimensionalized, in Fig. 9. This figure shows that 

the bubble displacement at the time of the first 

minimum can be an appreciable fraction of the 

initial stand-off distance for charges fairly near a 

boundary; because the secondary pressure pulse 

occurs near this time, this can significantly affect the 

damage done to nearby structures. Also of interest 

is the fact that the peak bubble migration velocities 

predicted by the finite element analysis incorporat

ing compressibility are relatively modest. 

Figure 10 shows the nondimensional equivalent 

spherical radius extreme (maximum and mini

mum) as a function of the nondimensional inverse 

stand-off distance. As with many of the other fig

ures, a general "antisymmetry" about the free-



field ordinate and abscissa axes is seen for detona

tions not too near a boundary surface. For closer 

detonations, the constant pressure boundary ap

pears to have a different affect upon the extrema 

than the rigid wall boundary. 

When comparing the rigid wall results against 

the constant pressure surface results plotted in 

Figs. 8, 9, and 10, several different " regimes" be

come apparent. For 1/h* smaller than about 0.35 , 

all of the results are generally anti symmetric. Be

tween values of 11 h* of about 0.35 and 0.65 , the 

period , maximum equivalent radius, and center of 

mass displacement results are still roughly anti

symmetric, but the minimum equivalent radius 

and peak velocity results are not. And at 11 h* 

values beyond about 0.85 a further change is seen 

in the displacement, peak velocity, and minimum 

equivalent radius curves. The differences for 

boundaries closer than 11 h* values of greater than 

t=O.OOT t=O.50T 

t=O.95T t=O.98T 
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0.85 appear to be due primarily to bubble venting 

at the constant pressure surface caused by the in

crease in bubble radius due to the constant pres

sure surface combined with initial bubble migra

tion toward the boundary. The differences seen at 

1/h* values of between 0.35 and 0.65 appear to be 

related to bubble migration. 

A plot of the bubble shapes predicted by our 

finite element analysis for the case in which the 

bubble is initially at h* = 1.380 (1Ih ~ ' about 0.725) 

from a constant pressure surface is shown in Fig. 

11. At the beginning of collapse the bubble ap

pears to be nearly spherical, while in the final col

lapse stages it assumes a "sphere-cap" shape. 

The final collapse stage shapes predicted by our 

analysis when the bubble is initially at h* = 1.380 

from a rigid wall are shown in Fig. 12 (the bubble 

remains nearly spherical until this late collapse 

phase). The bubble shapes in Fig. 12 are much 

t=O.80T t=O.90T 

t=O.99T t=1.00T 

FIGURE 11 Shapes of the bubble for expa nsion and collapse at h* = 1.380 from a constant 

pressure boundary for the bubble near the boundary problem (boundary located at the 

bottom). 
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t=O.95T t=O.98T t=O.99T t=1.00T 

FIGURE 12 Bubble shapes during the final collapse of the bubble at h* = 1.380 from a 

rigid wall for the bubble near the boundary problem (boundary located at the bottom). 

closer to a " kidney" shape than a sphere cap . As 

with the results discussed above, the differences 

may be largely due to changes in the "effective 

stand-off distance" (due to changes in the bubble's 

maximum equivalent radius and the bubble 's posi

tion at the beginning of the collapse phase). Our 

analysis of different rigid wall boundary cases 

(Chisum and Shin, 1995) has shown that the bub

bles remain nearly spherical at h* values of greater 

than about 2.0, but bubble shapes are sensitive to 

stand-off distance at smaller stand-off distance 

values. 

CONCLUSION 

The application of multi material Eulerian analysis 

to investigation of explosion gas bubble phenom

ena has been demonstrated in this investigation 

of the effects of simple boundaries on explosion 

gas bubbles. The ability of this approach to yield 

very good results up until the first bubble minimum 

has been demonstrated; but beyond this time a 

more sophisticated approach that accounts for 

heat transfer may be needed, particularly if the 

boundary is so remote from the bubble that little 

migration occurs. 

The boundary types chosen for this investiga

tion are admittedly simple approximations to the 

types of boundaries of interest in the investigation 

of underwater explosions. However, they serve as 

a limiting case for many cases of practical interest: 

e.g., an explosion near a rigid but curved marine 

hull; an explosion near the ocean bottom or sur-

face; or an explosion near a gas-filled bottle, tank, 

or compartment. 

The finite element program MSC/DYTRAN 

used in this investigation was developed for con

ducting coupled Lagrangian-multimaterial Eu

lerian analysis of fluid-structure interaction prob

lems. We have not used this capability in these 

completely Eulerian analyses, but the extension 

of this investigation to cases with a deformable 

Lagrangian boundary is not difficult. 

The results discussed in this article are intended 

to demonstrate the ability to characterize the ef

fects of very simple boundaries on a particular 

explosion gas bubble. Work is in progress to ex

tend and refine the procedures and results from 

this investigation to more realistic problems, in

cluding deformable boundaries, a realistic air

water interface, and problems incorporating vis

cosity. The eventual goal is to provide accurate 

" semiempirical" equations for bubble parameters 

of interest sufficient to accurately determine the 

response of nearby marine structures to loading 

from any explosion gas bubble. 
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