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Abstract 

Background: Anurans largely rely on acoustic communication for sexual selection and reproduction. While multiple 
studies have focused on the calling activity patterns of prolonged breeding assemblages, species that concentrate 
their reproduction in short-time windows, explosive breeders, are still largely unknown, probably because of their 
ephemeral nature. In tropical regions, multiple species of explosive breeders may simultaneously aggregate leading 
to massive, mixed and dynamic choruses. To understand the environmental triggers, the phenology and composi-
tion of these choruses, we collected acoustic and environmental data at five ponds in French Guiana during a rainy 
season, assessing acoustic communities before and during explosive breeding events.

Results: We detected in each pond two explosive breeding events, lasting between 24 and 70 h. The rainfall during 
the previous 48 h was the most important factor predicting the emergence of these events. During explosive breed-
ing events, we identified a temporal factor that clearly distinguished pre- and mid-explosive communities. A com-
mon pool of explosive breeders co-occurred in most of the events, namely Chiasmocleis shudikarensis, Trachycephalus 

coriaceus and Ceratophrys cornuta. Nevertheless, the species composition was remarkably variable between ponds 
and for each pond between the first and the second events. The acoustic structure of explosive breeding communi-
ties had outlying levels of amplitude and unexpected low acoustic diversity, significantly lower than the communities 
preceding explosive breeding events.

Conclusions: Explosive breeding communities were tightly linked with specific rainfall patterns. With climate change 
increasing rainfall variability in tropical regions, such communities may experience significant shifts in their timing, 
distribution and composition. In structurally similar habitats, located in the same region without obvious barriers, our 
results highlight the variation in composition across explosive breeding events. The characteristic acoustic structure of 
explosive breeding events stands out from the circadian acoustic environment being easily detected at long distance, 
probably reflecting behavioural singularities and conveying heterospecific information announcing the availability 
of short-lived breeding sites. Our data provides a baseline against which future changes, possibly linked to climate 
change, can be measured, contributing to a better understanding on the causes, patterns and consequences of these 
unique assemblages.
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Background
Amphibians are currently the most endangered group of 

vertebrates, with more than 32% of species classified as 

at risk of extinction [1–3]. Recent investigations on the 

causes of amphibian declines have identified the role of 

climate change on a global scale [4–7]. In addition to the 

climate-linked epidemic hypothesis, research has focused 

on the effect of climate change on behaviour, reproduc-

tion and distribution of amphibians [8, 9]. As ectotherms, 

alterations on temperature and rainfall regimes might 

strongly affect key aspects of amphibian life cycles, even 

jeopardizing their survival [10]. Both theoretical and 

experimental studies suggest that low latitude ectother-

mic species are more vulnerable to climate changes than 

their higher latitude counterparts [11]. Tropical species 

indeed tend to have narrower thermal tolerance [12] and 

their actual habitat temperatures are closer to their upper 

thermal limit [10, 13]. Even slight changes in environ-

mental conditions might therefore have a strong effect on 

these tropical species [14].

Anurans largely rely on acoustic communication for 

sexual selection and reproduction [15, 16]. Studies have 

revealed that temporal patterns of calling and breeding 

activity of anurans are influenced by multiple environ-

mental factors, such as temperature, humidity or light 

intensity [17–19]. Moreover, recent findings have also 

shown that photoperiod might be an important driver of 

the calling activity of numerous anuran species [20–23]. 

The response to abiotic environmental factors may vary 

between species and according to the reproduction strat-

egy [18, 24]. While some anurans show long periods of 

calling activity and mating, known as prolonged breed-

ers, others concentrate their reproduction during short 

time windows, even a few hours per year, and are known 

as explosive breeders [24]. In tropical regions, massive 

aggregations of explosive breeders generally involve mul-

tiple species simultaneously, leading to highly-diverse 

anuran communities [25–28]. Such phenomena typically 

occur in ephemeral ponds, which are sparsely distributed 

in tropical forests and are likely triggered under particu-

lar weather conditions.

Yet, the structure and dynamics of these unique acous-

tic communities are still largely unknown probably 

because of their ephemeral nature, density and complex-

ity. To our best knowledge, few studies have documented 

broad and generic patterns in explosive neotropical anu-

rans, observing correlations between peaks of activity 

and the occurrence of heavy rainfall at the beginning of 

the rainy season [25, 26, 28], and only two studies have 

analysed their fine scale dynamics [23, 27]. In the for-

mer study, the data collection was done by human calling 

surveys through a 4-month fieldwork in French Guiana. 

Gottsberger and Gruber in 2004 identified temporal 

partitioning within the anuran community according to 

their reproductive modes [27]. In particular, the group 

of species with aquatic oviposition presented sporadic 

acoustic activity following heavy rainfall, a phenomenon 

that occurred twice during the study. But their study 

focused on two close-by ponds, less than 240  m apart, 

limiting the interpretation of the results. Replications at 

spatial and temporal dimensions are crucial to examine 

the constitution and diversity of these communities, to 

decipher their dynamics and to identify their link with 

environmental factors. Schalk and Saenz in 2016 exam-

ined the calling phenology of anurans in the Gran Chaco 

ecoregion at seven ponds during 9 months with passive 

acoustic sensors. For explosive breeding species they 

found that calling activity was positively and significantly 

correlated with at least two abiotic factors, rainfall and 

photoperiod [23]. Calling individuals gathering around 

breeding points form dense choruses characterized by a 

complex acoustic structure, broad masking interference 

and high sound pressure level [29]. Choruses formed by 

tropical anurans in explosive breeding events are extreme 

on these features due to the extraordinary species diver-

sity and density of calling males [27]. Such assemblages 

constitute unique examples of multi-species choruses 

presumably eliciting complex interspecific interactions.

The technical difficulty in monitoring simultaneously 

these ephemeral communities has been one of the rea-

sons for the lack of a wider geographic coverage. Tra-

ditional field-based observations are not scalable, thus 

it is crucial to adapt and test cost-effective methods. 

More than 20  years ago the idea of using automated 

data acquisition methods to monitor amphibians was 

already proposed [30], but it is only recently, thanks to 

the development of reliable passive acoustic sensors that 

this method has gain popularity [31–36]. These acoustic 

sensors can be programmed to record for days or even 

months in a non-invasive and cost-efficient way, so that 

replication in time and space is now possible. Most anu-

ran amphibians produce loud, stereotyped, and species-

specific advertisement calls for mate attraction. These 

acoustic signals can be therefore remotely recorded to 

monitor populations as testified by several studies on 

temperate (e.g. [8, 18, 37]) and tropical species (e.g. [17, 

38–40]).

Using automated sensors, we collected for the first 

time acoustic and environmental data to monitor simul-

taneously and regularly explosive breeding events in 

tropical anuran communities, at five temporary ponds 

located along the Kaw Mountain in French Guiana. 

This systematic passive acoustic monitoring allowed 

us to tackle key ecological questions related to the pat-

terns, causes and consequences of such a striking phe-

nomenon. We specifically addressed four questions: (1) 
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What are the main meteorological factors that trigger 

the emergence of explosive breeders? (2) Which species 

co-occur before and during explosive breeding events? 

(3) What is the variation in the acoustic community 

composition within and between sites? (4) What are 

the main acoustic patterns, spectral characteristics and 

diversity before and during explosive breeding events? 

Answering these questions may shed light on the poten-

tial selective pressures shaping these complex acoustic 

communities.

Methods
Study site

We monitored explosive breeding assemblages in the 

lowland tropical rainforest of French Guiana, along the 

Kaw Mountain (4°36′N; 52°16′W). As in most regions 

located close to the equator, seasonal climatic variations 

in the study site were primarily due to changes in rainfall 

and humidity. The climate regime is characterized by two 

periods of rainfall: the main rainy season takes place from 

mid-November to the end of February and a less marked 

rainy season occurs from April to July. For this study, we 

collected acoustic and environmental data from the end 

of the dry season (10 November 2015) to the end of the 

main rainy season (16 February 2016).

We focused the sampling on five seasonal ponds along 

a 30.4  km transect corresponding to the departmen-

tal road D6 (Fig.  1). These temporary shallow water 

bodies are flooded during the rainy seasons and then 

dry out predictably during periods of low rainfall, July to 

November. The ponds were surrounded by dense tropi-

cal forest, located between 236 and 313 m above the sea 

level, and had distinct sizes, from 224.8 to 2240.2  m2 

(Table 1).

Sampling protocol

We monitored anuran calling activity and weather con-

ditions simultaneously in each pond using automated 

sensors with a regular sampling schedule. To record the 

acoustic communities, we placed on the edge of each 

pond at breast height an automated sound recorder 

equipped with an omnidirectional microphone (SM2, 

Wildlife Acoustics, Inc., Concord, MA, USA). The device 

was set up to record data 1 min every 29 min, at 44.1 kHz 

and 16 bit resolution, so that we obtained 5616 record-

ings for each pond.

To register local abiotic environmental data, we placed 

next to the sound recorder a data logger (H21-002, 

Onset) equipped with sensors to measure three weather 

variables: rainfall (Onset, S-RGB-M002), temperature, 

and relative humidity (Onset, S-THB-M008). In addition, 

we retrieved two global environmental variables, atmos-

pheric pressure (PTB220, Vaisala) and solar radiation 

(CMP6, Kipp and Zonen), from the nearest weather sta-

tion at the Félix Eboué airport (4°50′N; 52°22′W), 19 km 

from the study site.
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Fig. 1 Location of the study area. On the left, location of the Kaw mountain in French Guiana. On the right, location of the five study sites along 
a 30.4 km transect next to the departmental road D6. GIS shape files were obtained from the National Institute of Geographic and Forestry 
Information (http://profe ssion nels.ign.fr/)

http://professionnels.ign.fr/
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Time-series analysis

Because of the emergence of a great number of males 

from multiple amphibian species, explosive breeding 

events are known to produce a remarkably loud cho-

rus. Therefore, we identified the occurrence of explosive 

breeding events in the audio recordings by searching for 

outlier amplitude peaks. The overall amplitude of each 

recording was measured by computing the root-mean-

square of the signal amplitude envelope. Then, we applied 

a median filter with a 24-h window and we searched for 

outliers in the resulting smoothed time series. The out-

liers were defined as values distributed one-and-a-half 

times the inter-quartile range (IQR) above the third quar-

tile (Q3 + 1.5 × IQR). Every outlier event was inspected 

by listening to the recordings to confirm the presence of 

an explosive breeding event.

Preliminary analyses showed clear and steep increase 

on the sound pressure level during explosive breeding 

events resulting from the increase in calling activity from 

anuran communities. While the beginning of the explo-

sive breeding events exhibited constant and exception-

ally high call rate for around 24  h, calling activity later 

presented multiple oscillations before ceasing or return-

ing to common levels. In order to have comparable sec-

tions for each event and compare pre- and mid-explosive 

breeding communities, we focused our subsequent anal-

ysis on a 48 h window, starting 24 h before the onset and 

ending 24 h after the onset of explosive breeding events.

We used a machine-learning framework to test 

whether the occurrence of the explosive breeding events 

could be predicted by abiotic factors. Weather condi-

tions were considered as predictor variables and the trig-

gering dates of the explosive breeding events as a binary 

response variable. The abiotic variables comprised low-

level and high-level features. Low-level features were the 

raw quantitative meteorological measurements from the 

on-site sensors and the weather station, namely tempera-

ture, temperature variation, relative humidity, rainfall, 

atmospheric pressure, atmospheric pressure variation, 

photoperiod and solar radiation. Since the emergence of 

the breeding events can also be due to previous environ-

mental conditions, we also included high-level features 

in the statistical analyses calculated based on the raw 

climatic data. These high-level features were the lagged-

variables, previous 24, 48, and 72 h, and past-cumulative 

variables from the previous 48 and 72 h. The final predic-

tor matrix included 48 variables with 466 observations. 

We measured prediction accuracy and variable impor-

tance on classification using the random forest statistical 

classifier [41]. We assessed the importance of the predic-

tor variables by comparing the difference in misclassifica-

tion error (mean decrease accuracy) between the original 

data and a permuted set of data. The modified data for 

each predictor variable consisted in randomly permuted 

observations that are passed down the random forest. 

The higher the decrease in accuracy between the original 

and the modified data, the higher the importance of the 

predictor variable [42].

Community diversity analysis

We investigated temporal and spatial variation on the 

diversity and composition of the acoustic communities 

of explosive breeding events. We define a community as 

the set of species heard at a given time interval on a given 

pond. For each event, we systematically discretized the 

temporal gradient of 48 h into four temporal periods of 

12  h. A first period (t1) ranged from 24 to 12  h before 

the explosive breeding event, a second period (t2) ranged 

from 12 h before to the onset of the event, a third period 

(t3) enclosed the first 12  h of the event, and a fourth 

period (t4) ranged from 12 to 24 h after the onset of the 

event.

We then sub-sampled our database by choosing one 

recording every 2 h, for a total of 240 recordings of 60 s. 

Three of us (EC, AF and PG), who are highly trained in 

aural identification of anuran species of French Guiana, 

scrutinized each recording and annotated the occurrence 

of calling species. A final presence-absence vector was 

derived for each recording by majority voting, thereby, 

potential observer bias was prevented while the accuracy 

of the annotations enhanced. This phase led to the identi-

fication of a total of 25 species.

We used the crossed-DPCoA [43], an ordination 

method that provides an approach for analysing the 

effects of crossed factors on the diversity of communi-

ties, to identify the effects of external factors on com-

munity composition. Here we analysed the effect on the 

species composition of amphibian communities of the 

time period before or after the event (t1, t2, t3, t4), and 

the event (an event is one of the two breeding explosions 

observed at a given pond). The time period and the event 

are two crossed factors. The aim of crossed-DPCoA is to 

visualize the pattern of diversity due to a factor A know-

ing the existence of a crossed factor B. DPCoA helps 

to visualize the main effect of factor A, here species 

Table 1 Altitude, location, and  area of  the  five study 

ponds

Altitude is given in meters above sea level (m a.s.l.) and area in  m2

Local name Code name Altitude GPS coordinates Area

Caïman Ca 313 4°34′10″N; 52°13′11″W 1192.3

Blanc Bl 236 4°40′14″N; 52°18′22″W 399.5

Patawa Pa 295 4°31′41″N; 52°07′14″W 2240.2

Arlesienne Ar 269 4°32′44″N; 52°14′11″W 672.0

Petite Pe 289 4°35′59″N; 52°15′59 W 224.8
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composition, and the effect of the interaction between A 

and B, removing the main effect of factor B. The method 

first defines a space where species, communities and the 

levels of the two factors are visualized as points. Then, 

the communities are positioned at the centroid of their 

constitutive species, and the levels of the factors at the 

centroid of communities associated with them. The 

method then searches for principal axes of the levels of 

factor A, retaining potential effects of the interaction 

between A and B, but removing the main effect of fac-

tor B. In particular, we used the first version of DPCoA, 

which eliminates the effect of factor B by moving this fac-

tor to the centre of the space. We analysed first the effect 

of the events on the species composition of amphibian 

communities given the time period and then the effect of 

the time periods given the event.

Acoustic diversity analysis

To further compare the anuran acoustic assemblages of 

the pre- and mid-explosive breeding events, we followed 

the same previous procedure while adding information 

related to the acoustic dissimilarities between species. 

We used the same community data and repeated the 

ordination analysis. However, here we did not consider 

species as equidistant in the space of the crossed-DPCoA, 

we used the acoustic properties of the calls of the species 

to define acoustic dissimilarities between pairs of species. 

In this defined space, the distance between two species-

specific points is a measure of the acoustic dissimilarity.

We estimated the acoustic dissimilarity between two 

species using focal recordings of each species-specific call 

available from personal field recordings (PG, EC, AF, JSU; 

n = 17) and from commercial recordings ([44], n = 8). We 

selected recordings that met two criteria: (1) the call had 

to be emitted by an isolated individual, and (2) the signal-

to-noise-ratio (SNR) of the signal had to be higher than 

30, where SNR = 20  log10(RMSsignal/RMSnoise) and RMS is 

the root-mean-square amplitude of the signal. Then, the 

spectral composition of each call was quantified by com-

puting a short-time Fourier transform (FFT length of 512, 

no overlap, Hanning window), averaging the columns of 

the subsequent matrix (the temporal dimension), and 

applying a log-transformation. The acoustic dissimilarity 

between the species call was assessed by computing the 

cumulative dissimilarity of the spectral distributions or 

index  Dcf [45].

In addition, we analyzed the spectral profiles of the 

recordings collected in the field to investigate the changes 

in the acoustic environment before and during explosive 

breeding events. We first calculated the mean spectrum 

of each file. Then, we compared the spectral profiles at 

different moments of the explosive breeding event using 

a random forest procedure. We quantified and evaluated 

the classification accuracy and the importance of each 

feature, here each spectral profile, for the classification 

using the random forest importance measure [42].

Finally, we estimated the α diversity of each acous-

tic community by computing the species richness, the 

Gini–Simpson coefficient, and the quadratic entropy. 

The richness is the number of species in the community. 

The Gini–Simpson index takes into account the number 

of species and their proportions [46, 47]. The quadratic 

entropy, or Rao’s diversity coefficient [48], is based on the 

number of species, their proportions and incorporates 

a between-species dissimilarity matrix (here the pair-

wise acoustic dissimilarities). For each diversity index, 

we tested the differences among periods of the explosive 

breeding event (i.e. t1, t2, t3 and t4) and between events 

(i.e. the first and second event per site), as well as the 

interaction between both factors, with repeated-meas-

ures ANOVA. Shapiro–Wilk and Mauchly tests revealed 

no violation of the assumptions of normality and spheric-

ity, respectively, when using ANOVA tests (in all cases: 

W > 0.76, df = 5, p > 0.05; X2 < 0.02, df = 5, p > 0.05). Tukey 

test with Bonferroni correction was finally performed as 

post hoc procedure to examine pairwise comparisons 

between time periods. The type I error was set at a nomi-

nal level of 5%.

Acoustic and statistical analyses were computed using 

the R software [49]. In particular, spectral audio features 

and dissimilarity matrices were computed using the see-

wave R-package [50], community and diversity ordina-

tion analyses were calculated with the adiv R-package 

[51], and statistical classification was computed with the 

random forest R-package [52].

Results
Time series analysis

Sound pressure level showed regular 24-h cycles dur-

ing the study (Fig. 2). Yet, this regularity was interrupted 

by abrupt and steep increases in the amplitude lasting 

between 24 and 70 h that occurred at the end of Decem-

ber 2015 and the beginning of February 2016. Rainfall 

was irregularly distributed during the study showing two 

major rainfall events, the first one between 19 December 

2015 and 4 January 2016, and the second one from 23 

January to 15 February 2016. During those periods, daily 

fluctuations in temperature were less pronounced, solar 

radiation was lower, and relative humidity remained close 

to 100% (Fig. 2).

Applying an amplitude filter, we detected in each 

pond two major explosive events, i.e. 10 in total, lasting 

between 24 and 70  h, later confirmed by aural evalu-

ation. Using the combined meteorological variables 

(instant, lagged and past-cumulative) and the random 
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forest classifier, we were able to accurately predict the 

emergence of all (100%) explosive breeding events with 

a low false positive rate of 9.6% for out-of-the-bag esti-

mates, that is using observations that were not used to 

build the predictive model. Variable importance rank-

ing showed that rainfall was the most influential weather 

determinant, in particular, the amount of rain during the 

previous 24 h and most importantly the past-cumulative 

rainfall during the previous 48 to 72 h (Fig. 3). The rest 

of the variables (temperature, relative humidity, atmos-

pheric pressure, photoperiod and solar radiation) had 

minor predictive power.

Community diversity analysis

We first analysed the species composition of explosive 

breeding events using crossed-DPCoA, which allowed 

to focus on the explosive breeding events removing the 

effect of the crossed factor linked to the time period 

before or after the event. The first two principal axes 

expressed respectively 34.8% and 30% of the main effect 

variability of the factor site (Fig. 4a). Neither the first nor 

the second axis presented a particular pattern, the explo-

sive breeding events having largely overlapping com-

munities. Nevertheless, some sites (Patawa, Arlesienne 

and Petite) presented high between-event diversity, each 

explosive breeding event having a particular and unique 

combination of species (Fig. 4b). Inter-site and intra-site 

variability of the explosive breeding events for these sites 

had the same order of magnitude.

Then, to reveal the temporal variability in the com-

munities, we eliminated the crossed effect of factor 

‘event’ with the DPCoA. The calling activity of the anu-

ran communities was structured along the temporal 

dimension (Fig.  5a). The first axis of the DPCoA, with 

84.3% of variance explained, clearly discriminated two 

assemblages: the pre-explosive community (t1 and t2 on 

the negative side) and a characteristic explosive breed-

ing community (t4 on the positive side). A transitional 

community with species from both sides appeared near 

the origin (t3). While the pre-explosive communities 
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(t1 and t2) were partly similar in their species compo-

sition, t3 and t4 had clear and unique species compo-

sition. The species that characterized the pre-explosive 

community (t1 and t2) were Phyllomedusa tomopterna, 

Leptodactylus mystaceus, and Dendropsophus counani 

(Fig. 5b). Because they had positive coordinates on the 

first axis, the species that characterized the explosive 

breeding community (t4) were Chiasmocleis shudika-

rensis, Trachycephalus coriaceus and Ceratophrys cor-

nuta (Fig. 5b). The transitional community (t3) showed 

an intermediate place on the ordination; these commu-

nities had a balanced mixed of pre-explosive and explo-

sive breeding species.

Acoustic diversity analysis

As in the previous community analysis, we initially 

removed the effect of the crossed factor time. The first 

principal axis, with 87.6% of variance explained, was 

strongly correlated with the peak frequency of the calls 

(r = 0.96, Pearson correlation; Fig.  6). The crossed-

DPCoA ordered the species with low frequency sounds 

on the left of the axis and species with high-pitched calls 

on the right. Distributed in this new space, the sites pre-

sented largely overlapping acoustic communities with a 

balance between high and low frequencies. Yet, the ponds 

Patawa, and Arlesienne had a high between-event acous-

tic diversity (Fig.  6a). At both ponds, the first explosive 

breeding event was characterized with lower frequencies 

than the second one.

Subsequently, we removed the effect of the cross fac-

tor event to show the temporal variability of the acous-

tic signals. Again, the first and second axes were strongly 

correlated with the peak frequency of the calls (r = 0.91 

and r = 0.96, Pearson correlation). For both axes, low 

frequency calls lied on the negative side of the axis and 

high frequency calls on the positive one (Fig. 7). In this 

bi-dimensional space the acoustic community was struc-

tured along the temporal dimension (Fig.  7a). The first 

axis of the ordination analysis, with 60.1% of explained 

variance, showed a progression from t1 (negative side) 

to t4 (positive side), a progression toward mid-frequen-

cies dominance. The levels t1 and t2 presented elongated 

ellipses, showing a dispersed range of frequency calls, 

with low and high-pitched sounds (Fig.  7a). This elon-

gated shape was much less pronounced for levels t3 and 

t4, which was mainly characterized by calls in the mid-

frequency range. The sounds that characterized, by their 

higher proportions, the explosive breeding event acous-

tics were the calls of C. shudikarensis and T. coriaceus 

(Fig.  7b). The calls of these anurans were in the middle 

range of the acoustic community, 3.4 kHz and 1.8 kHz for 

C. shudikarensis and T. coriaceus respectively.

Further spectral analyses at the soundscape level sup-

ported the previous results obtained with isolated 

vocalisations. Using a statistical classifier we were able 

to classify explosive breeding recordings with high accu-

racy, using only their spectral profile (random forest, 

89% out-of-the-bag accuracy). The feature importance 
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Fig. 4 Diversity of the species composition in explosive breeding events across sites. The two principal axes (64.8% of variance explained) 
of the crossed DPCoA analysis are plotted. a Diversity between and within communities. Each point is a community. The communities were 
color-coded with the levels of the factor event. Code names for events are: Ar = Arlesienne, Bl = Blanc, Ca = Caïman, Pa = Patawa, Pe = Petite. 
The number that follows the code name distinguishes the explosive breeding event in each site, for instance Ar1 is for the first event on site 
Arlesienne, and Ar2 is for the second event on the same site. b Coordinates of the constitutive species in the axes. Each point is a species. Only 
the species that had the highest values on the axes were named. Code names for the species are: Adenomera andreae = Adenandr, Allobates 

femoralis = Allofemo, Ceratophrys cornuta = Ceracorn, Chiasmocleis hudsoni = Chiahuds, Dendropsophus counani = Dendcoun, Dendropsophus 

leucophyllatus = Dendleuc, Dendropsophus minutus = Dendminu, Leptodactylus knudseni = Leptknud, Leptodactylus mystaceus = Leptmyst, 
Leptodactylus rhodomystax = Leptrhod, Osteocephalus leprieurii = Ostelepr, Phyllomedusa tomopterna = Phyltomo, Scinax sp2 = Scinsp2, 
Trachycephalus coriaceus = Traccori
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Fig. 6 Diversity of the acoustic composition in explosive breeding events across sites. The two principal axes (92.8% of variance explained) 
of the crossed DPCoA analysis are plotted. a Diversity between and within communities. Each point is a community. The communities were 
color-coded with the levels of the factor event. Code names for events are: Ar = Arlesienne, Bl = Blanc, Ca = Caïman, Pa = Patawa, Pe = Petite. 
The number that follows the code name distinguishes the explosive breeding event in each site, for instance Ar1 is for the first event on site 
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leucophyllatus = Dendleuc, Dendropsophus minutus = Dendminu, Dendropsophus sp1 = Dendsp1, Leptodactylus mystaceus = Leptmyst, 
Osteocephalus leprieurii = Ostelepr, Osteocephalus oophagus = Osteooph, Phyllomedusa tomopterna = Phyltomo, Pristimantis inguinalis = Prisingu, 
Pristimantis sp1 = Prissp1, Trachycephalus coriaceus = Traccori, Trachycephalus hadroceps = Trachadr, Trachycephalus resinifictrix = Tracresi



Page 11 of 17Ulloa et al. BMC Ecol           (2019) 19:28 

−0.02 −0.01 0.00 0.01 0.02

−
0
.0

2
−

0
.0

1
0
.0

0
0
.0

1
0
.0

2

PC1 60.1 %

P
C

2
 3

5
.6

 %

 t1 

 t2 
 t3 

 t4 

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

PC1 60.1 %

P
C

2
 3

5
.6

 %

t1

t2 t3
t4

Alloruth

Chiashud

Dendcoun Dendminu

Dendsp1

Leptmyst

Traccori

Adenandr

Chiahuds

Dendleuc

Leptknud

Osteooph

Phyltomo Ostelepr

Trachadr

Tracresi

 t1 
 t2  t3 

 t4 

a

b

Fig. 7 Diversity of the acoustic composition in explosive breeding events across time. The two principal axes (95.7% of variance explained) 
of the crossed DPCoA analysis were plotted. a Diversity between and within communities. Each point is a community. Communities were 
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analysis showed that mid frequencies, between 2 and 

4.4 kHz, were clearly the most important predictor vari-

ables (Fig. 8).

The temporal pattern observed using the species rich-

ness and the Gini–Simpson index was similar, with maxi-

mal values during the first hours of the explosive breeding 

event (period t3; Fig. 9). Differences in acoustic diversity 

among periods were statistically significant when meas-

ured as species richness (ANOVA,  F3,12 = 5.86, p = 0.010) 

and marginally significant when measured by Gini–Simp-

son index (ANOVA,  F3,12 = 3.21, p = 0.062). Post-hoc test 

revealed that the period t3 showed significantly higher 

species richness (2.8 ± 0.8) than the previous period t2 

(Z = 3.51, p = 0.003), being others not statistically differ-

ent. Rao’s diversity coefficient, which includes the acous-

tic dissimilarity matrix, also varied according to the time 

periods (ANOVA,  F3,12 = 5.72 p = 0.011). This index was 

significantly higher at t1 than at t4 (0.15 ± 0.05; Z = 3.24, 

p = 0.007), indicating a progressive decrease in acoustic 

diversity as the explosive breeding community predomi-

nates (Fig. 9). No effect of the season nor its interaction 

with the periods of the event were identified in all cases 

(ANOVA,  F1,4 < 4.48, p > 0.101), and hence the two explo-

sive breeding events recorded per site, during each of the 

two rainy seasons, were equivalent in terms of acoustic 

diversity.

Discussion
Time series analysis

We found that environmental variables could predict 

the emergence of explosive breeding events, with rain 

as the most important predictor variable. While rain is 

abundant during the whole season, it is relevant to note 

that explosive breeding species respond to two specific 

patterns of rain: consistency during the previous 48 to 

72  h and amount during previous 24  h. Our results are 

in agreement with those of Gottsberger and Gruber [27] 

who found that rainfall for the previous 24 h contributed 

the best, among other environmental variables, to explain 

the calling activity of the explosive breeding species. As 

we included more derived variables of the rain in our 

analyses, we complement previous results asserting that 
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the consistency of the rain is also crucial. Having repli-

cated this observation at several sites, we confirm that 

species participating in explosive breeding events are 

highly tuned to specific rainfall patterns. Recent studies 

have identified the photoperiod as an important predic-

tor of anuran activity [20–23], but our statistical analyses 

showed no clear links between this factor and explosive 

breeding events. Our study site was very close to the 

equator (4°36′N), were the difference between maximum 

and minimum day length across the year is less than 

32 min. Former studies on photoperiod were conducted 

at latitudes were the difference in day length are much 

more pronounced (at least 4.4 times stronger), which 

probably explains why this factor was so important.

This apparently high dependency of explosive breeders’ 

reproduction not only to the amount of precipitation but 

also to the timing of rain events raises the question of the 

vulnerability of explosive breeders to climate changes. 

While other factors such as programmed annual migra-

tion might be involved in triggering explosive breeding 

events, our study suggests that the two specific patterns 

of rain (i.e. consistency during the previous 48 to 72 h and 

amount during previous 24 h) are key parameters for the 

initiation of reproduction. With climate change increas-

ing rainfall variability in tropical regions [53], reproduc-

tive events might be shifted or disrupted. Moreover, 

these species rely on very specific habitats (temporary 

reproductive ponds) for their reproduction that are very 

fragile and particularly vulnerable to climate changes 
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[14]. Finally, the high number of individuals from several 

species at the time of reproduction might increase prob-

ability of intra and inter-species infection at the breed-

ing ponds and therefore increase the sensitivity of these 

species to emerging infectious disease, in particular the 

fungus Batrachochytrium dendrobatidis [54]. These com-

bined factors, may lead to significant shifts in the timing, 

distribution and composition of explosive breeding com-

munities, which may desynchronize phenology and other 

biological responses throughout several trophic levels in 

the ecosystem [55].

Community diversity analyses

In structurally similar habitats, located in the same 

region without obvious barriers, we expected to have 

homogeneous amphibian communities. Yet, our results 

highlight the variability of species composition in explo-

sive breeding events. The ordination diagram showed 

differences in species composition both between ponds 

and for a given pond, between the two observed events. 

In other words, each explosive breeding event, while 

often sharing a common pool of species, had a unique 

combination of species. When controlling for the differ-

ences between explosive breeding communities, a clear 

temporal factor structured the acoustic community dur-

ing explosive breeding events, showing pronounced dif-

ferences between pre-explosive and explosive breeding 

communities. The main species characterising the explo-

sive breeding event, C. shudikarensis, T. coriaceus and 

C. cornuta, were also found as predominant species in 

explosive breeding events in the Arataï river, more than 

100 km away from our study site [27]. While other spe-

cies are also present during these aggregations, these 

species seem particularly representative of the acoustic 

community.

It remains to explain the species turnover between 

events in space (ponds) and time (for each pond between 

the first and the second event). This turnover could be 

due to stochastic factors or related to multiple combined 

determinants, such as ecological and behavioural traits. 

As in many other sampling techniques in ecology, rare 

and elusive species are difficult to detect. It is also pos-

sible that the dense chorus of the louder species masked 

the vocalisations of more silent species, inducing detec-

tion errors and causing community variations in space 

and time.

Acoustic diversity analyses

Regarding the acoustic environment of explosive breed-

ing events, we found outlying levels of activity with a 

characteristic spectral signature. This signature stands 

out from the circadian acoustic environment and can 

be easily detected at long distance. Acoustic signatures 

convey information that could be exploited by conspe-

cifics (or heterospecific) for general orientation within 

a landscape [56]. Fish and crustacean larvae [57], birds 

[58], and frogs [59, 60] are known to use sounds in the 

environment for spatial orientation. Indeed, acoustic 

cues might gain importance for anuran explosive breed-

ing species since sounds may signal availability, in space 

and time, of short-lived breeding sites [60, 61].

Alpha diversity indices, measured with species rich-

ness and Gini–Simpson, showed temporal communities 

with similar values between pre-explosive (t1–t2) and 

the explosive breeding community (t4). The transitional 

community (t3) had higher values, probably because it 

had species from both communities, pre- and explosive 

breeding. More surprisingly, Rao’s diversity coefficient 

showed a significant diminution of the spectral diversity 

during explosive breeding events (t4). Even when the 

number of calling species was similar, we observed more 

frequency overlap in signals for the explosive breeding 

community than for the pre-explosive community.

Species belonging to a community may compete to 

access acoustic resources, that is to a free acoustic chan-

nel. It has been therefore hypothesized that species call-

ing in a chorus should exhibit frequency dispersion. 

Formulated under the acoustic niche hypothesis, organ-

isms would have evolved to occupy specific spectro-tem-

poral ‘niches’, decreasing the risk of heterospecific mating 

and information masking [62]. Acoustic partitioning has 

been observed in multiple taxa, such as insects [63, 64], 

birds [65] and amphibians [66]. However, recent studies 

also presented limitations of such hypothesis, showing 

no significant spectral divergence in cricket assemblages 

[67] and more similarity in signal design that expected 

by chance for tropical forest birds [68]. Our results are 

in line with these last studies; contrary to our prediction, 

the species did not show frequency dispersion but fre-

quency overlap.

Multiple hypotheses might explain this observation. 

First, the study ponds had similar habitat characteristics 

and hence similar acoustic properties that might have 

an effect on the features of anuran sounds. Following 

the acoustic adaptation hypothesis [69–71], the habitat 

might impose limits (e.g. signal attenuation and degrada-

tion) for sound propagation at high and low frequencies, 

resulting in an adaptation of explosive breeding species 

to produce sounds at mid frequencies, where they can 

maximize propagation. Indeed, for sounds produced at 

ground level, a window suitable for acoustic long range 

communication have been found at mid-frequencies 

(1–4 kHz) during experiments in an Amazonian rainfor-

est in southern Venezuela [72]. Second, compared to pro-

longed breeders that show long periods of calling activity, 

explosive breeders share the acoustic space for very brief 
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moments. As discussed by Wells [24], due to the short 

time window for exchanging vocal signals between indi-

viduals, males would rather compete physically and not 

acoustically. The selective pressures acting on the acous-

tic space of these species might be weaker, which could 

explain the high frequency overlap of the explosive 

breeding events. Finally, a convergence of signals, not 

only in time but also in frequency, could serve to better 

synchronise the sporadic emergence of multiple anu-

ran species. A signal with common features across taxa 

would allow recruiting a larger number of individuals at 

precise location and time, aggregating organisms at den-

sities that exceed the potential number of local predators. 

Indeed, studies on a variety of animals [73–75] and plants 

[76, 77] have shown that sporadic synchronous repro-

duction within a population significantly reduces levels 

of predation. However, to confirm a convergence on the 

signal, additional data should be included in the analy-

sis, such as phylogenetic and functional traits. Moreover, 

sound propagation and playback experiments should be 

performed to shed light on the selective pressure driving 

widespread chorusing behaviour.

Conclusions
In this study, we coupled biotic and abiotic variables, 

revealing community changes at multiple spatiotempo-

ral scales and their tight link with the environment. Such 

data provides a baseline against which future changes can 

be measured, contributing to a better understanding and 

hopefully to a better management of such unique com-

munities. Acoustic signatures could be used as a suit-

able way to monitor wildlife, not only at the individual or 

population level, but also at the community level, one of 

the main task of ecoacoustics [78]. A more widespread 

use of standardized methods combining passive acous-

tic recorders with a monitoring of key environmental 

parameters would become a comprehensible and cost-

efficient framework to improve our knowledge and man-

age rich animal communities of tropical forests.
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