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linear time-varying systems 

R RAVI l and P P KHARGONEKAR 2 

tControl Systems Laboratory, General Electric Research and Development 
Center, Schenectady, NY 12301, USA 
2Electrical Engineering and Computer Science, The University of Michigan, 
Ann Arbor, MI 48109, USA 

MS received 28 July 1992 

Abstract. We present a new proof showing that for finite dimensional 
linear time-varying (FDLTV) systems stabilizable by output feedback, 
exponential and input-output stability are equivalent. This proof does 
not involve the notion of a dual system as has been done elsewhere and 
makes use instead of the existence of coprime factorizations. This result 
is analogous to that in the linear time-invariant case, but because of the 
time-varying nature of the matrices involved, is not as obvious. 
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1. Introduction 

A system can be described in at least two different, but related, ways. It can be 
described in terms of a set of first-order differential equations, commonly known as 
a state-space model, or it can be described as an operator mapping an input space 
into an output space. In this note we investigate how the notion of stability with 
respect to one description is related to that with respect to the other. As is well 
known, when dealing with state-space models we define stability in terms of the 
exponential decay of initial states uniformly with respect to time. On the other hand, 
the operator theoretic description of stability is in terms of the boundedness of the 
operator norm. We show here that when the system has a stabilizable and detectable 
realization, these two concepts are identical. This result applies to a broad class of 
time-varying systems and complements an analogous result in the time-invariant case. 

This paper grew out of a technical note that was written a few years ago (Ravi & 
Khargonekar 1989). After we had written the note we found that the same result had 
already been shown for discrete-time systems in Anderson (t982). Apart from the 
fact that our proof is for continuous-time systems, we believe that our approach to 
the problem is substantially different in comparison to that of Anderson (1982). 
Indeed, we do not rely on the dual system to prove our result and only use the fact 
that for systems with stabilizable and detectable realizations we can readily construct 
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coprime factorizations. More importantly, the definitions of stabilizability and 
detectability in the present paper and in Anderson (!982) are different. 

In § 1 we introduce the reader to some standard notation and a few preliminary 
lemmas. Section 2 contains the statement and proof of our main theorem. 

2. Preliminaries 

Let ~ be the set of real numbers and ~+  the subset of nonnegative real numbers. 
Let ~"  denote the n-dimensional Euclidean space, and let the space of k x m real 
valued matrices be denoted by ~k ×,,. The norm in ~k × m is the induced operator 
norm defined as: II M[I: = s upx,,0(ll Mx II)All x ll ). Let J / ( ~  + ) be the space of measurable 
functions mapping ~+  to ~.  Let ~p(~+) ,  1 ~< p < oo be the subspace of . / / (~+)  
consisting of all functions having a finite ~p-norm which is defined as follows: 
Ilxll~,:=(~ollx(t)ll~'dt I/p. If p = o o  then the norm is defined to be Ilxll~'= 
ess sup~+ (11 x(t)II ). Let P,:. / /(~+ ) - - . . / / (~ + ) be the truncation operator defined as 
usual; (Ptx)(z)= x(z) for z ~< t; 0 otherwise. Then the extended space is defined as 
~p.~(~+): = { fe . / / (~+) :P , f eL~p(~+)¥ t  > 0}. Corresponding definitions can be 
made for ~ × m ( ~ + )  and k×m ~p.~ (~  + ). For simplicity of presentation, whenever k, m are 
obvious from the context we will abbreviate the notation for these spaces to ~ p  and 
~p.~, respectively. 

Let ~ denote the set of all linear operators mapping ~'p,e to ~q°p. e and let G~X. 
An operator G is said to be causal if P~GP t =PtG, Vte~+.  Let us denote the set of 
linear, causal operators by 5f¢. We say that G is (finite gain) ~p-stable if II a I1: 
sup~e~,..p,x,,0,t~+(ll P, Gx II~)/(ll Ptx I[~) < o~. Clearly, in this case G is a bounded 
operator from L~  to ~ .  

Having introduced the definition of a linear time-varying (LTV) system as an 
operator, we proceed now to its description in terms of a state-space model. Consider 
the following set of equations that describe a state-space realization 

Yc(t) = A( t )x ( t )  + B(t)u(t) ,  x(O) = Xo, 

y(t) = C(t)x(t) + D(t)u(t), 
(1) 

where u ( t ) ~  m and y ( t ) e~  p are the input and the output vectors respectively and 
x(t)e~t" is the state vector. The matrices are all bounded functions of time. With 
x(0) = 0 the system E generates an input-output operator G~X c such that y = Gu. 
By using the variation of constants formula we can write down a formula for the 
operator G, 

;o y(t) = C(t)~(t,  z)B(z)u(r)dz + D(t)u(t), (2) 

where ~ ( t , r )  is the state transition matrix of the homogeneous part of (1). In the 
standard packed matrix form for representing state-space realizations, 

DEFINITION 1. 

The system E is said to be exponentially stable if 3 cl ,¢2 ~" 0 such that (s.t.) [I O(t, z)11 
cle  -c2(t-r~, Vt >~ z. 
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DEFINITION 2. 

The system 2 is said to be stabilizable (respectively detectable) if there exists a bounded 
function K(t) (respectively L(t)) such that system 2(t) = (A - BK)( t )x( t )  (respectively 
2(0 = (A - LC)(t)x(t))  is exponentially stable. 

It is our intent here to show that the finite gain stability is equivalent to exponential 
stability for stabilizable and detectable systems. 

We end this section with a few results that will be needed in the proof of our main 
result. 

Lemma 2.1. (Desoer & Vidyasagar 1975, p. 115) Let  G~Xc.  Then G is .~q2p-stable 
for  each 1 <<, p <~ ~ iff G is ~ l-stable and Sly-s table .  

Lemma 2.2. Let G ~ X  c be the input-output operator correspondin 9 to the system Z 
as in (1). Let A, B, C, D be bounded functions of  time. I f  Y, is exponentially stable 
then G is ~_-w 1 -stable and 5 f  ~-stable. 

Proof. Easy to derive from the definition of exponential stability. 

Lemma 2.3. (Brockett 1970, p. 193) Let ~(t , r )  be the state transition matrix of  the 
system Z with A e S f  ~. Then if 3 T > 0 s.t. 

iitD(to + T, to)] I 1 ~< ~-Vto~+, 

the system is exponentially stable. 

3. Main result 

Theorem 3.1. Let GE X c be the input-output operator correspondin9 to the system Z 

2(0  = A(t)x(t)  + B(t)u(t), 

y(t) = C(t)x(t)  + D(t)u(t). (4) 

Let Z be stabilizable and detectable and let 1 <<, p <~ ~ .  Then 

(1) G is Lfp-stable, 

(2) Y~ is exponentially stable. 

Proof. (2)=~(t). Follows directly from 1emma (2.1) and lemma (2.2). 
(1)~(2). 

From the definition of stabilizability there exists a bounded function K such that 
( A -  BK)  describes an exponentially stable system. Define v: = u + Kx .  Then (4) 
becomes 

2 =  A~x  + Bv, 

y = C ~ x  + Dv, 

u = v -- Kx ,  (5) 
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where A l : =  (A - B K )  and C1:= ( C -  DK). Let T~v denote the operator from v to x. 
As A 1 is internally stable we have, from lemma (2.2), that T~v is bounded. If Ol(t,z) 
is the state transition matrix of the system :~ = A ~ x we have 

x(t)  = ~ l  (t, r)B(r)v(~)dr, 
e f' 

y(t) = C,  (t)~P l (t, r )B(z)v(r )dz  + D(t)v(t), 

o 

f, u(t) = v(t) - K( t )Ol ( t , z )B(z )v ( z )dr .  (6) 
t o 

This means 

y =  Nv,  u =  Mv,  (7) 

where N and M have a state-space realization EN and GM given by 

LG I OA' ~ " - [ - ~ J  (8) 

From the hypothesis, if MvELP;  then Nv~LPp. Now let us define two systems X and 
Y in terms of their realizations Ex and E r as 

K K 7 (9) 

From the assumption of detectability there is an L such that A - LC is exponentially 
stable hence both X and Y are exponentially stable. By using simple algebra we can 
show that 

X N  + Y M  = I. (10) 

Multiplying by M-1 on the right, 

X N M  -1 + Y =  M -1 

II M-1 II <~ I1 s JI }1G II + II Y II 

:~llvllp~<(llXll I/Gtl + 1I YlI)Ilullp (from (7)) 

II x II p ~< !1 T I1(11S II II G II + II Y II)tl u lip (from (5)). 

Set ~ : =  II T~olI(IIXII Ilall + II Eli), 
Consider now the system £1 described below 

= A x  + u, 

y = x ,  (11) 

and let G~ denote the corresponding input-output operator. Clearly E is exponentially 
stable iff E1 is exponentially stable. We now define a new system that is equivalent 
to G1 in the input-output sense. 

f~l  -~- (A - B K ) x l  + u, (12) 
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fc 2 = A x  2 + B K x l ,  (13) 

y =  x ,  "+ X 2 . 

Consider first the subsystem described by (12). From lemma (2.2) as Y¢ = (A - BK)x  is 
exponentially stable we have x, eZ, ep whenever U~p and further, II x ,  lip ~< II Tx, u II II u lip. 
As K is bounded, x ,  ~ p  =~Kx~ e.~p.  Next consider the subsystem described by (13). 
This is the same as our original system G with u = K x ,  and hence it immediately 
follows from the previous arguments that K x l e . ~ p ~ x 2 e ~ p  and also that 
IIx211p<<.~Jlgllllx, llp. Coupling this with (11) we have the following chain of 
implications: U~p=~x,E..,.q~p=>x2e.,q~p:=>yf.~,~'p=>xE.~'p. Moreover  Ilxpll ~< IIx~ lip + 
]Ix2 Hp ~ < I1Z.,~ 1t(1 +~l]gt l )]]u] lp=:Mx ]lultp. 

We have shown above that if G is ~p-stable then so is G~. All that remains to be 
shown now is that £ ,  is exponentially stable or that the states of ~(t) = A(t)x(t)  decay 
exponentially uniformly with respect to starting times and initial conditions. The case 
p = oo can be taken care of right at this juncture. For this particular case the result 
follows directly from theorem 1, p. 196, in Brockett (1970). For  the remainder we 
consider only the cases 1 ~< p < oo. 

Now let to > e > 0 be fixed. Clearly the following control function will enable the 
system (11) to reach x0 at time to. 

x O _ A X ° Z  0~<z~<to ' 
u(z): = to to (14) 

0, z > t o. 

Because of the bound on the norm of A, it follows that II u lip ~</~2 II Xo lip for some f12 
and all to > e > 0 and Xo. Let x(t) denote the corresponding trajectory for Yq. Since 
G1 is ~p-stable,  there exists fll such that I1 x tip ~</7, II xo ll- This inequality holds for 
all to > e > 0 and x o. Next since the norm of A is bounded, we can choose fl large 
enough so that II x lip ~/~ II Xo II holds for all to >/0 and Xo. 

Finally, to show exponential stability, we need to show that the states actually 
decay exponentially. To this end we will first get a bound on the .~qp-norm on the 
state transition matrix. We will show that such a bound exists and that it is uniform 
with respect to starting times. This will finally lead us to the exponential bound on 
the transition matrix. Let X(to)= Xo be any initial condition for the autonomous 
system £ = Ax. We have, from above, that 

x(t) = ~(t ,  to)Xo, 

~ Ix'(t)x(t)lPdt = Ix'o~'(t, to)~(t ,  to)xolPdt 

<, flPlXoXolPVtoe~t +, Mr1 >i to. (15) 

Because in ,~n all norms are equivalent, we can replace the euclidean norm in (15) 
with the p norm. Let y be such that II z ilp ~< '/II z IIVze~". Then, 

f " ~ I(~(t,  to)Xo),lPdt <~ Vt, >1 (16) yf lPlXoXolPVto~ + , to, 
i = ,  

o 

where (')i indicates the ith component of a vector. Let 

• (t, to) = [ % / t ,  to)]. 
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Define M2: =n?fl p and choose subsequently x o = [1 0 . . .0] ' ,  Xo = [0 1 . . .0] ' ,  etc. 
to get 

f/ l ~ ~ [*i,J (t'tollpdt<~M2¥to~yl+' Vtl >>'to" (17) 
o i = l j = l  

Recall that ~(t ,  to) is differentiable and that (d/dt)~(t, to) = A(t)~(t, to). As A e ~ ®  we 
have I(d/dt)~i,j(t, to)l <<. n I1 a II (maxk= 1 ...... r~k,j(t, to)l). From (17), by interchanging 
the integral and the summations, we also have that each ~i.j(',')~Lep" Therefore it 
follows that (d/dt)~i,j(., ")e~p. For the case p = 1 exponential stability now follows 
from Brockett (1970, theorem 3, p. 190). We therefore treat the remaining cases i.e. 
1 < p < oo next. Using the fact that ~i.j(to, to) = 0, if i ~ j ,  we have the following. 

I*~,j(t~,to)= f/o' p*~.f ~(t, to)( d ",.~(t, to))dt 

<~ p f/o~l~PPf ~(t, to)l dtoP,,j(t, to) dt 

<~p I*~,f'(t, to)lqdt) ( |  *~,f'(t, 
• 2 t o / \ q¢ t o 

(H61der's inequality) 

d _¢pe- (t, t6) dt) =P(f/o'lO'd(t't°)lPdt)'/q(fto ' d t  L J 1  P X ~ l / P  

(because (I/p) + (l/q) = 1) 

<~ pn II AII M~. (18) 

If i = j  we have ~ij(to,  to) = 1 and we can get the following bound 

[lll~,j(tl, to)l ~< pn II A II M~ + 1. (19) 

At any rate we have established that ~.i(t~,to) is uniformly bounded V t o ~ + ,  
Vta>~to, hence it follows that II~(',to)ll~LP~, V t o ~ ÷ .  Note that from that 
II~(', to)II ~ p ,  V t o ~ + .  Also the bounds on these two norms do not depend on to. 
In the sequel, let II ~( ' ,  ')II ® :=  M3 and II ~(',')I1~: = M4. These two facts together with 
lemma (2.3) will now be used to show that an exponential bound exists for ~ ( t l ,  to). 
The proof is similar to the one in Brockett (1970). 

To begin with, we use the semigroup property of the state transition matrix to see 
that 

~ 'o' II O(q ,  to)llPdv = 

~< 

~< 

~< 

f " ii~(q,v)~(~,to)llPdv 
to 

f '~ IL*(tl, 3)IL ~ 11"(3, to)IVdz 
o 

M3 II ~(3, to)HPd3 
o 

M 3 M~ = :M~, 
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from which it follows that 

(t 1 - to)l/Pll®(tl , to)[l <~ M 5. 

Now define T: = (2M5) v to get 

1 
I]~(to+ T, t0)[[ ~< . 

2 

The conclusion that G is exponentially stable now follows straight from lemma (2.3). • 
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