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REGULAR ARTICLES

Exponential asymptotic expansions and approximations of the unstable
and stable manifolds of singularly perturbed systems with the
Hénon map as an example

Alexander Tovbisa)
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Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

Charles Jafféc)

Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045

~Received 12 May 1997; accepted for publication 9 February 1998!

The subject of this paper is the construction of the exponential asymptotic expansions of the

unstable and stable manifolds of the area-preserving Hénon map. The approach that is taken enables

one to capture the exponentially small effects that result from what is known as the Stokes

phenomenon in the analytic theory of equations with irregular singular points. The exponential

asymptotic expansions were then used to obtain explicit functional approximations for the stable and

unstable manifolds. These approximations are compared with numerical simulations and the

agreement is excellent. Several of the main results of the paper have been previously announced in

A. Tovbis, M. Tsuchiya, and C. Jaffé @‘‘Chaos-integrability transition in nonlinear dynamical

systems: exponential asymptotic approach,’’ Differential Equations and Applications to Biology and

to Industry, edited by M. Martelli, K. Cooke, E. Cumberbatch, B. Tang, and H. Thieme ~World

Scientific, Singapore, 1996!, pp. 495–507, and A. Tovbis, M. Tsuchiya, and C. Jaffé, ‘‘Exponential

asymptotic expansions and approximations of the unstable and stable manifolds of the Hénon map,’’

preprint, 1994#. © 1998 American Institute of Physics. @S1054-1500~98!00602-8#

It is well known that perturbed integrable nonlinear sys-

tems may give rise to chaotic dynamics. It seems natural

therefore to apply perturbation methods to study the

‘‘onset of chaos’’ in such systems. The difficulty, how-

ever, is that in certain situations the effect of the pertur-

bation is exponentially small with respect to the pertur-

bation parameter. Thus some of the recently developed

methods of exponential asymptotics are needed. In this

paper these methods are used and further developed in

order to obtain a closed analytical form approximation to

the stable and unstable manifolds. The area-preserving

Hénon map, or equivalently, the discretized equation

y95y2
22y, is considered as a model example. Compari-

sons of our approximation with numerical results for the

manifolds and for the homoclinic tangle are presented.

I. INTRODUCTION

We focus our attention on the onset of chaotic behavior

in singularly perturbed systems caused by splitting of sepa-

ratrices. In particular, we are interested in obtaining analytic

expressions to approximate the stable and unstable manifolds

in such perturbed systems for long time intervals. It is known

that generically such perturbations cause exponentially small

splittings with respect to the small parameter ~the ‘‘difficult’’

case in the terminology of Ref. 1, see the introduction! and

therefore the standard Melnikov’s technique is not applicable

here.
The case of exponentially small separatrix splitting, as it

was first noticed by Poincaré, is extremely important for

physical applications. It was first observed for rapidly forced

systems ~see, for example, Ref. 2!, and then for singularly

perturbed and discretized systems.3,4 It is known that a con-

stant step discretization of a system can be viewed as a rapid

forcing of this system.5 In this paper we restrict our attention

on the dynamics of singularly perturbed systems.

As a demonstration of physical importance of such sys-

tems, we can mention, for example, that the onset of chaotic

motion in a unimolecular reaction ~a system of coupled lin-

ear and quadratic oscillators! could be considered through

the mechanism studied below. Another example that demon-

strates the importance of the mechanism is saddle-center bi-

furcations of the Hénon map. This map is often used to

model Poincaré surfaces of section for two degree of free-

dom Hamiltonian systems in the natural sciences.6 Approxi-

mation of the splitting separatrices for long time intervals

allows to compute the so-called ‘‘lobe’’ areas ~see, for ex-

a!Electronic mail: atovbis@pegasus.cc.ucf.edu
b!Current address: Department of Chemistry, Cornell University, Ithaca, NY

14853. Electronic mail: mt58@cornell.edu
c!Electronic mail: cjaffe@wvu.edu
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ample, Ref. 7!, and thus to obtain quantities which charac-

terize reaction rates in a variety of chemical problems.
The approach that we take is to apply the technique of

exponential asymptotic expansions ~also known as asymptot-

ics beyond all orders, see Ref. 8! based on Ref. 3. The

strength of this approach lies in its ability to capture the

effect of terms that are exponentially small in the perturba-

tion parameter. These terms, however, become critical in the
long time limit.

Originally, Kruskal and Segur3 developed their method

in order to show that a simple geometrical model of crystal

growth does not possess needle crystal solutions. That is, the

solution

v~ t !52

p

2
12 tan21~e t! ~1!

to the equation

v85cos v ~2!

that has asymptotics v(t);6p/2 as t→6` , does not sur-

vive the singular perturbation

«2
v-1v85cos v . ~3!

Or, in other words, the perturbed equation ~3! does not pos-

sess a heteroclinic solution.

To establish this fact, the following strategy was sug-

gested: construct two solutions vs(t) and vu(t) to ~3!, that

approach 6p/2 as t→6` , and then compare these solutions

at some finite point t0PC. This point is taken at one of the

two poles of ~1! that are closest to the real t axis; say t0

5ip/2. One can view this choice of t0 as motivated as fol-

lows: the difference vs(t) 2 vu(t) is known to be exponen-

tially small in «; however, the exponentially small factor can

be compensated by some growing factor as t→ ip/2, so that

vs(t) 2 vu(t) can become detectable in a proper scaling of

the variables.

This scaling is given in Ref. 3 by

t5
ip

2
1«z ,

~4!

v~ t ,« !52
p

2
1i ln

2

«
1iF~z ,« !.

It reduces the perturbed equation ~3! ~called henceforth outer

equation! to

F-1F85eF
2S «

2
D 2

e2F ~5!

~called the inner equation!. The advantage of ~5! versus ~3! is

that the difference between stable and unstable solutions can

be detected in the leading-order terms equation

F-1F85eF ~6!

of ~5!, which is referred to as truncated inner equation. At the

same time, as we have mentioned, the difference vs(t)

2vu(t) is exponentially small in « and therefore cannot be

captured in any order of « expansion of ~3!, see Sec. II. This

makes vs(t)2vu(t) ‘‘beyond all orders.’’

Equation ~6! possesses the formal power series solution

F̂52 ln~2z !1 (
k51

`
ak

z2k
, akPR. ~7!

This implies that there are actual solutions of ~6! possessing

asymptotic expansion ~7!. Moreover ~see, for example, Ref.

9!, these actual solutions F6(z) to ~6! are uniquely defined

by

F6~z !;F̂~z !, z→` , 6Rz.0. ~8!

In Ref. 3 the solutions F6(z) were put into correspon-

dence with the stable and unstable solutions vs(t) and vu(t)

of ~3!, respectively. Some nonrigorous analytical methods,

together with numerical arguments, were employed to show

that F1(z)ÓF2(z) and, as a consequence, vs(t)Óvu(t).

So, the perturbed equation ~3! does not have needle crystal

solutions. ~A rigorous proof of this fact using different tech-

niques can be found in Ref. 10; another interesting treatment,

though less rigorous, can be found in Ref. 11. The rigorous

treatment of a similar singularly perturbed fourth-order equa-

tion can be found in Refs. 12 and 13.!
It was noticed in Ref. 9 that the fact that F1(z) does not

coincide with F2(z) can be proved rigorously: it follows

from the observation that Eq. ~6! has nontrivial Stokes phe-

nomenon at z5` . The consequent observation is that more

detailed study of the Stokes phenomenon @i.e., study of be-

havior of F6(z) in a neighborhood of z5`] can provide

more information about the stable and unstable solutions

vs(t) and vu(t) of ~3!.
Since the appearance of Ref. 3 as a preprint in 1985, the

‘‘asymptotic beyond all orders’’ technique was applied,

mainly on the formal level, to show nonexistence of ho-

moclinic or heteroclinic solutions to singularly perturbed

ODEs, which correspond to various singularly perturbed

problems: shock waves to the perturbed Kuramoto–

Sivashinsky equation,14 traveling waves to the fifth-order

Korteweg–de Vries ~KdV! equation,15,16 some discretized

problems,17,18 etc. In these papers the study of the truncated

inner equations ~as in Ref. 3! was either done numerically or

by the Borel summation, formally applied to the correspond-

ing formal power series solutions of type ~7!. The latter al-

lows to compute the Stokes constant c ~see Ref. 19 for the

definition of c). The fact that cÞ0 means that the Stokes

phenomenon is nontrivial. The formal use of the Borel sum-

mation for the above-mentioned equations was justified in

Ref. 9. As it was also mentioned there, the mere fact that the

formal power series solutions to the truncated inner equation

are divergent ~have zero radius of convergence! in certain

cases means that the corresponding Stokes phenomena are

nontrivial. So, the computation of c is not needed to show

just the nonexistence of the corresponding heteroclinic or

homoclinic solution. However, it was noticed that the split-

ting quantities @such as the distance between vs(t) and vu(t),

angles of intersection of the corresponding phase curves,

projected on the (v ,v8) plane# are proportional to c . So,

approximations of these exponentially small quantities near

the value t50 @near the first point of intersection of the

corresponding curves on the (v ,v8) plane# could be obtained

~see, for example, Refs. 14, 16, and 20! by computing c .
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It is well known that a difference operator can be con-

sidered as an infinite order differential operator. Accord-

ingly, a finite difference approximation to an ODE can be

considered as a singular perturbation, where the step size of

the discretization plays the role of a small parameter. A dis-

cretized pendulum equation, which is equivalent to the stan-

dard Chirikov’s map, was considered in Ref. 17. The authors

formally applied the formal method of Ref. 3 to show split-

ting of the separatrix and to obtain the asymptotic result of

Lazutkin et al.21 for the splitting angle. It is worth mention-

ing that the main technique used by Lazutkin ~later joined by

his colleagues! to study the standard map, is in fact parallel

to that of Ref. 3 and was developed at approximately the

same time.

The starting point of our arguments is that we can obtain

more information about vs(t) and vu(t) by more detailed

study of the corresponding solutions F6(z) to the truncated

inner equations. In particular, we can express the difference

F1(z)2F2(z) as a convergent series of exponentially

small corrections. This enables us to construct a double ex-

pansion in powers of « and e2a/«, with some a.0. This

expansion formally satisfies the original perturbed equation.

Based on the above-mentioned expansion, we derive an ana-

lytic expression to approximate vs(t) and vu(t) on suffi-

ciently long t intervals, which is called a first-order approxi-

mation.

As a model example of a singularly perturbed problem

we consider the central finite difference approximation:

y~ t1s !22y~ t !1y~ t2s !

s2
5y2~ t !22y~ t ! ~9!

of a particle in the cubic potential:

y9~ t !5y2~ t !22y~ t !. ~10!

In Sec. II we discuss the equivalence of ~9! to the area

preserving Hénon map, give simple arguments proving the

splitting of the separatrix solution of ~10! under the pertur-

bation ~9!, show that the difference between the stable

y s(t ,s) and unstable yu(t ,s) solutions to ~9! is beyond all

orders of O(sn), rescale Eq. ~9! according to Ref. 3 and

determine solutions Fs(t) and Fu(t) of the truncated inner

equation that correspond to y s and yu . Much of the material

in this section and the following section reviews material

essential for the following discussion. Related material for

particular maps ~for example, for the standard map!, as well

as for certain classes of analytic maps can be found in a

number of publications ~see, for example, Refs. 21–24!.
In the third section we define irregular singularities and

discuss the Stokes phenomenon at an irregular singular point

on one of the simplest examples. We then study the Stokes

phenomenon for the truncated inner equation by the means

of the Borel–Laplace method. Exponential expansion satis-

fying the equation is derived next, and the Stokes constant c

is evaluated. Based on the relation between the original per-

turbed equation ~9! and the truncated inner equation, we first

derive the double expansion satisfying ~9!, and then obtain

the first-order approximation of the unstable manifold:

y~ t ,s !5y00~ t !1s2y01~ t !1

84pK

s6
e2A2p2/s

3S~ t !Fv2~ t !sin
2pt

s
2

5

48A2
v1~ t !cos

2pt

s G
that takes into account exponentially small terms of the lead-

ing order. The functions y00 , y01 , v1, and v2 are expressed

via hyperbolic functions in closed form; 2piK5c is the

Stokes constant, and the function S(t) monotonically in-

creases from 0 to 2 as t is varied from 2` to 1` . These

functions are discussed in Sec. IV where one can also find

the discussion of our approximation and its compatibility

with numerical simulations ~which, overall, is excellent!.
The preliminary version of this paper was presented at

the International Conference on Differential Equations and

Applications to Biology and Industry, Claremont, CA, 1994.

It appeared as a preprint also in 1994.25 A short version

~preliminary research report! was published in the Proceed-

ings of the Conference.26 Since then the suggested technique

~below! was applied to study a double-well potential case in

Refs. 27 and 28.

II. THE PERTURBED SYSTEM IN THE ORIGINAL AND
SCALED VARIABLES

A. The perturbed equation

Consider the second-order differential equation

y9~ t !5y2~ t !22y~ t !. ~11!

Following standard procedures, one obtains the general solu-

tion of ~11! as

y~ t !5116p~ t1c !, ~12!

where p is the Weierstrass elliptic function29 with the invari-

ants g251/3, g351/272C . Here C and c are arbitrary

complex constants. One can interpret ~11! as the equation of

a particle in the cubic potential ~one-well potential! field

V~y !51y2
2

1
3 y3. ~13!

FIG. 1. The phase plane (y ,y8) of the unperturbed equation ~11!. The

curves of constant C define phase trajectories „y(t),y8(t)…, while the other

constant c defines the origin of time t .
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with total energy E518C . The value of C determines

whether the solutions of ~11! are bounded or unbounded. In

the phase plane (y ,y8) of ~11! ~see Fig. 1!, curves of con-

stant C define phase trajectories @y(t),y8(t)# , while the

other constant c defines the origin of the time t . Equation

~11! possesses an elliptic fixed point (0,0) and a hyperbolic

fixed point (2,0) in the phase plane. The special values of the

parameters C52/17 and c5ip/A2 correspond to the solu-

tion

y~ t !52113 tanh2S t

A2
D . ~14!

This solution defines the separatrix in the phase plane that is

the boundary between bounded and unbounded phase trajec-

tories. The separatrix is a homoclinic trajectory that asymp-

totically approaches the hyperbolic point (2,0) in the future

(t→`) and in the past (t→2`). We will refer to the solu-

tion ~14! as to the separatrix solution. The hyperbolic fixed

point (2,0) possesses stable and unstable manifolds ~incom-

ing and outgoing trajectories!. These are the phase trajecto-

ries of a particle reaching or escaping this fixed point. For

Eq. ~11!, both stable and unstable manifolds join smoothly to

form the separatrix.

Our aim is to study the stable and unstable manifolds

~and the corresponding solutions! of the perturbed equation

y~ t1s !22y~ t !1y~ t2s !

s2
5y2~ t !22y~ t !, ~15!

where s is a small positive parameter. By a solution of ~15!
we mean a function y(t) of real ~or of complex! variable t

satisfying ~15!. Eq. ~15! is a finite difference approximation

~discretization! of the unperturbed equation ~11!. We refer to

~15! as to the perturbed equation.

B. The Hénon map

Eq. ~15! arises naturally from the rescaling of the area-

preserving Hénon map30

u i1152v i1bu i2lu i
2,

~16!
v i115u i .

Here b52(12s2), l5s4
21, and we are interested in the

limiting behavior as s→0. In this limit the fixed points

(u ,v)5(0,0) and (u ,v)5(2s2/(12s4),2s2/(12s4)) col-

lide. This leads to difficulties in examining the limiting be-

havior as s→0. In order to avoid these difficulties we intro-

duce new scaled variables

u i5
s2

12s4
y i . ~17!

The corresponding equation for y i is

y i1122y i1y i21

s2
5y i

2
22y i . ~18!

The second-order difference equation ~18! is in fact the

Euler’s finite-difference scheme with the step s for ~11!.

Substituting y i5y(t), y i615y(t6s), we obtain ~15!. Thus

the unperturbed equation ~11! can be considered as the

blowup limit of ~16! when s→0.

C. Discretization is a singular perturbation

It is well known that a difference equation can be con-

sidered as an ordinary differential equation of infinite order

~see, for example, Ref. 31!. In order to put ~15! in this form,

we use the Taylor series representation

y~ t6s !5y~ t !6sy8~ t !1 (
k52

`

~61 !k
sk

k!
y ~k !~ t !. ~19!

Then, the symmetrical second difference is

Ds
2 y5

y~ t1s !22y~ t !1y~ t2s !

s2

52(
j51

`
s2~ j21 !

~2 j !!
y ~2 j !~ t !, ~20!

and ~15! becomes

y9~ t !5y2~ t !22y~ t !22(
j52

`
s2~ j21 !

~2 j !!
y ~2 j !~ t !. ~21!

Equation ~21! is an infinite-order differential equation and

simultaneously is a singular perturbation of the original

equation ~11! ~the perturbation term contains higher deriva-

tives multiplied by powers of the small parameter!.
The study of the Hénon map is not the only situation

when a singular perturbation of ~11! is of interest. For ex-

ample, another singular perturbation

y9~ t !5y2~ t !22y~ t !2s2y99~ t ! ~22!

occurs in the study of traveling wave solutions to the per-

turbed Korteweg–de Vries equation ~see Refs. 15 and 16!.

D. The stable and unstable manifolds and the
splitting of the separatrix

We are interested in the consequences of the singular

perturbation for the separatrix solution of the unperturbed

equation. The following arguments show that this solution

does not survive the perturbation. Thus ~15! does not have a

separatrix solution.

The difference equation ~15! defines the diffeomorphism

T:R2
→R2 which is @ equivalent to the Hénon map ~16!# by

h i115h i1s„j i1s~h i
2
22h i!…,

~23!
j i115j i1s~h i

2
22h i!,

where h5y(t), j5Dsy(t)[@y(t)2y(t2s)#/s . The

point (2,0) is a hyperbolic fixed point of ~23!. Associated

with this fixed point there exist two one-dimensional mani-

folds: the stable Ws and the unstable Wu manifolds ~see, for

example, Ref. 32, Chap. 2!.
A solution y(t ,s) of ~15! that satisfies

lim
t→1`

y s~ t ,s !52, y s~ t ,s !,2 as t→1` ~24!
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is called a stable solution. Since Ws is one dimensional it has

to coincide with the graph of „y s(t),Dsy s(t)…. This solution

y s is invariant with respect to the shifting of the origin of

time, that is, if y s(t) is a stable solution then y s(t1t0),

where t0PR, is also a stable solution. A solution satisfying

~24! as t→2` is called an unstable solution.

The fact that WsÞWu was proven in Ref. 33. Presented

below are different arguments that lead to the same conclu-

sion. According to the Poincaré theorem ~see, for example,

Ref. 34!, a stable solution y s(t ,s) can be represented by the

series

y s~ t ,s !521 (
k51

`

y k~s !@w~ t !l2t/s#k, ~25!

where l.1 is the eigenvalue of ~23! linearized at the hyper-

bolic fixed point (2,0), y1(s)Þ0 and w(t) is a s-periodic

function. Taking w(t) to be a positive constant, one can no-

tice that y s(t ,s) becomes a 2psi/ln l periodic function and

that the series converges in the half plane of the complex t

plane Re t.R , where R is some positive constant that de-

pends on y s .

The fact that y s(t ,s) is analytic in Re t.R implies that

y s(t ,s) is an entire function of the complex variable t . This

is demonstrated as follows: Eq. ~15! can be written as

y~ t2s ,s !52y~ t ,s !2y~ t1s ,s !

1s2@y2~ t ,s !22y~ t ,s !# . ~26!

This implies that y s(t ,s) is also analytic in the strip R2s
,Re t<R . Thus ~26! allows one to ‘‘propagate’’ the analy-

ticity of y s(t ,s) into the whole t plane. This means that

y s(t ,s) is an entire function and that the series ~25! con-

verges for all tPC. As a consequence, y s(t ,s) is bounded in

the half plane Re t>0. It also implies that the power series

x(t)521(k51
` y k(s)tk defines an entire function of t .

Suppose now that Ws5Wu . Then the entire function

y(t)5y s(t ,s) is simultaneously a stable and an unstable so-

lution. Time-reversibility arguments show that

y~ t !5x@w~ t !l t/s# ~27!

for some s-periodic function w(t). One can apply here ar-

guments of analyticity to show that w(t) is analytic in the

complex t plane. Then y(t) is bounded in the semistrip

Re t<0, 0<Im t<2ps/ln l and thus in the whole left half

plane because of periodicity of y(t). So, according to the

Louiville theorem, y is a constant and we obtain a contradic-

tion with the assumption Ws5Wu .

E. Onset of chaotic motion

The fact the separatrix of ~11! splits into the stable Ws

and unstable Wu manifolds once s becomes positive and that

these manifolds intersect giving rise to homoclinic points

implies that the dynamics of the perturbed system becomes

chaotic ~see, for example, Ref. 32!. The following arguments

can be used to show that the manifolds intersect, that is, that

WsùWuÞ0”.

By continuity arguments Wu intersects with the h axis of

the mapping T . Let P be the point of intersection on the

(h ,j) plane. We can always chose the unstable solution yu

so that P has coordinates „yu(0),Dsyu(0)…. Then Dsyu(0)

50. Equation ~15! is time-reversible, and therefore y s(t)

5yu(2t2s) also satisfies ~15!. It is clear that

lim
t→1`

yu~2t2s !5 lim
t→2`

yu~ t2s !52,

and thus yu(2t2s) is a stable solution. Therefore the curve

„y s(t),Dsy s(t)… defines Ws . Next we show that PPWs . In-

deed,

Dsy s~ t !u t505

y s~ t !2y s~ t2s !

s
U

t50

5
yu~2t2s !2yu~2t !

s
U

t50

52Dsyu~ t !u t50 .

Therefore Dsy su t5052Dsyuu t5050. On the other hand,

y s(0)5yu(2s). This taken together with Dsyu(0)50

yields y s(0)5yu(0). This implies that PPWs , and thus P

PWsùWu . This intersection is transversal, as follows from

the discussion below, and the angle of intersection is expo-

nentially small in s , thereby demonstrating that the point P

is a homoclinic point.

The fact that WsùWuÞB implies that uy s(t)2yu(t)u is

exponentially small in s for any compact interval of the real

t axis ~see Ref. 35, Th. 4.4 for details!.

F. Perturbation series expansion

We begin by constructing a formal solution of ~15! as

the usual perturbation series

ŷ0~ t ,s !5 (
l 50

`

y0l ~ t !s2l , ~28!

which will be called the outer expansion of ~15!. Substitution

of ~28! into ~15! yields the recurrent system of ordinary dif-

ferential equations

y00
9 ~ t !5y00

2 ~ t !22y00~ t !,

~29!
y0l

9 ~ t !52„y00~ t !21…y0l ~ t !1F l , l >1,

where F l is a polynomial of the functions y00(t),

y01(t),. . . ,y0l 21(t) and their derivatives. These functions are

determined in previous steps. For example, F1@y00#

52
1

12y0099 . The first equation in ~29! is Eq. ~11!. As we are

interested in perturbation of the separatrix solution ~14! of

~11!, we set

y00~ t !52113 tanh2
t

A2
. ~30!

Equations ~29! with l>1 are linear nonhomogeneous equa-

tions. The odd and even linearly independent solutions of the

corresponding homogeneous equation are

v1~ t !5
d

dt
y00~ t !, v2~ t !5v1~ t !E

0

t dj

v1
2~j !

. ~31!

It then follows from ~30! that
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v1~ t !53A2 tanh t sech2 t , ~32!

and

v2~ t !5
1

24 @~15t tanh t28 !sech2 t17 tanh2 t

12 tanh2 t cosh2 t# , ~33!

where t5t/A2. Note that the Wronskian of v1 and v2 is

equal to one.

In order to obtain the outer expansion ~28! of an unstable

solution yu(t ,s), we need, in accordance with ~24!, to re-

quire

lim
t→2`

yu~ t ,s !52.

This boundary condition implies the following boundary

conditions for y0l (t):

lim
t→2`

y0l ~ t !50, ~34!

for l >1. Additionally, we want to shift the origin of time t

in such a way that

y0l
8 ~0 !50. ~35!

Conditions ~34! and ~35! uniquely define solutions y01 ,

y02 , . . . of ~29!. Consider l 51. It follows from ~29!–~32!

that the absolute value of the function F152
1

12y0099 behaves

as e22utu in the limit t→` , because

y00995~y00
2

22y00!9

52@~y0021 !y00
8 #8

52~y00
8 !2

12y00~y0021 !~y0022 !. ~36!

Note that v1 and v2 are odd and even functions, respectively,

and that uv1F1u;e24utu as utu→` . Then there exists a

unique solution of ~29! ~with l 51) given by

y01~ t !52v1~ t !E
0

t

v2~j !F1dj1v2~ t !E
2`

t

v1~j !F1dj ,

~37!

that satisfies ~34! and ~35!. Indeed, all other solutions of ~29!
~with l 51) differ from ~37! by the additional term c1v1

1c2v2 . If either constant c1 or c2 differs from 0, then one

of the conditions ~34! and ~35! for y01(t) is violated. These

arguments can be extended to the cases of l 52, 3, .. . in

order to demonstrate the existence and uniqueness of solu-

tions y01 , y02 , . . . of ~29! satisfying ~34! and ~35!. Note that

these solutions are even.

For l 51 we have

y01~ t !52

y00
8 ~ t !

12 F2E
0

t

y00
8 ~s !y00

99~s !E
0

s dj

y00
8 ~j !2

ds

1E
0

t ds

y00
8 ~s !2

•E
2`

t

y00
8 ~s !y00

99~s !dsG ,

which after some algebra gives

y01~ t !5
1
4 ~722t tanh t !sech2 t2

15
8 sech4 3t . ~38!

G. Rescaling of variables

The coefficients in the expansion ~28! are even functions

of t , so if ~28! is convergent for some small s on the nega-

tive semiaxis t<0, then it would define a separatrix solution

to ~15!. However, as we observed in Sec. II D, this is not the

case. This implies that the difference between Ws and Wu

should be of the order less than O(sn) for any nPN, other-

wise we should be able to detect this difference in the formal

expansion ~28!. Thus the phenomenon we are interested in is

‘‘beyond all orders’’ of s .

In order to implement the approach of Ref. 3 we observe

that the separatrix solution ~30! to ~11! has second-order

poles at the points t5ip/A21A2pk , kPZ. These points are

also singular points for the coefficients y0l(s) of ~28!. The

idea of the ‘‘asymptotic beyond all orders’’ approach is to

scale the independent variable around a singular point, say

t5ip/A2, and, at the same time, to scale the dependent

variable so that the resulting equation is not a singularly

perturbed equation in the sense of Sec. II C. This is accom-

plished by the transformation

t5
ip

A2
1sz ,

~39!
F~z ,s !5s2y~ t ,s !.

Then the perturbed equation ~15! ~outer equation! becomes

D2F~z ,s !5F2~z ,s !22s2F~z ,s !, ~40!

where D2 is the second-order difference operator:

D2F~z ![F~z11 !22F~z !1F~z21 !.

Equation ~40! is called the inner equation.

H. Correspondence between the solutions of the
outer and inner equations

The advantage of working with the inner equation ~40!,
instead of the original outer equation ~15!, is that in contrast

to ~15!, the difference between the stable and unstable solu-

tions is detectable in the leading-order equation

D2F~z !5F2~z ! ~41!

of ~40!, which is called the truncated inner equation. Next we

must identify which of the solutions of ~41! correspond to

the stable and unstable solutions of ~15!. The following ar-

guments show this correspondence on the formal level.

Consider the expansion ~28! in a neighborhood of a sin-

gular point t5ip/A2. The leading term y00(t) of the outer

expansion ~28! has a second-order pole at this point. Then

F1[2
1

12y0099 has a sixth-order pole at the same point. Exam-

ining Eq. ~29! for l 51 one sees that y01(t) has a fourth-

order pole at t5ip/A2. Using similar arguments it can be

shown that

y0l ~ t !;
a l

~ t2ip/A2 !2~ l 11 !S „11OS t2
ip

A2
D D ,

t→
ip

A2
, ~42!
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where a l for l 50,1,2,... are certain real numbers.

Taking into account ~39! one obtains

F̂~z ,s !5s2ŷ0~ t ,s !

5 (
l 50

`

y0l ~ t !s2l 12

5 (
l 50

`
a l s2l 12

s2l 12z2l 12
1~ terms of order s !

5F̂0~z !1~ terms of order s !, ~43!

where F̂(z ,s) is a formal solution to ~40!, and the formal

power series

F̂0~z !5 (
l 50

`
a l

z2l 12
~44!

is a formal solution of ~41!.
Therefore, the actual solutions of ~41! that have the

asymptotic expansion ~44! in the right ~left! half plane of the

complex z plane correspond to the stable ~unstable! solutions

to ~15!. These solutions Fs(z) and Fu(z) are called, respec-

tively, stable and unstable solutions to ~41!. As we will see

below, these solutions are uniquely defined and do not coin-

cide with each other.

Rigorous arguments to demonstrate the correspondence

between stable and unstable solutions of ~15! and of ~41! can

be based on the fact that ~28! is the asymptotic expansion of

y s(t ,s) and yu(t ,s) as s→0 in the right and in the left half

planes of the complex t plane, respectively. A paper address-

ing some theoretical aspects of the inner–outer correspon-

dence is in progress now.

III. STOKES PHENOMENON, EXPONENTIAL
ASYMPTOTICS, AND APPROXIMATION

A. Irregular singular points and the Stokes
phenomenon

In order to find the difference between the solutions

y s(t ,s) and yu(t ,s) of the outer equation ~15!, we need to

determine the difference between the corresponding solu-

tions of the inner equation ~41!. To accomplish this we will

study the Stokes phenomenon for the inner equation. To this

end we will start with a brief review of some concepts of the

analytic theory of differential equations that we will apply to

the nonlinear difference equation ~41! ~some facts on the

analytic theory of difference equations can be found in Ref.

36!.
Consider a matrix differential equation

Y 8~z !5A~z !Y ~z !, ~45!

where A(z) has a pole at some point z0 . The point z0 is

called a regular singular point of ~45! if every solution Y (z)

of ~45! has no more than a power growth as z→z0 . In other

words, Y (z) can have at most a pole type singularity at z0

combined with some branching. In the opposite case z5z0 is

called an irregular singular point of ~45!. In this case solu-

tions can have exponential growth or decay as z→z0 ~there

is no standard terminology yet!.
Very often the singular point z0 is placed at ` . We call

z05` a singular point of ~45! if A(z)5zN(A01A1z21

1•••), where A0Þ0 and N>21 ~see, for example, Ref.

37, Chap. 4!. Suppose that a formal power series Ŷ (z)

5(k50
` Y kz2k satisfies a nonhomogeneous equation ~45!,

where the nonhomogeneous term is analytic at ` . Then, the

case z05` is a regular singular point, Ŷ (z) is convergent

~has nonzero radius of convergence!. Generically, in the case

of an irregular singularity Ŷ (z) defines only an asymptotic

expansion ~as z→`) of some actual solution. This expansion

is valid only in a certain sector of the complex z plane and

fails outside this sector. This phenomenon is known as the

Stokes phenomenon.

Example 1. Consider a solution of

y8~x !52y~x !1

1

x
~46!

satisfying y(re ip)→0 as r→` . This solution is given by

y~x !5e2xE
e ip`

x e t

t
dt5e2xEi~x !,

where Ei(x) is the standard integral exponential function.

Integration by parts and standard estimates ~see, for example,

Ref. 37, Chap. 3! show that

y~x !; (
n50

`
n!

xn11
, x→` ~47!

and this asymptotic expansion is valid in the sector

S:uarg x2pu, 3
2p . However,

y~x !2y~xe22pi!52e2x R
utu5const

e t

t
dt522pie2x,

so that the expansion ~47! gains the exponential term

22pie2x , which grows once x crosses the ray arg x

52p/2. Therefore ~47! cannot be valid outside S .

The appearance of exponentially small terms, which lead

to the breakdown of asymptotic expansions, is an essential

feature of the Stokes phenomenon. As we will see below,

these exponential terms cause splitting of separatrices. At the

same time they can be used to approximate the stable and

unstable solutions.

B. The Stokes phenomenon for the inner equation

Irregular singularities for the difference equations can be

defined in much the same manner as for differential equa-

tions. An effective technique to study the Stokes phenom-

enon for nonlinear equations is the Borel–Laplace summa-

tion ~also known as a particular case of resurgence, see, for

example, Ref. 38!. We will now apply this method to the

inner equation ~41!.
The inverse Laplace transform L

21 transforms ~41! into

the nonlinear convolution equation

2~cosh p21 !V~p !5V~p !*V~p !, ~48!
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where V(p)5@L
21F#(p) and V(p)*W(p) 5

def
*0

pV(p

2t)W(t)dt .

Theorem 1. There exists a unique solution V(p) of ~48!
that is an odd function and is analytic in the whole p plane

with two vertical cuts: from p52pi upwards and from the

point p522pi downwards ~see Fig. 2!. This solution is

majorized by Ce upu along each nonvertical ray in the cut

plane with the appropriate constant C.0.

Convolution equations of the type ~48!, which also arise

from inverse Laplace transform of differential equations,

have been investigated in Ref. 9. The arguments of Theorem

3 in Ref. 9 can be used to prove the Theorem 1.

Theorem 1 implies that the Laplace transform F(z)

5LV is well-defined and yields a solution to ~41!. It is well

known that the Taylor expansion of V(p) at p50 defines the

asymptotic expansion of F(z) as z→` . This asymptotic ex-

pansion is a formal power series solution of ~41! in even

powers of 1/z . Since ~41! possesses a unique nontrivial for-

mal power series solution F̂0 in negative powers of z2,

F~z !;F̂0~z !, z→` , Re z.0. ~49!

So,

V~p !5 (
l 51

`
a l

~2l 21 !!
p2l 21, ~50!

where a l are the coefficients of F̂0(z).

The function V(p) is called the formal Borel transform

of F̂0(z) , V5BF̂0, and the solution F(z)5LBF̂0(z) is

known as the Borel–Laplace sum of F̂0. It is the only solu-

tion of ~41! satisfying ~49!. Using the Borel–Laplace sum-

mation, we construct two different solutions

Fs~z !5E
0

`

e2pzV~p !dp

and ~51!

Fu~z !5E
0

2`

e2pzV~p !dp .

These solutions possess the asymptotic expansion F̂0(z) in

the right and left half planes, respectively. In fact, these

asymptotic expansions are valid in wider sectors uarg zu,p
2d and d,arg z,2p2d , respectively, where d is an arbi-

trary small positive number. This can be verified by rotating

the ray of integration, say, for Fs(z) in ~51! from arg p

52p/21d to arg p5p/22d . Figure 3 illustrates the

simple relation between rotation of the ray of integration in

the p plane and rotation of the corresponding half plane of

analyticity of the Laplace transform in the z plane.

Although solutions Fs(z) and Fu(z) have the same as-

ymptotics F̂0(z) in two disjoint sectors uarg z6p/2u,p/2

2d , they do not coincide with each other. Indeed, Fs(z)

[ Fu(z) would mean that Fs(z) is an analytic function at

z5` ~see, for example, Ref. 37, Chap. 3!. Hence the formal

series ~44! would be convergent. This then would imply that

V(p) is an entire function. The following arguments from

Ref. 9 show that this cannot be the case.

Indeed, one can show that the series ~44! is sign-

alternating. This implies that the function 2iV(p) is positive

on @0,ia), where ia is the singularity closest to the origin on

the positive imaginary semiaxis. Theorem 1 implies that a

>2p . Suppose that p52pi is not a singular point of V(p).

Then the convolution V(p)*V(p)up52pi,0, while the left-

hand side of ~48! is zero at p52pi . This yields a contradic-

tion which shows that p52pi is a singular point of V(p). In

fact, the points p562pik , kPZ\$0% on the sheets of the

corresponding Riemann surface are the singular points of

V(p).

Thus the rays of integration in ~51! cannot be rotated

beyond arg p56p/2, implying that Fs(z) and Fu(z) do

not coincide. Moreover, the asymptotics F̂0(z) is not valid

for Fs(z) and Fu(z) beyond the sectors mentioned above.

This is the Stokes phenomena for Eq. ~41! at z50.

Let F6(z)5Fs(z)2Fu(z) when 6Im z.0. The sub-

script indicates the sign of the imaginary part of z . Then the

difference between the stable and unstable solutions of ~41!
is given by

F2~z !5E
g
e2pzV~p !dp , ~52!

where the contour g encircles the positive imaginary semi-

axis from the left ~see Fig. 2!. This integral ~52! is well

defined only if Im z,0. The leading term of the asymptotics

FIG. 2. Contour of integration g for F2(z) in the cut p plane.

FIG. 3. The simple relation between rotation of the ray of integration in the

p plane and rotation of the corresponding half plane of analyticity of the

Laplace transform in the z plane.
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of ~52! as Im z→` is determined by the singularity of V(p)

at the point p52pi . This is the term that we will focus on in

the following subsections.

C. Exponential expansion for the inner equation

In order to obtain more information about F2(z) we

look for a solution of ~41! with the form

F̊~z !5F̂0~z !1F̂1~z !e22piz
1F̂2~z !e24piz

1••• , ~53!

where F̂ j(z), j50, 1, 2,... , are formal power series in z21.

Substituting into ~41! we obtain

D2F̂0~z !5F̂0
2~z !,

D2F̂1~z !52F̂0~z !F̂1~z !, ~54!

D2F̂k~z !52F̂0~z !F̂k~z !1F̂k21
2 ~z !, k>2.

Our choice of the expansion ~53! is motivated by the

following fact: if an ODE with the irregular singular point

z5` has a formal power solution F̂0(z) and if p52pi is a

singular point of BF̂0 , then it has a formal solution of the

form ~53!. Suppose that p52pi is the first singularity of

BF̂0 in the positive imaginary direction. Then there exists

analytic functions Fk(z), such that:

~1! Fk(z); F̂k(z) as z→` , zPS where S is some sector in

the lower half-plane which contains the negative imagi-

nary semiaxis.

~2! For every cPC, the series F(z)5F0(z)

1cF1(z)e22piz
1c2F2(z)e24piz

1••• is convergent for

sufficiently large uzu, zPS .

~3! The functions F(z) form a one-parameter family of so-

lutions of the given equation.39

Every solution from this family has the same power se-

ries asymptotic expansion F̂0(z) in S . The difference be-

tween two such solutions is exponentially small in S as z

→` and is given by constant3F1e22piz. In what follows,

we apply the same arguments to the solutions Fs(z) and

Fu(z) of the difference equation ~41!.
The first equation in ~54!, which is Eq. ~41!, is nonlinear.

It possesses a unique formal power series solution in z22:

F̂0~z !5
6

z2
2

5

4z4
1••• .

The remaining equations are linear and have equal homoge-

neous parts.

In order to find the leading term of a solution to the

second equation ~54!, we replace F̂0(z) by its leading term

(6/z2). This yields

D2F̂1~z !5
12

z2
F̂1~z !,

which possesses two formal power series ~in z21) solutions

with leading terms z4 and z23, respectively. Therefore, the

second equation ~54! also possesses two solutions F̂1
even(z),

F̂1
odd(z) with the corresponding leading terms. For large val-

ues of uzu the even solution F̂1
even(z) dominates the odd so-

lution F̂1
odd(z). Thus we will only consider F̂1

even(z) and will

denote it by F̂1(z). In fact, one can find formal solutions

F̂2(z), F̂3(z),... to all equations ~54!. However, in this paper

we restrict our attention to the first two terms in the expo-

nential expansion ~53!.
The solutions Fs(z)and Fu(z) of ~41! have the same

power series asymptotic expansion along the negative imagi-

nary semiaxis, but differ in exponential small terms. The

leading asymptotic term of their difference F2(z) is propor-

tional to F̂1(z)e22piz. ~The higher-order exponential terms

are exponentially small with respect to F1(z)e22piz in the

limit Im z→` .) This leading term is cz4e22piz where c is a

constant prefactor.

D. Evaluation of c

According to ~48!, V(p) is an odd function and is real-

valued along the real axis as all coefficients a l are real.

Therefore we obtain

Fu~2z !5Fs~z !, and Fs~ z̄ !5F̄s~z !. ~55!

If zPR, then

Fu~2iz !5Fs~ iz !5F̄s~2iz !, ~56!

so that

F6~z !5Fs~z !2Fu~z !522i Im Fu~z ! ~57!

is purely imaginary when Re z50. Therefore, the constant

prefactor c is purely imaginary. Thus

i Im Fu~z !;2

c

2
z4e22piz, z→` , arg z52

p

2
.

~58!

Consider the solution Fu(z) to Eq. ~41! near the singular

point z05` . It possesses the asymptotics F̂0(z) in the sector

22p1d,arg z,2d , where d is an arbitrary small posi-

tive number. However, as arg z becomes greater than zero,

the path of integration in the integral representation ~51! of

Fu(z) will cross the positive imaginary semiaxis in the p

plane. Then the singularities 2pik , k51,2, .. . , of V(p) will

contribute terms that are proportional to e22pikz. These

terms destroy the power series asymptotic expansion F̂0(z)

of Fu(z) if arg z.0.

The terms, mentioned above, are present in the asymp-

totics of Fu(z) when arg z,0. However, they are exponen-

tially small in the lower half plane and thus do not affect

power series asymptotics F̂0(z) there. Let us consider the

leading exponential term of Fu(z) that has the form

bz4e22piz. Here the prefactor b varies according to the di-

rection in which z approaches infinity @otherwise, the asymp-

totics Fu(z);F̂0(z), z→` would not be valid for arg z

,2p]. One can also show that in the limit z→`
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b55
0, 2p,arg z,2

p

2

2

c

2
, arg z52

p

2

2c , 2

p

2
,arg z,0.

~59!

The line Im z52p/A2s in the z plane corresponds to the

real line axis in the t plane. As we have seen, the prefactor b

varies along this line, reaching the value 0 as Re z→2` and

2c as Re z→1` . Unfortunately, theory provides no gen-

eral results on this issue ~see, however, some discussion on

the smoothing of Stokes phenomena in Refs. 40 and 41!, so

we are compelled to use numerical simulations in modeling

the exponentially small terms of Fu(z).

The constant c in ~59! is determined by Eq. ~41! and is

known as the Stokes constant. The power prefactor z4 to the

exponential term e22piz indicates the order of singularity of

V(P)5BF̂0(z) at the point p52pi . Thus the leading sin-

gular term of V(p) is of order O(p22pi)25. It is known

that if V(p);K(p22pi)21, then the Stokes constant is

equal to the residue at this pole ~see Ref. 19!, i.e., c

52piK . Therefore,

c52pi lim
p→2pi

Im p,2pi

~p22pi !B @z24F̂0~z !#~p !. ~60!

Our calculations show ~see Sec. IV D! that c52piK ,

where K.7374. To calculate K , we have used the same

heuristic algorithm as used in Ref. 15 and 16, which can be

rigorously justified by results of Ref. 9.

E. Exponential expansions for the outer equation

As it has been shown above, the exponential expansion

~53! for the inner equation ~41! is capable of capturing the

exponentially small Fs(z)2Fu(z) on the ray arg z

52p/2. The corresponding expansion for the outer equation

~15! is

ŷ~ t ,s !5 ŷ0~ t ,s !1 ŷ1~ t ,s !e22pit/s
1 ŷ2~ t ,s !e24pit/s

1••• . ~61!

One can hope therefore that ~61! will also be able to capture

the exponentially small y s(t ,s)2yu(t ,s), where t

P(0,ip/A2). We assume ŷ j(t ,s), j50,1,2,... in ~61! to be a

formal power series in s . In particular, ŷ0(t ,s) is the outer

expansion ~28!. The other ŷ j(t ,s) satisfy the recurrent sys-

tem of difference equations that can be obtained by substi-

tuting ~61! into ~15!. The coefficients ŷ j(t ,s) correspond to

the coefficients F̂ j(z) in expansion ~53!. Here we would like

to mention that the formal series ŷ1(0,s) for the discretized

pendulum ~standard map! has been derived and discussed by

Lazutkin in Ref. 24.

The coefficient ŷ1(t ,s) of the leading exponential term

in ~61! satisfies the equation

D2ŷ1~ t ,s !

s2
52„ŷ0~ t ,s !21…ŷ1~ t ,s !. ~62!

In order to consider the leading term y10(t) of ŷ1(t ,s), we

replace ŷ0(t ,s) in ~62! by its leading term

y00~ t !52113 tanh2
t

A2
. ~63!

Then,

y10
9 ~ t !52„y00~ t !21…y10~ t !. ~64!

Equation ~64! was considered above and its odd and even

linearly independent solutions v1(t) and v2(t) are given by

~32! and ~33!, respectively.

Our aim is to use ~61! to approximate yu(t ,s). In par-

ticular, we want to find the ‘‘first-order’’ approximation

which is based on the first two terms of ~61!. Now the prob-

lem is how to find the correct linear combination

y10~ t !5c1v1~ t !1c2v2~ t ! ~65!

for this approximation. This is done below by matching the

leading exponential terms i Im Fu(z)52
1
2„Fs(z)2Fu(z)…

and s2y10(t)exp(22pit/s) of Fu(z) and yu(t ,s), respec-

tively.

F. Matching of exponential terms

The equation ~62! for ŷ1(t ,s) corresponds to the second

equation ~54! for F̂1(z). Consider functions v1(t) and v2(t)

in a neighborhood of the point t5ip/A2. First, we would

like to match v1(t) and v2(t) with the appropriate solutions

of Eq. ~54!. Let t5t/A25ip/A2. If one introduces d5t
2ip/2, then ~32! implies

v1~ t !53A2
sinh t

cosh3 t
523A2

cosh d

sinh3 d
. ~66!

Here, d5sz/A2, see ~39!. Similarly, we obtain from ~33!
after some algebra

v2~ t !5
1

24
F215S d1

ip

2
D cosh d

sinh3 d
19 coth2 d1

8

sinh2 d

22 cosh2 d coth2 dG
52ip

5

16

cosh d

sinh3 d
2

1

24 sinh2 d
@15d coth d

29 cosh2 d2812 cosh4 d#

5ip
5

48
v1~ t !2

1

24 sinh2 d
@15d coth d12 sinh4 d

25 sinh2 d215# . ~67!

Observe that the odd solution v1(t) of ~64! remains odd with

respect to the point t5ip/A2, while the even solution v2(t)

splits into the linear combination ~67! of the even and odd

solutions.
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The leading term of v1(t) at t5ip/A2 is of the order

O(d23)5O(23/2/s3z3). It corresponds to the solution

F̂1
odd(z) of the second equation of ~54!. But this solution is

subdominant to the other solution F̂1
even(z). We need to find

what solution y10(t) of ~64! corresponds to the solution

F̂1
even(z). First, it must be an even function with respect to

t5ip/A2, and, second, its leading term should be of order

O(d4) as t→ip/A2.

Let us take

y10~ t !5c2Fv2~ t !2ip
5

48A2
v1~ t !G , ~68!

where the constant c2 is to be determined later. We want to

check the second condition. The expression in the square

brackets in ~67! has the Taylor expansion

15d coth d25 sinh2 d12 sinh4 d215

5010•d2
10•d4

1
8

7
d6

1••• . ~69!

It is not a coincidence that the expansion ~69! starts with the

term O(d6). As we will see below, this is a necessary con-

dition to match ŷ1(t) with F̂1(z), i.e., to match the inner and

outer exponential terms.

Equations ~66!–~69! imply

y10~ t !52

c2

24
•

8

7
d4„11O~d2!…

52
c2

21
•

s4

4
•z4„11O~d2!….

Now use ~39! to match exponential terms in yu(t ,s) and

Fu(z) for t approaching ip/A2 from below:

s2y10~ t !expS 2
2pit

s
D;i Im Fu~z !. ~70!

Here t5ip/A21sz and hence arg z52p/2. According to

~58!,

2
c2

84
s6z4 exp

A2p2

s
52

c

2
z4.

Thus

c25
42c

s6
exp

2A2p2

s
5

84piK

s6
exp

2A2p2

s
. ~71!

If we denote

c15ip
5

48A2
c2, ~72!

we obtain the unique solution ~65! of Eq. ~64! that matches

Im Fu(z):

y10~ t !5c1v1~ t !1c2v2~ t !

5

c2

24
@„15~t2ip/A2 !tanh t28…sech2 t

17 tanh2 t12 tanh2 t cosh2 t# . ~73!

G. Approximation of the unstable solution

The unstable solution yu(t ,s) admits a good approxima-

tion by the formal series ~28! for negative values of t and

small positive s . However, this approximation fails for suf-

ficiently large positive values of t . Therefore higher-order

terms from the series ~61! must be included. The following

arguments discuss the correct choice of these terms.

Let us consider the problem of approximation of yu(t ,s)

as the problem of constructing analytic continuation of

yu(t ,s) from the left part of the strip T:uIm tu,p/A2 into

its right part. Since yu(t ,s) is real valued for tPR hence

yu( t̄ ,s)5 ȳu(t ,s). If g6 PT are complex-conjugated con-

tours, t.0 and yu
1(t ,s), yu

2(t ,s) are the corresponding ana-

lytic continuations of yu(t ,s) from the left part of T to t ,

then

yu~ t ,s !5
1
2„yu

1~ t ,s !1yu
2~ t ,s !…5Re yu

1~ t ,s !. ~74!

The right-hand side of this equation can be obtained by

requiring that the contour g1 pass close enough to t

5ip/A2 that one can match the exponentially small terms of

yu
1(t ,s) and of Fu(z). Then, according to ~74!,

ẙ~ t ,s !5 ŷ0~ t ,s !1ReF (
k50

`

ŷ k~ t ,s !e22pikt/sG . ~75!

This is the formal exponential expansion of solutions of the

outer equation ~15! for real values of t .

Note that c2 is a purely imaginary constant and c1PR.

Then the leading part of the first exponential term in ~75! is

Re@y10~ t !e2pit/s#5c1v1~ t !cos
2pt

s
2ic2v2~ t !sin

2pt

s
.

The factors c1 and c2 , defined in ~71! and ~72! by matching

the inner and outer exponential terms, are valid for t

P@0,ip/A2). However, when t runs along the real axis, the

corresponding value of z5(t/s)2(ip/sA2) runs along the

line l : Im z52p/sA2 ~see Fig. 4!. Therefore, the factors

c1 and c2 for tPR are determined by the exponentially small

term of Fu(z) on the line l . As it was discussed above, this

FIG. 4. The real t axis corresponds to the line l in the complex z plane.
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term has the form b(arg z)z4e22piz, where b(2p/2)

52c/2 and b(a) varies from 0 as a→2p to 2c as a
→0, zPl .

The above arguments suggest the following representa-

tion

Re@y10~ t !e2pit/s#5M ~ t ,s !B~ t ,s !, ~76!

where

B~ t ,s !5v2~ t !sin 2pt/s2

5

48A2
v1~ t !cos

2pt

s
,

~77!

M ~ t ,s !5S~ t ,s !
84pK

s6
e2

A2p2

s .

Here S(t ,s) is determined by b(arg z). We call it the

switching function, since S(t ,s)→0 as t→2` ,S(t ,s)→2

as t→1` , and S(0,s)51.

The exponential expansion ~75! is used to construct what

we call the analytical approximation to the unstable solution

yu(t ,s). The first-order approximation ỹ(t ,s) to the un-

stable solution yu(t ,s) that we discuss in the next section is

chosen as

ỹ~ t ,s !5y00~ t !1s2y01~ t !1M ~ t ,s !B~ t ,s !. ~78!

IV. COMPARISON WITH NUMERICAL RESULTS

The first-order analytical approximation of the unstable

solution yu(t ,s) to the perturbed equation ~15! has been de-

veloped in the previous sections. From this approximation it

is straightforward to construct an analytical approximation

for the stable and unstable manifolds of the Hénon map. The

discussion in this section focuses on the functional form of

this approximation and compares the results obtained from

this approximation with the numerically determined mani-

folds.

A. The stable and unstable manifolds of the Hénon
map

As discussed in Sec. II B the Hénon map possesses two

period-one periodic orbits ~fixed points! that result from a

saddle-center bifurcation at a parameter value of s50 (l
521). The first of these periodic orbits is stable in the

parameter range 0,s,A2 (21,l,3) and the second is

unstable for all positive values of the parameter s.0 (l.

21). This unstable periodic orbit possesses both a stable and

unstable manifold. All orbits on the stable ~unstable! mani-

fold are asymptotic in the future ~past! to the unstable peri-

odic orbit.

Analytical approximations for these two manifolds are

readily constructed from the first-order analytical approxima-

tion of the unstable solution yu(t ,s) to the perturbed equa-

tion ~15! obtained in the previous section. The approximation

for the unstable manifold is given by

„ũu~ t ,s !, ṽu~ t ,s !…

5XS s2

12s4D ỹu~ t ,s !,S s2

12s4D ỹu~ t2s ,s !C ~79!

and the approximation for the stable manifold is obtained

using time-reversal symmetry ~see Sec. II E!

„ũs~ t ,s !, ṽs~ t ,s !…5„ṽu~2t ,s !, ũu~2t ,s !…. ~80!

The functional form of the approximation for the un-

stable manifold is

ũu~ t ,s !5 ṽu~ t1s ,s !

5S s2

12s4D @A~ t ,s !1M ~ t ,s !B~ t ,s !# , ~81!

where

A~ t ,s !5y00~ t !1s2y01~ t ! ~82!

and M (t ,s) and B(t ,s) are given in ~75!. An analogous

functional form is obtained for the stable manifold

ũs~ t2s ,s !5 ṽs~ t ,s !5S s2

12s4D @A~2t ,s !

1M ~2t ,s !B~2t ,s !# . ~83!

The leading term A(t ,s) in these approximations is an even

function of t . Thus the leading terms in the two approxima-

tions are identical and equal to A(t ,s). This term corre-

sponds to the backbone on which the homoclinic oscillations,

defined by the exponential terms, are imposed. It will be

called the deformed separatrix.

The second term in ~81! is responsible for the splitting of

the separatrix. It is the product of two factors. The first factor

M (t ,s), which is given in ~75!, is exponentially small in s
and results from the matching described in Section III E. In

the infinite past and future it has the values M (2` ,s)50

and M (` ,s)584ps26 exp(2A2p2/s)K where K is the

Stokes constant divided by 2pi . Further, the switching func-

tion S(t) is a monotonically increasing function of t and is

expected to take the values S(2`)50, S(0)51, and S(`)

52. This factor is responsible for switching on ~off! the

homoclinic oscillations in the unstable ~stable! manifold.

The second factor B(t ,s) gives rise to the homoclinic

oscillations. It is an odd oscillatory function of t with period

s . The amplitudes of the oscillations increase exponentially

as eA2t in the limit t→6` .

B. The deformed separatrix

The leading term in the approximation is given by

A~ t ,s !5y00~ t !1s2y01~ t !

52113 tanh2 t1
s2

8
„2~122t tanh!t

215 sech2t…sech2 t , ~84!

where t5t/A2. In Fig. 5 the deformed separatrix is com-

pared with the zero-order separatrix of the Hénon map for

two values of s50.55, 0.75 (l520.908 493 75,

20.683 593 75). The dashed line is the solution of the un-

perturbed problem, i.e., the term y00(t), and the solid line is

the deformed separatrix, i.e., the sum of the terms y00(t)

1s2y01(t). This approximation is very good in the neigh-
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borhood of the unstable periodic orbit ~note the difference in

the scale of the axis in these figures!.

C. The homoclinic oscillations

The oscillatory factor B(t ,s), which is responsible for

the homoclinic oscillations, is given by

B~ t ,s !5v2~ t !sinS 2pt

s
D2

5

48A2
v1~ t !cosS 2pt

s
D

5F5

8
~t tanh t21 !sech2 t2

5

24

12
1

12
cosh2 t GsinS 2pt

s
D

2F5p

16
tanh t sech2 t GcosS 2pt

s
D ,

where t5t/A2. This function is plotted for two different

values of s50.55, 0.75 (l520.908 493 75,

20.683 593 75) in Fig. 6. There are two features that should

be observed. First, the amplitudes of the oscillations are not

dependent on the parameter s , and second, the periods of

oscillation are dependent on s .

D. Evaluation of K

According to ~55!, the constant K is given by

K5 lim
p→2pi

Im p,2pi

~p22pi !A~p !,

where

A~p !5B @z24F̂0~z !#~p !,

and F̂0(z) is the formal power series solution of the inner

equation ~41!. It follows from the well-known properties of

the Laplace transform that

A~p !5Dp
24V~p !,

where V(p) is the solution of the convolution equation ~48!

and Dp
21 is the operator of integration with respect to the

variable p .

Providing that

V~p !5 (
k51

`

vkp2k21, ~85!

one finds

A~p !5 (
k51

`
vk~2k21 !!

~2k13 !!
p2k13

5p3B~p !,

where B(p) is an even function which possesses the same

singularities at the points p562pi as A(p). In the leading

term, these singularities are first-order poles. So

B~q !5 (
k51

`

Bkq2k'
x

q2
11

,

where p52pq and

Bk5
vk~2k21 !!

~2k13 !!
~2p !2k. ~86!

FIG. 5. Comparison of the zero-order separatrix ~dashed line! and the first-

order deformed separatrix ~solid line! of the Hénon for two values of s . ~a!

s50.55, ~b! s50.75. The deviation between the zero-order separatrix and

the deformed separatrix is not observable for smaller values of s .

FIG. 6. The B(t ,s) as a function of time t for three values of s . Solid line

s50.55, dashed line s50.68, and dotted line s50.75.
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Since

x

q2
11

5x~12q2
1q4

2¯ !,

we obtain

x5 lim
k→`

~21 !kBk . ~87!

So,

lim
q→i

~q2i !B~q !5x lim
q→i

q2i

q2
11

52

x

2
i .

Now,

K5 lim
q→i

~2pq22pi !A~2pq !5~2p !4 lim
q→i

~q2i !q3B~q !

52
~2p !4

2
x . ~88!

In order to obtain the numerical value of K , one needs to

find the recurrence equation for vk from the equation ~48!.
Since for any positive a ,b

pa*pb
5

G~a11 !G~b11 !

G~a1b12 !
pa1b11,

hence according to ~85!

V*V~p !5 (
m52

`
p2m21

~2m21 !!

3 (
k1 j5m

vkv j~2k21 !!~2 j21 !!.

Taking into account the expansion

TABLE I. The numerical estimation of K .

s50.55 s50.60 s50.68

t K t K t K

0.01 7234.98 0.01 7222.66 0.005 7413.17

0.02 7204.58 0.02 7242.71 0.010 7731.35

0.03 7189.23 0.03 7250.00 0.015 7838.09

0.04 7178.80 0.04 7257.16 0.020 7892.68

0.05 7173.38 0.05 7266.78 0.015 7926.99

FIG. 7. Values of approximation of the constant K given by ~89! versus the

number of iterations j .

FIG. 8. Values of K̃(s) as a function of s . These values of K̃(s) were

obtained by visually fitting the approximate solution with the numerical

results ~see Fig. 9!.

FIG. 9. Comparison of the fit of the approximate unstable manifold ~solid

line! of the map given in (23) with the numerical result ~dots! for two values

of s , ~a! s50.25 and ~b! s50.50 in the (y ,Dsy) plane. The values of

K̃(s) shown in Fig. 8 were obtained by fitting these two curves in the

vicinity of the first time that Dsyu(t).50.
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2~cosh p21 !5p2
1p4S 2

4!
1

2p2

6!
1

2p4

8!
1••• D ,

one finds that the recurrence equation v156,

@126/~2l 21 !~ l 21 !#v l 21

51/~2l 21 !! (
k1 j51
k , j.1

vkv j~2k21 !!~2 j21 !!

22 (
j52

l 2@1#

v l2 j /~2 j !!, ~89!

when l.2, follows from the convolution equation ~48! writ-

ten as

p2V~p !5V*V~p !22p4S 1

4!
1

p2

6!
1••• DV~p !.

So, according to ~86!–~89!

K52
~2p !4

2
lim
j→`

~21 ! j
v j~2p !2 j

~2 j13 !~2 j12 !~2 j11 !2 j
,

~90!

where v j is given by ~60!.
The numerical evaluation of the Stokes constant using

~90! is difficult due to the slow convergence of the recur-

rence equation ~60!. Numerically, the value K'7374 was

obtained for j5200. The values of K versus j are plotted in

Fig. 7. ~As the authors have learned from one of the referees,

the obtained numerical value of K is in agreement with the

numerical value K'7364.361 88 in Ref. 42.!
In order to confirm this value of the Stokes constant we

considered the distance d5uy s(t ,s)2yu(t ,s)u between the

stable and unstable solutions of the perturbed equation ~15!
in the vicinity of t50. Here the value of the switching func-

tion is approximately equal to unity S(t'0,s)'1 and con-

sequently we obtain the following estimate for the Stokes

constant

K5
s6d

84p
e

A2p2/sB21~ t ,s !.

Numerical estimates of K , based on numerically evaluated d ,

are given in Table I. They are consistent with the value K

obtained above.

E. The switching function

Our purpose is approximation of the unstable manifold

Wu in the region of homoclinic oscillations. For this S(t ,s)

can be approximated by

FIG. 10. Comparison of the first-order approximation and numerical results for the Hénon map. In ~a! and ~c! the first-order approximation of the unstable

manifold is compared with the numerically determined manifold for two values of s ~a! s50.55, ~c! s50.75. In ~b! and ~d! the first-order approximation of

the homoclinic tangle is compared with the numerically determined tangle in the vicinity of the unstable periodic orbit for the same two values of s ~b! s

50.55, ~d! s50.75. The solid line is the analytical approximation and the dots are the points on the numerically determined manifolds. Note that these plots

are in the (u ,v) phase space.
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S̃~ t !5H 0, t,0

1, t50

2, t.0.

This approximation is based on the assumption that for small

s the switching function turns on rapidly in a neighborhood

t50. It works well for sufficiently small s ~for example, for

s50.25) however, as s increases ~in the range between 0.3

and 0.7!, we observe increasing deviation of S(t ,s) from

S̃(t) in the region where the homoclinic oscillations become

large. In other words, for larger s the best fit between nu-

merical simulation and analytic approximation ~78! of the

unstable manifold in the region of homoclinic oscillations

occurs when S(t ,s) is noticeably smaller than 2. This devia-

tion cannot be attributed to the less rapid turn on of the

switching function S(t ,s) as s gets larger, since approxi-

mately the same value of S(t ,s) is valid for all t in the

region of our approximation.

For the purpose of convenience we choose to retain the

approximation S̃(t) for S(t ,s), replacing instead the con-

stant K in ~75!–~78! by what we call the constant of the best

fit K̃(s). Experimental dependence of K̃(s) on s is shown

in Fig. 8. These values of K̃(s) were determined by fitting

the analytical approximation of the unstable manifold of ~16!
with the numerical results. Two examples are shown in Fig.

9. Notice that K̃(0.25) is ‘‘close’’ to the ‘‘theoretical value’’

K57374. The nature of the dependence K̃(s) on s is ex-

pected to become clearer through the further study of the

problem. Finally, based on Table I and Fig. 8 we observe

that S(t ,s) deviates from S̃(t) faster in the region of ho-

moclinic oscillations than at t'0 ~near the primary intersec-

tion point! as s increases. As far as we know, most numeri-

cal studies of the splitting phenomenon have been in the

vicinity of the primary intersection point. This can, probably,

explain why the dependence K̃(s) was not observed numeri-

cally in the literature, though asymptotic expansion of the

pre-exponential factor in powers of s for the standard map

was conjectured and discussed in Ref. 24.

F. Homoclinic tangle

Our numerical data is based on the iterations of the map

T given by ~23!. A point P0 is taken on the unstable mani-

fold Wu of ~23! in a close proximity (;10213) of the hyper-

bolic fixed point (2,0) of T . Then the segment @P0P1# ,

where P15TP0 , lies very close to Wu . This segment is

divided into a number of points (;30). Iterations of these

points numerically define the unstable manifold Wu . Nu-

merical construction of the stable manifold Ws is based on

time reversibility of the map T .

The analytical approximation of the stable and unstable

manifolds of the Hénon map are compared to the numeri-

cally determined manifolds in Figs. 10~a! and 10~c! for two

values of s50.55, 0.75 (l520.908 493 75,

20.683 593 75). The homoclinic tangle in the vicinity of the

unstable periodic orbit constructed from the analytical ap-

proximation is compared with the numerical results in Figs.

10~b! and 10~d! for the same values of s . In these figures the

solid line is the analytical approximation and the dots are

points on the numerically determined manifolds. The agree-

ment between the analytical approximation and the numeri-

cally determined manifolds is excellent for s50.55. As the

value of s is increased, it is observed that the agreement

between the approximate solution and the numerical results

is not as good far from the unstable periodic orbit. This dis-

crepancy is attributed to the approximation of the deformed

separatrix ~see Fig. 5! since the last term in ~78! is negligible

in this region. The agreement between the approximate solu-

tions and the numerical solutions in the vicinity of the un-

stable periodic orbit is excellent for all values of s consid-

ered. In Fig. 11 we compare the approximate solution

ỹu(t ,s) in the (y ,t) plane with the corresponding numerical

values for two values of s , ~a! s50.25 and ~b! s50.50.

Here we see that ỹu(t ,s) approximates the homoclinic oscil-

lations at nearly two times longer in time t than we are able

to observe in the phase plane; final times in Figs. 9~a! and

9~b! are t514 and t56, respectively. Moreover, we observe

that the approximation starts to fail first at the bottoms of the

oscillations, which correspond to the lobes inside the pseu-

doseparatrix. We attribute this to the fact that the inside lobes

start to bend into a horseshoe-type shape. It is expected that

higher-order approximations will shed some light in this phe-

nomenon.

FIG. 11. Comparison of the approximate solution, ỹu(t ,s) ~solid line! with

the numerical solution ~dots! as a function of time for two value of s , ~a!

s50.25, ~b! s50.50. Here we see that the approximation is excellent for

times significantly longer than can be observed in the phase plane plots seen

in Figs. 9 and 10.
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