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Abstract. Exponential asymptotic stability of the zero solution of the scalar linear Volterra
equation

z(t) = Az(t) +/ B(t — s)z(s)ds
0

is studied. Roughly speaking, it is proved that the exponential asymptotic stability can
be characterized by a growth condition on B(t). The result answers the problem posed by
Corduneanu and Lakshmikantham.

In this article, we shall be concerned with a linear Volterra equation with an
integrable kernel B,

&(t) = Az(t) + /Ot B(t - s)z(s)ds t>0, (E)

and study the exponential asymptotic stability of the zero solution of (E) in con-
junction with the exponential behavior of |B(t)| as t — oco. The subject deeply
relates to the paper [1] due to Corduneanu and Lakshmikantham. In fact, they
have posed the following problem [1, pp. 845-848]: If the zero solution of (E) is
uniformly asymptotically stable, then is it of exponential type? To analyze the
problem, we shall focus our attention to the case where (E) is a scalar equation,
and show (Theorem 1) that if B satisfies a growth condition, then the above prob-
lem can be solved in the affirmative. Furthermore, under the restriction on B, we
shall investigate the converse of our Theorem 1, too. In fact, under the assumption
that B(t) does not change sign on [0, 00), we prove (Theorem 2) that if the zero so-
lution of (E) possesses the stability property of exponential type, then B satisfies a
growth condition. Thus (roughly speaking) the stability of exponential type for the
zero solution of (E) can be characterized by a growth condition on B (Theorem 3).
Hence, the stability of exponential type can never be realized for the equation with
a kernel B which does not satisfy a growth condition, and the problem posed above
can be solved in the negative.
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Now, we shall explain the notations employed throughout this article, and give
some definitions. Let R = (—o00,00) and Rt = [0,00). For any compact interval
J C R, we denote by C(J) the space of all continuous real-valued functions on J,
and set |¢|; = sup{|¢(s)| : s € J}. Also, we denote by L'(R*) the space of all
Lebesgue integrable real-valued functions on R*. For any function f : Rt — R, the
value of the Laplace transform f at s, a complex number, is defined as

fo= [ rwear

If |f(t)|e=®t € L'(R*) for a real constant a, then f(s) exists and is continuous in
s for Res > a, and moreover it is analytic on the domain Res > «. Especially, if
f is an absolutely continuous function which satisfies |f(t)| < ae® on R* for some
constants a and b, then inversion formula

1 T st ¢ st
m — f(s)e*'ds := f(s)e*'ds, t>0,
T (¢)

t)=1li
f( ) Tl—>00 2r e—1
holds for all ¢ > b ([6]).

Consider a scalar linear Volterra equation
t
(t) = Az(t) +/ B(t—s)z(s)ds t>0, (E)
0

where A is a constant and B(t) is continuous in t € R* with B € L!(R*). For any
o € R* and ¢ € C(]|0,0]), there is one and only one function z(t) which satisfies
equation (E) on [0,00) and z(¢) = ¢(t) on [0,0] (cf. [2]). Such a function x(¢)
is called a solution of (E) on [0,00) through (o, ¢), and is denoted by X(t;0,¢).
Clearly, z(t) = 0 is a solution of (E), which is called the zero solution of (E).

Definition. The zero solution of (E) is said to be

(1) uniformly stable (US), if for any € > 0 there exists a §(¢) > 0 such that ¢ € Rt
and ¢ € C([0,0]) with |@]o,o] < 6(€) imply |2(t;0,6)| < € for all t > o;

(ii) uniformly asymptotically stable (UAS), if it is US and moreover, if there is
a 8o > 0 with the property that for each € > 0 there exists a T'(¢) > 0 such that
o € Rt and ¢ € C([0,0]) with |@|(0,0] < b0 imply |z(t;0,8)| < € for all t > o +T(e);

(ili) exponentially asymptotically stable (Ex AS), if there exist positive constants
I and « such that

lz(t;0, )| < Ke = D|gly o, t>0 >0,

for any ¢ € C([0,0)).

By the definition, it is clear that Ex AS implies UAS. Denote by X (¢) the principal
solution of (E); that is, X () is the solution of (E) with X (0) = 1. Then the solution
z(t;0, @) is expressed by the variation of parameters formula as

2(t0,6) = X(t — 0)d(0) + /:X(t - u){ /Oa B(u - 0)6(6) do}du. (1)
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In fact, X (¢) is identical with the one called the resolvent for (E) in [3]. Therefore,
the zero solution of (E) is UAS if and only if X(t) € LI(R+) and that one of the
above conditions is equivalent to the condition H(s) := s— A— B(s) # 0 for Res > 0
(13)-

Now, assume that the zero solution of (E) is UAS. Then X(s) exists and is
continuous in s for Res > 0. Considering the Laplace transform of both sides of
(E), and integrating the first term by parts, one obtains H(s)X(s) = 1 for Res > 0;
and hence,

s)X(s)=1 for Res >0 (2)

(
by the continuity of H(s) and X (s). Thus, we have
X(s)=H"'(s) for Res>0. (3)

Theorem 1. Suppose that

/0 IB(t)|e dt < oo (4)

for a positive constant v > 0. If the zero solution of (E) is UAS, then it is Ex AS.

Proof: To establish the theorem, we shall employ the idea in [4, Theorem 1.5.2].
Since the zero solution of (E) is UAS, |X(t)| is bounded on R*. Therefore, from (3)
and inversion formula it follows that

X(t) = H™(s)e’'ds, t>0, (5)
(e)
for any a > 0.
Claim 1. X (¢ f( _oH(s)e*ds (t > 0) for some € > 0.
To verify the clalm, we first observe by (4) that B(s) is defined for Re s > —v and

|B(s)| — 0 as |s| — oo uniformly for Res > —v. Hence, one can choose a constant
To > 0 so that H(s) #0, —y < Res <0, if |Im s| > Ty. Let

D={s:—-v/2<Res<0, |Ims| <Ty}

and

co = max{Res:s € D, H(s) =0}.

Since H(s) is analytic on the domain Res > —«, it has at most a finite number
of zeros in the set D; hence ¢y < 0. Take a constant € > 0 so that € < —cy. We
consider the integration of the function H~!(s)e*! around the boundary of the box
{A+ir:—-e<A<e¢ —T <7< T} Since H(s) has no zeros in this box, it follows
that the integral over the boundary is zero; that is,

e+iT —e+:iT —e—iT e—1T
(/ / / +/ )H"l(s)es’ds =0.
+iT —e+iT —e—iT

Therefore, the claim will be verified by (5) if we show that

e+:T e—1T
lim H™'(s)e®'ds=0 and lim H™'(s)e'ds = 0.

T—oo J_eqiT T—oo J_eiT
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Let s= A+ 14T, —e < A < e. Since

|B(s)|§/ |B(t)]e™dt = £ < oo
0

and N
A+ B(s)
H(s)=s{1 - 57 h
we have
A+ B(s)yn

H_l(s)=§z_:{ et

for large T. Hence

[ (s)e*'| < Z= Yo (M/T)" = /(T = M),

n=0

where M = |A| + ¢. Thus,
e+zT
‘/ stds
e+1iT

for large T, which proves

< 2ee' /(T — M)

e+:T
lim H™Y(s)e®'ds =0
T—oo J_eyiT
Similarly, we obtain
e—1T
lim H™1(s)e'ds = 0.

T—oo J_eiT

Claim 2. |X(t)| < Kje™ (¢t > 0) for a constant K;. Indeed, if we set
9(s) = H™'(s) = (s = o)™ = (A+ B(s) = co) H™'(s)(s = c0) ™",

then sup, ¢ 72|g(—€+i7)| < co; consequently, f(_e) lg(s)|ds := K < co. Therefore,

we obtain
est
< ’/ g(s)e*'ds +‘/ ds
(=) (—e) S —Co

by claim 1, where we used the fact that f( ds = e, This completes the
proof of the claim with K; = Ko + 1.

Finally, we shall show that the zero solution of (E) is Ex AS. To do this, it suffices
to certify by Claim 2 and formula (1) that

)| = ’ H™'(s)e'ds
(-

S (I(z + l)e_d

t+o g
X(t+0-u) / B(u - 0)6(0) df du| < Ke™|3]p0,0
0

e
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for any ¢ € C|0, 0], where K is a constant. Since fo (t)|ectdt < ¢, we obtain

/ X( t+0—u)/ B(u — 0)¢(0) df du
S/ I.—e(t+d u)/ |BU— )|d9du |¢|00]

< Ki9lj0,0) / / e~ (7= |B(u — )| dudb
0 o
a t+o
< K1ldlj0,0) / {/ |B(u — 6)|e‘(“‘9)du}ef(9—i—0)d9
0 o

< Kilglo,0) / { / |B(u—a)|ef<u-0>du}ee(9—t—a)d9
6
(lef/E |¢I[O o]

by Claim 2. Hence, we may set K = K1{/e to complete the proof.

Next, we shall study the converse of Theorem 1. Though we do not know whether
or not the converse of Theorem 1 holds in general, we can obtain the following result
under a restriction on B.

Theorem 2. Suppose that B € L'(R*) and that B(t) does not change sign on R*.
If | X(t)] < Ke™°!, t € R*, for some positive constants I and «, then there exists
a constant v > 0 such that condition (4) holds.

Proof: Note that X(s) exists and is analytic in s for Res > —a and satisfies
relation (2). In particular, X(0) # 0. By the continuity of X(s) at s = 0, we can
find a (small) open neighborhood U of 0 such that X(s) 96 0 on U. Thus, X~(s)
is analytic on U; hence the function F(s) := s — A — X~!(s) is analytic on U and
satisfies

B(s) = F(s) for Res > 0. (6)

Now, we claim that ¢tB(t) € L'(R"). If this is not the case, then there is a constant
T > 1 such that

T
/ B[t = 1)dt > k,

where k£ = |F’(0)|. Note that

|1— e Mt : Iht2 h2td n3t?
su _— = Ssu _— _ e
0<t£T ogth 2! 3! 4!
T2 T T4
< |h|(§+§+ﬁ+'“) <|hle’ <1

if |k| < min(1,e~7) := 6. Thus, if 0 < h < 87, then

—ht

1_—
c >t—1 fortel0,T];

h
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and consequently, by (6), we obtain

F(h) - F(0) B(h) -
B h h

- T
|F( — F(0) |—/ By dt>/0 IB@)|(t — 1) dt

for 0 < h < &1, because B(t) does not change sign on R*. Letting h — 0%, we get

B(0) _ /000 B(t)_l;he___h_t_dt

or

T
E=(F(0) 2 / Bt - 1)dt > ,

a contradiction. Hence, we must have that ¢tB(t) € L*(R").
Next, we shall prove that

F'(s)= —/0 te”*'B(t)dt for s > 0.

Indeed, from the inequality 1 — z < e for z > 0, it follows that
1 —e Mt
=

for any A > 0 and s > 0. Hence, Lebesgue’s dominated theorem implies that

F(s+ h) - F(s)

e *'B(t)| <t|B(t)] onR*

_ oy Blh) - B(s)

F'(s) = lim

h—0+ h T ot h
o0 e—ht _ 1 o)
= lim ———e"*'B(t)dt = —/ te”*'B(t) dt
h—0+ 0 h 0

for s > 0. Now, applying the argument for B(t) in the foregoing paragraphs to the
function tB(t), we obtain that t?B(t) € L'(R*) and F"(s) = [, t2e*'B(t) dt for
s > 0. Repeat this procedure to obtain

t"B(t) € LY(R*) and F(M(s) =(—1)"/oot"e““B(t)dt, s>0, (7)

(n) .
for n = 1,2,.... Since F is analytic on U, Maclaurin’s series ) >~ £ n.(o) n

absolutely convergent on a closed disk of center zero with a radius v > 0. Hence,

IF("> O)] NS Rl
Z — 24" < oo or nzzom i " |B(t)| dt < oo

by (7). Thus,

AwevtlB(t)ldt:/Ow<§%)|B(t)|dt=g%/omtnw(mdt<OO’

where we used Fatou’s theorem. This completes the proof.

1S

Combining Theorem 1 and Theorem 2, we have the following result.
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Theorem 3. Suppose that B € L'(R") and that B(t) does not change the sign
on R*. If the zero solution of (E) is UAS, then the following three statements are
equivalent:

(i) The zero solution of (E) is Ex AS;
(ii) |X(t)] < Ke™*', t > 0, for some positive constants K and «;
(iii) J;7 |B(t)]|e"'dt < oo for a constant v > 0.

It may be hoped that Theorem 3 is extended to the non-scalar case. In fact, it is
straightforward to see that the proof of Theorem 1 is extendable to the non-scalar
case by a slight modification. However, the author has not succeeded in extending
Theorem 2 to the non-scalar case.

Corduneanu and Lakshmikantham [1, pp. 845-848] have posed a problem: “When-
ever the zero solution of (E) is UAS, does | X (t)| decay exponentially as ¢ — co?”
The following example answers the problem in the negative (also, see [5], where a
counterexample is given for the equation with purely discrete delays).

Example. Consider a scalar equation

z(t) = —z(t) +/0 B(t — s)z(s) ds, (8)

where B is a nonnegative continuous function with [ B(t)dt < 1. Since [s+1| > 1

and |B(s)| < [;° B(t)dt < 1 for Res > 0, we have H(s) # 0 for Res > 0; hence,
the zero solution of (8) is UAS by [3, Theorem 3.5]. Therefore, from Theorem 3 it
follows that the zero solution of (8) is Ex AS when B(t) = e~% (b > 1), while the
zero solution of (8) is not Ex AS when B(t) = k/(t+1)* (0 < k < b—1).
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