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Abstract. Exponential asymptotic stability of the zero solution of the scalar linear Volterra 
equation 

x(t)=Ax(t)+ 11
B(t-s)x(s)ds 

is studied. Roughly speaking, it is proved that the exponential asymptotic stability can 
be characterized by a growth condition on B(t). The result answers the problem posed by 
Corduneanu and Lakshmikantham. 

In this article, we shall be concerned with a linear Volterra equation with an 
integrable kernel B, 

x(t) = Ax(t) +it B(t- s)x(s) ds t 2 0, (E) 

and study the exponential asymptotic stability of the zero solution of (E) in con
junction with the exponential behavior of IB( t) I as t -+ oo. The subject deeply 
relates to the paper [1] due to Corduneanu and Lakshmikantham. In fact, they 
have posed the following problem [1, pp. 845-848]: If the zero solution of (E) is 
uniformly asymptotically stable, then is it of exponential type? To analyze the 
problem, we shall focus our attention to the case where (E) is a scalar equation, 
and show (Theorem 1) that if B satisfies a growth condition, then the above prob
lem can be solved in the affirmative. Furthermore, under the restriction on B, we 
shall investigate the converse of our Theorem 1, too. In fact, under the assumption 
that B( t) does not change sign on [0, oo ), we prove (Theorem 2) that if the zero so
lution of (E) possesses the stability property of exponential type, then B satisfies a 
growth condition. Thus (roughly speaking) the stability of exponential type for the 
zero solution of (E) can be characterized by a growth condition on B (Theorem 3). 
Hence, the stability of exponential type can never be realized for the equation with 
a kernel B which does not satisfy a growth condition, and the problem posed above 
can be solved in the negative. 
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Now, we shall explain the notations employed throughout this article, and give 
some definitions. Let IR = ( -oo, oo) and iR+ = [0, oo ). For any compact interval 
J C IR, we denote by C( J) the space of all continuous real-valued functions on J, 
and set lc;i>IJ = sup{lc;b(s)l : s E J}. Also, we denote by L1 (1R+) the space of all 
Lebesgue integrable real-valued functions on IR+. For any function f : IR+ ___, IR, the 
value of the Laplace transform j at s, a complex number, is defined as 

If IJ(t)le-"'1 E L1 (1R+) for a real constant a, then }(s) exists and is continuous in 
s for Res 2 a, and moreover it is analytic on the domain Res > a. Especially, if 
f is an absolutely continuous function which satisfies lf(t)l ::; aebt on IR+ for some 
constants a and b, then inversion formula 

1 jc+iT A 1 A f(t) = lim - f(s)e 51 ds := f(s)e 51 ds, 
T-->oo 27f c-iT (c) 

t > 0, 

holds for all c > b ([6]). 
Consider a scalar linear Volterra equation 

x(t) = Ax(t) + 11 B(t- s)x(s) ds t 2 0, (E) 

where A is a constant and B(t) is continuous in t E IR+ with BE L1 (1R+). For any 
a E IR+ and c;b E C([O, a]), there is one and only one function x(t) which satisfies 
equation (E) on [a,oo) and x(t) = c;b(t) on [O,a] (cf. [2]). Such a function x(t) 
is called a solution of (E) on [a, oo) through (a, c;b), and is denoted by X(t; a, c;b). 
Clearly, x( t) = 0 is a solution of (E), which is called the zero solution of (E). 

Definition. The zero solution of (E) is said to be 
(i) uniformly stable (US), if for any E > 0 there exists a D(E) > 0 such that a E iR+ 

and c;b E C([O, a]) with lc;i>l[o,a] < D(E) imply lx(t; a, c;b)l < E for all t 2 a; 
(ii) uniformly asymptotically stable (UAS), if it is US and moreover, if there is 

a Do > 0 with the property that for each E > 0 there exists a T(E) > 0 such that 
a E iR+ and c;b E C([O, a]) with lc;blro,a] < Do imply lx(t; a, c;b)l < dor all t 2 a+ T(E); 

(iii) exponentially asymptotically stable (Ex AS), if there exist positive constants 
J( and a such that 

for any c;b E C([O,a]). 
By the definition, it is clear that Ex AS implies UAS. Denote by X(t) the principal 

solution of (E); that is, X(t) is the solution of (E) with X(O) = 1. Then the solution 
x( t; a, c;b) is expressed by the variation of parameters formula as 

x(t; a, c;b) = X(t- a)c;b(a) + 11 X(t- u){ 1a B(u- 8)c;b(8) d() }du. (1) 
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In fact, X( t) is identical with the one called the resolvent for (E) in [3]. Therefore, 
the zero solution of (E) is UAS if and only if X(t) E L1 (1R+) and that one of the 

above conditions is equivalent to the condition H( s) := s-A-B( s) -=/:- 0 for Res 2 0 
([3]) 0 

Now, assume that the zero solution of (E) is UAS. Then X(s) exists and is 
continuous in s for Re s 2 0. Considering the Laplace transform of both sides of 
(E), and integrating the first term by parts, one obtains H ( s )X ( s) = 1 for Res > 0; 
and hence, 

H(s)X(s) = 1 for Res 2 0 

by the continuity of H(s) and X(s). Thus, we have 

X(s) = H- 1 (s) for Res 2 0. 

Theorem 1. Suppose that 

(2) 

(3) 

(4) 

for a positive constant "'( > 0. If the zero solution of (E) is UAS, then it is Ex AS. 

Proof: To establish the theorem, we shall employ the idea in [4, Theorem 1.5.2]. 
Since the zero solution of (E) is UAS, IX(t)l is bounded on IR+. Therefore, from (3) 
and inversion formula it follows that 

(5) 

for any o: > 0. 
Claim 1. X(t) = f(-<) H- 1 (s)e 51 ds (t > 0) for some E > 0. 

To verify the claim, we first observe by ( 4) that B( s) is defined for Res 2 -"'( and 
I B ( s) I __... 0 as Is I __... oo uniformly for Res 2 -"'(. Hence, one can choose a constant 
T0 > 0 so that H(s)-=/:- 0, -"'(::;Res::; 0, if 1Imsl2 To. Let 

D = {s: -"'(/2::; Res::; 0, llmsl::; To} 

and 
co= max{Res: sED, H(s) = 0}. 

Since H(s) is analytic on the domain Res> -"'(,it has at most a finite number 
of zeros in the set D; hence c0 < 0. Take a constant E > 0 so that E < -c0 . \Ve 
consider the integration of the function H-1 ( s )est around the boundary of the box 
{>.+iT: -E::; >.::; E, -T::; T::; T}. Since H(s) has no zeros in this box, it follows 
that the integral over the boundary is zero; that is, 

(j<+iT +j-<+iT +1-<-iT +j<-iT )H-l(s)estds = 0. 

<-iT <+iT -<+iT -<-iT 
Therefore, the claim will be verified by (5) if we show that 
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Let s = A+ iT, -E ::; A ::; E. Since 

and 

H( )= { 1 - A+B(s)} 
8 8 A+ iT ' 

we have 

for large T. Hence 

d 00 

IH-l(s)estl::; eT L)M/T)n = eEtj(T- M), 
n=O 

where M = IAI + f!. Thus, 

for large T, which proves 

Similarly, we obtain 

Claim 2. IX(t)l::; K 1e-d (t > 0) for a constant K 1 • Indeed, if we set 

g(s) = H- 1(s)- (s- c0 )-1 =(A+ B(s)- c0)H- 1 (s)(s- c0 )- 1 , 

then suprE~ T 2 lg( -E+iT) I < oo; consequently, J( -<) lg( s) Ids := K2 < oo. Therefore, 
we obtain 

IX(t)l = 11 H- 1 (s)estdsl::; 11 g(s)estdsl + 11 ~dsl 
( -<) ( -<) ( -<) s - co 

::::; (!(2 + l)e-Et 

by claim 1, where we used the fact that J( -c) s:_:o ds = ecot. This completes the 
proof of the claim with I\1 = K2 + 1. 

Finally, we shall show that the zero solution of (E) is Ex AS. To do this, it suffices 
to certify by Claim 2 and formula (1) that 
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for any¢> E C[O, a], where J( is a constant. Since Jt' IB(t)lectdt ~£,we obtain 

by Claim 2. Hence, we may set J( = /(1£/E to complete the proof. 

Next, we shall study the converse of Theorem 1. Though we do not know whether 
or not the converse of Theorem 1 holds in general, we can obtain the following result 
under a restriction on B. 

Theorem 2. Suppose that B E £ 1 (IR+) and that B( t) docs not change sign on IR+. 
If IX( t) I ~ J( e-at, t E IR+, for some positive constants J( and a, then there exists 
a constant 1 > 0 such that condition ( 4) holds. 

Proof: Note that X( s) exists and is analytic in s for Res > -a and satisfies 
relation (2). In particular, X(O) i= 0. By the continuity of X(s) at s = 0, we can 
find a (small) open neighborhood U of 0 such that X(s) i= 0 on U. Thus, x- 1(s) 
is analytic on U; hence the function F( s) := s - A- x- 1 ( s) is analytic on U and 
satisfies 

B(s) = F(s) for Res 2 0. (6) 

Now, we claim that tB(t) E L1 (1R+). If this is not the case, then there is a constant 
T > 1 such that 

lr IB(t)l(t- 1) dt > k, 

where k = IF'(O)I. Note that 

1 - e-ht ht2 h2t3 h3t4 
sup I - tl = sup 1---+-- .. ·I 

095,r h 05,t5,r 2! 3! 4! 
T2 T3 T4 

< I hi(-+-+-+ ... ) < lhler < 1 - 2! 3! 4! - -

if I hi < min(1, e-r) :=or. Thus, if 0 < h <or, then 

1- e-ht 
--h- 2 t - 1 for t E [0, T]; 
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and consequently, by (6), we obtain 

- F(h)- F(O) =- B(h)- B(O) = rX! B(t) 1- e-ht dt 
h h } 0 h 

or 

I F(h) ~ F(O) I = ioo IB(t)11- ~-ht dt ~iT IB(t)l(t- 1) dt 

for 0 < h < 15T, because B( t) does not change sign on lf\t+. Letting h -+ o+, we get 

k = IF'(O)I ~iT IB(t)l(t- 1) dt > k, 

a contradiction. Hence, we must have that tB(t) E L1 (1R+). 
Next, we shall prove that 

F'(s) = -100 te-st B(t) dt for s ~ 0. 

Indeed, from the inequality 1 - x :=::; e-x for x ~ 0, it follows that 

1 -ht 
I-~ e-stB(t)I:StiB(t)l oniR+ 

for any h > 0 and s ~ 0. Hence, Lebesgue's dominated theorem implies that 

F'(s) = lim F(s +h)- F(s) = lim B(s +h)- B(s) 
h-.o+ h h-.o+ h 

1oo e-ht 1 1oo 
=lim h- e-stB(t)dt=- te-stB(t)dt 

h-.o+ o o 

for s ~ 0. Now, applying the argument for B(t) in the foregoing paragraphs to the 
function tB(t), we obtain that t2 B(t) E L1 (1R+) and F"(s) = J0

00 t2 e-stB(t)dt for 
s ~ 0. Repeat this procedure to obtain 

for n = 1, 2, .... Since F is analytic on U, Maclaurin's series L:~=O F<~!(o) sn is 
absolutely convergent on a closed disk of center zero with a radius '{ > 0. Hence, 

or 

by (7). Thus, 

1oo e1 t IB(t)l dt = 1= ( ~ ('f~t )in(t)l dt = ~ :~ 1= tniB(t)l dt < oo, 

where we used Fatou's theorem. This completes the proof. 

Combining Theorem 1 and Theorem 2, we have the following result. 
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Theorem 3. Suppose that B E L 1 (1R+) and that B(t) docs not change the sign 
on IR+. If the zero solution of (E) is UAS, then the following three statements are 
equivalent: 

(i) The zero solution of (E) is Ex AS; 

(ii) IX(t)l::; Ke-at, t ~ 0, for some positive constants J( and o:; 

(iii) Jt' IB(t)ie11dt <=for a constant"'(> 0. 

It may be hoped that Theorem 3 is extended to the non-scalar case. In fact, it is 
straightforward to see that the proof of Theorem 1 is extendable to the non-scalar 
case by a slight modification. However, the author has not succeeded in extending 
Theorem 2 to the non-scalar case. 

Corduneanu and Lakshmikantham [1, pp. 845-848] have posed a problem: "When
ever the zero solution of (E) is UAS, does IX(t)l decay exponentially as t--+ =?" 
The following example answers the problem in the negative (also, see [5], where a 
counterexample is given for the equation with purely discrete delays). 

Example. Consider a scalar equation 

x(t) = -x(t) + 11 B(t- s)x(s) ds, (8) 

where B is a nonnegative continuous function with J0= B( t) dt < 1. Since Is+ 11 ~ 1 

and IB(s)l::; J0= B(t)dt < 1 for Res~ 0, we have H(s) =f. 0 for Res~ 0; hence, 
the zero solution of (8) is UAS by [3, Theorem 3.5]. Therefore, from Theorem 3 it 
follows that the zero solution of (8) is Ex AS when B(t) = e-bt (b > 1), while the 
zero solution of (8) is not Ex AS when B(t) = kj(t + 1)b (0 < k < b- 1). 
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