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Abstract

Localised patterns emerging from a subcritical modulation instability are analysed
by carrying the multiple-scales analysis beyond all orders. The model studied is the
Swift-Hohenberg equation of nonlinear optics, which is equivalent to the classical Swift-
Hohenberg equation with a quadratic and a cubic nonlinearity. Applying the asymp-
totic technique away from the Maxwell point first, it is shown how exponentially small
terms determine the phase of the fast spatial oscillation with respect to their slow sech-
type amplitude. In the vicinity of the Maxwell point, the beyond-all-orders calculation
yields the “pinning range” of parameters where stable stationary fronts connect the
homogeneous and periodic states. The full bifurcation diagram for localised patterns
is then computed analytically, including snake and ladder bifurcation curves. This
last step requires the matching of the periodic oscillation in the middle of a localised
pattern both with an up- and a down-front. To this end, a third, super-slow spatial
scale needs to be introduced, in which fronts appear as boundary layers. In addition,
the location of the Maxwell point and the oscillation wave number of localised patterns
are required to fourth-order accuracy in the oscillation amplitude.

1 Introduction

An important problem in the study of spatially extended dynamical systems is to determine
when periodic patterns and homogeneous base states can be separated by stationary fronts.
This allows localised patterns and structures to exist, which can be combined as building
blocks for more complicated inhomogeneous solutions, such as those depicted in Fig. 1.

A typical bifurcation diagram associated with localised patterns is shown in Fig. 2, where
the L2 norm of the oscillations is plotted against a control parameter. The diagram mainly
consists of two interweaved “snaking” curves, one corresponding to localised patterns with
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Figure 1: Example of localised patterns resulting from the existence of stationary fronts be-
tween the homogeneous and periodic solutions of (1). Reproduced from [69] with permission.

odd numbers of peaks, the latter associated to even numbers of peaks. Each cycle in the
snakes signals the appearance of a new pair of peaks in the localised pattern. Hence, these
two curves delimit a finite “pinning range” of parameters where stable localised patterns of
arbitrary extent can exist [39, 40, 56, 16]. Additionally, a set of branches of asymmetric
solutions, the “ladder”, was found to connect the two snakes [73, 17]. Along each rung
of the ladder, the phase of the oscillations varies in such a way that the localised pattern
progressively acquires or loses one peak. These asymmetric solutions are reputedly unstable
and, in systems with reflectional symmetry in the space variable, they are expected to be
stationary only if the underlying system is variational [18]. Moreover, as recently discussed
in [8], the snaking curves can also break up into a set of isolas. Finally, in the presence of
a non-local coupling, the snaking curves can become slanted [34, 33, 29], thus enlarging the
domain of existence of localised patterns but reducing the multistability between localised
states.

If the system is variational, it tends to minimise a Lyapunov functional as time progresses.
Identifying this functional with an energy, there generally exists a parameter value where
both the homogeneous solution and the periodic pattern have the same energy. Such a point
is called a Maxwell point, by analogy with phase transitions in thermodynamics [61]. Note
that in the limit of small amplitude oscillations, the leading-order description of the system is
a Ginzburg-Landau equation, which is variational, and therefore a Maxwell point can always
be defined. The pinning range is understood to be intimately related to the Maxwell point
and indeed it always includes it.

In two spatial dimensions, the situation naturally becomes more complicated [41, 69, 38],
but the snaking bifurcation structure persists [53, 52]. As described in that paper, when
the localised pattern has an hexagonal structure, the direction along which the pattern
grows strongly influences the shape of the snakes in the bifurcation diagram. Even for two-
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dimensional patterns that are localised in only one direction, the discussion of the stability
becomes significantly more involved [37, 18].

While plenty of numerical evidence [9, 65, 66, 56, 71, 6, 7, 10] and experimental con-
firmations [59, 70, 51, 68, 50, 62, 31, 4, 58, 67] of the existence of localised patterns have
been gathered over the years, their theoretical description has remained extremely difficult
(see [63] for a review). Some important results have been obtained in one spatial dimension,
where geometrical arguments in the phase-space establish the existence and robustness of
localised patterns [39, 24, 36]. In this regard, Lin’s method is proving useful to find one’s way
in the multi-dimensional phase spaces where these homoclinic orbits sit [44, 49]. For further
analytical understanding, multiple-scales analysis seems the obvious way forward. Indeed,
near the bifurcation point where the oscillations are born, there is a natural separation of
spatial scales: one is associated to the progressive onset of oscillations, another corresponds
to the oscillation period. A standard multiple-scales analysis, however, leads to the incorrect
conclusion that fronts are only stationary at the Maxwell point. Such an analysis misses the
exponentially small terms that couple the slow and fast scales. As a result, it cannot explain
the fact that the slowly varying front can be pinned to the underlying periodic structure over
a finite parameter range. This question was posed in [61] and has stimulated much research
towards improving the multiple-scales approach. However, it was solved only recently [45]
by a study beyond all orders of the multiple-scales analysis and the purpose of this paper is
to explain in detail how.

Most of previous works on the problem follow more or less explicitly the strategy set out
in [9]. In this paper, it is argued that the solvability condition leading to an equation for
the slowly-varying amplitude of the pattern should contain some fast oscillating terms that
were previously overlooked (see, for instance Eq. (6) of [9]). Upon integration, these fast
oscillations do not quite integrate to zero, but rather yield corrections that are exponentially
small in the ratio of the fast and slow scales. Taking as a small parameter ε the maximum
amplitude of the periodic solution at the Maxwell point, the slow spatial scale is X = ε2x
[26] and the pinning is thus found to scale as

εηe−π/ε
2

,

where η is some exponent. The exponential factor was confirmed in [25] but, as noted in
[63], the value of η in the pre-factor remained unclear. Nevertheless, this was significant
progress which has inspired similar results on fronts between one-dimensional patterns and
homogeneous states [2] and, in two-dimensions, between hexagonal patterns and rolls [54]
and hexagonal patterns of different orientations [13, 14]. However encouraging these results
may be, one must bear in mind that the approach in [9] is clearly inconsistent. Indeed,
at the heart of multiple-scales analysis lies the assumption that the front is independent of
the fast scale, which gives rise to solvability conditions such as the Ginzburg-Landau (GL)
equation. Re-introducing fast oscillating driving terms in the GL equation violates that
assumption. Actually, these fast oscillating terms, being non-resonant, produce no secular
divergence in the higher corrections of the solution. Hence including non-resonant terms in
the GL equation, while tempting, is both unjustified and arbitrary. In particular, this leads
to an incorrect exponent η in the pinning range. For a discussion on this issue, see [22, 46].
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Figure 2: The bifurcation diagram of (3) with ε = 0.55, determined through the asymptotic
analysis of §5. The horizontal lines are the “rungs” of the ladders. Each point on the
ladder represents two asymmetric localised solutions, which are the image of one other by
the transformation x→ −x. The rungs do not start at the folds of the snakes, even though
they approach them exponentially as the size of the localised solution increases.
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To conclude this overview, let us mention that snaking bifurcation diagrams of the type
analysed here are being found in an increasing number of models: integro-differentials models
for firing neurons [23], delay-differential models for electronic transmission lines [5], spatially
discrete models for coupled optical cavities [60, 76], and models displaying Saddle-node
Hopf [48] or T-point-Hopf bifurcations [32]. In all these cases, localised structures can be
envisaged as sets of fronts that are pinned to an underlying periodic structure. The latter
can be either in the solution itself (dynamical oscillations) or imprinted in space (spatial
discreteness). This similarity strongly suggests to us that the technique presented here can
be adapted to these situations. Finally a series of open questions on the subject of localized
structures were recently formulated in [43].

One physical setting that is especially suited to the study of dynamical patterns is an
optical cavity containing a nonlinear medium and in which a coherent beam is injected.
When the nonlinear medium is assumed to be a collection of two-level atoms, then the
simplest model for that system is given by the following non-dimensional equation [11, 55]

∂E

∂t
= Y + CE − E3 −

(

1 +
∂2

∂x2

)2

E. (1)

In this equation, E is the amplitude of the optical electric field inside the cavity, Y is the
injection field, and C is the cooperativity parameter. We will be concerned with steady
perturbations to the homogeneous steady state Ehg, which satisfies Y = E3

hg − CEhg + Ehg.
There is a modulation instability, or Turing bifurcation, with unit wave number when 3E2

hg =
C [69].

In the immediate vicinity of this bifurcation, we parametrise the homogeneous solution
by Ehg and set

C = 3E2
hg − ε2, E (x, t) = Ehg + εf (x) ,

where 0 < ε� 1, to give

(

1 +
d2

dx2

)2

f + ε2f + 3εEhgf
2 + ε2f 3 = 0. (2)

This is appropriate to describe localised solutions away from the snaking region, and in §2, we
perform the multiple-scales analysis of this equation. This procedure allows us to construct
solutions containing fast oscillations modulated by a pulsed envelope. However the phase of
the oscillations relative to their envelope remains arbitrary until we go beyond all orders of
the multiple scale analysis. We will see that exponentially small terms are turned on across
Stokes lines. These terms, although exponentially small when they appear, are exponentially
growing in space, so that for the solution to be valid at infinity the coefficient of the growing
exponential must be zero. This is the solvability condition which selects the phase of the
fast oscillation. In fact, [72, 73] effectively performed a beyond-all-orders analysis of (2), but
with a slightly different technique than ours, borrowed from [74, 75]. We, on the other hand,
follow the technique in [1]; as well as motivating the rescalings which follow, §2 serves as
an introduction to the beyond-all-orders technique, before we move on to consider the more
complicated analysis in the vicinity of the Maxwell point in §3.
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The amplitude of the solutions identified in §2 is monotonic in the bifurcation param-
eter Ehg, tending to infinity as the Maxwell point is approached. This calls for a different
scaling [15] so that near the Maxwell point we need to set

C = 3E2
hg − ε4, E (x, t) = Ehg + εf (x) ,

to give1

(

1 +
d2

dx2

)2

f + ε4f + 3εEhgf
2 + ε2f 3 = 0. (3)

In §3 we perform a new beyond-all-orders multiple-scales analysis of (3) with front so-
lutions connecting the uniform state to a uniformly oscillating state. The algebra is con-
siderably more complicated but the methodology is the same. Again we find that there is
a Stokes line across which exponentially-small but exponentially-growing terms are turned
on. However, this time we also have another exponentially-growing term generated by the
deviation of Ehg from the Maxwell point. The solvability condition that the coefficient of
the growing exponential vanish gives a loop of solutions, with two stationary front solutions
existing for an (exponentially-small) range of values of Ehg.

In §4 we construct solutions comprising an up-front and a down-front separated by an
extended period of uniform oscillation. By matching the growing and decaying exponentials
from each front solution we obtain a solvability condition which describes the snaking bifur-
cation diagram near the Maxwell point. The matching procedure will require us to introduce
a new, super slow, scale on which the distance between fronts is O(1). On that scale, fronts
become boundary layers. The three situations above are depicted schematically in Fig. 3.

In §5 we analyse the solutions to this equation, and find that the bifurcation diagram
comprises two interleaving snakes joined by pairs of rungs. The width of the snakes is found
to be proportional to

ε−4e−π/ε
2

and the constant of proportionality is given explicitly in (163). In the course of constructing
the localized solution, we also obtain the location of the Maxwell point to fourth order
accuracy in ε,

Ehg ∼
√

3/38 + ε2
4

19

√

367

57
+ ε4

63711
√

3/38

264974
+ . . . ,

as well as the frequency of the oscillations for the front solution

1 − ε2
1

2
√

734
+ ε4

43163

4310048
+ . . . .

The latter is necessary to establish the far field behaviour of the front solution and arises as a
solvability condition at sixth order in ε, after the introduction of the super-slow scale ξ = ε4x,
see Appendix A. Finally, in §6, we summarise our results and present our conclusions.

1To make contact with earlier work, Eq. (3) can be transformed into 0 = ru+ su2−u3−
(

1 + d2/dx2
)2

u,
via the transformation u = −εf , r = −ε4 and s = 3Ehg
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Figure 3: Leading order solution f0 and exponentially small terms RN away (a) and near
(b,c) the Maxwell point. In (a) RN must vanish to avoid blow up, which determines the
phase ϕ of the oscillations. In (b), the vanishing of RN relates ϕ to the deviation δE from
the Maxwell point and yields the pinning range. In (c), two front solutions, one at x = 0,
the other at x = ε−4L are combined to construct a localized state. The exponentially small
terms are necessary to ensure matching. The matching conditions determine the bifurcation
diagram.

2 Multiple scale analysis far from the Maxwell point

2.1 Summary of this section

We will see in §3 that in order to describe fully the bifurcation diagram we need to perform
a detailed beyond-all-orders multiple-scales analysis close to the Maxwell point, which will
involve a further rescaling of (2). However, before presenting such an analysis we first
demonstrate the beyond-all-orders technique on the simpler problem away from the Maxwell
point. We emphasise that the analysis in the present section is equivalent to the previous
work by Wadee et al. [73]. However the method used here is different, and the present section
will be useful both to introduce our methodology and illustrate why a rescaling is necessary.

The translational invariance of equation (2) gives one degree of freedom, so that any
solution represents a one-parameter family of solutions. However, when the method of
multiple scales is used, the spatial variable is split into two spatial variables, and there are
therefore two degrees of freedom associated with translational invariance. More specifically,
we will find that

f ∼ A0(X) eix−iϕ + c.c. +O(ε),

where A0 is a pulse-like amplitude, X = εx is a slow spatial scale and the extra degree of
freedom comes from the “phase difference” ϕ between the fast and slow scales. Such a phase
difference is not normally considered in multiple-scales problems (for initial value problems
it can be determined by the initial conditions), but for the present problem it is crucial. As
we will see, it is not determined at any order of ε but is selected by exponentially-small terms
beyond all orders.

We will identify these terms by optimally truncating the divergent multiple-scales expan-
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sion and examining the behaviour of the remainder, i.e. we will set

f ∼
N−1
∑

n=0

εnfn +RN (x− ϕ,X).

The reason the series above diverges and has to be truncated will be understood by examining
the solution near the singularities of A0(X) in the complex plane. An inner expansion in this
region will show that εnfn grows as εnΓ(n+ α) for some α for large n. Optimal truncation,
corresponding to the smallest possible remainder, is therefore expected to take place at some
order N ∼ ε−1 and RN will then be exponentially small in ε.

Away from the singularities of A0(X) but across the Stokes line that joins the singular-
ities nearest to the real axis, exponentially-small terms in RN are turned on. Indeed, by
performing a multiple-scales matched-asymptotic analysis in the vicinity of the Stokes line
we will find that, after the Stokes line is crossed,

RN (x,X) ∼ a0(X)eix + c.c.

to leading order, where
a0(X) = Λ̃ε−4e−π/ε cos(ϕ+ φ)eX/2

and Λ̃ and φ are constants explicitly given in (61), see Fig. 3. Since a0 diverges exponentially
as X → ∞, there is a formal homoclinic solution to 0 only if

ϕ = −φ+
π

2
+ nπ, n ∈ Z.

This is the solvability condition which selects the phase shift, and it reduces the one-
parameter family of solutions to just two.

The remainder of this section is organised as follows. In §2.2 the multiple scales expansion
of f is developed to determine A0. In §2.3 the equations for the late terms in this expansion
are formulated, which are necessary to determine the optimal truncation point and equation
for the remainder. These equations are first solved in the vicinity of the complex singularity
of A0 in §2.4, where the factorial/power divergence of fn is demonstrated. In §2.5 the
equations for the late terms are solved away from the singularity of A0, making use of a
factorial/power ansatz as n → ∞. Having found the form of fn for large n, the multiple
scales expansion is optimally truncated in §2.6. The equation for the remainder RN is
formulated, and a multiple-scales boundary layer analysis in the vicinity of the Stokes line
is used to demonstrate the rapid switching on of an exponentially small remainder term. In
§2.7 the equation for RN is solved away from the Stokes line. The results of §2.6 provide a
jump condition as the Stokes line is crossed, which is determined in §2.8. Finally, in §2.9,
the remainder term is evaluated as X → ∞, and the solvability condition for the existence
of a formal homoclinic solution is determined.
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2.2 Multiple scale analysis: leading orders

We begin by developing the first few orders of the multiple scales expansion of f . We let
X = εx and treat x and X as independent variables to give

∂4f

∂x4
+ 4ε

∂4f

∂x3∂X
+ 6ε2

∂4f

∂x2∂X2
+ 4ε3

∂4f

∂x∂X3
+ ε4

∂4f

∂X4

+2
∂2f

∂x2
+ 4ε

∂2f

∂x∂X
+ 2ε2

∂2f

∂X2
+ f = −ε2f − 3εEhgf

2 − ε2f 3. (4)

We expand f in powers of ε as

f = f0(x,X) + εf1(x,X) + · · · . (5)

Substituting the expansion (5) into (4) we find that at O(ε0),

Lf0 ≡
∂4f0

∂x4
+ 2

∂2f0

∂x2
+ f0 = 0

so that
f0 = A0(X)eix̃ + Ā0(X)e−ix̃, (6)

where x̃ = x−ϕ, with 0 ≤ ϕ < 2π. Here ϕ is an (as yet) arbitrary constant which determines
the relative phase between the fast oscillation and the slow amplitude modulation. This
arbitrary phase difference is always present in multiple-scales calculations, but in initial
value problems it can be determined from the initial conditions. Here we are on an infinite
domain, and, as we will see, the determination of the phase difference occurs beyond-all-
orders of the expansion (5). That there must be some condition determining ϕ is clear, since
equation (2) exhibits translational invariance in x, but equation (4) exhibits translational
invariance in both x and X. This extra degree of freedom corresponds to ϕ. Equating
coefficients of ε in (4) gives

Lf1 = −3Ehgf
2
0 ,

so that

f1 = −EhgA
2
0e

2ix̃

3
− EhgĀ

2
0e

−2ix̃

3
− 6Ehg|A0|2. (7)

Equating coefficients of ε2 in (4) gives

Lf2 = 4
∂2f0

∂X2
− f 3

0 − f0 − 6Ehgf0f1.

To avoid secular terms the coefficients of e±ix̃ on the right-hand side must be zero, giving
the solvability condition

4A′′

0 + (38E2
hg − 3)|A0|2A0 − A0 = 0, (8)

with solution

A0 =
4eX/2eiφ

1 + (76E2
hg − 6)eX

, (9)
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where φ is an arbitrary real constant. Without loss of generality we may take φ = 0, since
φ can be absorbed into ϕ. The leading-order amplitude A0 has singularities at the points

X = ±ikπ − log(76E2
hg − 6),

for k ∈ Z. If Ehg >
√

3
38

then there are two complex singularities nearest to the real X axis,

and the imaginary part of these singularities is ±π.
Now, in terms of X, equation (4) is a singular perturbation (ε multiplies the highest

derivative in X). Whenever the leading-order amplitude A0 has singularities (possibly com-
plex) this singular perturbation will generate a divergent asymptotic expansion in the form
factorial/power, since to compute the next term one has to differentiate the previous term
[21]. Thus we expect that the expansion (5) will be divergent. Such divergent expansions are
intimately related to the presence of exponentially small terms “beyond-all-orders”. In [21]
a technique was developed for examining the appearance of such terms as they are switched
on across Stokes lines in the complex plane. This technique involves optimally truncating
the series (5) and examining the behaviour of the remainder, which allows the exponentially
small terms to be observed explicitly through a boundary-layer analysis near the Stokes line
[27, 12]. This technique was extended to the case of multiple scales asymptotic expansions
in [1] and we follow their methodology here.

The first step is to determine the behaviour of the late terms in the expansion (5).

2.3 Late term expansion

For n large the equation for the n th term in the expansion of f is

∂4fn
∂x4

+ 2
∂2fn
∂x2

+ fn = −4
∂4fn−1

∂x3∂X
− 6

∂4fn−2

∂x2∂X2
− 4

∂4fn−3

∂x∂X3
− ∂4fn−4

∂X4

− 4
∂2fn−1

∂x∂X
− 2

∂2fn−2

∂X2
−

n−2
∑

j=0

n−2−j
∑

m=0

fjfmfn−2−j−m − fn−2 − 3Ehg

n−1
∑

j=0

fjfn−1−j. (10)

For each n the solution will be a sum of harmonics of eix̃ in the form

fn(x,X) =

n+1
∑

k=−n−1

An,k(X)eikx̃. (11)

In fact, it is easy to infer from the first few orders that odd harmonics only appear at even
order and vice versa. Hence, in (11) An,k is nonzero only when n+k is odd. Let us also note
that at each order the coefficients of the terms with k = ±1 are arbitrary, being solutions of
the homogeneous equation. They are determined by the elimination of secular terms in the
equation for fn+2, in the same way that A0 was determined by eliminating the secular terms

10



in the equation for f2. Substituting (11) into (10) and equating coefficients of eikx̃ gives

(1 − k2)2An,k = 4ik3∂An−1,k

∂X
+ 6k2∂

2An−2,k

∂X2
− 4ik

∂3An−3,k

∂X3
− ∂4An−4,k

∂X4

− 4ik
∂An−1,k

∂X
− 2

∂2An−2,k

∂X2
−
∑

p

∑

q

n−2
∑

j=0

n−2−j
∑

m=0

Aj,pAm,qAn−2−j−m,k−p−q

− An−2,k − 3Ehg
∑

p

n−1
∑

j=0

Aj,pAn−1−j,k−p. (12)

To determine the optimal truncation point and the equation for the remainder we need to
solve for An,k as n → ∞. We begin in §2.4 by examining the behaviour of An,k close to the
singularity at X = X0 = iπ − log(76E2

hg − 6). Then, in §2.5, we solve for An,k away from
X = X0.

2.4 Inner expansion near X = X0

We will show in this section that as X → X0 and n→ ∞,

fn(x,X) ∼ λΓ(n+ 4)(−i)n
(X −X0)n+1

(

1 − (−1)n + e2ix̃ − (−1)ne−2ix̃
)

,

for some constant λ.
Near X = X0 the leading-order solution A0,0 has a simple pole. Since each new term in

the expansion involves differentiating the previous term we expect the singularity in An,k to
be of the form (X −X0)

−n−1. We therefore write

An,k ∼
Bn,k

(X −X0)n+1
as X → X0. (13)

Then the leading order solution (6), (7), (9) gives B0,0 = B1,1 = B1,−1 = 0 and

B0,1 = B0,−1 =
−4i

√

76E2
hg − 6

, B1,2 = B1,−2 =
8Ehg

114E2
hg − 9

, B1,0 =
48Ehg

38E2
hg − 3

.

Substituting (13) into (12) gives

(k2 − 1)2Bn,k = −4nik3Bn−1,k + 6n(n− 1)k2Bn−2,k + 4n(n− 1)(n− 2)ikBn−3,k

− n(n− 1)(n− 2)(n− 3)Bn−4,k + 4nikBn−1,k − 2n(n− 1)Bn−2,k

−
n−2
∑

j=0

n−2−j
∑

m=0

∑

p

∑

q

Bj,pBm,qBn−2−j−m,k−p−q

− 3Ehg

n−1
∑

j=0

∑

p

Bj,pBn−1−j,k−p (14)
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When k 6= ±1 this equation gives Bn,k. The pair of equations with k = ±1 form a coupled
set of equations for Bn−2,±1, and are analogous to the secularity conditions which determine
the coefficients of e±ix̃ in the multiple scales expansion at each order.

From the right hand side of (14), Bn,k is a combination of nBn−1,k, n (n− 1)Bn−2,k, etc.
This motivates the ansatz

Bn,k ∼ Γ(n+ αk)bn,k, as n→ ∞,

where the offsets αk are to be determined. We will find that Bn,k with k = 0,±2 will
dominate, followed by k = ±1,±3, then ±4 etc. Thus, for the bn,k to be of the same order
for each k as n → ∞, we set α0 = α±2 = α, α±1 = α±3 = α− 1, etc. This gives the system
of equations

...

64bn,−3 ∼ 96i (1 + · · · ) bn−1,−3 + 52 (1 + · · · ) bn−2,−3 − 12i (1 + · · · ) bn−3,−3

− (1 + · · · ) bn−4,−3 + · · · − 6EhgB0,−1 (1 + · · · ) bn−1,−2,

9bn,−2 ∼ 24i

(

1 +
(1 − α)

n
+

(1 − α)2

n2
+ · · ·

)

bn−1,−2

+ 22

(

1 +
2(1 − α)

n
+

(1 − α)(4 − 3α)

n2
+ · · ·

)

bn−2,−2

− 8i

(

1 +
3(1 − α)

n
+

3(1 − α)(3 − 2α)

n2
+ · · ·

)

bn−3,−2

−
(

1 +
4(1 − α)

n
+

2(1 − α)(8 − 5α)

n2
+ · · ·

)

bn−4,−2

− 3

n2

(

B2
0,−1bn−2,0 + 2B0,1B0,−1bn−2,−2

)

− 6Ehg
n2

(B0,−1bn−1,−1 +B0,1bn−1,−3 +B1,0bn−2,−2 +B1,−2bn−2,0) + · · ·

0 ∼ 4

(

1 +
2(2 − α)

n
+ · · ·

)

bn−2,−1 − 4

(

1 +
3(2 − α)

n
+ · · ·

)

ibn−3,−1

−
(

1 +
4(2 − α)

n
+ · · ·

)

bn−4,−1 − 6Ehg (B0,1bn−1,−2 +B0,−1bn−1,0) ,

bn,0 ∼ −
(

1 +
4(1 − α)

n
+

2(1 − α)(8 − 5α)

n2
+ · · ·

)

bn−4,0

− 2

(

1 +
2(1 − α)

n
+

(1 − α)(4 − 3α)

n2
+ · · ·

)

bn−2,0

− 3

n2

(

B2
0,1bn−2,−2 + 2B0,1B0,−1bn−2,0 +B2

0,−1bn−2,2

)

− 6Ehg
n2

(B0,1bn−1,−1 +B0,−1bn−1,1 +B1,0bn−2,0 +B1,2bn−2,−2 +B1,−2bn−2,2) + · · · ,

12



0 ∼ 4

(

1 +
2(2 − α)

n
+ · · ·

)

bn−2,1 + 4i

(

1 +
3(2 − α)

n
+ · · ·

)

bn−3,1

−
(

1 +
4(2 − α)

n
+ · · ·

)

bn−4,1 − 6Ehg (B0,−1bn−1,2 +B0,1bn−1,0) ,

9bn,2 ∼ −24i

(

1 +
(1 − α)

n
+

(1 − α)2

n2
+ · · ·

)

bn−1,2

+ 22

(

1 +
2(1 − α)

n
+

(1 − α)(4 − 3α)

n2
+ · · ·

)

bn−2,2

+ 8i

(

1 +
3(1 − α)

n
+

3(1 − α)(3 − 2α)

n2
+ · · ·

)

bn−3,2

−
(

1 +
4(1 − α)

n
+

2(1 − α)(8 − 5α)

n2
+ · · ·

)

bn−4,2

− 3

n2

(

B2
0,1bn−2,0 + 2B0,1B0,−1bn−2,2

)

− 6Ehg
n2

(B0,1bn−1,1 +B0,−1bn−1,3 +B1,0bn−2,2 +B1,2bn−2,0) + · · ·
64bn,3 ∼ −96i (1 + · · · ) bn−1,3 + 52 (1 + · · · ) bn−2,3 + 12i (1 + · · · ) bn−3,3

− (1 + · · · ) bn−4,3 − 6EhgB0,1 (1 + · · · ) bn−1,2 + · · · ,

...

To exploit the limit n→ ∞ we let bn,k ∼ b
(0)
n,k + 1

n
b
(1)
n,k + · · · . At leading order, we have

64b
(0)
n,−3 ∼ 96ib

(0)
n−1,−3 + 52b

(0)
n−2,−3 − 12ib

(0)
n−3,−3 − b

(0)
n−4,−3 − 6EhgB0,−1b

(0)
n−1,−2,

9b
(0)
n,−2 ∼ 24ib

(0)
n−1,−2 + 22b

(0)
n−2,−2 − 8ib

(0)
n−3,−2 − b

(0)
n−4,−2,

0 ∼ 4b
(0)
n−2,−1 − 4ib

(0)
n−3,−1 − b

(0)
n−4,−1 − 6Ehg

(

B0,1b
(0)
n−1,−2 +B0,−1b

(0)
n−1,0

)

,

b
(0)
n,0 ∼ −b(0)n−4,0 − 2b

(0)
n−2,0,

0 ∼ 4b
(0)
n−2,1 + 4ib

(0)
n−3,1 − b

(0)
n−4,1 − 6Ehg

(

B0,−1b
(0)
n−1,2 +B0,1b

(0)
n−1,0

)

,

9b
(0)
n,2 ∼ −24ib

(0)
n−1,2 + 22b

(0)
n−2,2 + 8ib

(0)
n−3,2 − b

(0)
n−4,2,

64b
(0)
n,3 ∼ −96ib

(0)
n−1,3 + 52b

(0)
n−2,3 + 12ib

(0)
n−3,3 − b

(0)
n−4,3 − 6EhgB0,1b

(0)
n−1,2,

Seeking a solution in the form b
(0)
n,k = κnb

(0)
k gives

0 ∼ (−64κ4 + 96iκ3 + 52κ2 − 12iκ− 1)b
(0)
−3 − 6κ3EhgB0,−1b

(0)
−2, (15)

0 ∼ (−9κ4 + 24iκ3 + 22κ2 − 8iκ− 1)b
(0)
−2, (16)

0 ∼ (4κ2 − 4iκ− 1)b
(0)
−1 − 6Ehgκ

3
(

B0,1b
(0)
−2 +B0,−1b

(0)
0

)

, (17)
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0 ∼ (−κ4 − 2κ2 − 1)b
(0)
0 , (18)

0 ∼ (4κ2 + 4iκ− 1)b
(0)
1 − 6Ehgκ

3
(

B0,−1b
(0)
2 +B0,1b

(0)
0

)

, (19)

0 ∼ (−9κ4 − 24iκ3 + 22κ2 + 8iκ− 1)b
(0)
2 , (20)

0 ∼ (−64κ4 − 96iκ3 + 52κ2 + 12iκ− 1)b
(0)
3 − 6Ehgκ

3B0,1b
(0)
2 . (21)

This is an eigenvalue problem for κ. Note that each of the equations for b
(0)
2 , b

(0)
0 and b

(0)
−2

decouples. The roots of (16) are κ = i and κ = i/3, those of (18) are κ = ±i, and those
of (20) are κ = −i, κ = −i/3. Since the late terms behave as κn, the eigenmodes involving
κ = ±i/3 are exponentially subdominant to those involving κ = ±i, and we do not need to
consider them further. Let us examine the eigenmodes with κ = ±i in more detail.

Case κ = −i In this case, proceeding to next order in (18) and (20), the full set of leading-
order equations is

0 ∼ −225b
(0)
−3 − 6EhgB0,−1ib

(0)
−2, (22)

0 ∼ −64b
(0)
−2, (23)

0 ∼ −9b
(0)
−1 − 6Ehgi

(

B0,1b
(0)
−2 +B0,−1b

(0)
0

)

, (24)

0 ∼ −4(1 − α)(2 − α)b
(0)
0 + 3

(

B2
0,1b

(0)
−2 + 2B0,1B0,−1b

(0)
0 +B2

0,−1b
(0)
2

)

− 6Ehg

(

B0,1ib
(0)
−1 +B0,−1ib

(0)
1 − B1,0b

(0)
0 − B1,2b

(0)
−2 − B1,−2b

(0)
2

)

, (25)

0 ∼ −b(0)1 − 6Ehgi
(

B0,−1b
(0)
2 +B0,1b

(0)
0

)

, (26)

0 ∼ −4(1 − α)(2 − α)b
(0)
2 + 3

(

B2
0,1b

(0)
0 + 2B0,1B0,−1b

(0)
2

)

− 6Ehg

(

B0,1ib
(0)
1 +B0,−1ib

(0)
3 − B1,0b

(0)
2 − B1,2b

(0)
0

)

(27)

0 ∼ −9b
(0)
3 − 6EhgB0,1ib

(0)
2 . (28)

We see immediately that b
(0)
−3 = b

(0)
−2 = 0. Eliminating b

(0)
±1 and b

(0)
3 and using the expressions

for B0,±1, B1,0 and B1,±2, leaves the following system for b
(0)
0 and b

(0)
2 :

(2 + 3α− α2)b
(0)
0 + 2b

(0)
2 = 0, (29)

2b
(0)
0 + (2 + 3α− α2)b

(0)
2 = 0. (30)

The condition for a non-zero solution is

(2 + 3α− α2)2 = 4 (31)

giving the roots
α = −1, 0, 3, 4.

The solutions with α = 0 and α = 3 satisfy b
(0)
0 = −b(0)2 , while those with α = −1 and α = 4

satisfy b
(0)
0 = b

(0)
2 . The large n behaviour is dominated by the largest value of α.
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Case κ = i In this case b
(0)
3 = b

(0)
2 = 0. Solving (15), (17), and (19), and eliminating b

(0)
±1

and b
(0)
−3 in (16) and (18), we now find:

(2 + 3α− α2)b
(0)
0 + 2b

(0)
−2 = 0, (32)

2b
(0)
0 + (2 + 3α− α2)b

(0)
−2 − 0. (33)

Again, the condition for a non-zero solution is

(2 + 3α− α2)2 = 4 (34)

with roots
α = −1, 0, 3, 4.

The solutions with α = 0 and α = 3 satisfy b
(0)
0 = −b(0)

−2, while those with α = −1 and α = 4

satisfy b
(0)
0 = b

(0)
−2.

Combining the two eigenvectors associated to α = 4 we see that

fn(x,X) =

n+1
∑

k=−n−1

An,ke
ikx̃ ∼

n+1
∑

k=−n−1

Bn,k e
ikx̃

(X −X0)n+1

∼ Γ(n+ 4)

(X −X0)n+1

(

(−i)nλ(1 + e2ix̃) + inµ(1 + e−2ix̃) +O(n−1)
)

=
Γ(n+ 4)(−i)n
(X −X0)n+1

(

λ+ (−1)nµ+ λe2ix̃ + e−2ix̃µ+O(n−1)
)

,

where for κ = −i we have set b
(0)
0 = b

(0)
2 = λ, and for κ = i we have set b

(0)
0 = b

(0)
−2 = µ. From

the form of the equation (14) we find that fn has no term constant in x̃ when n is even, so
that we must have µ = −λ, giving finally

fn(x,X) ∼ λΓ(n+ 4)(−i)n
(X −X0)n+1

(

1 − (−1)n + e2ix̃ − (−1)ne−2ix̃
)

. (35)

Note that B1,0 and B1,2 are real and the equations for Bn,0 and Bn,2 are also real. Hence,
considering (35) with n odd, we see that λ is purely imaginary.

2.5 Outer expansion away from X = X0

We now turn to the behaviour of fn as n → ∞ for values of X not close to the singularity
X = X0. We will show that

fn(x,X) ∼ Γ(n + 4)(−i)n
(X −X0)n+4

(

F
(0)
0 (X) + F

(0)
2 (X)e2ix̃

)

+
Γ(n+ 4)in

(X −X0)n+4

(

G
(0)
0 (X) +G

(0)
−2(X)e−2ix̃

)

+ c.c.,
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where F
(0)
0 and F

(0)
2 are given by (40) and G

(0)
0 and G

(0)
−2 are given by (41), with K0 and K1

given by (42).
Motivated by the inner expansion in the vicinity of the singularity we write

fn(x,X) ∼
∑

k

Γ(n+ αk)(−i)n
(X −X0)n+αk

fn,k(X)eikx̃

with

fn,k(X) ∼ F
(0)
k (X) + (−1)nG

(0)
k (X) +

1

n

(

F
(1)
k (X) + (−1)nG

(1)
k (X)

)

+ · · · ,

and α0 = α±2 = α, α±1 = α±3 = α− 1, · · · as before. Then at order Γ(n+ α) we find

F
(0)
−2 = G

(0)
2 = 0.

Next, at order Γ(n + α− 1) we find

F
(0)
−3 = F

(1)
−2 = 0,

3iF
(0)
−1 = 2EhgĀ0F

(0)
0 ,

iF
(0)
1 = 6EhgA0F

(0)
0 + 6EhgĀ0F

(0)
2 ,

3iF
(0)
3 = 2EhgA0F

(0)
2 ,

G
(0)
3 = G

(1)
2 = 0,

−3iG
(0)
−3 = 2EhgĀ0G

(0)
−2,

−iG(0)
−1 = 6EhgA0G

(0)
−2 + 6EhgĀ0G

(0)
0 ,

−3iG
(0)
1 = 2EhgA0G

(0)
0 .

Finally, at order Γ(n + α − 2) we obtain a set of differential equations for the remaining
leading-order terms

4F
(0)
2XX

− F
(0)
2 + (38E2

hg − 3)A2
0F

(0)
0 + 2(38E2

hg − 3)|A0|2F (0)
2 = 0, (36)

4F
(0)
0XX

− F
(0)
0 + (38E2

hg − 3)Ā2
0F

(0)
2 + 2(38E2

hg − 3)|A0|2F (0)
0 = 0, (37)

4G
(0)
0XX

−G
(0)
0 + (38E2

hg − 3)A2
0G

(0)
−2 + 2(38E2

hg − 3)|A0|2G(0)
0 = 0, (38)

4G
(0)
−2XX

−G
(0)
−2 + (38E2

hg − 3)Ā2
0G

(0)
0 + 2(38E2

hg − 3)|A0|2G(0)
−2 = 0. (39)

Recall that A0 is real and satisfies

4A′′

0 −A0 + (38E2
hg − 3)A3

0 = 0.

Thus we can immediately spot two solutions of (36)-(37) as

F
(0)
0 = −F (0)

2 = A0,

F
(0)
0 = F

(0)
2 = A0X

.
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(These correspond to differentiating f0 with respect to x andX respectively.) Using variation
of parameters on these solutions gives the other two solutions as

F
(0)
0 = −F (0)

2 = A0

∫ X

X0

1

A2
0

dX,

F
(0)
0 = F

(0)
2 = A0X

∫ X

X0

1

A2
0X

dX.

Similarly the four independent solutions for G
(0)
0 and G

(0)
−2 are

G
(0)
0 = G

(0)
−2 = A0X

,

G
(0)
0 = G

(0)
−2 = A0X

∫ X

X0

1

A2
0X

dX,

G
(0)
0 = −G(0)

−2 = A0,

G
(0)
0 = −G(0)

−2 = A0

∫ X

X0

1

A2
0

dX,

Now, as X → X0,

A0 ∼ − 2
√

2i
√

38E2
hg − 3 (X −X0)

,

A0X
∼ 2

√
2i

√

38E2
hg − 3 (X −X0)2

,

A0

∫ X

X0

1

A2
0

dX ∼

√

38E2
hg − 3 i(X −X0)

2

6
√

2
,

A0X

∫ X

X0

1

A2
0X

dX ∼ −

√

38E2
hg − 3 i(X −X0)

3

10
√

2
,

Since fn,2 = O((X−X0)
α−1) to match with the inner region in the vicinity of the singularity,

these four solutions give α values of 0, −1, 3 and 4 respectively, corresponding to the four
different behaviours we found in the inner region. The large n behaviour will be dominated
by the α = 4 term. The others will also be present, but are lower order in n. Thus the
dominant behaviour as n→ ∞ is given by

F
(0)
0 = F

(0)
2 = K0A0X

∫ X

X0

1

A2
0X

dX, (40)

G
(0)
0 = G

(0)
−2 = K1A0X

∫ X

X0

1

A2
0X

dX, (41)
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for some constants K0, K1. Then, as X → X0,

F
(0)
0 ∼ F

(0)
2 ∼ −

K0

√

38E2
hg − 3 i(X −X0)

3

10
√

2
,

G
(0)
0 ∼ G

(0)
−2 ∼ −

K1

√

38E2
hg − 3 i(X −X0)

3

10
√

2
.

Matching with (35) gives

K0 = −K1 = λ
10
√

2 i
√

38E2
hg − 3

, (42)

and since λ is imaginary, K0 is real. Thus the leading-order behaviour as n→ ∞ is given by

fn(x,X) ∼ Γ(n+ 4)(−i)n
(X −X0)n+4

(

F
(0)
0 (X) + F

(0)
2 (X)e2ix̃

)

+
Γ(n+ 4)in

(X −X0)n+4

(

G
(0)
0 (X) +G

(0)
−2(X)e−2ix̃

)

, (43)

where F
(0)
0 and F

(0)
2 are given by (40) and G

(0)
0 and G

(0)
−2 are given by (41), with K0 and

K1 given by (42). So far we have been concerned with the contribution to the late terms
from the singularity at X = X0. We can determine the contribution from the conjugate
singularity at X = X̄0 by symmetry, since the sum of both combinations must be real when
X is real. Thus this second contribution is

fn(x,X) ∼ Γ(n+ 4)in

(X − X̄0)n+4

(

F̄
(0)
0 (X) + F̄

(0)
2 (X)e−2ix̃

)

+
Γ(n+ 4)(−i)n
(X − X̄0)n+4

(

Ḡ
(0)
0 (X) + Ḡ

(0)
−2(X)e2ix̃

)

. (44)

2.6 Optimal truncation

We have now found the behaviour of the late terms in the expansion (5). From (43) we can
see that, as expected, terms initially get smaller as n increases (by a factor of ε each time)
but eventually increase with n due to the presence of the factorial; the expansion diverges
as n → ∞ for any fixed x, X, ε. The next step in the procedure developed in [21] is to
truncate the expansion, at n = N − 1 say, and study the remainder. If we truncate at any
fixed order N then the remainder will be of O(εN). However, if we truncate optimally, that
is, we truncate the expansion at it smallest term, then the remainder will be exponentially
small in ε. Truncating after N terms we write

f =
N−1
∑

n=0

εnfn(x̃, X) +RN (x̃, X).

18



We will show that RN exhibits a boundary layer behaviour, undergoing a rapid transition in
the vicinity of the Stokes line (which we will identify shortly). We will show that the jump
in RN as X crosses the Stokes line is

2πi eiαπ/2ε−αeiX0/εe−iϕ
(

F
(0)
0 e−ix̃ + F

(0)
2 eix̃

)

+ c.c.

The equation for the remainder RN is

RNx̃x̃x̃x̃
+ 2RNx̃x̃

+RN

+ 4εRNx̃x̃x̃X
+ 6ε2RNx̃x̃XX

+ 4ε3RNx̃XXX
+ ε4RNXXXX

+ 4εRNx̃X
+ 2ε2RNXX

+ ε2(3f 2
0RN + · · · ) + ε2RN + 6Ehgεf0RN + 6Ehgε

2f1RN

∼ εN (fNx̃x̃x̃x̃
+ 2fNx̃x̃

+ fN)

+ εN+1 (−6fN−1x̃x̃XX
− 4fN−2x̃XXX

− fN−3XXXX
− 2fN−1XX

)

+ εN+2 (−4fN−1x̃XXX
− fN−2XXXX

)

+ εN+3 (−fN−1XXXX
) + · · · , (45)

where we have used the equation for fN to simplify the right-hand side. The omitted terms,
represented by · · · , are all lower order as N → ∞, ε → 0. When we approximate the terms
on the right-hand side of (45) as N → ∞ and ε→ 0 we will obtain terms from the singularity
at X = X0 through (43) and terms from the singularity at X = X̄0 through (44); we denote
the former by rhs+ and the latter by rhs−. Each of these will be composed of two parts—one
for the terms in F and one for the terms in G; we denote these with the subscripts F and G
respectively. Now, as ε → 0, N → ∞,

rhs+
F ∼ eix̃εN (−i)N Γ(N + α)

(X −X0)N+α

∑

k=0,2

ei(k−1)x̃CN,k (46)

where

CN,k = F
(0)
k

(

(k2 − 1)2 − (6k2 − 4k − 1)ε(−i) (N + α)

(X −X0)

−(−4k + 1)ε2(−i)2 (N + α + 1)(N + α)

(X −X0)2

−ε3(−i)3 (N + α + 2)(N + α + 1)(N + α)

(X −X0)3

)

,

and we have brought out one factor of eix̃, which we will see shortly will combine with
the factorial/power as in [21]. We can see from (43) that the ratio of successive terms is
approximately −inε/(X − X0). Following Dingle [30], we expect there to be Stokes lines
where successive terms have the same phase, that is, where −i/(X−X0) is real and positive.
By optimally truncating the expansion and observing the behaviour of the remainder as in
[21], we will explicitly see the switching on of exponentially small terms as the Stokes lines
are crossed.
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The optimal truncation point, corresponding to the smallest term, is approximately N =
|X − X0|/ε. Since N depends on |X − X0| only we write X − X0 = reiθ giving N =
r/ε + ν, where ν is required to ensure that N is an integer, but is bounded as ε → 0. We
first approximate the premultiplier of the sum in (46) at optimal truncation, following [21].
Writing

eix̃ = eixe−iϕ = ei(X−X0)/εeiX0/εe−iϕ, (47)

and using Stirling’s formula, we find

ei(X−X0)/εεN+α(−i)N+α Γ(N + α)

(X −X0)N+α

∼
√

2π eire
iθ/εεr/ε+ν+αe−iπ/2(r/ε+ν+α)(r/ε+ α+ ν)r/ε+α+ν−1/2e−r/ε−α−ν

rr/ε+ν+αeiθ(r/ε+ν+α)

∼
√

2π ε1/2e−iπ/2(r/ε+ν+α)(1 + ε(α + ν)/r)r/ε+α+ν−1/2e−r/ε−α−νeire
iθ/ε

r1/2eiθ(r/ε+ν+α)

∼
√

2π ε1/2e−iπ/2(r/ε+ν+α)eα+νe−r/ε−α−νeire
iθ/ε

r1/2eiθ(r/ε+ν+α)

∼
√

2π ε1/2e−iπ/2(r/ε+ν+α)e−r/εeire
iθ/ε

r1/2eiθ(r/ε+ν+α)
.

This expression is exponentially small except in the vicinity of the Stokes line θ = −π/2.
Writing θ = −π/2 + ε1/2θ̄ gives

ei(X−X0)/εεN+α(−i)N+α Γ(N + α)

(X −X0)N+α
∼

√
2π ε1/2e−iπ/2(r/ε+ν+α)e−r/εer(1+iε

1/2θ̄−εθ̄2/2)/ε

r1/2ei(−π/2+ε1/2θ̄)(r/ε+ν+α)

∼
√

2π ε1/2e−rθ̄
2/2

r1/2
. (48)

Hence, combining (46), (47) and (48) we have, in the vicinity of the Stokes line,

rhs+
F ∼ eiαπ/2ε−αeiX0/εe−iϕ

√
2π ε1/2e−rθ̄

2/2

r1/2

∑

k=0,2

CN,ke
i(k−1)x̃. (49)

It remains to approximate CN,k near the Stokes line. Using (47) we find

CN,k ∼ F
(0)
k

(

(k2 − 1)2 − (6k2 − 4k − 1)e−iε
1/2θ̄ − (−4k + 1)e−2iε1/2θ̄ − e−3iε1/2θ̄

)

∼ F
(0)
k

(

k(k3 − 8k + 8) + 2i
√
εθ̄(3k2 − 6k + 2) + · · ·

)

,

where F
(0)
k is evaluated on the Stokes line and so is a function of r but not of θ̄. Hence

CN,0 ∼ 4i
√
εθ̄F

(0)
0 + · · · ,

CN,2 ∼ 4i
√
εθ̄F

(0)
2 + · · · .
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With X = X0 + reiθ we have
∂

∂X
= −ie

−iθ

r

∂

∂θ
,

so that in the vicinity of the Stokes line, with θ = −π/2 + ε1/2θ̄, we have

∂

∂X
=
e−iε

1/2θ̄

rε1/2
∂

∂θ̄
.

Thus equation (45) for the remainder due to the singularity at X0 (which we write as R+
N)

becomes

R+
Nx̃x̃x̃x̃

+ 2R+
Nx̃x̃

+R+
N

+ 4ε1/2
(1 − iε1/2θ̄)

r
R+
Nx̃x̃x̃θ̄

+
6ε

r2
R+
Nx̃x̃θ̄θ̄

+ 4ε1/2
(1 − iε1/2θ̄)

r
R+
Nx̃θ̄

+
2ε

r2
R+
Nθ̄θ̄

+ 6Ehgεf0R
+
N + o(εR+

N)

∼ eiαπ/2ε−α+1/2eiX0/εe−iϕ
√

2π e−rθ̄
2/2

r1/2

(

4i
√
εθ̄F

(0)
0 e−ix̃ + 4i

√
εθ̄F

(0)
2 eix̃

)

= ε−α+1/2eiX0/ε
(

ε1/2c−1(θ̄)e
−ix̃ + ε1/2c1(θ̄)e

ix̃
)

, (50)

say. Now, equation (50) must again be solved via a multiple scales expansion, since the
rescaled X coordinate θ̄ is still much longer than the fast scale. The forcing term in (50) is a
resonant term, so that the solution will be an order of magnitude larger: R+

N = O(ε−αeiX0/ε).
We seek an expansion of the form

R+
N ∼ ε−αeiX0/ε

(

R+
0 + ε1/2R+

1 + εR+
2 + · · ·

)

.

Then, at leading order,
R+

0x̃x̃x̃x̃
+ 2R+

0x̃x̃
+R+

0 = 0,

so that
R+

0 = S−1(θ̄)e
−ix̃ + S1(θ̄)e

ix̃.

Equating coefficients at O(eiX0/εε−α+1/2) gives

R+
1x̃x̃x̃x̃

+ 2R+
1x̃x̃

+R+
1 = 0,

with solution
R+

1 = 0.

Finally, equating coefficients at O(eiX0/εε−α+1) gives

R+
2x̃x̃x̃x̃

+ 2R+
2x̃x̃

+R+
2 − 4

r2

(

S ′′

−1(θ̄)e
−ix̃ + S ′′

1 (θ̄)eix̃
)

+ 6Ehg
(

A(X)eix̃ + Ā(X)e−ix̃
) (

S−1(θ̄)e
−ix̃ + S1(θ̄)e

ix̃
)

∼ c−1(θ̄)e
−ix̃ + c1(θ̄)e

ix̃.
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The solvability condition that there are no inhomogeneous terms of the form e±ix̃ then gives

− 4

r2
S ′′

−1(θ̄) = c−1(θ̄) = eiαπ/2e−iϕ
√

2π e−rθ̄
2/2

r1/2
4iθ̄F

(0)
0 ,

− 4

r2
S ′′

1 (θ̄) = c1(θ̄) = eiαπ/2e−iϕ
√

2π e−rθ̄
2/2

r1/2
4iθ̄F

(0)
2 , .

Hence

S−1 ∼ i
√
π eiαπ/2ε−αeiX0/εe−iϕF

(0)
0

∫

√

rθ̄
√

2

−∞

e−v
2

dv,

S1 ∼ i
√
π eiαπ/2ε−αeiX0/εe−iϕF

(0)
2

∫

√

rθ̄
√

2

−∞

e−v
2

dv,

where we have imposed the matching condition that S−1 and S1 → 0, as θ̄ → −∞. Thus,
across the Stokes line as θ̄ goes from −∞ to ∞,

2πi eiαπ/2ε−αeiX0/εe−iϕ
(

F
(0)
0 e−ix̃ + F

(0)
2 eix̃

)

(51)

is switched on by the upper singularity. Since the solution is real on the real axis we know
that

−2πi e−iαπ/2ε−αe−iX̄0/εeiϕ
(

F̄
(0)
0 eix̃ + F̄

(0)
2 e−ix̃

)

(52)

is switched on by the lower singularity due to rhs−F .

2.6.1 rhs+
G and rhs−G

Stokes lines occur when successive terms in the expansion have the same phase [30]. For
rhs+

F this occurs when −i/(X − X0) is real and positive, corresponding to θ = −π/2 and a
Stokes line down from the singularity in the upper half-plane parallel to the imaginary axis.

Successive terms in rhs+
G have the same phase when i/(X − X0) is real and positive,

corresponding to θ = π/2. Thus the Stokes line associated with these terms is up parallel to
the imaginary axis, and therefore that generated by the singularity in the upper half-plane
does not intersect the real axis. Thus, on the real line, there are no additional exponentially
small terms switched on by rhs+

G.
Similarly the Stokes line associated with rhs−G lies on −i/(X − X̄0) real and positive,

corresponding to X = X̄0 + reiθ with θ = −π/2. Thus this Stokes line goes down parallel to
the imaginary axis from a singularity in the lower half-plane and so it too does not intersect
the real axis.
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2.7 Solution away from the Stokes line

Since the remainder RN is exponentially small in ε, away from the Stokes line the equation
for RN valid to all orders in ε is simply the linearisation of (4), namely

RNx̃x̃x̃x̃
+ 2RNx̃x̃

+RN

+ 4εRNx̃x̃x̃X
+ 6ε2RNx̃x̃XX

+ 4ε3RNx̃XXX
+ ε4RNXXXX

+ 4εRNx̃X
+ 2ε2RNXX

= − 3ε2(f0 + εf1 + · · · )2RN − ε2RN − 6Ehgε(f0 + εf1 + · · · )RN . (53)

We expand RN in ε by setting RN ∼ R
(0)
N (x̃, X) + εR

(1)
N (x̃, X) + · · · . Then at O(ε0) in (53)

R
(0)
Nx̃x̃x̃x̃

+ 2R
(0)
Nx̃x̃

+R
(0)
N = 0

so that
R

(0)
N = a0(X)eix̃ + ā0(X)e−ix̃, (54)

where a0(X) is unknown at this stage. At O(ε) in (53)

R
(1)
Nx̃x̃x̃x̃

+ 2R
(1)
Nx̃x̃

+R
(1)
N = −6Ehg(A0e

ix̃ + Ā0e
−ix̃)(a0(X)eix̃ + ā0(X)e−ix̃)

= −6Ehg
(

A0a0e
2ix̃ + A0ā0 + Ā0a0 + Ā0ā0e

−2ix̃
)

.

Hence

R(1) = −6Ehg(A0ā0 + Ā0a0) −
2Ehg

3
A0a0e

2ix̃ − 2Ehg
3

Ā0ā0e
−2ix̃. (55)

Finally, at O(ε2) in (53)

R
(2)
Nx̃x̃x̃x̃

+ 2R
(2)
Nx̃x̃

+R
(2)
N

= − 6R
(0)
Nx̃x̃XX

− 2R
(0)
NXX

− 3(f0)
2R

(0)
N −R

(0)
N − 6Ehgf0R

(1)
N − 6Ehgf1R

(0)
N

= 4(a0XX
eix̃ + ā0XX

e−ix̃) − 3(A0e
ix̃ + Ā0e

−ix̃)2(a0e
ix̃ + ā0e

−ix̃)

− a0e
ix̃ − ā0e

−ix̃

− 6Ehg(A0e
ix̃ + Ā0e

−ix̃)(−6Ehg(A0ā0 + Ā0a0) −
2Ehg

3
A0a0e

2ix̃ − 2Ehg
3

Ā0ā0e
−2ix̃)

− 6Ehg(−
EhgA

2
0e

2ix̃

3
− EhgĀ

2
0e

−2ix̃

3
− 6Ehg|A0|2)(a0e

ix̃ + ā0e
−ix̃)

Eliminating the secular terms on the right-hand side gives the solvability condition

0 = 4a0XX
− 3A2

0ā0 − 6|A0|2a0 − a0 + 38E2
hgA

2
0ā0 + 76E2

hg|A0|2a0

Writing a0 = u0 + iv0 with u0 and v0 real, and recalling that A0 is real, we have

0 = 4u0XX
− u0 + 3(38E2

hg − 3)A2
0u0, (56)

0 = 4v0XX
− v0 + (38E2

hg − 3)A2
0v0. (57)
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Recalling that A0 satisfies (8) we see that one solution of (57) is simply A0, and one solution
of (56) is simply A0X

. These correspond to translating the original solution in x and X
respectively. As in §2.5 the other solutions can be found by variation of parameters, giving

a0(X) = B1A0X
+B2A0X

∫ X

X0

1

A2
0X

dX + i

(

B3A0 +B4A0

∫ X

X0

1

A2
0

dX

)

(58)

where B1, B2, B3 and B4 are real constants. The important contribution here is that due
to B2, since it is the one which is switched on across the Stokes line. That multiplying B1

corresponds to translation in X, while that multiplying B3 corresponds to translation in x.

2.8 Matching with the solution in the vicinity of the Stokes line

Focusing on the solution which is switched on across the Stokes line let us write

a0(X) ∼ B+
2 A0X

∫ X

X0

1

A2
0X

dX +B−

2 A0X

∫ X

X̄0

1

A2
0X

dX (59)

=
B+

2

K0
F

(0)
2 +

B−

2

K̄0

F̄
(0)
0 . (60)

Then, by matching (60) with (51) and (52) we find that, for X > Re(X0),

B+
2 = 2πiK0e

iαπ/2ε−αeiX0/εeiϕ,

B−

2 = −2πiK̄0e
−iαπ/2ε−αe−iX0/εe−iϕ.

2.9 Solutions of the equation

As X → ∞
A0X

∫ X dX

A2
0X

∼ (3 − 38E2
hg)e

X/2,

so that

a0(X) ∼ (B+
2 +B−

2 )(3 − 38E2
hg)e

X/2

= 4πΛ(3 − 38E2
hg)ε

−4e−π/ε cos

(

π

2
−

log(76E2
hg − 6)

ε
+ ϕ+ χ

)

eX/2, (61)

where K0 = Λeiχ with Λ and χ real. Although this term is exponentially small when it is
turned on across the Stokes line, it is exponentially growing in X. For the multiple-scales
solution we have constructed to hold the coefficient of eX/2 must vanish, giving the solvability
condition

π

2
−

log(76E2
hg − 6)

ε
+ ϕ+ χ = (2n+ 1)

π

2
,

for some n ∈ Z. This, finally, is the condition which determines the phase shift ϕ between
the fast and slow scales. Recalling that K0 is real, χ = 0 and we see that there are two
solutions for ϕ in [0, 2π), corresponding to the centre of the bump being a local maximum
and a local minimum.
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3 Study near the Maxwell point

3.1 Summary of this section

We are now poised to study the conditions of existence of localised patterns near the Maxwell
point, given in first approximation by Ehg =

√

3/38. As discussed in §1, the vicinity of the
Maxwell point requires a different scaling of the parameters in (1), which now becomes

(

1 +
d2

dx2

)2

f + ε4f + 3εEhgf
2 + ε2f 3 = 0, (62)

where 0 < ε� 1. This time the slow scale is X = ε2x. We develop a multiple scales solution

f ∼
N−1
∑

n=0

εnfn(x,X) +RN (x− ϕ,X). (63)

We also expand
Ehg ∼ E0 + εE1 + ε2E2 + · · · + δE;

we will see that δE is exponentially small in ε. The program is the same as in the previous
section, but is algebraically more complicated. In §3.2, the leading orders of the analysis will
give us a front solution f0 + εf1 + . . . for well defined values of E0, E1,.... In §3.3, we set up
the problem for the late terms of (63) and in §3.4, we examine them in the vicinity of the
singular point X = iπ. This inner limit allows us to establish the factorial/power divergence
of fn for large n and then to deduce asymptotically fn away from this singularity (§3.5).
The finite sum

∑N−1
n=0 ε

nfn can then be evaluated and we find that it leaves a non-vanishing,
exponentially small, right hand side in (62). This yields the equation for RN (§3.6). The
problem for RN requires separate consideration near the Stokes line (§3.7) and away from
it (§3.8). At the end of the day, two exponentially-small-but-growing terms are found, one
proportional to δE, the other switched on at the Stoke line, and the two must cancel for
large X. This eventually yields the pinning range for the front solution.

3.2 Leading orders of the multiple scale analysis

As before, substituting (63) into (62) we have, at O(ε0),

Lf0 ≡
∂4f0

∂x4
+ 2

∂2f0

∂x2
+ f0 = 0

so that
f0 = A0(X)eix̃ + Ā0(X)e−ix̃, (64)

where x̃ = x− ϕ, with 0 ≤ ϕ < 2π. At O(ε)

Lf1 = −3E0f
2
0 ,
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so that

f1 = −E0A
2
0e

2ix̃

3
− E0Ā

2
0e

−2ix̃

3
− 6E0|A0|2. (65)

In all generality, we should add A1(X)eix̃+Ā1(X)e−ix̃ to f1. However, a solvability condition
at O(ε5) would lead to A1 = 0. We thus omit this term here. At O(ε2)

Lf2 = −f 3
0 − 6E0f0f1 − 3E1f

2
0

= (2E2
0 − 1)A3

0e
3ix̃ + (38E2

0 − 3)A0|A0|2eix̃ − 3E1A
2
0e

2ix̃ − 3E1|A0|2 + c.c.

In order to remove the secular terms so that f2 has a bounded solution we require

E0 =
√

3/38. (66)

In this case

f2 = −A
3
0e

3ix̃

76
− E1

3
A2

0e
2ix̃ + A2e

ix̃ − 3E1|A0|2 + c.c. (67)

At O(ε3)

Lf3 = −4
∂2f1

∂X∂x
− 4

∂4f1

∂X∂x3
− 3f 2

0 f1 − 6E0f0f2 − 3E0f
2
1 − 6E1f0f1 − 3E2f

2
0

= −3E2 |A0|2 −
E0

3

(

163E2
0 − 57

)

|A0|4 − 6E0Ā0A2 + 76E0E1 |A0|2A0e
ix̃

−
(

3E2A
2
0 + 16iE0A0A

′

0 +
390E3

0 − 643E0

32
|A0|2A2

0 + 6E0A0A2

)

e2ix̃

+4E0E1A
3
0e

3ix̃ +
5E0

96

(

21 − 10E2
0

)

A4
0e

4ix̃ + c.c.

This time, we have the solvability condition

E1 = 0, (68)

and the solution at this order is

f3 = −3E2 |A0|2 −
E0

3

(

163E2
0 − 57

)

|A0|4 − 6E0Ā0A2

−
(

E2

3
A2

0 +
16

9
iE0A0A

′

0 +
390E3

0 − 643E0

288
|A0|2A2

0 +
2

3
E0A0A2

)

e2ix̃

+
E0

4320

(

21 − 10E2
0

)

A4
0e

4ix̃ + c.c. (69)

Finally, atO(ε4) we must again eliminate secular terms on the right-hand side of the equation,
which gives the following solvability condition on A0:

4A′′

0 +
16iA′

0|A0|2
19

− 8820|A0|4A0

361
+ 2

√
114E2|A0|2A0 − A0 = 0. (70)
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Writing A0 = R0e
iφ0 we find

φ′

0 = −R2
0

19
(71)

and

4R′′

0 −R0 + 2
√

114E2R3
0 −

8808

361
R5

0 = 0. (72)

Integrating once, using the fact that R0 → 0 as X → −∞, gives

4(R′

0)
2 = R2

0 +
√

114E2R4
0 −

2936

361
R6

0.

Separating the variables and integrating again gives

R2
0 =

76eX

1 + 38
√

114E2eX + 2(20577E2
2 − 5872)e2X

. (73)

For E2 >
4
19

√

367
57

, R0 decays to zero as X → ±∞, corresponding to an extended “bump”

solution. There are singularities at

eX =
−19

√
114E2 ± 4

√
734

(41154E2
2 − 11744)

Each of these singularities generates Stokes lines, and a similar analysis to that seen pre-
viously can be performed, with similar results. The exponentially small terms determine
the phase difference between the fast and slow scales, but no snaking bifurcation diagram is
revealed.

As E2 approaches the critical value 4
19

√

367
57

the bump becomes more and more extended.

At the critical value (after a change of origin) the solutions are

R0 =

√

19β

2

(

1

1 + e−X

)1/2

, (74)

corresponding to an up-front between the zero solution and a periodic solution, and

R0 =

√

19β

2

(

1

1 + eX

)1/2

, (75)

corresponding to a down-front from the periodic solution to the zero solution, where

β =
1√
734

. (76)

These solutions have inverse square root singularities at X = i(2n + 1)π.
We will see that the snaking bifurcation diagram corresponds to an extended region of

oscillation in the solution. This is formed by an up-front followed by a long (of O(ε−2))
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region of uniform oscillations, and then a down front. A beyond-all-orders analysis of the
up-front will identify an exponentially small term turned on across a Stokes line. This term
slowly grows during the extended oscillating region, until it finally becomes large enough to
cause the down-front.

We focus first on the up-front solution. From (71) we find that

φ0 = −β
2

ln
(

1 + eX
)

. (77)

and thus

A0 =

√

19β

2

eX/2

(1 + eX)1/2+iβ/2
, β =

1√
734

. (78)

We follow the same methodology as in §2. The first step is to identify the form of the
late terms in the multiple-scales expansion.

3.3 Late term expansion

For n sufficiently large the equation for the n th term in the expansion of f is

∂4fn
∂x4

+ 2
∂2fn
∂x2

+ fn = −4
∂4fn−2

∂x3∂X
− 6

∂4fn−4

∂x2∂X2
− 4

∂4fn−6

∂x∂X3
− ∂4fn−8

∂X4

− 4
∂2fn−2

∂x∂X
− 2

∂2fn−4

∂X2
− fn−4 −

n−2
∑

j=0

n−2−j
∑

m=0

fjfmfn−2−j−m

− 3E0

n−1
∑

j=0

fjfn−1−j − 3E2

n−3
∑

j=0

fjfn−3−j. (79)

As before, for each n the solution will be a sum of multiples of eix̃ in the form

fn(x,X) =
n+1
∑

k=−n−1

An,k(X)eikx̃. (80)

At each order the coefficients of the terms with k = ±1 are arbitrary (being solutions of
the homogeneous equation), and are determined by the elimination of secular terms in the
equation for fn+4, in the same way that A0 was determined by eliminating the secular terms
in the equation for f4. Substituting (80) into (79) and equating coefficients of eikx̃ gives

(1 − k2)2An,k = 4ik3∂An−2,k

∂X
+ 6k2∂

2An−4,k

∂X2
− 4ik

∂3An−6,k

∂X3
− ∂4An−8,k

∂X4

− 4ik
∂An−2,k

∂X
− 2

∂2An−4,k

∂X2
−
∑

p

∑

q

n−2
∑

j=0

n−2−j
∑

m=0

Aj,pAm,qAn−2−j−m,k−p−q

− An−4,k − 3E0

∑

p

n−1
∑

j=0

Aj,pAn−1−j,k−p − 3E2

∑

p

n−3
∑

j=0

Aj,pAn−3−j,k−p. (81)
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As in §2, to determine the optimal truncation point and the equation for the remainder we
need to solve for An,k as n→ ∞. We begin in §3.4 by examining the behaviour of An,k close
to the singularity at X = iπ. Then, in §3.5, we solve for An,k away from X = iπ.

3.4 Inner expansion near X = iπ

We will show in this section that as X → iπ and n→ ∞,

fn(x,X) ∼ λ1
einπ/4Γ(n/2 + α)

(iπ −X)
n+1

2

(1 − (−1)n)

(

1 +
e−iψe2ix̃

(iπ −X)iβ

)

+ λ3
e−inπ/4Γ(n/2 + ᾱ)

(iπ −X)
n+1

2

(1 − (−1)n)

(

1 +
eiψe−2ix̃

(iπ −X)−iβ

)

,

for some constants λ1, λ3, where α = 3 + iβ/2 and eiψ = (3i− β)/(3i+ β).
From (78) we see that as X → iπ,

A0 (X) ∼ i

√

19β

2

1

(iπ −X)
1

2
+ iβ

2

.

This suggests the ansatz

An,k ∼
Bn,k

(iπ −X)
n+1

2
+ ikβ

2

as X → iπ. (82)

Substituting (82) into (81), gives, in the limitX → iπ, the nonlinear recurrent set of algebraic
equations

(

1 − k2
)2
Bn,k ∼ −4ik

(

1 − k2
)

(

n

2
− 1

2
+
ikβ

2

)

Bn−2,k

−
(

2 − 6k2
)

(

n

2
− 1

2
+
ikβ

2

)(

n

2
− 3

2
+
ikβ

2

)

Bn−4,k

−4ik

(

n

2
− 1

2
+
ikβ

2

)(

n

2
− 3

2
+
ikβ

2

)(

n

2
− 5

2
+
ikβ

2

)

Bn−6,k

−
(

n

2
− 1

2
+
ikβ

2

)(

n

2
− 3

2
+
ikβ

2

)(

n

2
− 5

2
+
ikβ

2

)(

n

2
− 7

2
+
ikβ

2

)

Bn−8,k

−3E0

∑

p

n−1
∑

j=0

Bj,pBn−1−j,k−p

−
∑

p

∑

q

n−2
∑

j=0

n−2−j
∑

m=0

Bj,pBm,qBn−2−j−m,k−p−q (83)

In the limit as n→ ∞ we use the ansatz

Bn,k ∼ Γ
(n

2
+ αk

)

bn,k,
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where the offsets αk are to be determined. We will again find that Bn,k with k = 0,±2 will
dominate, followed by k = ±1,±3, then ±4 etc. For the bn,k to be of the same order for each
k as n→ ∞, we require

α0 = α±2 = α, α±1 = α±3 = α− 1

2
, α±4 = α− 1, . . .

where α is to be determined. Expanding

bn,k ∼ b
(0)
n,k +

1

n
b
(1)
n,k + · · · ,

gives, at leading order as n→ ∞, the linear system of equations

...

225b
(0)
n,−4 + 240ib

(0)
n−2,−4 − 94b

(0)
n−4,−4

−16ib
(0)
n−6,−4 + b

(0)
n−8,−4 ∼

(

2E2
0 − 3

)

B2
0,1b

(0)
n−2,−2 − 6E0B0,1b

(0)
n−1,−3,

64b
(0)
n,−3 + 96ib

(0)
n−2,−3 − 52b

(0)
n−4,−3 − 12ib

(0)
n−6,−3 + b

(0)
n−8,−3 ∼ −6E0B0,1b

(0)
n−1,−2 − 64b

(0)
n,−3,

9b
(0)
n,−2 − 24ib

(0)
n−2,−2 − 22b

(0)
n−4,−2 − 8ib

(0)
n−6,−2 + b

(0)
n−8,−2 ∼ 0,

−4b
(0)
n−4,−1 − 4ib

(0)
n−6,−1 + b

(0)
n−8,−1 ∼ −6E0B0,1

(

b
(0)
n−1,−2 + b

(0)
n−1,0

)

,

b
(0)
n,0 + 2b

(0)
n−4,0 + b

(0)
n−8,0 ∼ 0,

−4b
(0)
n−4,1 + 4ib

(0)
n−6,1 + b

(0)
n−8,1 ∼ −6E0B0,1

(

b
(0)
n−1,0 + b

(0)
n−1,2

)

,

9b
(0)
n,2 − 24ib

(0)
n−2,2 − 22b

(0)
n−4,2 + 8ib

(0)
n−6,2 + b

(0)
n−8,2 ∼ 0,

64b
(0)
n,3 − 96ib

(0)
n−2,3 − 52b

(0)
n−4,3 + 12ib

(0)
n−6,3 + b

(0)
n−8,3 ∼ −6E0B0,1b

(0)
n−1,2 − 64b

(0)
n,3,

225b
(0)
n,4 − 240ib

(0)
n−2,4 − 94b

(0)
n−4,4

+16ib
(0)
n−6,4 + b

(0)
n−8,4 ∼

(

2E2
0 − 3

)

B2
0,1b

(0)
n−2,2 − 6E0B0,1b

(0)
n−1,3,

...
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Note that the equations for b
(0)
n,−2, b

(0)
n,0 and b

(0)
n,2 decouple from the rest. Seeking a solution of

the form
b
(0)
n,k = κnb

(0)
k (84)

gives

(

−1 + 4iκ2 + 3κ4
)2
b
(0)
−2 = 0, (85)

(

1 + κ4
)2
b
(0)
0 = 0, (86)

(

1 + 4iκ2 − 3κ4
)2
b
(0)
2 = 0. (87)

and
...

−
(

−1 + 8iκ2 + 15κ4
)2
b
(0)
−4 − 6B0,1κ

7E0b
(0)
−3 +B2

0,1κ
6
(

2E2
0 − 3

)

b
(0)
−2 = 0,

−
(

−1 + 6iκ2 + 8κ4
)2
b
(0)
−3 − 6B0,1κ

7E0b
(0)
−2 = 0,

(

i+ 2κ2
)2
b
(0)
−1 − 6B0,1κ

7E0

(

b
(0)
−2 + b

(0)
0

)

= 0,

(

i− 2κ2
)2
b
(0)
1 − 6B0,1κ

7E0

(

b
(0)
0 + b

(0)
2

)

= 0,

−
(

1 + 6iκ2 − 8κ4
)2
b
(0)
3 − 6B0,1κ

7E0b
(0)
2 = 0,

−
(

1 + 8iκ2 − 15κ4
)2
b
(0)
4 − 6B0,1κ

7E0b
(0)
3 +B2

0,1κ
6
(

2E2
0 − 3

)

b
(0)
2 = 0,

...

As before the eigenmodes with κ2 = ±i dominate those with κ2 = ±i/3.

From (85)-(87), we find that κ2 = i implies b
(0)
0 , b

(0)
2 6= 0 and b

(0)
−2 = 0. Conversely, if

κ2 = −i then b
(0)
2 = 0 and b

(0)
−2, b

(0)
0 6= 0.

3.4.1 First eigenvalue: κ1 = eiπ/4

If κ = eiπ/4 then
b
(0)
−2 = b

(0)
−3 = b

(0)
−4 = b

(0)
−5 = . . . = 0,

while

b
(0)
−1 =

2

3
e3iπ/4E0B0,1b

(0)
0 (88)

b
(0)
1 = 6e3iπ/4E0B0,1

(

b
(0)
0 + b

(0)
2

)

, (89)

b
(0)
3 =

2

3
e3iπ/4E0B0,1b

(0)
2 , (90)

b
(0)
4 = − 3i

64

(

2E2
0 − 1

)

B2
0,1b

(0)
2 , (91)

...
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and the components b
(0)
0 and b

(0)
2 of the eigenvector are still unknown. Considering the

equations for k = 0, 2 at order 1/n, we obtain

−2iB2
0,1

(

38E2
0 − 3

)

(

2b
(0)
0 + b

(0)
2

)

= 0,

−2iB2
0,1

(

38E2
0 − 3

)

(

b
(0)
0 + 2b

(0)
2

)

= 0,

and we recover the solvability condition 38E2
0 = 3 of the weakly nonlinear analysis since,

otherwise, b
(0)
0 = b

(0)
2 = 0. Solving the equations arising at O (1/n) for b

(1)
k , k = −2, . . . , 3,

we find

b
(1)
−2 =

3i

38
B2

0,1b
(0)
0 , (92)

b
(1)
−1 =

2i5/2

1143/2
B0,1

(

(

2181B2
0,1 + 304 (β − 2i(α− 1))

)

b
(0)
0 + 727B2

0,1b
(0)
2 − 114ib

(1)
0

)

, (93)

b
(1)
1 =

61/2i5/2

193/2
B0,1

(

1118B2
0,1

(

b
(0)
0 + b

(0)
2

)

− 57i
(

b
(1)
0 + b

(1)
2

))

, (94)

b
(1)
3 =

2i5/2

1143/2
B0,1

(

727B2
0,1b

(0)
0 +

(

2181B2
0,1 + 304 (3β + 2i(α− 1))

)

b
(0)
2 − 114ib

(1)
2

)

.(95)

Then, at O (1/n2), we finally obtain

(

76 +
61392B4

0,1

19
− 304(α− 1)2

)

b
(0)
0 +

2

19
B2

0,1

(

14429B2
0,1 + 304 (i+ β)

)

b
(0)
2

+ 108iB2
0,1

(

b
(1)
−2 + b

(1)
2

)

− 6 (1 − i)
√

57B0,1

(

b
(1)
−1 + b

(1)
1

)

+ 120iB2
0,1b

(1)
0 = 0,

2

19
B2

0,1

(

14429B2
0,1 + 304 (β − i)

)

b
(0)
0 +

(

61392B4
0,1

19
+ 76

(

1 − 4 (α− 1 − iβ)2)
)

b
(0)
2

+ 108iB2
0,1b

(1)
0 − 6 (1 − i)

√
57B0,1

(

b
(1)
1 + b

(1)
3

)

+ 120iB2
0,1b

(1)
2 = 0.

Substituting the values of b
(1)
k from (92)-(95), and remembering that B0,1 = i

√

19β/2, this
yields

(

7345

734
+

8i(α− 1)√
734

− 4(α− 1)2

)

b
(0)
0 +

1

367

(

2203 − 2i
√

734
)

b
(0)
2 = 0,

1

367

(

2203 + 2i
√

734
)

b
(0)
0 +

(

7341

734
− 4(α− 1)2

)

b
(0)
2 = 0.

For a non-zero solution, the determinant

(α− 1)4 − i

√

2

367
(α− 1)3 − 7343

1468
(α− 1)2 +

7341i(α− 1)

1468
√

734
+

34495065

8620096
= 0,
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which is analogous to (31) from §2. Although this equation looks nastier than (31), the roots
turn out to be simply

α = −1 +
iβ

2
, α =

iβ

2
, α = 2 +

iβ

2
, α = 3 +

iβ

2
, (96)

remembering that β = 1/
√

734. Each of these values of α produces an eigenvector associated
to κ =

√
i. However, due to the factorial factor, the eigenvector with α = 3+ iβ/2 dominates

for large n, so we restrict our attention to this one. In this case

b
(0)
2 = e−iψb

(0)
0 ,

where

tanψ =
6β

9 − β2
=

6
√

734

6605
, so that e−iψ =

3i+ β

3i− β
. (97)

Second eigenvalue: κ2 = e−3iπ/4 The procedure is the same as before and yields the
same possible values of α. For α = 3 + iβ/2, we have again

b
(0)
−2 = 0 and b

(0)
2 = e−iψb

(0)
0 ,

with ψ given by (97).

Third eigenvalue κ3 = e−iπ/4 This time, we obtain b
(0)
2 = 0 and the possible values for α

are now −1 − iβ/2, −iβ/2, 2 − iβ/2, and 3 − iβ/2. The last one is the dominant one, and
leads to

b
(0)
−2 = eiψb

(0)
0 ,

with ψ as before.

Fourth eigenvalue: κ4 = e3iπ/4 Finally, we find

b
(0)
2 = 0 and b

(0)
−2 = eiψb

(0)
0 .
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3.4.2 Combining the eigenvectors

Let us fix henceforth α = 3 + iβ/2. Combining the four eigenvectors, with coefficients λ1,
λ2, λ3, λ4, we see that

fn(x,X) =
n+1
∑

k=−n−1

An,ke
ikx̃ ∼

n+1
∑

k=−n−1

Bn,k e
ikx̃

(iπ −X)
n+1

2
+ ikβ

2

∼ Γ(n/2 + α)

(iπ −X)
n+1

2

(

λ1e
inπ/4

(

1 +
e−iψe2ix̃

(iπ −X)iβ

)

+ λ2e
−3inπ/4

(

1 +
e−iψe2ix̃

(iπ −X)iβ

))

+
Γ(n/2 + ᾱ)

(iπ −X)
n+1

2

(

λ3e
−inπ/4

(

1 +
eiψe−2ix̃

(iπ −X)−iβ

)

+ λ4e
3inπ/4

(

1 +
eiψe−2ix̃

(iπ −X)−iβ

))

∼ einπ/4Γ(n/2 + α)

(iπ −X)
n+1

2

(λ1 + (−1)nλ2)

(

1 +
e−iψe2ix̃

(iπ −X)iβ

)

+
e−inπ/4Γ(n/2 + ᾱ)

(iπ −X)
n+1

2

(λ3 + (−1)nλ4)

(

1 +
eiψe−2ix̃

(iπ −X)−iβ

)

From the form of equation (81) and inspection of the first few orders of the weakly nonlinear
analysis, we find that

A2n+1,2k+1 = A2n,2k = 0,

that is, odd harmonics vanish for odd values of n, while even harmonics vanish for even n.
Thus λ1 = −λ2, λ3 = −λ4, and

fn(x,X) ∼ λ1
einπ/4Γ(n/2 + α)

(iπ −X)
n+1

2

(1 − (−1)n)

(

1 +
e−iψe2ix̃

(iπ −X)iβ

)

+ λ3
e−inπ/4Γ(n/2 + ᾱ)

(iπ −X)
n+1

2

(1 − (−1)n)

(

1 +
eiψe−2ix̃

(iπ −X)−iβ

)

(98)

as n→ ∞ and X → iπ.

3.5 Outer expansion away from X = iπ

We now determine the behaviour of fn away from the singularities at X = ±iπ. We will
show in this section that

fn(x,X) ∼ einπ/4Γ(n/2 + α)

(iπ −X)
n
2
+α

(1 − (−1)n)
(

F
(0)
0 (X) + F

(0)
2 (X)e2ix̃

)

+
e−inπ/4Γ(n/2 + ᾱ)

(iπ −X)
n
2
+ᾱ

(1 − (−1)n)
(

H
(0)
0 (X) +H

(0)
−2 (X)e−2ix̃

)

+ c.c.

where F
(0)
0 , F

(0)
2 , H

(0)
−2 and H

(0)
0 are given by (110), (111), (114) and (115) respectively.
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Away from X = iπ, motivated by (82), we use the ansatz

An,k (X) ∼ κn
Γ (n/2 + αk)

(iπ −X)n/2+αk

(

F
(0)
k (X) +

1

n
F

(1)
k (X) + . . .

)

(99)

as n→ ∞. Substituting into (81), we soon find, at O (Γ(n/2 + α)), that
(

−1 + 4iκ2 + 3κ4
)2
F

(0)
−2 (X) =

(

1 + κ4
)2
F

(0)
0 (X) =

(

1 + 4iκ2 − 3κ4
)2
F

(0)
2 (X) = 0. (100)

Hence, the possible values for κ are again ±
√
±i. Let us consider first the eigenvalue κ =

eiπ/4.

3.5.1 First eigenvalue: κ1 = eiπ/4

As before, this choice of κ yields
64F

(0)
−2 (X) = 0,

so that F
(0)
−2 (X) = F

(0)
−3 (X) = F

(0)
−4 (X) = . . . = 0. Meanwhile, equations (88)-(91) become

F
(0)
−1 =

2

3
e3iπ/4E0Ā0F

(0)
0 ,

F
(0)
1 = 6 e3iπ/4E0

(

A0F
(0)
0 + Ā0F

(0)
2

)

,

F
(0)
3 =

2

3
e3iπ/4E0A0F

(0)
2 ,

F
(0)
4 = − 3i

64

(

2E2
0 − 1

)

A2
0F

(0)
2 ,

...

At O (1/n), the equations for k = 0, 2 yield, respectively,

2Ā0

(

38E2
0 − 3

)

(

2A0F
(0)
0 + Ā0F

(0)
2

)

= 0,

2A0

(

38E2
0 − 3

)

(

A0F
(0)
0 + 2Ā0F

(0)
2

)

= 0,

which again are automatically satisfied by (66). Finally, at O (1/n2), we obtain the following

pair of equations for F
(0)
0 and F

(0)
2 :

0 = 4F
(0) ′′
0 − 16i

19
|A0|2 F (0) ′

0 − F
(0)
0

(

1 +
26460

361
|A0|4 − 4

√
114E2 |A0|2 +

16i

19
A0Ā

′

0

)

−F (0)
2

(

17640

361
|A0|2 Ā2

0 − 2
√

114E2Ā
2
0 +

16i

19
Ā0Ā

′

0

)

, (101)

0 = 4F
(0) ′′
2 +

16i

19
|A0|2 F (0) ′

2 − F
(0)
2

(

1 +
26460

361
|A0|4 − 4

√
114E2 |A0|2 −

16i

19
Ā0A

′

0

)

−F (0)
0

(

17640

361
|A0|2A2

0 − 2
√

114E2A
2
0 −

16i

19
A0A

′

0

)

. (102)
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As in the analysis away from the Maxwell point, these equations are a linearised version of
the amplitude equation (70). Let us use the amplitude/phase decomposition

F
(0)
0 = (R1 − iR0φ1) e

−iφ0 , F
(0)
2 = (R1 + iR0φ1) e

iφ0 , (103)

where R0 and φ0 are given by (75) and (77). After substituting (103) into (101), (102) the
resulting equation for φ1 can readily be integrated once to give

φ′

1 = −2R0R1

19
+

19K3

R2
0

, (104)

where K3 is constant, while the equation for R1 is

4R′′

1 −
(

1 − 6
√

114R2
0E2 +

44040

361
R4

0

)

R1 = 8K3R0. (105)

We seek four independent solutions of (101)-(102) by finding four independent solutions of
(104)-(105).

We start with the case K3 = 0. In this case (105) is the linearisation of the amplitude
equation (70). With K3 = 0 one solution of (104)-(105) is simply R1 = 0, φ1 = K4, where
K4 is constant. This gives

F
(0)
0 = −iK4A0, F

(0)
2 = iK4A0,

and corresponds to translational invariance with respect to x.
With K3 = 0 a non-trivial solution to (105) is given by R1 = K1R′

0. This gives

F
(0)
0 = K1A

′

0, F
(0)
2 = K1A

′

0,

and corresponds to translational invariance with respect to X. Still with K3 = 0, a second
non-trivial solution to (105) can be found using variation of parameters to be

R1(X) = R′

0(X)

∫ X

iπ

ds

R′

0(s)
2

=

√

2

19β

(

1

1 + e−X

)3/2 [

6 − 2e−2X + eX + 6e−X
(

1

2
+X − iπ

)]

,

φ1 = − 2

19

∫ X

iπ

R0(s)R1(s) ds =
2

19

(

5 − eX + 4iπ − 4X + 6
X − iπ

1 + eX

)

.

The choice for the lower integration bound comes in anticipation with matching with the
inner solution at X = iπ. The resulting solution for F

(0)
0 , F

(0)
2 is

F
(0)
0 =

√
2K2e

3X/2

√
19β (1 + eX)3/2−iβ/2

{

6 − 2e−2X + eX + 6e−X
(

1

2
+X − iπ

)

− iβ

[

4 − 4X + 4iπ − eX + 2e−X
(

5

2
+X − iπ

)]}

(106)
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F
(0)
2 =

√
2K2e

3X/2

√
19β (1 + eX)3/2+iβ/2

{

6 − 2e−2X + eX + 6e−X
(

1

2
+X − iπ

)

+ iβ

[

4 − 4X + 4iπ − eX + 2e−X
(

5

2
+X − iπ

)]}

(107)

Finally, we take K3 nonzero. Then (105) is an inhomogeneous equation. Since we have
just determined two independent solutions of the homogeneous equation we can again use
the method of variation of parameters. After some manipulation, we obtain

R1 = K3R′

0(X)

∫ X

iπ

R0(s)
2

R′
0(s)

2
ds

= K3

√

19β

2

(

1

1 + e−X

)3/2 [

4 + eX + 2e−X
(

3

2
+X − iπ

)]

,

φ1 = − 2

19

∫ X

iπ

R0(s)R1(s) ds+ 19K3

∫ X

iπ

ds

R0(s)2
.

3.5.2 Summary

To summarise, F
(0)
0 , F

(0)
2 can be written as

F
(0)
0 (X) =

[

R′

0

∫ X

iπ

K2 +K3R2
0

R′2
0

ds+
2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

K2 +K3R2
0

R′2
0

dt

)

ds

−iR0

∫ X

iπ

19K3

R2
0

ds

]

e−iφ0 +K1A
′

0 − iK4A0, (108)

F
(0)
2 (X) =

[

R′

0

∫ X

iπ

K2 +K3R2
0

R′2
0

ds− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

K2 +K3R2
0

R′2
0

dt

)

ds

+ iR0

∫ X

iπ

19K3

R2
0

ds

]

eiφ0 +K1A
′

0 + iK4A0. (109)

3.5.3 Second eigenvalue: κ2 = e5iπ/4

We label the amplitudes associated with this eigenvalue G. As happened near X = iπ, the
solutions for G

(0)
0 and G

(0)
2 turn out to be the same as those for F

(0)
0 and F

(0)
2 .

3.5.4 Third and fourth eigenvalues: κ3 = e−iπ/4, κ4 = e3iπ/4

We label these H and J respectively.
For these eigenvalues we find that H

(0)
−2 and J

(0)
−2 satisfy the same equations as F

(0)
0 and

H
(0)
0 and J

(0)
0 satisfy the same equations as F

(0)
2 .
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3.5.5 Matching with the inner region X = iπ

In order to match with the inner solution we need that, as X → iπ,

F
(0)
k (X)

(iπ −X)n/2+αk
∼ const.

(iπ −X)
n+1

2
+ ikβ

2

,

i.e.

F
(0)
−2 (X) ∼ const.

(iπ −X)
1

2
−α−iβ

, F
(0)
0 (X) ∼ const.

(iπ −X)
1

2
−α
, F

(0)
2 (X) ∼ const.

(iπ −X)
1

2
−α+iβ

,

as X → iπ. From (109) we find

F
(0)
2 ∼ K1

(

i
√

19β/8

(iπ −X)3/2+iβ/2
+ . . .

)

+K2

(

−(3i+ β)

3
√

38β
(iπ −X)5/2−iβ/2 + . . .

)

+K3

(

−
√

19

2β

(

1 + 2iβ + β2
)

(iπ −X)3/2−iβ/2 + . . .

)

+K4

(

√

19β/2

(iπ −X)1/2+iβ/2
+ . . .

)

.

We see that matching is possible providing α takes one of the values in (96). The dominant
value of α = 3 + iβ/2 corresponds to the solution multiplying K2. Focusing just on this
solution, we have, away from X = iπ, for κ = eiπ/4,

F
(0)
0 (X) ∼ K1

2

[

R′

0

∫ X

iπ

ds

R′2
0

+
2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

e−iφ0 (110)

F
(0)
2 (X) ∼ K1

2

[

R′

0

∫ X

iπ

ds

R′2
0

− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

eiφ0, (111)

for κ = e5iπ/4,

G
(0)
0 (X) ∼ K2

2

[

R′

0

∫ X

iπ

ds

R′2
0

+
2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

e−iφ0 (112)

G
(0)
2 (X) ∼ K2

2

[

R′

0

∫ X

iπ

ds

R′2
0

− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

eiφ0 , (113)

for κ = e−iπ/4,

H
(0)
−2 (X) ∼ K3

2

[

R′

0

∫ X

iπ

ds

R′2
0

+
2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

e−iφ0 (114)

H
(0)
0 (X) ∼ K3

2

[

R′

0

∫ X

iπ

ds

R′2
0

− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

eiφ0 , (115)
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for κ = e3iπ/4,

J
(0)
−2 (X) ∼ K4

2

[

R′

0

∫ X

iπ

ds

R′2
0

+
2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

e−iφ0 (116)

J
(0)
0 (X) ∼ K4

2

[

R′

0

∫ X

iπ

ds

R′2
0

− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

eiφ0 . (117)

Matching in the vicinity of X = iπ with (98) gives

K1
2 = −K2

2 = −3
√

38β

3i+ β
e−iψλ1 =

3
√

38β

β − 3i
λ1,

K3
2 = −K4

2 = −3
√

38β

3i+ β
λ3 =

3
√

38β

β − 3i
eiψλ3,

which are self-consistent by (97).
Hence, the singularity at X = iπ generates the late terms

fn(x,X) ∼ einπ/4Γ(n/2 + α)

(iπ −X)
n
2
+α

(1 − (−1)n)
(

F
(0)
0 (X) + F

(0)
2 (X)e2ix̃

)

+
e−inπ/4Γ(n/2 + ᾱ)

(iπ −X)
n
2
+ᾱ

(1 − (−1)n)
(

H
(0)
0 (X) +H

(0)
−2 (X)e−2ix̃

)

(118)

in the rest of the complex plane, where α = 3 + iβ/2 and F
(0)
0 , F

(0)
2 , H

(0)
−2 and H

(0)
0 are given

by (110), (111), (114) and (115) respectively.
As before, we can determine the contribution from X = −iπ by symmetry to be

fn(x,X) ∼ e−inπ/4Γ(n/2 + ᾱ)

(−iπ −X)
n
2
+ᾱ

(1 − (−1)n)
(

F̄
(0)
0 (X) + F̄

(0)
2 (X)e−2ix̃

)

+
einπ/4Γ(n/2 + α)

(−iπ −X)
n
2
+α

(1 − (−1)n)
(

H̄
(0)
0 (X) + H̄

(0)
−2 (X)e2ix̃

)

(119)

Note that, as in the inner region, the dominant terms in the series vanish for n even. This
is related to the fact that the derivative terms in equation (79) couple every second term in
the expansion. The result is that when we truncate optimally and study the remainder, we
need only consider the odd terms in the series.

3.6 Crossing the Stokes line

As in §2.6 we truncate the series after N terms and write

f(x̃, X) =
N−1
∑

n=0

εnfn(x̃, X) +RN (x,X).
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The equation for the remainder RN is then

RNx̃x̃x̃x̃
+ 2RNx̃x̃

+RN

+ 4ε2RNx̃x̃x̃X
+ 6ε4RNx̃x̃XX

+ 4ε6RNx̃XXX
+ ε8RNXXXX

+ 4ε2RNx̃X
+ 2ε4RNXX

+ ε2(3f 2
0RN + · · · ) + ε4RN + 6ε(E0 + εE1 + · · · )(f0 + εf1 + · · · )RN

∼ − 3ε δE(f 2
0 + 2εf0f1 + · · · )

+ εN (fNx̃x̃x̃x̃
+ 2fNx̃x̃

+ fN)

+ εN+2 (−6fN−2x̃x̃XX
− 4fN−4x̃XXX

− fN−6XXXX
− 2fN−2XX

)

+ εN+4 (−4fN−2x̃XXX
− fN−4XXXX

)

+ εN+6 (−fN−2XXXX
) + · · · , (120)

where we have used the equation for fN to simplify the right-hand side, and we are assuming
that N is odd. We must comment in particular on the first term on the right-hand side,
proportional to δE. This term arises due to the deviation of E from the Maxwell point, and
is the crucial term which will allow us to join up-fronts and down-fronts. The size of δE is
unknown at present, but we will see that it turns out to be exponentially small. The omitted
terms in (120), represented by · · · , are all lower order as N → ∞, ε → 0. As before, when
we approximate the terms on the right-hand side of (120) as N → ∞ and ε → 0 we will
obtain terms from the singularity at X = iπ through (118) and terms from the singularity
at X = −iπ through (119); we denote the former by rhs+ and the latter by rhs− (with the
corresponding contributions to RN denoted by R+

N and R−

N as before). Each of these will be
composed of two parts—one for the eigenvalues κ1, κ2 (which we denote by the subscript F ),
and one for the eigenvalues κ3, κ4 (which we denote by the subscript H). In addition to these
contributions, this time we will also have a contribution due to the term proportional to δE;
we denote this term on the right-hand side by rhsδE (with the corresponding contribution to
RN denoted by RδE

N ). We compute first rhs+. Now, as ε→ 0, N → ∞,

rhs+
F ∼ εNeiNπ/4eix̃

Γ(N/2 + α)

(iπ −X)N/2+α

∑

k=0,2

ei(k−1)x̃Ck (121)

where

Ck = F
(0)
k

(

(k2 − 1)2 − iε2(6k2 − 4k − 1)
(N/2 + α)

(iπ −X)

+ ε4(−4k + 1)
(N/2 + α)(N/2 + α+ 1)

(iπ −X)2

+ ε6i
(N/2 + α)(N/2 + α+ 1)(N/2 + α + 2)

(iπ −X)3

)

We can see from (118) that the ratio of successive terms (remembering that n is odd so
successive terms correspond to n and n+2) is approximately inε2/2(iπ−X). Thus the opti-
mal truncation point, corresponding to the smallest term, is approximatelyN = 2|X − iπ|/ε2.
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Since N depends on |X − iπ| only we write X − iπ = reiθ giving N = 2r/ε2 + 2ν, where ν is
required to ensure that N is an (odd) integer, but is bounded as ε→ 0. We first approximate
the premultiplier of the sum in (121) at optimal truncation, following [21]. Writing

eix̃ = eixe−iϕ = ei(X−iπ)/ε2e−π/ε
2

e−iϕ, (122)

we find

ei(X−iπ)/ε2εN+2αei(N+2α)π/4 Γ(N/2 + α)

(iπ −X)N/2+α

∼
√

2π eire
iθ/ε2ε2r/ε

2+2ν+2αeiπ/2(r/ε
2+ν+α)(r/ε2 + α + ν)r/ε

2+α+ν−1/2e−r/ε
2−α−ν

rr/ε2+ν+αei(θ+π)(r/ε2+ν+α)

∼
√

2π εe−iπ/2(r/ε
2+ν+α)(1 + ε2(α+ ν)/r)r/ε

2+α+ν−1/2e−r/ε
2−α−νeire

iθ/ε2

r1/2eiθ(r/ε2+ν+α)

∼
√

2π εe−iπ/2(r/ε
2+ν+α)eα+νe−r/ε

2
−α−νeire

iθ/ε2

r1/2eiθ(r/ε2+ν+α)

∼
√

2π εe−iπ/2(r/ε
2+ν+α)e−r/ε

2

eire
iθ/ε2

r1/2eiθ(r/ε2+ν+α)
.

This expression is exponentially small except in the vicinity of the Stokes line θ = −π/2.
Writing θ = −π/2 + εθ̄ gives

ei(X−iπ)/ε2εN+2αei(N+2α)π/4 Γ(N/2 + α)

(iπ −X)N/2+α
∼

√
2π εe−rθ̄

2/2

r1/2
. (123)

We also need to approximate Ck near the Stokes line. We find

Ck ∼ F
(0)
k

(

(k2 − 1)2 − (6k2 − 4k − 1)e−iεθ̄ − (−4k + 1)e−2iεθ̄ − e−3iεθ̄
)

+O(ε2)

∼ F
(0)
k

(

k(k3 − 8k + 8) + 2i(3k2 − 6k + 2)εθ̄ + · · ·
)

.

Thus
C0 ∼ 4iεθ̄F

(0)
0 + · · · , C2 ∼ 4iεθ̄F

(0)
2 + · · · . (124)

Combining (123) and (124) we find that in the vicinity of the Stokes line (121) gives

rhs+
F ∼ ε−2αe−iαπ/2e−π/ε

2

e−iϕ
√

2π εe−rθ̄
2/2

r1/2

(

e−ix̃4iεθ̄F
(0)
0 + eix̃4iεθ̄F

(0)
2

)

. (125)

3.7 Solution of the remainder equation

With X = iπ + reiθ we have
∂

∂X
= −ie

−iθ

r

∂

∂θ
,
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so that in the vicinity of the Stokes line, with θ = −π/2 + εθ̄, we have

∂

∂X
=
e−iεθ̄

rε

∂

∂θ̄
.

Thus equation (120) for the remainder due to the right-hand side rhs+
F (which arises from

the eigenvalues κ = ±eiπ/4 and the singularity at iπ, and which we write as R+
F ) becomes

R+
Fx̃x̃x̃x̃

+ 2R+
Fx̃x̃

+R+
F

+ 4ε
(1 − iεθ̄)

r
R+
Fx̃x̃x̃θ̄

+
6ε2

r2
R+
Fx̃x̃θ̄θ̄

+ 4ε
(1 − iεθ̄)

r
R+
Fx̃θ̄

+
2ε2

r2
R+
Fθ̄θ̄

+ 3ε2f 2
0R

+
F + 6E0εf0R

+
F + 6E0ε

2f1R
+
F + 6E1ε

2f0R
+
F + o(ε2R+

F )

∼ 4i
√

2π ε2−2αe−iαπ/2e−π/ε
2

e−iϕ
e−rθ̄

2/2

r1/2

(

e−ix̃θ̄F
(0)
0 + eix̃θ̄F

(0)
2

)

. (126)

As before, equation (126) must be solved via a multiple scales expansion, since the rescaled X
coordinate θ̄ is still much longer than the fast scale x. The forcing terms in (126) are resonant
terms, so that the solution will be an order of magnitude larger: R+

F = O(ε−2αe−π/ε
2

). We
seek an expansion of the form

R+
F ∼ ε−2αe−π/ε

2 (

R+
0 + εR+

1 + ε2R+
2 + · · ·

)

.

Then, at leading order,
R+

0x̃x̃x̃x̃
+ 2R+

0x̃x̃
+R+

0 = 0,

so that
R+

0 = S−1(θ̄)e
−ix̃ + S1(θ̄)e

ix̃.

Equating coefficients at O(e−π/ε
2

ε1−2α) gives

R+
1x̃x̃x̃x̃

+ 2R+
1x̃x̃

+R+
1 = −4

r

(

R+
0x̃x̃x̃θ̄

+R+
0x̃θ̄

)

− 6E0f0R
+
0

= −6E0

(

A0e
ix̃ + Ā0e

−ix̃
) (

S−1(θ̄)e
−ix̃ + S1(θ̄)e

ix̃
)

,

with solution

R+
1 = −6E0

(

Ā0S−1

9
e−2ix̃ + A0S−1 + Ā0S1 +

A0S1

9
e2ix̃
)

.

Finally, equating coefficients at O(e−π/ε
2

ε2−2α) gives

R+
2x̃x̃x̃x̃

+ 2R+
2x̃x̃

+R+
2 =

4

r2

(

S ′′

−1(θ̄)e
−ix̃ + S ′′

1 (θ̄)eix̃
)

− 3
(

A0e
ix̃ + Ā0e

−ix̃
)2 (

S−1(θ̄)e
−ix̃ + S1(θ̄)e

ix̃
)

+ E2
0

(

A0e
ix̃ + Ā0e

−ix̃
) (

4Ā0S−1e
−2ix̃ + 36A0S−1 + 36Ā0S1 + 4A0S1e

2ix̃
)

+ E2
0

(

2A2
0e

2ix̃ + 2Ā2
0e

−2ix̃ + 36|A0|2
) (

S−1(θ̄)e
−ix̃ + S1(θ̄)e

ix̃
)

+ 4i
√

2π e−iαπ/2e−iϕ
e−rθ̄

2/2

r1/2
θ̄
(

e−ix̃F
(0)
0 + eix̃F

(0)
2

)

.
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Above, we have omitted terms resulting from the expansion of A0(X) in terms of θ̄ but
these are non resonant.

The solvability condition that there are no inhomogeneous terms of the form e±ix̃ then
gives

− 4

r2
S ′′

−1(θ̄) +
(

3 − 38E2
0

) (

Ā2
0S1 + 2|A0|2S−1

)

= 4i
√

2π e−iαπ/2e−iϕ
e−rθ̄

2/2

r1/2
θ̄F

(0)
0 ,

− 4

r2
S ′′

1 (θ̄) +
(

3 − 38E2
0

) (

A2
0S−1 + 2|A0|2S1

)

= 4i
√

2π e−iαπ/2e−iϕ
e−rθ̄

2/2

r1/2
θ̄F

(0)
2 ,

Since 3 − 38E2
0 = 0 we find

S−1 ∼ 2i
√
π e−iαπ/2e−iϕF

(0)
0

∫

√

rθ̄
√

2

−∞

e−v
2

dv,

S1 ∼ 2i
√
π e−iαπ/2e−iϕF

(0)
2

∫

√

rθ̄
√

2

−∞

e−v
2

dv,

where we have imposed the matching condition that S−1 and S1 → 0, as θ̄ → −∞. Thus,
across the Stokes line as θ̄ goes from −∞ to ∞,

2iπ e−iαπ/2e−iϕε−2αe−π/ε
2
(

F
(0)
0 e−ix̃ + F

(0)
2 eix̃

)

(127)

is switched on by rhs+
F .

By symmetry as we cross the Stokes line along the positive imaginary axis from −iπ

−2iπ eiᾱπ/2eiϕε−2ᾱe−π/ε
2
(

F̄
(0)
0 eix̃ + F̄

(0)
2 e−ix̃

)

(128)

is switched on by rhs−F .

3.7.1 rhs+
H and rhs−H and rhsδE

The Stokes line associated with rhs+
H lies on

Re

( −i
iπ −X

)

> 0,

corresponding to θ = π/2 and so does not intersect the real axis. Similarly the Stokes line
associated with rhs−H lies on

Re

(

i

−iπ −X

)

> 0,

corresponding to X = −iπ + reiθ with θ = −π/2 and so does not intersect the real axis.
On the other hand, the term rhsδE is not large in the vicinity of the Stokes line, and

so does not generate such a boundary layer solution. It’s importance is felt away from the
Stokes line, as we now establish.
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3.8 Solution away from the Stokes line

Away from the Stokes line we expand

RN = ε−2 δE
(

R0 (x,X) + εR1 (x,X) + ε2R2 (x,X) + · · ·
)

.

As usual, at O(ε0) we have

LR0 ≡
∂4R0

∂x4
+ 2

∂2R0

∂x2
+R0 = 0

so that
R0 = S0(X)eix̃ + S̄0(X)e−ix̃. (129)

At O(ε)
LR1 = −6E0f0R0,

so that

R1 = −2E0A0S0e
2ix̃

3
− 2E0Ā0S̄0e

−2ix̃

3
− 6E0A0S̄0 − 6Ā0S0. (130)

At O(ε2)

LR2 = −3f 2
0R0 − 6E0f0R1 − 6E0R0f1

= (2E2
0 − 1)3A2

0S0e
3ix̃ + c.c.

Thus

R2 = S2e
ix̃ − 3A2

0S0e
3ix̃

76
+ c.c. (131)

At O(ε3)

LR3 = −4
∂2R1

∂X∂x
− 4

∂4R1

∂X∂x3
− 6f0R0f1 − 3f 2

0R1 − 6E0R0f2 − 6E0f0R2

− 6E0f1R1 − 6E2f0R0 − 3f 2
0

= −6E2Ā0S0 − 6E0Ā0S2 +
1118E0

19
A0Ā

2
0S0

−
(

6E2A0S0 + 6E0A0S2 + 16iE0 (S0A
′

0 + A0S
′

0) −
727E0

38

(

A3
0S̄0 + 3A2

0Ā0S0

)

)

e2ix̃

+
80E0

19
A3

0S0e
4ix̃ + c.c.

The solution at this order is

R3 = −6E2Ā0S0 − 6E0Ā0S2 +
1118E0

19
A0Ā

2
0S0

−
(

2

3
E2A0S0 +

2

3
E0A0S2 +

16i

9
iE0 (S0A

′

0 + A0S
′

0) −
727E0

342

(

A3
0S̄0 + 3A2

0Ā0S0

)

)

e2ix̃

+
16E0

855
A3

0S0e
4ix̃ + c.c. (132)
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Finally, atO(ε4) we must again eliminate secular terms on the right-hand side of the equation,
which gives the solvability conditions

0 = 4S ′′

0 +
16i

19
|A0|2 S ′

0 − S0

(

1 +
26460

361
|A0|4 − 4

√
114E2 |A0|2 −

16i

19
Ā0A

′

0

)

−S̄0

(

17640

361
|A0|2A2

0 − 2
√

114E2A
2
0 −

16i

19
A0A

′

0

)

+ 2
√

114A0 |A0|2 , (133)

0 = 4S̄ ′′

0 − 16i

19
|A0|2 S̄ ′

0 − S̄0

(

1 +
26460

361
|A0|4 − 4

√
114E2 |A0|2 +

16i

19
A0Ā

′

0

)

−S0

(

17640

361
|A0|2 Ā2

0 − 2
√

114E2Ā
2
0 +

16i

19
Ā0Ā

′

0

)

+ 2
√

114 Ā0 |A0|2 ,

Equation (133) is an inhomogeneous version of the linearised amplitude equation (70), which
was already encountered in equations (101), (102) in §3.5, where the homogeneous solutions
were calculated. To these we must add a particular integral due to the inhomogeneous term,
which we now calculate. Let us use again the decomposition

S0 = (R1 + iR0φ1) e
iφ0 ,

which leads to the particular solution

φ1 = − 2

19

∫ X

R0(s)R1(s) ds,

4R′′

1 −R1

(

1 − 6
√

114E2R2
0 +

44040R4
0

361

)

+ 2
√

114R3
0 = 0.

Since we know the two homogeneous versions of the equation we can calculate a particular
integral by variation of parameters. However, since the perturbation arises as a small change

in E, we can spot the solution as being ∂R0/∂E2 evaluated at E2 = 4
19

√

367
57

, giving

φ1 =
19

8

√

57

2
β2

(

eX +
1

1 + eX

)

and

R1 + iR0φ1 =
361

√
3

16
iβ3/2

(

eX

1 + eX

)3/2
(

βe−X + eX (i+ β) + 2i+ β
)

. (134)

Thus, combining all the terms we have calculated, away from the Stokes line,

RN ∼ S0(X)eix̃ + S̄0(X)e−ix̃,
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with

S0 =

[

R′

0

∫ X

iπ

B2 +B3R2
0

R′2
0

ds− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

B2 +B3R2
0

R′2
0

dt

)

+iR0

∫ X

iπ

19K3

R2
0

ds

]

eiφ0 +B1A
′

0 + iB4A0 +
δE

ε2
∂A0

∂E2

,

for some constants B1, . . . , B4. Now B1 corresponds to translating the solution f0 in X and
is therefore not important. Similarly B4 corresponds to translating the solution f0 in x. The
important coefficient is B2, since this is the solution which is switched on across the Stokes
line, and it is the one which grows as X → ∞. Focusing for a moment on this contribution
let us match across the Stokes line to determine B2. Let us write

S0 = B+
2

[

R′

0

∫ X

iπ

ds

R′2
0

− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

eiφ0

+B−

2

[

R′

0

∫ X

−iπ

ds

R′2
0

− 2iR0

19

∫ X

−iπ

R0R′

0

(
∫ s

−iπ

dt

R′2
0

)

ds

]

eiφ0

=
B+

2

K1
2

F
(0)
2 +

B−

2

K̄1
2

F̄
(0)
0 ,

Then, by matching with (127) and (128) as we pass through the Stokes line we find

B+
2 = 2iπ K1

2e
−iαπ/2e−iϕε−2αe−π/ε

2

,

B−

2 = −2iπ K̄1
2e
iᾱπ/2eiϕε−2ᾱe−π/ε

2

.

Thus, for X > 0,

S0 = B+
2

[

R′

0

∫ X

iπ

ds

R′2
0

− 2iR0

19

∫ X

iπ

R0R′

0

(
∫ s

iπ

dt

R′2
0

)

ds

]

eiφ0

+B−

2

[

R′

0

∫ X

−iπ

ds

R′2
0

− 2iR0

19

∫ X

−iπ

R0R′

0

(
∫ s

−iπ

dt

R′2
0

)

ds

]

eiφ0

+
δE

ε2
∂A0

∂E2
,

Now, as X → ∞,

R0 ∼
√

19β

2

(

1 − e−X

2
+ · · ·

)

and

S0 ∼
(

B+
2

√

2

19β
+B−

2

√

2

19β
− δE

ε2
361

√
3

16
β3/2

)

eX (1 − iβ) eiφ0

=

(

−4
√

2πΛeβπ/4e−π/ε
2

√
19β ε6

cos (χ− ϕ− β log ε) − δE

ε2
361

√
3

16
β3/2

)

eX (1 − iβ) eiφ0,

(135)
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where
K1

2 = Λeiχ,

with Λ and χ real.

3.9 The existence of stationary fronts

We see that the far-field behaviour (135) is similar to that found in §2 away from the Maxwell
point (61), but there is an extra exponentially growing term due to the perturbation from
the Maxwell point δE. Now, in order to have a genuine front solution, we need the coefficient
of eX in the far-field behaviour to vanish. For δE in the range

| δE| < δEc =
64
√

2πΛeβπ/4e−π/ε
2

β2361
√

57 ε4
(136)

there are two possible values of ϕ, and a stationary front is possible. As δE approaches the
endpoints of this range there is a bifurcation as the two solutions coalesce and disappear.

Thus we have been able to demonstrate the “pinning” of the front, allowing it to remain
stationary over an (exponentially small) range of values of δE. This pinning is similar to
that found in [42] for front solutions in differential-difference equations. However, in [42] the
fast scale arose from the discrete nature of the underlying problem; here it arises from the
multiscale nature of the solution itself.

With the far-field behaviour of a single front (135) we can do much more than study single
front solutions; we can now generate the full bifurcation diagram by considering solutions
with multiple fronts.

4 Joining fronts

Knowing the exponentially small correction (135) to the up-front, we are finally in a position
to construct a localised pattern enclosed between two fronts. While exponentially small, the
term S0 in (135) is exponentially growing in the slow scale X and becomes of order one
when X = O(1/ε2). A localised pattern solution can thus be constructed as a composite
expansion that combines an up-front at X = 0 and a down-front located at a distance
X = L/ε2. Matching the two fronts inside the periodic domain is the last step required to
complete our analysis.

The up-front solution is

f ∼ f0 + · · ·+ εN−1fN−1 +RN ,

where

f0 = A0(X) ei(x+ϕ) + Ā0(X) e−i(x+ϕ), RN ∼ S0(X) ei(x+ϕ) + S̄0(X) e−i(x+ϕ).
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Focusing just on the fundamental harmonic ei(x+ϕ), we use (135) and the first two terms
A0 + ε2A2 computed in Appendix A, Eq. (168), to obtain, for 1 � X � 1/ε2,

f ∼ e−iβX/2ei(x+ϕ)

{

√

19β

2

[

1 − ε2∆ − 1 + iβ

2

(

1 + 2541β3ε2X
)

e−X
]

−
[

4 πΛeβπ/4e−π/ε
2

√

19β/2 ε6
cos (χ− ϕ− β log ε) +

δE

ε2
361

√
3

16
β3/2

]

eX (1 − iβ)

}

+ c.c.

(137)

where ∆ = β4
(

80629
114β

+ i 172666595
456

)

.

By symmetry, the far field of the down-front as X − L/ε2 → −∞ is given by (137) with
X → L/ε2 −X and x → L/ε4 − x. Note though that the phase shift ϕ can be different for
the two fronts; indeed this is one of the key variables which allows the oscillations from the
two solutions to match. Thus, for 1 � L/ε2 −X � 1/ε2,

f ∼ e−iβ(L/ε2−X)/2ei(L/ε
4
−x+ϕ̂)

{

√

19β

2

[

1 − ε2∆ − 1 + iβ

2

(

1 + 2541β3
(

L− ε2X
))

eX−L/ε2
]

−
[

4 πΛeβπ/4e−π/ε
2

√

19β/2 ε6
cos (χ− ϕ̂− β log ε) +

δE

ε2
361

√
3

16
β3/2

]

eL/ε
2
−X (1 − iβ)

}

+ c.c.

(138)

We now need to make sure (137) and (138) match for X = O(1/ε2) and L/ε2−X = O(1/ε2).
However, the expansions above are not uniformly valid in these limits, owing to the ε2Xe−X

term. Hence, we must construct an outer expansion that is valid inside the extended periodic
domain and match it with (137) and (138).

4.1 Outer expansion inside the periodic domain

In order to generate an approximation which is valid for X = O(1/ε2) we need to introduce
a third super-slow scale ξ = ε4x = ε2X. On this new length scale, the fronts (137) and
(138) appear as boundary layers. Examining (137), we can anticipate that the amplitude
associated with eix will be a constant plus an exponentially-small X-dependent solution.

Let us develop the multiple-scales solution

f ∼ f0 (x,X, ξ) + εf1 (x,X, ξ) + . . . ,

with the usual expansion for Ehg

Ehg ∼ E0 + ε2E2 + ε4E4 + . . .+ δE.

In Appendix A, E4 is found to be
63711

√
3/38

264974
. The first four orders of the analysis proceed

in exactly the same way as in §3.2, except that, this time,

f0 = A0(X, ξ)e
ix̃ + Ā0(X, ξ)e

−ix̃.
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At O(ε4), we thus get the solvability condition

4A0XX
+

16iA0X
|A0|2

19
− 8820|A0|4A0

361
+ 2

√
114E2|A0|2A0 −A0 = 0, (139)

and, in view of (137), we assume the solution

A0(X, ξ) =

√

19β

2
eiφ0 , (140)

where φ0(X, ξ) = −βX/2+Φ(ξ). The super-slow function Φ(ξ) is determined in Appendix A
and is given by Φ = 43163

4310048
ξ. Similarly, we have

A2(X, ξ) = −
√

19β

2
β4

(

80629

114β
+ i

172666595

456

)

eiφ0 . (141)

The equation for f4 is then

Lf4 =

(

4E0E2A
3
0 −

48

19
A2

0A2 −
3504

1805
|A0|2A3

0 −
56i

19
A2

0A0X

)

e3ix̃ +
16

1805
A5

0 e
5ix̃ + c.c.,

giving

f4 =

(

4E0E2A
3
0 −

48

19
A2

0A2 −
3504

1805
|A0|2A3

0 −
56i

19
A2

0A0X

)

e3ix̃

64
+

16

1805
A5

0

e5ix̃

576
+ c.c..

To save space, we omit to write the expression for f5, although it is necessary for the following
steps.

The terms proportional to e±X are exponentially-small corrections to the solution above
and therefore satisfy to good approximation the linearised equation

(

1 + ∂2
x

)2
RN + 6εEhg(f0 + εf1 + . . .)RN + 3ε2(f0 + εf1 + . . .)2RN + ε4RN = 0. (142)

Expanding
RN ∼ R0 (x,X, ξ) + εR1 (x,X, ξ) + . . . ,

we get formally the same problem as in §3.8. We thus have

R0 = S0(X, ξ) e
ix̃ + c.c.,

R1 = −6Ā0(X, ξ)S0(X, ξ) −
2E0A0(X, ξ)S0(X, ξ)e

2ix̃

3
+ c.c.,

R2 = S2(X, ξ)e
ix̃ − 3A0(X, ξ)

2S0(X, ξ)e
3ix̃

76
+ c.c.,

...

49



The amplitude equation for S0 is

0 = 4S0XX
+

16i

19
|A0|2 S0X

− S0

(

1 +
26460

361
|A0|4 − 4

√
114E2 |A0|2 −

16i

19
Ā0A0X

)

−S̄0

(

17640

361
|A0|2A2

0 − 2
√

114E2A
2
0 −

16i

19
A0A0X

)

.

Writing S0 = (u0(X, ξ) + iv0(X, ξ)) e
iφ0 and using (140), we obtain

4u0XX
− 4βv0X

− 2940β2u0 = 0, (143)

4v0XX
+ 4βu0X

= 0. (144)

Integrating the second equation, we find2 v0X
= −βu0 and the first equation simplifies as

4u0XX
− 4u0 = 0.

Hence, we have u0 = a(ξ) eX + b(ξ) e−X, and

S0 = a(ξ) (1 − iβ) eX + b(ξ) (1 + iβ) e−X . (145)

Pursuing the calculation up to O(ε6), a new solvability condition is eventually obtained for
S2. Setting S2 = (u2(X, ξ) + iv2(X, ξ)) e

iφ0 , it reads

4u2XX
− 4βv2X

− 2940β2u2 = −
(

2938

367
aξ +

1333981247995β

45080947056
a

)

eX

+

(

2938

367
bξ −

1587801142645

45080947056
b

)

e−X , (146)

4v2XX
+ 4βu2X

=

(

4β aξ +
8572403643

45080947056
a

)

eX

+

(

4β bξ −
339292298293

45080947056
b

)

e−X . (147)

Integrating the second of these equation and substituting the result into the first, we get

4u2XX
− 4u2 = −8 eX

(

aξ + 2541β3a
)

+ 8 e−X
(

bξ − 2541β3b
)

. (148)

Since e±X is solution of the homogeneous equation, u2 will diverge secularly in X unless

a(ξ) = a0 e
−γ ξ, b(ξ) = b0 e

γ ξ, γ ≡ 2541β3. (149)

The far-field solution inside the localised pattern is therefore

f ∼ e−iβX/2ei(x+ϕ̌)eiΦξξ

[

√

19β

2

(

1 − ε2∆
)

+ a0 (1 − iβ) eX−γ ξ + b0 (1 + iβ) e−X+γ ξ

]

+ c.c.,

(150)

2In fact, we should be writing v0X
= −βu0 + c(ξ) for some unknown function c(ξ). We have also

omitted the term −3ε δE
(

f2

0
+ 2εf0f1 + . . .

)

in the right hand side of (142). These would be necessary for a
comprehensive matching, but do not change the final result and we discard them here for simplicity.
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where we have introduced a new constant phase ϕ̌ for the fast oscillations.
We need to match (137), (138), and (150) by requiring that

lim
X→∞

f
(

x,X, 0−
)

∼ lim
ξ→0+

f (x,X, ξ) , lim
ξ→L−

f (x,X, ξ) ∼ lim
X−L/ε2→−∞

f
(

x,X, L+
)

.

Equating the constant amplitude oscillations in (137) and (150), we find

e−iβX/2ei(x+ϕ)

√

19β

2

(

1 − ε2∆
)

= e−iβX/2ei(x+ϕ̌)

√

19β

2

(

1 − ε2∆
)

.

Hence
ϕ̌ = ϕ.

Matching the e±X terms we find

a0 =
−4 πΛeβπ/4e−π/ε

2

√

19β/2 ε6
cos (χ− ϕ− β log ε) − δE

ε2
361

√
3

16
β3/2, (151)

b0 =
−1

2

√

19β

2
. (152)

Next, considering (138) and (150), matching the constant amplitudes yields

ϕ+ ϕ̂ =
−L
ε4

+
βL

2ε2
− ΦξL+ 2mπ, (153)

while the e±X terms yield

a0 e
−γL =

−1

2

√

19β

2
e−L/ε

2

, (154)

b0 e
γL =

(

−4 πΛeβπ/4e−π/ε
2

√

19β/2 ε6
cos (χ− ϕ̂− β log ε) − δE

ε2
361

√
3

16
β3/2

)

eL/ε
2

. (155)

Eliminating a0 and b0 from (151), (152), (154), and (155), these matching conditions become

1

2

√

19β

2
e−L/ε

2+γL =
δE

ε2
361

√
3

16
β3/2 +

4 πΛeβπ/4e−π/ε
2

√

19β/2 ε6
cos (χ− ϕ− β log ε) , (156)

1

2

√

19β

2
e−L/ε

2+γL =
δE

ε2
361

√
3

16
β3/2 +

4 πΛeβπ/4e−π/ε
2

√

19β/2 ε6
cos (χ− ϕ̂− β log ε) . (157)

Equations (153), (156) and (157) are, finally, the three equations which determine the re-
maining unknowns L, φ and φ̂, in terms of the bifurcation parameter δE. Note that, by
(156) and (157), we must have

cos (χ− ϕ− β log ε) = cos (χ− ϕ̂− β log ε) . (158)
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5 The bifurcation diagram

There are two different types of solution of equation (158). One set of solutions is given by

ϕ̂ = ϕ+ 2nπ, (159)

for n ∈ Z. A second set of solutions is given by

ϕ̂ = −ϕ + 2χ− 2β log ε+ 2nπ, (160)

for n ∈ Z. These two solutions give very different behaviours, as we now demonstrate.

5.1 The snakes

Suppose first that (159) holds. Then (153) gives

ϕ = − L

2ε4
+
βL

4ε2
− Φξ

2
L+ kπ, (161)

which, on substituting into (156) gives

8
√

19

361
√

6β
ε2e−L/ε

2+γL = δE+
64
√

2 πΛeβπ/4e−π/ε
2

β2361
√

57 ε4
cos

(

L

2ε4
− βL

4ε2
+

Φξ

2
L+ χ− β log ε− kπ

)

.

(162)
This is the equation which describes the snaking bifurcation diagram. The separation be-
tween fronts, L/ε4, acts as a measure of the norm of the solution, and (162) describes how
this varies with δE, the bifurcation parameter. We make a few remarks.

(i) The left-hand side rapidly becomes exponentially small, even by comparison to e−π/ε
2

,
so that the width of the snake rapidly approaches 2 δEc, where

δEc =
64
√

2πΛeβπ/4e−π/ε
2

β2361
√

57 ε4
.

This width is exponentially small in ε and is, of course, the same as the range of values of
δE for which stationary fronts are possible (136).

(ii) Equation (162) describes two interleaving curves, one for k = 0 and one for k = 1,
corresponding to the centre of the bump being a local minimum and a local maximum.

(iii) Each cycle around the snake corresponds to a full cycle of the cosine, which corre-
sponds to L increasing by approximately 4πε4. Since this corresponds to x increasing by 4π,
it means that two peaks are added to the solution during each cycle.

There are still two constants in formula (162) which we need to determine, namely Λ
and χ. In principle these can be calculated by iterating the recurrence relations (83) to
suitably large values of n. However, even using acceleration techniques such as Richardson
extrapolation it is computationally difficult to generate enough terms in the expansion.
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Figure 4: Bifurcation diagram for various values of ε: (a) ε = 0.495, (b) ε = 0.55, (c) ε = 0.6,
(d) ε = 0.65. Thick line: analytical formula. Thin line: numerical simulation.

In Figure 4 we show a comparison numerical computations of the snakes using Auto [3]
and the asymptotic formula (162), with several values of ε. Here Λ and χ chosen to give the
best fit, which was obtained for

64
√

2πΛeβπ/4

β2361
√

57
≈ 2.439, χ ≈ −0.5. (163)

Even though ε is not very small, the agreement is remarkable. Note that for the largest
values of ε, the oscillations of the snakes become tilted. This is due to the remainder RN

in the solution, whose size is proportional to δE. More details on the composite solution
effectively used to draw the bifurcation diagrams are given in Appendix B.

Fixing Λ and χ at these values, in Figure 5 we show the width of the snaking oscillation,
which is the pinning range (136), as a function of ε. The fitting of Λ forces the curve to pass
through the numerically determined value at ε = 0.55; the remainder of the asymptotic curve
is completely determined. Also in Figure 5 we examine the validity of the scaling (136) by
plotting ε4 exp (π/ε2) δEc as a function of ε. If our scaling is correct then the points should
lie on a straight line. We see that the agreement is very good, and is convincing evidence
that the ε−4 prefactor is correct. We should mention here that Paul Matthews performed an
independent check of this scaling with a different numerical code and confirmed to us this
result.

We remark that for the smallest values of ε, the agreement between analytics and numerics
slightly degrades. This is due to the fact that the separation between slow and fast space
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Figure 5: Left: Amplitude of the snaking oscillations (pinning range) in Fig. 4 as a function
of ε. Right: ε4 exp (π/ε2) δEc as a function of ε. Dots: numerical; line: analytical.

scales become more and more pronounced and difficult to cope with using Auto. In particular,
the scale of the front becomes so slow that localised patterns rapidly become of comparable
size to the finite domain of numerical integration. When the oscillations completely invade
the domain of integration, snaking stops. This, we observe, is accompanied by a slight shift
in the Maxwell point [already noticeable in Fig. 4 (a)]. The amplitude of snaking oscillation,
on the other hand, remains very much the same as if the domain was infinite.

5.2 The ladders

Now suppose that (160) holds. Then (153) gives

2χ− 2β log ε =
βL

2ε2
− L

ε4
+ 2kπ. (164)

This equation determines L, so that in this case the length of the pattern is independent of
δE. Equation (156) gives

8
√

19

361
√

6β
ε2e−L/ε

2+γL = δE +
64
√

2 πΛeβπ/4e−π/ε
2

β2361
√

57 ε4
cos (χ− ϕ− β log ε) . (165)

With L given by (164) there are solutions to (165) for δE in a finite range given by the
maximum and minimum values of the cosine. At the ends of this range there is one possible
solution for ϕ in [0, 2π), while inside the range there are two possible values of ϕ for each
value of δE. Thus (165) describes two solution branches each parameterised by ϕ, which
form links between the two snaking solution branches found above.

The bifurcation diagram thus calculated is shown in Figure 6, in which the bifurcation
points between the snakes and the ladders are shown as filled circles. Note that these
bifurcation points are not the same as the saddle-node bifurcations at the folds, although the
two bifurcations are exponentially close, since the left-hand side of (165) decays exponentially
to zero as L increases.
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Figure 6: The full analytical bifurcation diagram for ε = 0.65, showing the ladder structure
joining the interweaving snakes. Each line represents two solutions, which bifurcate from
the snakes at the dots. Note that these are not at the folds of the snakes, but do approach
them exponentially as L increases.
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6 Discussion

We have performed a beyond-all-orders multiples-scales analysis of the Swift-Hohenberg
equation (1) in the vicinity of a modulation instability (§2) and in the vicinity of the Maxwell
point (§3).

In §2 we found multiple-scales solutions comprising a fast oscillation modulated by a
slowly varying amplitude which took the form of a localised “bump” [of the usual sech
form; see equation (9)]. The translational invariance of equation (1) leads to each solution
representing a one-parameter family of solutions. However, when the multiple-scales ansatz
is used one spatial variable becomes two spatial variables, and there are therefore two degrees
of freedom associated with translational invariance. This extra degree of freedom arises as a
“phase difference” between the fast and slow scales. This phase difference is not determined
at any order of ε: it is selected by exponentially-small terms beyond all orders. Such a
situation is common in singular perturbation problems, and has been studied in a number
of systems in the last few years [19, 20, 21, 42].

Here the leading order amplitude has a pair of singularities in the complex plane, and
these singularities result in a divergent asymptotic expansion for the amplitude with associ-
ated Stokes lines. By truncating the multiple-scales expansion at its smallest term (optimal
truncation) we were able to explicitly see the switching on of exponentially-subdominant
terms as the Stokes line was crossed via an extension of the usual Stokes line smoothing cal-
culation [12, 28]. The width of the Stokes line is small by comparison to the slow scale but
large by comparison to the fast scale, so that the smoothing is accomplished via a multiple
scales expansion, as in [1].

The exponentially-small term switched on across the Stokes line is exponentially growing
in the slow scale. Thus, eventually, it would become order one, so that the single bump
solution will not in general satisfy the condition of decay at infinity. In order for the solution
to be valid at infinity the coefficient of the growing exponential must be zero. This is the
condition which determines the phase shift between the fast and slow scales; it selects two
values for this phase shift from the continuum, corresponding to the two possible symmetries
in the solution (the centre of the amplitude bump can correspond to a peak or a trough in
the fast oscillation). Thus we have demonstrated the two solutions which bifurcate at the
modulation instability. For these two solutions the amplitude is monotonic in the bifurcation
parameter Ehg, tending to infinity as the Maxwell point is approached.

In §3 we examined the Maxwell point in more detail by considering a multiple-scales
analysis of a front solution. The multiple-scales analysis, and the corresponding beyond-all-
orders calculation, is more complicated in this case, with solvability conditions occurring at
fifth order in the expansions rather than at third order. We found that, as in §2, the leading
order amplitude for the front has a singularity in the complex plane of the slow scale, which
generates a divergent asymptotic expansion and a Stokes line across which an exponentially-
subdominant but exponentially-growing term is switched on. Now, however, we have the
possibility of generating another exponentially-growing term by perturbing the bifurcation
parameter Ehg away from the Maxwell point (if such a perturbation is applied at any other
point the resulting solution decays at infinity). As in §2, to obtain a valid approximation
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the coefficient of the exponentially-growing term must be zero. This time this results in an
equation relating the phase shift between the fast and slow scales and the perturbation of
the bifurcation parameter from the Maxwell point, δE. This equation describes a closed
loop of solutions: there are two solutions for any | δE| < δEc which disappear via a fold at
the endpoints of the interval. Thus we have shown that there is a range of values of δE for
which a steady front solution is possible. The width of this range is given by (136), and is
exponentially small in ε.

Armed with the far-field behaviour of a single front from §3, we considered in §4 solutions
comprising two fronts separated by a period of sustained oscillation. The exponentially-small
but exponentially-growing term in the far-field of the first front eventually grows to be order
one and matches into the second down-switching front. By matching the far-fields of the two
fronts together we were able to generate the bifurcation diagram for the solutions found in
§2 near the Maxwell point. The matching was made slightly more complicated by the fact
that the fronts must be well-separated to give the exponential enough time to grow, which
introduces a third scale requiring a three-scale multiple-scales analysis in the region between
fronts. On this super-slow scale, fronts appear as boundary layers.

The bifurcation diagram is effectively described by equations (153), (156) and (158).
The solutions to these equations are of two types. The first type comprises two interleaving
snaking bifurcation curves which are the extension of the bifurcation curves of §2 into the
region close to the Maxwell point. The width of the snakes rapidly approaches the pinning
region | δE| < δEc as the length of the sustained oscillation increases.

The second type of solution comprises a “ladder” in the diagram, in which two solutions
form a closed loop which meets each snake at a bifurcation point. These loops are the two-
front analogues of the loop of single-front solutions found in §3. The existence of such steady
asymmetric solutions relies on the fact that the Swift-Hohenberg equation is variational.
These solutions generally become travelling waves in the presence of non-variational terms.
However, this is probably yet a smaller effect than the exponentially-small terms we have
computed. Indeed, had we studied a subcritical bifurcation in another, non-variational
equation, we would still have obtained a variational problem at each finite order of the
multiple scale (Ginzburg-Landau amplitude equation and linearised versions). This is true
for any subcritical bifurcation problem. Non-variational effects on localised patterns must
be quite subtle to study but are certainly worth the while, as equation (1) often appears
decorated with the non-variational terms |∂E/∂x|2 and E ∂2E/∂x2 as an asymptotic limit of
chemical, optical or biological systems [47]; see also [64].

A by-product of our analysis, which can be useful for future reference, are the fourth-
order formulae E0 + ε2E2 + ε4E4 and 1 − ε2β/2 + ε4Φξ for the Maxwell point and the wave
number of the localised pattern, respectively. The latter point was investigated numerically
in some detail in [16, 18]. Given that in practice, ε is not so small, the fourth order terms
above give a significant improvement in the comparison between numerically and analytically
computed bifurcation curves.

Clearly the present analysis can be extended to multiple bump solutions, both far and
near the Maxwell point. In the latter case, the growing exponentials from each front need
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to be tracked through the solution until the far-field of the last front, at which point the
condition of no further exponential growth needs to be applied [1]. Numerical bifurcation
diagrams of two-bump solutions have been computed in [73].

Dynamical fronts could also be described by letting f depend exponentially-slowly on
time. In this case −∂f/∂t would appear in the right-hand-side of (120) and would be treated
in the same fashion as −3ε δE (f 2

0 + 2εf0f1 + . . .), as in [42].
Snaking bifurcation diagrams have been observed in many other problems, notably differ-

ence or differential-difference equations [76]. This is related to the fact that in these problems
too there is a finite pinning range for the bifurcation parameter in which a front solution
will remain stationary. In the (singular) limit of small separation, in which the difference
equations become differential equations, the pinning range is exponentially small in that
separation [42], and a beyond-all-orders analysis will be necessary to elucidate the snaking
behaviour. On the other hand delay-differential equations with Hopf bifurcations also give
rise to snaking bifurcation diagrams [5]. Such systems can display well-separated time-scales
[35, 57], so that a beyond-all-order multiple-timescale analysis can be envisaged there too.

Acknowledgments Gregory Kozyreff is a research associate at the Fonds de la Recherche
Scientifique-FNRS (Belgium). We also thank Paul Matthews for his independent numerical
check of the scaling for δEc.

A Multiple-scales analysis up to 6th order

In §4, we use the far-field expressions for the up- and down-front in order to find matching
conditions between them. However, matching occurs at X = O(1/ε2) and we therefore have
to derive an expression for the front in this limit. One may expect, in particular, a slow drift
in frequency to set in on this super-slow scale. To determine this, we therefore resume the
multiple scale analysis in the beginning of §3. Specifically, we seek for a solution of the form

f ∼ f0 (x,X, ξ) + ε f1 (x,X, ξ) + . . . ,

where ξ = ε4x = ε2X, and we let

E = E0 + ε2 E2 + ε4E4 + . . .+ δE

in (62). The first few orders of the calculation are the same as before, except that, this time,

f0 = A0(X, ξ) e
ix̃ + Ā0(X, ξ) e

−ix̃.

A0 satisfies the same solvability condition as before, but integration of (71) now yields

φ0 = −
∫ X R2

0(s)

19
ds+ Φ (ξ) ,

so that

A0(X, ξ) =

√

19β

2

eX/2+iΦ(ξ)

(1 + eX)1/2+iβ/2
.
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Solving further the O(ε4) and O(ε5) problem, we eventually get, at O(ε6) the following
solvability condition for A2:

0 = 4A2XX
+

16i

19
|A0|2A2X

− A2

(

1 +
26460

361
|A0|4 − 4

√
114E2 |A0|2 −

16i

19
Ā0A0X

)

−Ā2

(

17640

361
|A0|2A2

0 − 2
√

114E2A
2
0 −

16i

19
A0A0X

)

+
16i

19
|A0|2A0ξ

−
(

1 − 1040
√

734

1083
|A0|2 +

31614

361
|A0|4

)

iA0X
− 44

19
Ā0A

2
0X

+

(

2
√

114E2 −
18072

361
|A0|2

)

iA2
0Ā0X

+ 8A0Xξ

+A0 |A0|2
(

4942

1083
+ 2

√
114E4 −

9724
√

734

6859
|A0|2 +

1186412

20577
|A0|4

)

. (166)

Equation (166) is a linearised version of (70) with a forcing term. Setting A2 = (R2 + iR1φ2) e
iφ0,

and making use of (72) to eliminate highest derivatives of R0, we find

φ2X
=

1

8
− 2

19
R0R2 −

187
√

734

2166
R2

0 +
24799

4332
R4

0 − Φξ +
19B3

R2
0

, (167)

where B3 is constant. The equation for R2 is then

4R2XX
−R2

(

1 − 6
√

114E2R2
0 +

44040R4
0

361

)

= 4
∂g

∂R0
+ 8B3R0,

where

4
∂g

∂R0
= −

(

4828

1083
+ 2

√
114E4

)

R3
0 +

9280
√

734

6859
R5

0 −
365208

6859
R7

0.

Using the method of variation of parameters, a particular solution associated to g(R0) is

R0X

∫ X

R−2
0X

(
∫ s

R0X

∂g

∂R0
dt

)

ds = R0X

∫ X g (R0)

R2
0X

ds

The general solution of (166) is thus

A2 =

[

R0X

∫ X B2 +B3R2
0 + g (R0)

R2
0X

ds− 2iR0

19

∫ X

R0R0X

(
∫ s B2 +B3R2

0 + g (R0)

R2
0X

dt

)

ds

+iR0

∫ X
(

19B3

R2
0

− 187
√

734R2
0

2166
+

24799R4
0

4332

)

ds+ iR0

(

1

8
− Φξ

)

X

]

eiφ0

+B1A0X
+ iB4A0.
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Letting X → −∞, we find that

A2 ∼
√

38

β
e−X/2 ei φ0

(

β2437 − 93952B2

1216
− iB3

)

.

Hence, A2 would diverge exponentially unless

B2 =
437

93952
, B3 = 0.

Considering next the limit X → ∞, we find that

A2 ∼
√

19β

2

[

19
√

114β

16
(1 − iβ)

(

63711
√

3/38

264974
− E4

)

eX + i

(

43163

4310048
− Φξ

)

X

]

eiφ0

Hence, exponential growth and secular divergence in X are avoided if

E4 =
63711

√

3/38

264974
, Φξ =

43163

4310048
.

This provides a correction to the Maxwell point and a frequency correction to the oscillations
over very long distances. Assuming these values, the full large-X behaviour of A2 becomes

A2 ∼ −
√

19β

2
β3

(

80629

114
+ i

172666595β

456
+ 2541

1 + iβ

2
X e−X

)

ei φ0 +O
(

e−X
)

.

Moreover, for large values of X, we have

R0 =

√

19β

2

1

(1 + e−X)1/2
∼
√

19β

2

(

1 − e−X

2
+ . . .

)

,

ei φ0 =
eiΦξξ

(1 + eX)iβ/2
∼ e−i βX/2+iΦξξ

(

1 − iβe−X

2
+ . . .

)

.

Hence a two-term expression for the front is

A0 + ε2A2 ∼
√

19β

2

[

1 − ε2β4

(

80629

114β
+ i

172666595

456

)

−1 + iβ

2

(

1 + 2541β3ε2X
)

e−X
]

e−i β/2+iΦξξ +O
(

e−2X , ε2e−X
)

. (168)

We see that although A2 now remains bounded for large values of X, the term X e−X in A2

means that the expansion is not uniform for X = O(1/ε2). In order to join fronts separated
by distances of O(1/ε2) we need to match the front solutions with a three-scale solution in
the oscillating region, as is done in §4.
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B Composite expansions used to plot Figures 4 and 6

In order to draw the bifurcation diagram, we found it sufficient to use the left and right
front solutions to construct a composite solution. In addition, we removed directly all the
“dangerous” exponentially-growing terms, as well as the terms proportional to X± iπ; these
are taken care of by the matching procedure of §4. Indeed, numerical errors can leave residual
factors of, say, 10−17 in front of exponentially-growing terms and these eventually blow up,
making L2 norm evaluation inaccurate. In practice, we used

f(x, ϕ, ε) + f(
L

ε4
− x, ϕ̂, ε) − fmid(x, ε),

where f is the approximate left-front solution and fmid represents the common terms between
the left- and right-front solutions inside the periodic domain to avoid double counting. The
approximate left solution is

f ∼
[

A0e
ix̃+iΦξξ − ε

(

E0A
2
0

3
e2i(x̃+Φξξ) − 3E0|A0|2

)

+ c.c.

]

+RN ,

where A0 is given by (78), x̃ = x+ ϕ and [see (106), (107), and (134)]

RN =
e3X/2eix̃+iΦξξ

(1 + eX)3/2+iβ/2

[

δE

ε2
361β3/2

√
3

16

(

−2 + iβ + iβe−X
)

− 4πΛeβπ/4e−π/ε
2

√

19β/2 ε6

× cos (χ− ϕ− β log ε)H(X)

(

6 − 2e−2X +
3

2
e−X + iβ

(

4 + 5e−X
)

)]

+ c.c. .

The function H above is the Heaviside function, being one for X > 0 and zero otherwise.
Note that the inclusion of RN in the approximate solution is necessary to reproduce the
tilted snaking observed when ε becomes appreciable. Finally,

fmid = eix̃−iβX/2+iΦξξ

(

√

19β

2
+
δE

ε2
361β3/2

√
3

16
(−2 + iβ) − 4πΛeβπ/4e−π/ε

2

√

19β/2 ε6

× cos (χ− ϕ− β log ε) (6 + 4iβ)

)

− 19εβE0

6
e2i(x̃−βX/2+Φξξ) − 57εβE0 + c.c. .
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