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EXPONENTIAL BEHAVIOR IN THE PRESENCE OF

DEPENDENCE IN RISK THEORY

HANSJÖRG ALBRECHER,∗ Katholieke Universiteit Leuven

JEF L. TEUGELS,∗∗ Katholieke Universiteit Leuven and EURANDOM

Abstract

We consider an insurance portfolio situation where there is possible dependence

between the waiting time for a claim and its actual size. By employing

the underlying random walk structure we obtain rather explicit exponential

estimates for infinite and finite time ruin probabilities in the case of light-

tailed claim sizes. The results are illustrated with several examples worked out

for specific dependence structures.

Keywords: Dependence; risk model; copula; renewal theory; Wiener-Hopf
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1. INTRODUCTION

Classical risk theory describing characteristics of the surplus process of a portfolio of

insurance policies usually relies on the assumption of independence between claim sizes

and claim inter-occurrence times. However, in many applications this assumption is

too restrictive and generalizations to dependent scenarios are called for. In recent

years, a number of results on ruin probabilities have been obtained for models that

allow for specific types of dependence (see [2] for a survey on the subject).

One traditional technique to derive results in risk theory is to describe the surplus
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2 H. Albrecher and J.L. Teugels

process as a random walk with independent increments between two claim instances.

It is well-known that if the Laplace transform of the distribution of the increments exists

in a left neighborhood of the origin, then the asymptotic behavior of ruin probabilities

in infinite and finite time are determined by properties of the Laplace transform in

that region.

In this paper we take up this random walk approach. However, we allow the interclaim

time and its subsequent claim size to be dependent according to an arbitrary copula

structure, thus separating the dependence behavior from the properties of the marginal

distributions. The introduction of dependence modifies the shape of the Laplace

transform, but the random walk structure is preserved and one can derive asymptotic

results for the ruin function by studying properties of this Laplace transform. This

approach seems to be new; the present paper is not meant to be an exhaustive treatment

of the subject - it should rather be seen as a starting point.

Section 2 gives some preliminaries on random walk techniques and their connection

with ruin theory. In Section 3 the Laplace transform of the increment distribution of

the random walk is introduced and some of its properties are discussed. In Section 4 we

rederive the Cramér-Lundberg approximation for the infinite-time ruin probability in

terms of random walk quantities and discuss the behavior of the adjustment coefficient

in the presence of dependence. Rather explicit exponential estimates of finite-time ruin

probabilities for these dependent scenarios are given in Sections 5 and 6 and discussed

in some detail for several specific dependence structures.

2. PRELIMINARIES

We start by introducing the main quantities from both ruin and random walk theory.

2.1. Portfolio Quantities

Let claim sizes arrive according to a renewal process with interclaim times {Ti, i =

1, 2, . . .} and T0 = 0. The generic interclaim time T has distribution FT . Let the claim

sizes {Ui, i = 1, 2, · · · } form another renewal process generated by the random variable

U with distribution FU . We assume that there is constant payment of premiums at

a rate c. We will normally assume that the bivariate process {(Ui, Ti); i = 1, 2, · · · }
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is a bivariate renewal process, generated by the pair (U, T ). For then, the quantities

{Xi := Ui − cTi , i ≥ 1} are i.i.d. which is necessary for the random walk approach

that we are following. The random variable X = U − cT will be called the generic

variable. As a special case we mention the famous Sparre Andersen model where the

two processes are independent.

Denote by Rn the risk reserve immediately after payment of the n−th claim. Then

obviously R0 = u is the initial reserve, while for n ≥ 0

Rn+1 = Rn + cTn+1 − Un+1 .

2.2. Random Walks

To introduce a random walk, define for all n ≥ 1

Xn = Un − cTn

which can be interpreted as the loss between the (n−1)−th and the n−th claim. Then

with S0 = 0 and

Sn+1 = Sn + Xn+1 , n ≥ 0

we can express Rn = u− Sn in terms of the random walk {Sn}. Let

K(x) = P{X ≤ x} = P{U − cT ≤ x}

be the distribution of the generic variable X. Without further ado we assume that

EX = EU − cET < 0

as otherwise the company will be ruined with probability 1.

We use the terminology and the notation from general random walk theory (see e.g.

[11]). At every instant, the random walk {Sn; n ≥ 0} itself is determined by the

convolution

K∗n(x) = P{Sn ≤ x}

where K∗0(x) is the unit-step distribution at the origin. The characteristic function of

X will be denoted by

κ(ζ) := E{exp(iζX)} , ζ ∈ R.
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The following quantities are among the prime study objects in random walk theory.

The first upgoing ladder index is defined by N := inf{n > 0 : Sn > 0} and the

corresponding first upgoing ladder height is then SN . A famous result by Baxter [11]

gives the hybrid transform of the pair (N, SN ). For |s| < 1 and θ ≥ 0,

E{sN e−θSN } = 1− exp

{
−

∞∑
n=1

sn

n

∫ ∞

0+

e−θxdK∗n(x)

}
. (1)

In the Feller notation [5], the above hybrid transform appears as the right Wiener-Hopf

factor of the characteristic function κ(.). By this we mean that

1− sκ(ζ) = (1− χ(s, ζ))(1− χ̃(s, ζ)) (2)

where χ(s, ζ) := E{sN eiζSN } and the quantity χ̃(., .) similarly refers to the (weak)

downgoing ladder index and ladder height.

The maxima of the random walk are defined by M0 = 0 and for n ≥ 1 by

Mn = max(0, S1, · · · , Sn).

We denote the distribution of Mn by Gn(x) := P{Mn ≤ x} . The supremum of the

random walk is defined by M∞ = sup(0, S1, S2, · · · ) and further G(x) := P{M∞ ≤ x}.
A classification quantity that often appears is given by

B(s) :=
∞∑

n=1

sn

n
P (Sn > 0) .

Now, B := B(1) < ∞ iff M∞ < ∞ a.s.; moreover then lim sup Sn = −∞. In particular

since EX < 0, automatically B < ∞.

For further reference it is necessary to include information on the distributions {Gn(.)}.
We introduce the generating function for this sequence. Let |s| < 1 and define

G(s, x) :=
∞∑

n=0

Gn(x) sn . (3)

It follows from the Spitzer-Baxter identity [5, 11] that
∫ ∞

0

eiζxG(s, dx) =
e−B(s)

(1− s)(1− χ(s, ζ))
. (4)

Part of the Wiener-Hopf factor in (2) appears in the expression for the Laplace trans-

form of the supremum. Indeed, it follows from (4) that at least for θ ≥ 0
∫ ∞

0

e−θxdG(x) = exp

{
−

∞∑
n=1

1
n

∫ ∞

0

(1− e−θx) dK∗n(x)

}
=

e−B

1− E(e−θSN )
. (5)
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2.3. Connections

The links between the above random walk concepts and the risk quantities introduced

in the beginning are straightforward. Let us define the time of ruin with initial reserve

u as

τ(u) := inf{n : u < Sn} .

Then ruin will occur at the n−th claim if the total loss expressed in terms of the

random walk Sn has annihilated the initial surplus. In terms of the maximum we get

the fundamental relation

{τ(u) > n} = {Mn ≤ u} . (6)

This equation immediately implies that ruin will occur in finite time but after the

n−th claim if and only if Mn is not overshooting u but M∞ will. Hence

P{n < τ(u) < ∞} = P{Mn ≤ u < M∞} = Gn(u)−G(u) . (7)

3. THE GENERIC VARIABLE

While not fully necessary we will assume from now on that the joint distribution

function FU,T (u, t) = P (U ≤ u, T ≤ t) has a bivariate density fU,T . We are interested in

the distribution K of the generic variable X = U−cT . Recall that EX = EU−cET <

0. Obviously, the density of X exists and is given by

k(z) =
1
c

∫ ∞

0

fU,T

(
u,

u− z

c

)
du . (8)

The characteristic function κ(ζ) of K can be obtained from the joint characteristic

function

E{eiζ1U+iζ2T } =
∫ ∞

0

du

∫ ∞

0

dt eiζ1u+iζ2tfU,T (u, t)

by choosing ζ1 = ζ and ζ2 = −cζ. In general one cannot be sure that κ(ζ) exists for

any non-real value of ζ.

3.1. Double Laplace Transform

As shown by Widder [16], the distribution K will have an exponentially bounded right

tail if and only if the double Laplace transform K̂(θ) := κ(iθ) converges in a left

neighborhood of the origin. We will therefore replace ζ by iθ to obtain the (two-sided)
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Laplace transform of X, rather than the characteristic function. Alternatively, the left

abscissa of convergence −σK of K̂(θ) should be strictly negative (in which case we call

K to be super-exponential). We will generally write −σY = −σH for the left abscissa

of convergence of the Laplace transform of a random variable Y with distribution H.

So the main object of study is

K̂(θ) =
∫ ∞

u=0

∫ ∞

t=0

e−θ(u−c t)fU,T (u, t) du dt . (9)

and we will restrict our analysis in this paper to cases where σX > 0. Notice that the

balance condition tells us that K̂ ′(0) = −EX > 0. Also note that since T ≥ 0, X ≤ U.

Hence we always have σX ≥ σU ≥ 0 meaning that exponentially bounded claim sizes

automatically lead to an exponentially bounded generic variable.

It is well-known that every joint distribution function can be expressed as a copula func-

tion of its marginal distributions (this copula representation being unique for continu-

ous multivariate distribution functions), so that we have FU,T (u, t) = C(FU (u), FT (t))

for some copula C. This approach allows to completely separate the dependence

structure from the properties of the univariate marginals (for a survey on copulas we

refer to Joe [8]). In what follows we try to formulate our results in terms of copulas.

Using the identity 1− FU,T (x,∞)− FU,T (∞, y) + FU,T (u, t) =
∫∞

x
du

∫∞
y

dt fU,T (u, t),

we obtain for every θ > −σX

K̂(θ)− F̂U (θ)− F̂T (−c θ) + 1 =

− c θ2

∫ 1

0

e−θF−1
U (a)dF−1

U (a)
∫ 1

0

ecθF−1
T (b)dF−1

T (b)(1− a− b + C(a, b)) (10)

or equivalently

K̂(θ) = F̂U (θ)F̂T (−c θ)

− c θ2

∫ 1

0

e−θF−1
U (a)dF−1

U (a)
∫ 1

0

ecθF−1
T (b)dF−1

T (b) (C(a, b)− ab). (11)

If the copula function is absolutely continuous, we can also write (9) as

K̂(θ) =
∫ ∞

u=0

∫ ∞

t=0

e−θ(u−c t)fU (u)fT (t) c(FU (u), FT (t)) du dt, (12)

where c(a, b) = ∂2C(a,b)
∂a∂b .

We will now shortly discuss three simple copulas that can be viewed as extremal cases

of dependence:
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Example 3.1. Independence copula

The independence copula is given by CI(a, b) := ab and we will denote the correspond-

ing distribution by KI . If U and T are independent, we have K̂I(θ) = F̂U (θ)F̂T (−cθ).

Clearly then K̂I(θ) exists for all θ ∈ (−σU , 1
cσT ) . Hence σKI = σU .

Note that for an arbitrary copula we have K̂ ′(0) = −E(U − cT ) = K̂ ′
I(0), since this is

a property of the marginal distributions U and T only. However, the difference of the

second derivatives K̂ ′′(0) and K̂ ′′
I (0) already reflects the dependence structure through

the covariance of U and T (K̂ ′′(0) < K̂ ′′
I (0) for Cov(U, I) > 0 and conversely).

Example 3.2. Comonotone copula

The strongest possible positive dependence between U and T is attained for the

comonotone copula CM (a, b) := min(a, b), corresponding to the distribution KM . This

copula is singular and its Laplace transform is given by

K̂M (θ) =
∫ ∞

0

e−θ(u−cF−1
T (FU (u)))fU (u) du.

In the special case of exponential marginal distributions U and T (with parameters

λ1, λ2, resp.), one obtains

K̂M (θ) =
λ1

λ1 + θ(1− c λ1/λ2)
.

For the comonotone (and for some related) copulas, one can construct examples of

heavy-tailed distributions FU that still lead to σK > 0.

Example 3.3. Countermonotone copula

The strongest possible negative dependence between U and T is attained for the

(singular) countermonotone copula CW (a, b) = max(a + b − 1, 0) and linked to the

distribution KW . The corresponding Laplace transform can be derived as

K̂W (θ) =
∫ ∞

0

e−θ(u−cF−1
T (1−FU (u)))fU (u) du =

∫ 1

0

e−θ(F−1
U (v)−cF−1

T (1−v)) dv.

Trivially F−1
U (v)− cF−1

T (1− v)) ≤ F−1
U (v), so that for θ ≤ 0

K̂W (θ) ≤
∫ 1

0

e−θF−1
U (v) dv = F̂U (θ),

implying σKW
≥ σU .
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In the special case of exponential marginal distributions U and T (with parameters

λ1, λ2, resp.), one obtains in terms of a beta-function

K̂W (θ) = B

(
1 +

θ

λ1
, 1− cθ

λ2

)
, −λ1 < θ < c λ2 .

Note that the above comonotone and the countermonotone copulas are those degener-

ate cases of bivariate dependence, where one random variable is a deterministic function

of the other.

Remark 3.1. Since any copula C(a, b) is itself a joint distribution function with

uniform marginals, we have CW (a, b) ≤ C(a, b) ≤ CM (a, b) for all 0 ≤ a, b ≤ 1 (often

referred to as the Fréchet-Hoeffding bounds). By virtue of (10), we thus obtain that

for fixed marginals the Laplace transform K̂(θ) is bounded by

K̂M (θ) ≤ K̂(θ) ≤ K̂W (θ)

for those values of θ, where the quantities are defined.

4. INFINITE TIME RUIN

Due to the connection between ruin and the random walk we have that P (τ(u) < ∞) =

1−G(u) where G(u) = P (M∞ ≤ u) is given by (4). From the Wiener-Hopf factorization

(2) at s = 1 we know that

1− K̂(θ) = (1− E(e−θSN ))(1− χ̃(1, iθ)) .

But then the abscissa of convergence of K̂(θ) is the same as that of E(e−θSN ) and

therefore also that of G. Hence σK = σG.

Now assume that there exists an adjustment coefficient R > 0 for which E(eRSN ) = 1.

The Wiener-Hopf factorization above then implies K̂(−R) = 1. We put β := θ + R in

(5) to get ∫ ∞

0

e−βxd

(∫ x

0

eRydG(y)
)

=
e−B

1− E(e−βS̃N )

where

P (S̃N ≤ x) :=
∫ x

0

eRydP (SN ≤ y) . (13)
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It is clear that the function H1(x) :=
∫ x

0
eRydG(y) is then a renewal function. By

Blackwell’s renewal theorem (cf. [4]) we have that

H1(x + y)−H1(x) D→ e−B

E(S̃N )
y =: c1 y

when x →∞. But since dG(x) = e−Rx dH1(x) we have

eRu(1−G(u)) = eRu

∫ ∞

u

e−RxdH1(x) =
∫ ∞

0

e−Rw H1(u+dw) → c1

∫ ∞

0

e−Rwdw =
c1

R
.

If we return to the original quantities, we find that for initial capital u →∞

P (τ(u) < ∞) ∼ e−B

R E(SN eRSN )
e−R u , (14)

which completes a particularly transparent proof in the spirit of Feller [5] of the well-

known Cramér-Lundberg approximation for the infinite time ruin probability. It has

been derived in various other ways in the literature (see e.g. [12]). In the above version,

the constant in the approximation is expressed as a function of quantities related to

the underlying random walk.

Remark 4.1. Note that the classical form of the Cramér-Lundberg approximation for

the compound Poisson model, where U and T ∼ Exp(1/λ) are independent, can be

retained from (14) by using the corresponding Wiener-Hopf factorization

1− λ/c

λ/c− iζ
E[eiζU ] =

(
1− λ/c

λ/c− iζ

)(
1− λ

c

1− E[eiζU ]
iζ

)
,

from which it follows that

E[e−θSN ] = 1 +
λ

c θ
(1− E[e−θU ])

and thus

E(SN eRSN ) =
λE(UeRU )− c

cR
.

This together with e−B = P(N = ∞) = 1−λE(U)/c leads to the well-known expression

P (τ(u) < ∞) ∼ c− λE(U)
λE(UeRU )− c

e−R u, u →∞.

In the general case, it follows from (14) that the asymptotic behavior of the ruin

probability is determined by the value of the adjustment coefficient R defined by



10 H. Albrecher and J.L. Teugels

K̂(−R) = 1. Let us fix the marginal distributions of U and T , and define RI to be the

adjustment coefficient in the case of independence of U and T , i.e. F̂U (−RI)F̂T (cRI) =

1. If now U and T are positively quadrant dependent (that is P (U > u, T > t) ≥
P (U > u)P (T > t) for all 0 ≤ u, t < ∞), then we have C(a, b) ≥ a b for all 0 ≤ a, b ≤ 1

for its copula and thus it follows from (11) that

K̂(θ) ≤ K̂I(θ) for all θ ∈ (−σK , 0), (15)

so that R > RI . Conversely, for negatively quadrant dependent variables U and T we

get

K̂(θ) ≥ K̂I(θ) for all θ ∈ (−σK , 0), (16)

implying R < RI . In order to quantify the difference of R and RI , one can use the

Lagrange expansion, by which the value of R can be expressed in terms of properties

of the Laplace transform at the value of the adjustment coefficient of the independence

case. In that way we obtain

−R = −RI +
∞∑

n=1

dn−1

dwn−1

(
w + RI

K̂(w)− K̂(−RI)

)n ∣∣∣∣∣
w=−RI

· (1− K̂(−RI))n

n!

= −RI +
1− K̂(−RI)

K̂ ′(−RI)
− 1

2
K̂ ′′(−RI)
K̂ ′(−RI)3

(1− K̂(−RI))2 + . . . ,

the series being convergent as long as the inverse of K̂(θ) is analytic in the domain under

consideration and K̂ ′(−RI) 6= 0. This formula is particularly useful for investigating

the sensitivity of the adjustment coefficient on the presence of dependency between U

and T . Some specific examples, where R can even be expressed explicitly as a function

of a dependence measure will be given in the next section.

Remark 4.2. Although quadrant dependence is one of the weakest dependence con-

cepts, due to (11) it turns out to be sufficient for deriving inequalities for the adjustment

coefficient. Other dependence concepts such as association, tail monotonicity, stochas-

tic monotonicity and likelihood ratio dependence all imply quadrant dependence and

thus inequalities (15) and (16) follow accordingly for these concepts.

In general, whenever there is a concordance ordering among two copulas C1(a, b) and

C2(a, b) (i.e. C1(a, b) ≥ C2(a, b) ∀ 0 ≤ a, b ≤ 1), then by (11) we have that R1 ≥ R2

(for a survey of dependence concepts and orderings we refer to Joe [8] or Nelsen [10]).
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5. FINITE TIME RUIN

We adapt a result from the literature on random walk theory [13, 14]. The exponential

speed of convergence of a random walk towards its upper limit immediately translates

into the following finite time ruin estimate for our risk process.

Theorem 1. Assume that

(i) −∞ ≤ EX < 0;

(ii) K̂(θ) converges for −σK < θ ≤ 0 where σK > 0;

(iii) for some ω ∈ (0 , σK), K̂(θ) attains a minimum K̂(−ω) := γ < 1.

Then for all finite u ≥ 0 as n →∞

P{n < τ(u) < ∞} ∼ c H(u) γn n−3/2 (17)

where c is a known constant and H a function solely depending on u.

The quantity c = γ
1−γ c1 where c2

1 = γ(2πω2K̂ ′′(−ω))−1 is given explicitly. For more

information about the function H, see Section 6.

Let us have a closer look at the conditions of the theorem. Condition (i) is of

course the balance condition, necessary for the eventual survival of the portfolio. The

second condition has already been discussed in Section 3. Clearly, the existence of an

adjustment coefficient R is sufficient for both (ii) and (iii).

Example 3.1 continued: Independent Case

Assume that σKI = σU > 0. Then −ω is the solution of

ψU (θ) = c ψT (−cθ),

where ψU (θ) := − F̂ ′U (θ)

F̂U (θ)
denotes the logarithmic derivative of F̂U (θ) (and ψT (θ) is

defined analogously). Since U and T are nonnegative random variables, ψU (θ) is

monotonically decreasing in θ ∈ (−σU ,∞) and ψT (−cθ) is monotonically increasing in

θ over (−∞, 0]. Since at the origin ψU (0) = E(U) < c,E(T ) = cψT (0), the existence

and uniqueness of −ω is guaranteed.
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1

θ

-ω

γ

-R-σK

K̂(θ)

Figure 1: The Laplace transform K̂(θ)

Let us now fix the marginals U and T again and consider the behavior of the crucial

quantities γ and ω in the presence of dependence. From (11) it follows that γ < γI

(γ > γI) for positively (negatively, respectively) quadrant dependent U and T , where

γI corresponds to the case of independence (and Remark 4.2 on other dependence

concepts applies here accordingly). However, one cannot establish such inequalities for

ω and ωI (see e.g. Example 5.6, where ω is insensitive to the degree of dependence).

K̂ ′(θ) is analytic at −ωI and thus, if K̂ ′′(−ωI) 6= 0, we obtain through Lagrange

expansion

− ω = −ωI +
∞∑

n=1

dn−1

dwn−1

(
w + ωI

K̂ ′(w)− K̂ ′(−ωI)

)n ∣∣∣∣∣
w=−ωI

· (−K̂ ′(−ωI))n

n!

= −ωI − K̂ ′(−ωI)
K̂ ′′(−ωI)

+
1
2

K̂ ′′′(−ωI) K̂ ′(−ωI)2

K̂ ′′(−ωI)3
+ . . .

This series converges, if ω − ωI is sufficiently small. By means of Bürmann’s theorem

(cf. [15]), we can get information on the value of γ directly in terms of properties of

K̂ at −ωI , namely

γ = K̂(−ωI) +
m−1∑
n=1

dn−1

dwn−1

(
K̂ ′(w)

w + ωI

K̂ ′(w)− K̂ ′(−ωI)

)n ∣∣∣∣∣
w=−ωI

· (−K̂ ′(−ωI))n

n!
+ Rm

(18)
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where the remainder term is given by

Rm =
1

2πi

∫ −ω

−ωI

∫

D

(
K̂ ′(−ω)− K̂ ′(−ωI)
K̂ ′(t)− K̂ ′(−ωI)

)m−1
K̂ ′(t)K̂ ′′(−ω) dt dω

K̂ ′(t)− K̂ ′(−ω)

and D is a contour in the t-plane enclosing the points −ωi and −ω such that the

equation K̂ ′(t) = K̂ ′(ζ) has no roots inside or on D except t = ζ, where ζ is any point

inside D. The first few terms of (18) are thus given by

γ = K̂(−ωI)− 1
2

K̂ ′(−ωI)2

K̂ ′′(−ωI)
− K̂ ′(−ωI)3K̂ ′′′(−ωI)

2K̂ ′′(−ωI)3
+ . . .

The above expansions provide an approach to obtain sensitivity results on the degree of

dependence of the quantities determining the asymptotic behavior of the risk process,

if the Laplace transform K̂(θ) is given for the dependent case. In some cases it might

be possible to obtain an empirical Laplace transform from data sets of U and T . In

what follows we will illustrate the above result on several examples.

5.1. Some General Cases

In quite a number of cases, a copula C can be decomposed into a convex combination

of two more fundamental copulas. Suppose that for some quantity α ∈ (0 , 1), the

distribution K has copula C given by C(a, b) = αC1(a, b) + (1 − α)C2(a, b) where for

i = 1, 2, Ci is a copula linked to the distribution Ki through the expression (10).

If σi refers to the abscissa for Ki, i = 1, 2, then the corresponding abscissa σ for K

is given by σ = min(σ1, σ2). Moreover, on the interval (−σ , 0] all three functions

K̂(θ), K̂1(θ) and K̂2(θ) are positive and convex. In particular, if for i = 1, 2, K̂i(θ) has

a minimum γi at −ωi, then the minimum γ of K̂(θ) is attained at a value −ω satisfying

min(ω1, ω2) ≤ ω ≤ max(ω1, ω2) . Moreover, γ ≥ α γ1 + (1− α) γ2.

Example 5.1. The positive linear Spearman copula

The positive linear Spearman copula has a particularly simple structure given by

CρS (a, b) =





(a + ρS(1− a))b, b ≤ a

(b + ρS(1− b))a, b > a

where we assume that ρS ≥ 0. The name stems from the fact that the dependence

parameter ρS coincides with Spearman’s rank correlation coefficient, which is a measure
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of concordance. Note that there is also a simple relation to Kendall’s τ , namely

τ =
1
3
ρS(2 + sgn(ρS)ρS).

The positive linear Spearman copula is a convex combination of the independent copula

and the comonotone copula:

CρS
(a, b) = (1− ρS)CΠ(a, b) + ρSCM (a, b).

This copula is an extreme value copula, since its asymptotic tail dependence coefficient

λ ∈ [0, 1] defined by limα→1−
1

1−α (1− 2α + CρS
(α, α)) (see e.g. [8]) is given by λ = ρS .

If the dependence structure of U and T is governed by this copula, then we obtain

K̂(θ) = (1− ρS)K̂I(θ) + ρSK̂M (θ). (19)

From (19) it can immediately be seen that for ρS < 1, the marginal distribution U has

to be super-exponential in order to satisfy condition (ii). Moreover, σK = σU and ω is

the solution of
K̂ ′

M (−ω)
K̂ ′

I(−ω)
= −1− ρS

ρS
< 0.

From this it follows that

ωρS
> ωI and γρS

< γI .

If in addition we assume exponential marginal distributions FU (u) = 1 − exp(−λ1u)

and FT (t) = 1 − exp(−λ2t), then, in order to satisfy condition (i) we have to have

cλ1 > λ2. From (19) we obtain

K̂(θ) = (1− ρS)
λ1

λ1 + θ

λ2

λ2 − cθ
+

λ1 ρS

θ (1− cλ1
λ2

) + λ1

.

Example 5.2. The negative linear Spearman copula

We now assume that ρS ≤ 0. The copula is defined by

CρS (a, b) =





(1 + ρS)ab, a + b ≤ 1

ab + ρS(1− a)(1− b), a + b > 1.

The simple relation to Kendall’s τ again prevails. Also here, the negative linear

Spearman copula is a convex combination, this time of CI(uv) and CW (a, b):

CρS (a, b) = (1 + ρS) CI(a, b)− ρS CW (a, b)
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and accordingly

K̂(θ) = (1 + ρS)K̂I(θ)− ρSK̂W (θ). (20)

Thus, for −1 < ρS < 0, the marginal distribution U has to be super-exponential in

order to satisfy condition (ii). Moreover, σK ≤ σU and ω is the solution of

K̂ ′
W (−ω)

K̂ ′
I(−ω)

=
1 + ρS

ρS
< 0

so that

ωρS
< ωI and γρS

> γI .

In case of exponential marginals we obtain in terms of a beta-function

K̂(θ) = (1− ρS)
λ1

λ1 + θ

λ2

λ2 − cθ
− ρSB

(
1 +

θ

λ1
, 1− cθ

λ2

)
.

Example 5.3. Farlie-Gumbel-Morgenstern copula

This is an analytically simple and at the same time absolutely continuous copula given

by

C(a, b) = ab(1 + 3ρS(1− a)(1− b)),

where −1/3 ≤ ρS ≤ 1/3 is again Spearman’s rank correlation coefficient (and for

Kendall’s τ we have τ = 2ρS/3). Thus this copula allows for weak dependence only.

For exponential marginals with parameters as above one obtains

K̂(θ) =
λ1λ2((θ + 2λ1)(2λ2 − cθ)− 3cρSθ2)
(θ + λ1)(θ + 2λ1)(λ2 − cθ)(2λ2 − cθ)

and the determination of R and ω leads to polynomial equations of order 4 and 5,

respectively.

Example 5.4. Archimedean copulas

Bivariate Archimedean copulas are an important subclass of copulas defined by

C(a, b) = φ (φ−1(a) + φ−1(b)) for all 0 ≤ a, b ≤ 1,

where the generator φ is the Laplace transform of a non-negative random variable.

The concordance measure τ can easily be determined by the generator through

τ = 1− 4
∫ ∞

0

s (φ′(s))2 ds.
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Techniques for fitting these types of copulas to given bivariate data sets can be found

in [6]. Here we will just state a general monotonicity result. Let us again assume

that the marginal distributions of U and T are fixed. Since an Archimedean copula

C1 dominates another Archimedean copula C2 in concordance order if and only if

the function φ−1
1 ◦ φ2 is superadditive (cf. [8]), representation (10) allows to deduce

R1 > R2 and γ1 < γ2, whenever the above superadditivity holds.

5.2. Specific Cases

We now deal with a few parametric bivariate distributions for which one can evaluate

ω and γ explicitly as a function of the dependence parameter.

Example 5.5. Moran and Downton’s bivariate exponential

The joint density function is given by

fU,T (u, t) =
λ1λ2

1− ρ
I0

(
2
√

ρλ1λ2 u t

1− ρ

)
exp

(
−λ1u + λ2t

1− ρ

)
,

where I0(z) =
∑∞

j=0
1

j!2

(
z
2

)2j is the modified Bessel function of the first kind and order

zero, 0 ≤ ρ ≤ 1 is Pearson’s correlation coefficient and λ1, λ2, u, t > 0 (cf. [9]). Here

the marginal distributions U and T are exponential with parameters λ1 and λ2. From

the particularly simple structure of the joint moment-generating function we obtain

K̂(θ) =
λ1λ2

cθ2(ρ− 1) + θ(λ2 − cλ1) + λ1λ2
, (21)

and thus we have σK = λ2−cλ1−
√

(cλ1−λ2)2+4cλ1λ2(1−ρ)

2c(1−ρ) . The adjustment coefficient is

now given by

R =
cλ1 − λ2

c(1− ρ)
,

which is positive, if cλ1 > λ2. But the latter is just the net balance condition (i) for

the marginal distributions. From (21) it follows that

ω =
λ2 − cλ1

2c(ρ− 1)
=

R

2
.

Furthermore we have

γ = K̂(−ω) =
λ1λ2

λ1λ2 + (cλ1 − λ2)2 1
4c(1−ρ)

.
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Example 5.6. Kibble and Moran’s bivariate gamma

This symmetric bivariate distribution with standard gamma marginals (shape param-

eter α > 0) is defined through its joint moment-generating function

E(et1U+t2T ) =
(

1− β + 1
β

t1 − β + 1
β

t2 +
β + 1

β
t1 t2

)−α

.

Here β > 0 is the dependence parameter and Pearson’s correlation coefficient is given

by 1
1+β . We thus have

K̂(θ) =
(

1− β + 1
β

(
(c− 1) θ + c θ2

))−α

,

and σK = (1−c)(1+β)−
√

(1−c)2(1+β)2+4cβ(1+β)

2c(1+β) . It follows easily that R = c−1
c and

ω =
c− 1
2c

=
R

2
,

which is positive, since condition (i) amounts to c > 1 in this case. Note that R and ω

are independent of the dependence parameter β. The crucial quantity γ depends on β

and is given by

γ =
(

4cβ

1 + 2c(β − 1) + β + c2(1 + β)

)α

.

Example 5.7. Marshall and Olkin bivariate exponential

The distribution is defined by

P(U > u, T > t) = e−λ1u−λ2t−λ3 max(u,t), u, t > 0.

In this example, the exponential marginal distributions with parameters λ1 + λ3 and

λ2 +λ3, respectively, are a function of the degree of dependence. Pearson’s correlation

coefficient is determined through λ3
λ1+λ2+λ3

(cf. [9]). We obtain

K̂(θ) =
(λ1 + λ2 + λ3 + θ(c− 1))(λ1 + λ3)(λ2 + λ3)− cλ3θ

2

(λ1 + λ3 + θ)(λ2 + λ3 − cθ)(λ1 + λ2 + λ3 + θ(1− c))
.

In this case both R and ω are solutions of polynomial equations of third order.

Other bivariate distributions that lead to polynomial equations of low order for ω

include Freund’s bivariate exponential distribution (order 3) and the bivariate gamma

of Cheriyan and Ramabhadran (order 2) (see [9] for their definitions).
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5.3. Conditioning on the Event of Ruin

If one conditions on the occurrence of ruin, then if the adjustment coefficient R exists,

it is well-known that the asymptotic behavior of the random walk Sn can be studied

in terms of its associated random walk S̃n defined by (13). For large u, we have

P (X1 ≤ x1, . . . , Xn ≤ xn | τ(u) < ∞) ∼ P (X̃1 ≤ x1, . . . , X̃n ≤ xn)

(cf. Asmussen [1]), so that the properties of the surplus process conditioned on ruin are

determined by the Laplace transform K̂(θ) shifted by −R to the right. For instance,

E(X̃i) = −K̂ ′(−R) > 0 so that, conditioned on the occurrence of ruin in finite time,

the random walk has a positive drift. Thus, by adapting Theorem B of [14] to our

situation, we obtain for large u

P (τ(u) > n | τ(u) < ∞) ∼ H2(u) γn n−3/2 as n →∞. (22)

Here H2(u) is a function depending on u only which can be expressed in terms of

quantities related to the random walk (cf. [14]). Hence by studying the behavior of γ

for dependent U and T as in the previous sections, one can also derive rather sharp

asymptotic results on the finite time ruin probability conditioned on the event of ruin.

6. THE FUNCTION H

This section is devoted to a closer look at the function H whose existence has been

used in (17), but whose properties have not been revealed. First of all it follows from

[13] that H(0) = exp−B( 1
γ ). For u > 0, the function H has been given in a rather

complicated form in [13]. However, if we use the Markovian structure of the random

walk, then we are able to give a much neater interpretation of H in terms of its Laplace

transform.

Let us pin down the first time that the random walk hits its positive maximum.

Introduce the auxiliary quantities

un(x) := P{S1 > 0, S2 > 0, · · · , Sn−1 > 0, 0 < Sn ≤ x} (23)

and u(x) :=
∑∞

n=1 un(x). If we define

L0 = 0 , Ln = min{r ≥ 0 : Sr = max
0≤k≤n

Sk}
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then it is clear that

un(x) := P{Ln = n , Sn ≤ x} . (24)

If we link these portfolio variables with the random walk, then the Markovian character

of the latter allows us to write that

P (n < τ(u) < ∞) =
n∑

k=0

P (n− k < τ(0) < ∞) P (Lk = k, Sk ≤ u)

(see e.g. [5]). Therefore

P (n < τ(u) < ∞)
P (n < τ(0) < ∞)

=
n∑

k=0

P (n− k < τ(0) < ∞)
P (n < τ(0) < ∞)

uk(u) .

However, from (17) for u = 0 we immediately see that limn↑∞
P (n−k<τ(0)<∞)

P (n<τ(0)<∞) = γ−k

for each fixed k. But it then follows that

H(u)
H(0)

= lim
n↑∞

P (n < τ(u) < ∞)
P (n < τ(0) < ∞)

=
∞∑

k=0

γ−k uk(u) .

A fundamental relation is the following Spitzer-Baxter identity that gives the hybrid

transform of the sequence {un(x)}. Let

U(s, x) :=
∞∑

n=0

un(x) sn.

Then for |s| < 1 and ζ ∈ R,

ũ(s, ζ) :=
∫ ∞

0

eiζxU(s, dx) = exp

{ ∞∑
n=1

sn

n

∫ ∞

0+

eiζxdK∗n(x)

}
. (25)

In view of (1) we thus have the remarkable formula for the Laplace transform of H

Ĥ(θ) =
e−B( 1

γ )

1−E (γ−N e−θSN )
, (26)

which resembles (5) closely.

To get a better look at the behavior of the function H we introduce associated random

walks. Define for any δ ∈ (−σK , 0] the distribution

Kδ(x) =
1

K̂(δ)

∫ x

−∞
e−δu dK(u) .

Then its bilateral Laplace transform is given by

K̂δ(θ) =
K̂(θ + δ)

K̂(δ)
.
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Recall the Laplace transform analogue of expression (2) for the random walk generated

by Kδ

1− sK̂δ(θ) = (1− χδ(s, iθ))(1− χ̃δ(s, iθ)) .

But also K̂(θ) has its own decomposition. Hence

1− s

K̂(δ)
K̂(θ + δ) =

(
1− χ

( s

K̂(δ)
, i(θ + δ)

))(
1− χ̃

( s

K̂(δ)
, i(θ + δ)

))
.

By the uniqueness of the Wiener-Hopf decomposition, this means that

χδ(s, iθ) = χ

(
s

K̂(δ)
, i(θ + δ)

)

or in terms of ladder quantities

E
(
sNδ e−θSNδ

)
= E




(
s

K̂(δ)

)N

e−(θ+δ)SN


 (27)

where Nδ is the first upgoing ladder index for the associated random walk generated

by the distribution Kδ and SNδ
is its corresponding ladder height.

If we now compare this formula with (26) then the substitution θ = δ + β leads to the

equality

∫ ∞

0

e−βxd

(∫ x

0

e−δu dH(u)
)

=
e−B(1/γ)

1− E

((
K̂(δ)

γ

)Nδ

e−βSNδ

)

which is valid for −σK − δ < β < −δ.

In view of (5) it then looks natural to choose δ in such a way that K̂(δ) = γ, or δ = −ω.

For then ∫ ∞

0

e−βxd

(∫ x

0

eωu dH(u)
)

=
e−B(1/γ)

1− E (e−βSNω )
,

valid for −σK + ω < β < ω.

But now we can repeat the procedure from Section 4. Using a similar application of

the renewal theorem leads to the asymptotic expression for u →∞

1−H(u) ∼ e−B(1/γ)

ωE(SNω )
e−ωu . (28)
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7. CONCLUSION

The random walk approach presented in this paper allowed to extend several rather

explicit asymptotic results for the independent risk process to a dependent framework.

Moreover, the introduction of copula functions enables to study the dependence struc-

tures separated from the marginal behavior of the involved distributions. However,

the present paper is just an attempt in trying to get a clearer picture on the impact

of dependence in risk theory and a lot of open questions remain for further study. For

instance, a similar study for heavy-tailed claims (possibly based on recent results of

Baltrūnas [3]) is left for future research.
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