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Exponential Bonus-Malus Systems Integrating A 
Priori Risk Classification 

Llufs Bermudez,* Michel Denuit,t and Jan Dhaene* 

Abstract§ 

This paper examines an integrated ratemaking scheme including a priori risk 

classification and a posteriori experience rating. In order to avoid the high 
penalties implied by the quadratic loss function, the symmetry between the 

overcharges and the undercharges is broken by introducing parametric loss 
functions of exponential type. 
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ibility estimation, explanatory variables, experience rating, risk classification 
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1 Introduction and Motivation 

1.1 A Priori Risk Classification Variables 

One of the main tasks of an actuary is to design a tariff structure 
that fairly distributes the burden of current claims among its portfolio 
of current policyholders. If the insurance portfolio consists of hetero­
geneous risks (policyholders), then it is fair to partition the portfolio 
into homogeneous classes of policies with policyholders belonging to 
the same class paying the same premium. 

The classification variables used to partition the portfolio into ho­
mogeneous cells are called a priori variables (as their values can be 
determined at the start of the policy). In automobile third-party liabil­
ity insurance, for example, the commonly used classification variables 
include the age, gender, marital status, occupation, type and use of 
car, and residential address. Generalized linear models can be used to 
select the a priori classification variables. l 

In most practical situations many important factors (such as driv­
ing style, reflexes, or knowledge of rules of the road) cannot be taken 
into account when selecting the a priori classification variables. Conse­
quently, even after the a priori classification variables have been chosen, 
tariff cells may still be heterogeneous. It is reasonable to believe, how­
ever, that these characteristics are revealed by the number and sizes 
of claims reported by the policyholders over the successive insurance 
periods. Hence, at the end of each insurance period the next period's 
premium is adjusted on the basis of the individual's claims experience 
in order to ensure fair premiums among policyholders. 

It is interesting to mention that in North America, emphasis has tra­
ditionally been laid on a priori ratings using many classifying variables, 
while in continental Europe just a few a priori classifying variables were 
used and much importance was placed on the a posteriori evaluation of 
drivers. Since July 1994, however, European Union (EU) directives have 
introduced complete rating freedom. Insurance companies operating 
in EU countries are now (theoretically) free to set up their own rates, 
select their own classification variables, and design their own bonus­
malus system.2 Companies in most EU countries have taken advantage 
of this freedom by introducing more rating variables. 

IFor more on generalized linear models, see, for example, Renshaw (1994) or Pin­
quet (1997,1999) for applications in actuarial science; or Me Cullagh and NeIder (1989), 
Dobson (1990), or Fahrmeir and Tutz (1994). 

2For a thorough presentation of the techniques relating to bonus-malus systems, we 
refer the interested reader to Lemaire (1995). 
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In a competitive insurance market the trend is toward portfolio seg­
mentation because insurers tend to use all available relevant informa­
tion to match the rating structure used by competitors. As the only item 
of interest is the unknown distribution function of the claim amounts 
produced by the driver during a period, it seems fair to correct the in­
adequacies of the a priori system by using an adequate bonus-malus 
system. Such an experience rating system should be better accepted by 
policyholders than arbitrary a priori claSSifications. 

A bonus-malus system is a rating system based on the following 
mechanism: 

1. Claim-free policyholders, Le., those with zero claims within a sin­
gle period, are rewarded by premium discounts called bonuses; 

and 

2. Policyholders reporting one or more accidents at fault during a 
period are penalized by premium surcharges called rnaluses. 

This a posteriori ratemaking system is an efficient way of classifying 
policyholders into cells according to their risk. As pointed out by Lemaire 
(1995), if insurers are allowed to use only one rating variable, it should 
be a merit rating variable because merit rating variables are the best 
predictor of the number of claims incurred by a driver. Besides encour­
aging policyholders to drive carefully (Le., to counteract moral hazard), 
merit rating systems aim to better assess individual risks, so that ev­
eryone will pay in the long run a premium corresponding to her or his 
own claim frequency. Such systems are called no-claim discounts, ex­
perience rating, merit rating, or bonus-malus systems. 

1.2 The Nature of Risk Transfers3 

Consider a portfolio of automobile third-party liability insurance 
poliCies. Let Y denote a quantity of actuarial interest for a policy taken 
at random from the portfolio. For example, Y can be the amount of a 
claim, the aggregate claims in one period, or the number of accidents 
at fault reported by the policyholder during one period. The actuary 
has a set of observable risk classification variables, X, pertaining to the 
selected policyholder, which may include such items as age, gender, 
marital status, occupation, home address, type and use of her or his 
car. In addition, Y also depends on a set of unknown characteristics 
Z, which may include such items as annual mileage (Le., risk exposure), 

3The ideas presented in this section are inspired by De Wit and Van Eeghen (1984). 
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accuracy of judgment, aggressiveness behind the wheel, drinking be­
havior, etc. Some of the elements of Z are unobservable; others cannot 
be measured in a cost efficient way. If 0 denotes the entire set of risk 
factors for this policyholder then 

0= Xu Z. 

The true net premium for this policyholder is IE[YIO]; it is worth 
mentioning that this premium is a random variable but much less dis­
persed than Y itself, making insurance policies worth buying. The sit­
uation can be summarized as described in Table 1. In this case, the 
policyholder keeps the variations of the premiums due to the modi­
fications in her or his personal characteristics 0 and transfers to the 
company the purely random fluctuations of Y (that is, the variance of 
the outcomes of Yonce the personal characteristics X and Z have been 
taken into account). As the elements of Z are unknown to the insurer, 
the situation described in Table 1 is purely theoretical. Because the 
company only knows X, the actual reality of the insurance business is 
rather as depicted in Table 2. 

Table 1 

Risk Transfer Between Insurance Company 

And Policyholder in Case of Full Information 

Amount Carried By 

Policyholder Insurer 

Risk: IE[YIO] Y -1E[YIO] 

Expectation: IE[Y] 0 

Variance: var[ IE[YIO]] IE[ Var[YIO]] 

It is well known to statisticians and actuaries that for a random 
variable A and a random vector B (possibly of dimension 1), 

IE [A] = IE [IE [AlB]] and YarrA] = IE[Var[AIB]] + Var[IE[AIB]]. 

If we let A = YIX and B = 0, then 

IE[Var[YIX]] = IE[Var[YIO]] + IE[Var[IE[YIO] I X]]. 

The first term on the right, Le., IE[ Var[YIO]], represents the purely 

random fluctuations of the risk and is supported by the insurance com-
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pany. The second term on the right represents the variation in the ex­
pected claims due to the unknown risk characteristics Z. This quantity 
should be corrected by an experience rating mechanism. 

Table 2 

Risk Transfer Between Insurance Company 

And Policyholder in Case of Partial Information 

Amount Carried By 

Policyholder Insurer 

Risk: lE[YIX] Y -lE[YIX] 

Expectation: lE[Y] 0 

Variance: var[lE[YIX]] lE[ Var[YIX]] 

Next, assume the insurance company incorporates more a priori 
variables in its pricing structure; that is, X (with X c X) is substituted 
for X. 

that is, the residual heterogeneity in the portfolio is reduced. Conse­
quently, the variance of the insurer's experience is also reduced, Le., 

The severity of the a posteriori corrections thus decreases as the infor­
mation used by the insurer increases. 

1.3 Objectives 

Let 3"t denotes the entire past claims experience available about Y 

at time t. The central idea behind experience rating is that 3"t reveals 
its hidden features Z as t - 00, Le., the information contained in (X, 3"t) 

becomes comparable to n as time goes on. Therefore, the a posteriori 
premium is lE[YIX, 3"t]. 

The aim of this paper is to examine the interaction between a pri­
ori rate making (Le., identification of the best predictors X and of the 
risk premium lE[YIX]) and a posteriori ratemaking (Le., premium cor­
rections according to past claims history 3"t in order to reflect the un­
available information contained in Z). 
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The paper is organized as follows: Section 2 contains a brief review 
of the current methodology of automobile ratemaking in EU countries. 
It considers risk classification and credibility as two separate problems. 
This approach has flaws because the aim of experience rating is to re­
duce the residual heterogeneity of the portfolio, which obviously de­
pends on the degree of a priori segmentation. Therefore a priori and a 
posteriori ratemaking have to be integrated in a continuous risk eval­
uation mechanism. In Section 3, we present the results of Dionne and 
Vanasse (1989, 1992) and Gisler (1996), as well as an alternative ap­
proach based on an exponential loss function. Such loss functions have 
been considered by Ferreira (1977), Lemaire (1979), Young (1996), and 
Denuit and Dhaene (2001), among others. 

Our methods are illustrated by an example using a Spanish insur­
ance portfolio. This example considers only two risk factors and al­
lows for a deeper understanding of the technical concepts introduced. 
Adaptation of the methodology to real-life portfolio is then straightfor­
ward. Several optimization programs are used extensively throughout 
this paper (some of them are standard in actuarial science, others are 
less common). The appendix contains a description of all results, to­
gether with proofs for the sake of completeness. 

2 Current Methodology 

2.1 The Model 

Consider an automobile portfolio consisting of N independent poli­
cies. These poliCies are split into M homogeneous risk classes. The pre­
mium paid by each policyholder depends on the policyholder's rating 
factors for the current period and also on her or his claim history. The 
premium charged is the product of a risk classification base premium 
and of a bonus-malus coefficient. The base premium for a risk class is 
a function of the current rating factors, whereas the bonus-malus co­
efficient only depends on the policyholder's history of reported claims 
at fault. 

We assume the insurance company determines its risk classification 
factor using generalized linear models; see, e.g., in Renshaw (1994). 
We suppose the N risks are partitioned into M distinct (disjoint) risk 
classes. In each risk class, the poliCies are identical from the company 
point of view, whereas poliCies in different risk classes have distinct 
risk profiles. 
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For m = 1,2, ... , M, the base premium for the m th risk class is 
denoted by BPm , which is the amount charged to a new policyholder 
entering the m th risk class. Of course, inside each risk class, the policies 
are not strictly identical. Therefore, the premium is adjusted over time 
using a bonus-malus factor BMF(k, t) where t is the number of years 
the policy is in force and k is the number of claims reported while the 
policy is in force. 

Notice that while the base premium depends on the risk class, the 
same bonus-malus factor is applied to all drivers, i.e., it is independent 
of the risk class. This is erroneous because a bonus-malus system is 
supposed to correct the actual premium for the residual heterogeneity 
existing in the different risk classes, which implies that the severity of 
a bonus-malus system must depend on the policyholder's risk class. In 
fact, the more a priori risk factors used in the risk classification system, 
the less severe bonus-malus coefficients should be. Uniform bonus­
malus systems imposed by regulatory authorities in some EU countries 
(e.g., Belgium and France) create cross-subsidization of insurance port­
folios. 

Let 

Kij Number of claims incurred by the ith policyholder during period 
(j - l,j); 

nik Number of policies from class i reporting k claims; 

0h Risk proneness parameter of policyholder i. It captures the 
propensity of policyholder i to produce claims and is regarded 
as a random variable; and 

Zijk = Size (severity) of the kth claim produced by the ith policyholder 
during year (j - l,j). 

At the portfolio level, the vectors (8i,Kil,KiZ,Ki3, ... ) are assumed 
to be independent and identically distributed for i = 1,2, ... ,N. Also, 
given 8i = e, the random variables Kil,KiZ,Ki3, ... are assumed to be 
independent and identically distributed for fixed i. Unconditionally, 
these random variables are dependent. For fixed i, the ZijkS are as­
sumed to be independent and identically distributed and independent 
of the claim frequencies Kij. This assumption has been questioned by 
several authors because it implies that the cost of an accident is, for 
the most part, beyond the control of a policyholder. Though the degree 
of care exercised by a driver may mostly influence the number of acci­
dents, it has less influence on the cost of these accidents. Nevertheless, 
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this assumption seems acceptable in third-party liability insurance. The 
Zijk are also independent of Eli for any given i. 

The total claim amount for policyholder i in year j is 

Kij 

Sij = L Zijk. 
k=l 

We put IE[Zijk] = 1, which means that the expected claim amount 
is chosen as monetary unit. The pure premium for policy i in year j is 
then given by 

IE[SijlEli = e] = IE[KijlEli = e] = e. 
A priori (Le., without information about claims history), an identical 
amount of premium IE[Eld is charged to new policyholders. 

Given Eli = e, the numbers of claims generated in (j - I,j) by pol­
icyholder i are assumed to be independent and identically distributed 
(LLd.) Poisson random variables with mean e, Le., 

(1) 

where e is the claim frequency of this policyholder. The cumulative 
distribution function (cdf) of Eli, Fe (.), (often called the structure func­

tion), belongs to the two-parameter gamma family, Le., 

(2) 

where 

lX, T, e > O. (3) 

Combining equations (1) and (2) yields the well-known result that the 
number of claims for a policyholder randomly drawn from the portfolio 
follows a negative binomial distribution, Le., 

1fDr[K-' = k] = k + lX - 1 (_T_) ()( (_I_)k 
f) k l+T l+T 

(4) 

Though Kn, Ki2, ... are identically distributed, they are not indepen­
dent, because they are generated by the same policyholder and thus 
contingent on the same risk parameter Eli. 
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2.2 A Posteriori Premiums 

Suppose policyholder i has been observed for t years and the num­
ber of claims reported during this period is kil' ki2, ... ,kit. The pre­
mium for year t + 1 is defined as a function 'I't of the claims reported 
during the previous years, which is determined by minimizing lE[L(8i­

'I't (kil, ka, ... ,kit)) J for some loss functionL, taken to be non-negative, 
convex, and such that L(O) = 0. The loss functions considered in this 
paper are the quadratic loss where L(x) = x 2 and the exponential loss 
with positive parameter c where L(x) = exp( -cx). 

From the results recalled in the appendix, we easily get the following 
proposition. 

Proposition 1. The best estimator of the pure premium 8i at time t + 1 

is given by 

w(q) - ~(1- ) + ki.(t) 
t+l - T pq t pq 

for the quadratic loss (unction where 

t 
t 

pq = T + t and ki. (t) = L kij(t) 
j=l 

W (e) _ ()( (1 ()) ki. (t) () 
t+l - T - Pe c + -t-Pe c 

for the exponential loss (unction with c > 0, and 

Pe(c) = iln(1 + _C_). 
C T + t 

(5) 

while 

(6) 

(7) 

Notice that in Proposition 1, both expressions for Wt+l are convex 
combinations of the portfolio mean alT and the observed average num­
ber of claims ki. (t) It over the period [0, tJ. In both cases the weight 
given to the past claims tends to 1 as t goes to 00. The weight given to 
the claim history with the exponential loss function is smaller than the 
weight given to the claim history a quadratic loss function. Le., 

i In (1 + _C_) ::; _t_. 
c T+t T+t 

Note that in the POisson-gamma model, the Bayesian approach coin­
cides with the linear credibility estimator. In other words, Proposition 
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1 can be interpreted in a semi-parametric framework, as in the classical 
Brthlmann-Straub approach. Notice that 

1· W(e) W(q) 
un t+l = t+l' 
C~O 

Le., the a posteriori premium associated with the exponential loss func­
tion converges to that associated with the quadratic loss function. 

Also, as c ~ + 00 we have that 

This provides an intuitive meaning of the parameter c: if c increases, 
then the a posteriori merit-rating scheme becomes less severe, and at 
the limit, the premium no longer depends on the incurred claims. More­
over, routine calculations show that 

d 
dcPe(c) < 0, 

so that the weight given to the observed average claim number de­
creases as c increases. 

Let Ii (t) E (1, 2, ... ,M) denote the index of the risk class occupied 
by policyholder i during year t. Now, the a posteriori premium for year 
t + 1 (Le., for the time period (t, t + 1)) charged to policyholder i having 
reported ki. (t) claims during the first t years is given by 

with 

W(q) 

BMF(q) (ki. (t), t) = lE[~il] 

()( + ki. (t) T 
= x-

T+t ()( 

under a quadratic loss. Under an exponential loss, we get 

(8) 

(9) 

(10) 
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with 

w(e) 

BMF(e) (ki. (t), t) = lE[~t] 

= 1- !In(1 + _C_) 
C T + t 

I (1 
C )ki.(t)T + n +-- ----. 

T + t C ex 

77 

(11) 

The model used to determine the bonus-malus coefficients assumes 
that all the risks of the portfolio have the same a priori claim frequency 
and that the differences in the claim frequency between the risks are 
only due to differences in the individual risk characteristics 8i. Hence, 
the model impliCitly assumes that the tariff takes into account differ­
ences in claim frequencies only through the bonus-malus payments and 
that such differences are not reflected in the base premiums. 

This approach is erroneous because the aim of the bonus-malus sys­
tem is to adjust the amount of premium according to past claim expe­
rience. The effect of this premium adjustment is to reduce the residual 
heterogeneity within the different risk classes of the portfolio. As the 
bonus-malus coefficients of Proposition 1 do not take into account ex­
planatory variables, they are functions of the total heterogeneity of the 
portfolio, before tariff segmentation. In other words, the bonus-malus 
factors penalize bad risks and reward good risks. 

2.3 A Numerical Illustration 

Consider Table 3, which displays data from a Spanish insurance 
company. As can be seen from Table 3, poliCies have been categorized 
into 12 classes according to the age of the driver (three categories) and 
and the power of the car (four categories). The three age categories are 
"Age .:0:; 35," "36 .:0:; Age .:0:; 49," and Age ~ 50." The four power cate­
gories are "Power .:0:; 53," "54 .:0:; Power .:0:; 75," "76 .:0:; Power .:0:; 118," and 
"Power ~ 119." 

Let nik represent the number of policies from class i reporting k 
claims, i = 1,2, ... ,12, and 

00 

ni. = L nik 

k=O 

is the number of poliCies in the ith class, i = 1,2, ... ,12. 
Again, we assume that the number of claims reported by a policy­

holder in class i during a year follows a Poisson distribution with mean 
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Table 3 

The Twelve Risk Classes 

For Classification Factors Age and Power 

Power of Car Age of Driver (in Years) 

(In Horsepower) Age s 35 36 sAge s 49 Age ~ 50 

Power s 53 1 2 3 

54 s Power s 75 4 5 6 

76 s Power s 118 

Power ~ 119 

7 

10 

Table 4 

8 

11 

Observed Mean Claim Frequencies 

For Classification Factors Age and Power 

9 

12 

Power of Car Age of Driver (in Years) 

(In Horsepower) Age s 35 36 sAge s 49 Age ~ 50 

Power s 53 0.1866 0.1572 0.1283 

54 s Power s 75 0.2685 0.2279 0.1986 

76 s Power s 118 0.2992 

Power ~ 119 0.3217 

0.2526 

0.2846 

0.2386 

0.2483 

Ai. Moreover, the random variables Kil, Ki2,'" are assumed to be inde­
pendent. Therefore, the total number of claims Ki. = L.j~\ Kij reported 
by the ni. policyholders in class i has a Poisson distribution with mean 
ni.Ai. The realization of Ki. is ki. = Lk~l knik. 

Next we introduce the indicator variable Iik such that 

. = {I if policyholder i is in age category k for k = 2,3; 
Itk 0 otherwise. 

Similarly, define Lik as 

L. = {I if policyholder i drives a car in category k for k = 2, 3,4; 
tk 0 otherwise 

The ith policyholder is represented by a vector of classification infor­
mation: 
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Table 5 

Observed Claims Distribution of Number of Policyholders 

Submitting k Claims in the ith Risk Class, nib i = 1, 2, ... , 12 

The First Six Risk Classes, i = 1, 2, ... , 6 

k nlk n2k n3k n4k nSk 

0 3,316 7,797 10,437 9,470 21,031 

1 548 1,063 1,159 1,916 3,775 

2 61 140 143 445 720 

3 15 17 15 84 143 

4 4 6 2 21 36 

5 1 0 1 7 11 

6 0 0 1 0 2 

7 0 0 0 1 1 

8 0 0 0 3 0 

;:;:9 0 0 0 0 0 

ni. = 3,945 9,023 11,758 11,947 25,719 

ki. = 736 1,418 1,509 3,208 5,862 

Xi= 0.1866 0.1751 0.1283 0.2685 0.2279 

s2 = 
t 

0.227 0.1828 0.1501 0.3635 0.2946 

and a corresponding vector of unknown parameters is 

'1T = (€,}'2, Y3, 02, 03, 04) 

where T denotes the transposed matrix. 

n6k 

22,788 

3,766 

591 

109 

24 

5 

4 

0 

0 

0 

27,287 

5,420 

0.1986 

0.2451 

79 

When the claim numbers are small, which is typically the case in 
automobile insurance, the normal approximation is poor and fails to 
account for the discreteness of the data. Normal regression should be 
avoided in this case. Generalized linear models provide an appropriate 
framework for the analysis of discrete data. A linear model for In(Ai) 
is often used in actuarial science. [See, e.g., Pinquet (1997)]. This pro­
vides a regression model for count data analogous to the usual normal 
regression for continuous data. In addition, the standard methodology 
of generalized linear models uses the logarithmic function as the natu­
rallink function for the Poisson distribution. [See, e.g., Dobson (1990).] 
Thus, we specify a linear model for In(Ad + In(ni.) as 
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Table 5 (Continued) 

Observed Claims Distribution of Number of Policyholders 

Submitting k Claims in the ith Risk Class, nib i = 1, 2, ... , 12 

The Second Six Risk Classes, i = 7,8, ... ,12 

k n7k nSk n9k nlOk nUk n12k 

0 6,570 15,702 15,158 1,125 4,554 4,680 

1 1,423 3,112 2,848 274 902 900 

2 321 603 510 69 224 187 

3 89 148 123 9 55 25 

4 33 31 33 7 15 12 

5 6 11 11 1 9 5 

6 3 2 1 1 2 1 

7 1 0 3 0 0 1 

8 1 0 1 0 1 1 

:::::9 0 0 0 0 0 0 

ni. = 8,447 19,609 18,688 1,486 5,762 5,812 

tie = 2,527 4,953 4,459 478 1,640 1,443 

Xi= 0.2992 0.2526 0.2386 0.3217 0.2846 0.2483 

S2 = 
t 

0.4322 0.3288 0.3200 0.4376 0.4214 0.3408 

3 4 

In(Ai ) + In(ni.) = Xit} = E + L YkJik + L 6kLik. (12) 

k=2 k=2 

In order to determine the maximum likelihood estimator of the param­

eter t}, we have to maximize L(t}) where 

The regularity conditions satisfied by the Poisson distribution ensure 
thereis a unique solution to the system of equations a InLI at} = o. Itis 

easy to check that the maximum likelihood estimator ij of the parameter 

t} is the solution of the equations 

12 

L (ki. - ni.Ai)Xij = 0 
i=l 

(13) 
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for j = 1,2, ... ,6, where Xij is the ph element of Xi. As pointed out 
by Pinquet (1997), equation (l3) can be interpreted as an orthogonality 
relation between the residuals and the covariates. The estimates and 
the standard deviation and 95% confidence interval for the estimates 
are displayed in Table 6. 

As the rating factors have a finite number of levels and the explana­
tory variables are indicators of these levels, equation (l3) implies that, 
for every sub-portfolio corresponding to a given level, the sum of the 
fitted claim numbers is equal to the total number of claims incurred in 
that sub-portfolio for the observation period. As an example, equation 
(l3) with j = 2 ensures that as far as policyholders in age category 2 are 
concerned the sum of the fitted claim frequencies equals the total num­
ber of claims. Consequently, such a system is expected not to create 
cross-subsidization in the portfolio 

Table 6 

Parameters Estimates of 1] in Equation (12) 

Standard 95% Confidence 

1] ij Deviation Interval 

E -1.7219 0.0198 [-1.7607, -1.6831] 

Y2 -0.1634 0.0147 [-0.1922, -0.l345] 

Y3 -0.2800 0.0149 [-0.3093, -0.2508] 

62 0.3987 0.0185 [0.3625,0.4350] 

63 0.5324 0.0189 [0.4953,0.5694] 

64 0.6150 0.0236 [0.5688,0.6611 ] 

It is well known that the vector ij is approximately normal for large 
sample sizes, with mean 1] and variance-covariance matrix V, which is 
the inverse of the Fisher information matrix. The element (j, k) of V is 

12 

Vjk = L XijXikni.i'\i. 

i;l 

Computing the variance-covariance matrix yields 
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0.392 -0.144 -0.151 -0.277 -0.277 -0.265 

-0.144 0.217 0.145 0.002 0.000 -0.014 

V-I = 10-3 -0.151 0.145 0.223 0.008 0.009 -0.006 

-0.277 0.002 0.008 0.342 0.274 0.273 

-0.277 0.000 0.009 0.274 0.357 0.273 

-0.265 -0.014 -0.006 0.273 0.273 0.555 

Considering Table 6, all the parameters are significantly different 
from 0 (because no confidence interval overlaps 0), so that all the co­
variates are statistically significant. The expected claim numbers for 
each of the 12 cells are given in Table 7. (It is interesting to compare 
the fitted results to their empirical counterparts given in Table 3.) Table 
7 thus gives the base premiums attached to each of the 12 risk classes. 

Table 7 

Estimated Mean Claim Frequencies 

Based on Classification Factors Age and Power 

Power of Car Age of Driver (in Years) 

(In Horsepower) Age:::; 35 36:::; Age:::; 49 Age;:: 50 

Power:::; 53 0.1787 0.1518 0.1351 

54 :::; Power:::; 75 0.2663 0.2262 0.2013 

76 :::; Power:::; ll8 0.3044 0.2585 0.2300 

Power;:: 119 0.3306 0.2808 0.2498 

In order to calculate the bonus-malus factors, let us consider the 
claim distribution for the whole portfolio, which is given in Table 8. The 
negative binomial is fitted using the maximum likelihood approach and 
is displayed in the third column. The a posteriori premiums are then 
given by equations (8) and (10) with the estimated values of ()( and T 

given by ex = 0.8665 and T = 3.9097. 
Consider for instance a 30-year-old female driver whose car is in the 

power category",:::; 53." Her a priori expected number of accidents is 
0.1787 for the first five years; upon reaching age 35 her expected num­
ber of accidents becomes 0.1518. In the first half of Table 9, one can 
see the bonus-malus coefficients and premiums for that individual. The 
second column (entitled "BPt") represents the expected number of acci­
dents (Le., the base premium) for each period. The BMFt+l column rep­
resents the bonus-malus factor in case the policyholder does not cause 
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Table 8 

Observed and Fitted Claim 

Distribution Using Data in Table 5 

k nk 11k 

0 122,628 122,713 

1 21,686 21,656 

2 4,014 4,116 

3 832 801 

4 224 158 

5 68 31 

6 17 6 

7 7 1 

8 7 0 

~9 0 0 

Notes: The fit is a negative binomial distribution 
with parameters IX = 0.8665 and f = 3.9097. 
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any claims during (0, t) computed on the basis of equation (8). Column 

Pt(~i gives the total corresponding premium (Pt(~i = BPt+l xBMFt+d. For 
power category"~ 119," her expected claim frequency for the first five 
periods is 0.3306 and 0.2808 after. The second half of Table 9 shows 
the evolution of the premium amounts for this policyholder. 

Table 10 is similar to Table 9 except an exponential loss function is 
used. The bonus-malus factors are computed from equation (10) with 
c = 12.93. This parameter has been set in such a way that the variance 
of the a posteriori premiums paid by a policyholder during the first 10 
years represents 50% of the variance if the premiums were computed 
under a quadratic loss; for more details.[See Denuit and Dhaene (2001).] 
It is interesting to compare the bonus-malus factors in Tables 9 and 10. 
Notice that her bonus-malus factors are identical whatever the power 
of the car but the premiums differ substantially. When an exponential 
loss is used, the size of the maluses is reduced. Because the system 
is finanCially balanced, this implies that the size of the bonuses is also 
reduced. 
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Table 9 

Bonus-Malus Coefficients and A Posteriori Premiums 

Quadratic Loss Function for Policyholder Age 30 

Car in Power Category "Power::::; 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BPt +1 
BMF(q) 

t+1 
p(q) 

t+1 
BMF(q) 

t+1 
p(q) 

t+1 
BMF(q) 

t+1 
p(q) 

t+1 

1 0.1787 0.7963 0.1423 1.7154 0.3065 2.6344 0.4708 

2 0.1787 0.6616 0.1182 1.4251 0.2547 2.1887 0.3911 

3 0.1787 0.5658 0.1011 1.2189 0.2178 1.8719 0.3345 

4 0.1787 0.4943 0.0883 1.0648 0.1903 1.6352 0.2922 

5 0.1787 0.4388 0.0784 0.9453 0.1689 1.4517 0.2594 

6 0.1518 0.3945 0.0599 0.8499 0.1290 1.3052 0.1981 

7 0.1518 0.3584 0.0544 0.7720 0.1172 1.1856 0.1800 

8 0.1518 0.3283 0.0498 0.7072 0.1073 1.0860 0.1649 

9 0.1518 0.3028 0.0460 0.6524 0.0990 1.0019 0.1521 

10 0.1518 0.2811 0.0427 0.6055 0.0919 0.9299 0.1412 

Car in Power Category "Power ~ 119" 

1 0.3306 0.7963 0.2633 1.7154 0.5671 2.6344 0.8709 

2 0.3306 0.6616 0.2187 1.4251 0.4711 2.1887 0.7236 

3 0.3306 0.5658 0.1871 1.2189 0.4030 1.8719 0.6189 

4 0.3306 0.4943 0.1634 1.0648 0.3520 1.6352 0.5406 

5 0.3306 0.4388 0.1451 0.9453 0.3125 1.4517 0.4799 

6 0.2808 0.3945 0.1108 0.8499 0.2386 1.3052 0.3665 

7 0.2808 0.3584 0.1006 0.7720 0.2168 1.1856 0.3329 

8 0.2808 0.3283 0.0922 0.7072 0.1986 1.0860 0.3050 

9 0.2808 0.3028 0.0850 0.6524 0.1832 1.0019 0.2813 

10 0.2808 0.2811 0.0789 0.6055 0.1700 0.9299 0.2611 



Bermudez, Denuit, and Dhaene: Bonus-Malus Systems 85 

Table 10 

Bonus-Malus Coefficients and A Posteriori Premiums 

Exponential Loss Function (c = 12.93) for Policyholder Age 30 

Car in Power Category "Power :$ 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BP(e) 
t+1 

BMF(e) 
t+1 

p(e) 
t+1 

BMF(e) 
t+ 1 

p(e) 
t+1 

BMF(e) 
t+1 

p(e) 
t+ 1 

1 0.1787 0.9002 0.1609 1.3505 0.2413 1.8007 0.3218 

2 0.1787 0.8207 0.1467 1.2253 0.2190 1.6299 0.2913 

3 0.1787 0.7553 0.1350 1.1234 0.2007 1.4915 0.2665 

4 0.1787 0.7003 0.1251 1.0384 0.1856 1.3765 0.2460 

5 0.1787 0.6533 0.1167 0.9662 0.1727 1.2791 0.2286 

6 0.1518 0.6125 0.0930 0.9039 0.1372 1.1953 0.1815 

7 0.1518 0.5768 0.0876 0.8496 0.1290 1.1224 0.1704 

8 0.1518 0.5452 0.0828 0.8017 0.1217 1.0583 0.1606 

9 0.1518 0.5170 0.0785 0.7591 0.1152 1.0013 0.1520 

10 0.1518 0.4916 0.0746 0.7210 0.1095 0.9504 0.1443 

Car in Power Category "Power;::: 119" 

1 0.3306 0.9002 0.2976 1.3505 0.4465 1.8007 0.5953 

2 0.3306 0.8207 0.2713 1.2253 0.4051 1.6299 0.5388 

3 0.3306 0.7553 0.2497 1.1234 0.3714 1.4915 0.4931 

4 0.3306 0.7003 0.2315 1.0384 0.3433 1.3765 0.4551 

5 0.3306 0.6533 0.2160 0.9662 0.3194 1.2791 0.4229 

6 0.2808 0.6125 0.1720 0.9039 0.2538 1.1953 0.3356 

7 0.2808 0.5768 0.1620 0.8496 0.2386 1.1224 0.3152 

8 0.2808 0.5452 0.1531 0.8017 0.2251 1.0583 0.2972 

9 0.2808 0.5170 0.1452 0.7591 0.2132 1.0013 0.2812 

10 0.2808 0.4916 0.1381 0.7210 0.2025 0.9504 0.2669 
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3 Integrated Ratemaking 

3.1 Claim Frequency Model 

In seminal papers, Dionne and Vanasse (1989, 1992) proposed a 
bonus-malus system that integrates a priori and a posteriori informa­
tion on an individual basis. Their system introduces a regression com­
ponent in the Poisson counting model in order to use all available in­
formation in the estimation of accident frequency. 

Let us assume that the number of claims Kit for the i th policyholder 
of the portfolio during the year t conforms to a Poisson distribution 
with mean Aldt), where Ii(t) is the index of the risk class occupied by 
policyholder i in year t. A common problem for count data is that the 
fits obtained are poor even after allowing for important explanatory 
variables using the Poisson regression model. This indicates that, con­
ditional upon the explanatory variables included in the final model, the 
variance of an observation is greater than its mean, implying that the 
Poisson assumption is incorrect. Most often, this is due to the fact that 
important explanatory variables may not have been measured and are 
consequently incorrectly excluded from the regression relationship. 

A convenient way to avoid this problem is to introduce a random 
effect in this model; see, e.g., Pinquet (1999). We assume that Kit fol­
lows a Poisson distribution with mean Al;(t)8i, where 8i has a gamma 
distribution but with unit mean, i.e., with parameters «(X, (X). Then, Kit 

follows a negative binomial law, i.e., 

JIDr[Kit = kIIi(t)] = (X + k -1 ( Al;(t) )k ( (X )()( 
k (X + Aldt) (X + Al;(t) 

We can view 8i as representing the impact on the mean claim frequency 
of all the policyholders' characteristics not taken into account a priori. 
Let us now derive the a posteriori distribution of 8i. 

Lemma 1. If the cdf of 8i is f (,1 (x, (X) then the cdf of[ 8i IKij = kij, j = 

1,2, ... ,t] isf('l(X+ ki.(t),(X + Ai.(t)) where 

t 

Ai.(t) = L Al;(j). 

j=l 
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Proof: Bayes Theorem yields 

dlPr[8i :::; elKij = kij, j = 1,2, ... ,t] 

lPr[Kij = kij, j = 1,2, ... ,tl8i = e]dlPr[8i :::; e] 

lPr[Kij = kij, j = 1,2, ... ,t] 

eki • (tl exp( -e?\io (t)) (XiX eiX - 1 exp (- (Xe)de 

(XiX hEIR+ ~ki.(t)+iX-l exp( -(XAio (t)~)d~ , 

and the result follows. 
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In order to estimate the parameter (X describing the residual hetero­
geneity of the portfolio, we use the maximum likelihood method. We 
maximize 

L«(X) = n fI {(X + k - 1 (~)k (_(X_) iX}nik , 

i= 1 k=O k (X + Ai (X + Ai 

which yields iX = 0.8157. 

3.2 A Posteriori Premium Using a Quadratic Loss Function 

In the model described in the preceding section, Dionne and Vanasse 
(1989,1992) and Gisler (1996) have obtained the following result; it can 
be seen as a direct consequence of Proposition 4 and its proof is thus 
omitted. 

Proposition 2. Assuming the cdf of8i isf«(X, (X), then under a quadratic 

loss function, the a posteriori premium for policyholder i is given by 

Pt(~i = Aldt+l)BMPq)(kio(t),Aio(t)), 

where the bonus-malus coefficient is given by 

with 

Ai. (t) 
pq = (X + Ai. (t) 
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Note that the greater the variance of 8i (Le., the smaller lX) the 
greater pq (Le., the greater the weight given to the claim history of 
the policyholder). Moreover, pq is clearly increasing in Ai.. If Ai. is 
small, as is the case for policies with a high deductibles, then pq is 
also small. The no-claim discount for such poliCies is thus also small 
and, as pointed out by Gisler (1996), the bonus-malus systems are of 
questionable utility. 

3.3 A Posteriori Premium Using Exponential Loss 

The use of a quadratic loss function leads to high maluses because 
of the symmetry of the loss function: overcharges and undercharges 
are equally penalized. Although theoretically correct, such a system 
is not accepted by policyholders. It is better to have a model with a 
parameter controlling the severity of the system. One approach is to 
incorporate a priori variables in the exponential loss function. 

Proposition 3. Assuming that the cdf of8i is [(.llX, lX), then under an 

exponential loss with parameter c > 0 the a posteriori premium for pol­

icyholder i is given by 

where the bonus-malus coefficient is given by 

with 

Ai.(t) ( C) 
Pe = --In 1 + A. () . 

C lX + t. t 

Proof: From Lemma 1, we get 

( 
lX + A· (t) ) lX+ki.(t) 

lE[e-
C8i

IKij =kij,j = 1,2, ... ,t] = lX+Ai'~~) +c 

It follows that 

(15) 

(16) 
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InlE[ e-cEli IKij = kij, j = 1,2, ... ,t] 

=-«()(+ki.(t))ln(l+ ()(+~i.(tJ 

IE[ InlE[ e-cEli IKij, j = 1,2, ... ,t]] 

=-«()(+A i.(t))ln(l+ ()(+~i.(t))· 

The result then follows from Proposition 4. 
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Comparing the bonus-malus coefficients obtained with a quadratic 
and exponential loss functions we have, for any c :2: 0, 

( C) c In 1 + ::; , 
()( + Ai. ()( + Ai. 

so that Pe (c) ::; Pq; the weight given to past claims is thus smaller under 
an exponential loss. 

It can be shown that Pe(c) - Oasc - +00. Iftheasymmetryfactorc 
tends to + 00 then all the risks within the same tariff class pay the same 
premium: there is no more experience rating. Conversely, Pe(c) - Pq 

as c - O. The results obtained by Dionne and Vanasse (1989, 1992) 
also appear as limit cases of those obtained with an exponential loss 
function. 

3.4 Numerical Illustration 

Computing the premiums for a 30-year old female policyholder us­
ing Dionne-Vanasse's methodology yields the results in Table 11. Un­
like Table 9, the bonus-malus factors are not the same for both cate­
gories of car. The differences are explained by the presence of personal 
characteristics in the calculation of the factors in Table 11. Once the a 
priori variables are introduced the sizes of the bonuses and the maluses 
are reduced. Technically, this means that part of the heterogeneity has 
been taken into account in the a priori differentiation of the premiums, 
so that the residual heterogeneity is smaller and the magnitude of the 
a posteriori corrections is reduced. 

It is interesting to note that even if a policyholder whose car is in 
category "Power::; 53" always pays a smaller premium that the corre­
sponding premium for the driver in category "Power :2: 119," her bonus­
malus factors are always greater (Le., she has less bonuses and more 
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maluses). This is because good risks are rewarded in their base premi­
ums (through the a priori variables incorporated in the tariff). Conse­
quently, the size of bonus they require for equity is reduced. In other 
words, the premium discount awarded to risks judged as good a pri­
ori has to be smaller than the bonus awarded to those judged as bad a 
priori. Conversely, the penalties assessed to risks judged as good are 
larger than the penalties assessed to those judged as bad. 

The same remarks hold for the bonus-malus coefficients obtained 
with an exponential loss function presented in Table 12. The sever­
ity of the a posteriori corrections is weaker than with a quadratic loss 
function, as expected. 

4 Summary and Conclusions 

As was pointed out eqrlier, the aim of this paper is to examine the 
interaction between a priori ratemaking (i.e., identification of the best 
predictors X and of the risk premium lE[YIX]) and a posteriori ratemak­
ing (Le., premium corrections according to the claims history up to time 
t). To this end, we propose an extension of the exponential bonus-malus 
systems introduced in Denuit and Dhaene (2001) in the presence of a 
priori risk classification. The main advantage of this extension is that 
it provides the actuary with a parameter for controlling the severity of 
the a posteriori corrections. The actuary is allowed to vary this param­
eter from one extreme where there is no a posteriori correction to the 
other extreme where the severity corresponds to the classical quadratic 
loss function. At the limit, previous results based on a quadratic loss 
function are thus obtained. The a posteriori corrections also depend 
on the a priori amount of premium, yielding an integrated ratemaking 
mechanism recognizing the continuous nature of risk evaluation. 

To illustrate our methodology, an example is provided using data 
from a Spanish insurance portfolio. We show that good risks are re­
warded in their base premiums and, consequently, they require a smaller 
bonus than the bonus awarded to those judged as bad a priori, as ex­
pected. 

In the future, we purpose to study bonus-malus scales accounting 
for a priori risk classification in the spirit of Taylor (1997), substituting 
the exponential loss function for its classical quadratic counterpart. 
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Table 11 

Bonus-Malus Coefficients and A Posteriori Premiums 

Quadratic Loss Function for Policyholder Age 30 

Car in Power Category "Power:::; 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BPt+l BMF(q) 
t+l 

p(q) 
t+l 

BMF(q) 
t+l 

p(q) 
t+l 

BMF(q) 
t+l 

p(q) 
t+l 

1 0.1787 0.8203 0.1466 1.8259 0.3263 2.8316 0.5060 

2 0.1787 0.6953 0.1243 1.5478 0.2766 2.4002 0.4289 

3 0.1787 0.6034 0.1078 1.3432 0.2400 2.0829 0.3722 

4 0.1787 0.5330 0.0952 1.1863 0.2120 1.8397 0.3288 

5 0.1787 0.4772 0.0853 1.0623 0.1898 1.6474 0.2944 

6 0.1518 0.4383 0.0665 0.9757 0.1481 1.5130 0.2297 

7 0.1518 0.4053 0.0615 0.9021 0.1369 1.3989 0.2124 

8 0.1518 0.3768 0.0572 0.8388 0.1273 1.3008 0.1975 

9 0.1518 0.3521 0.0535 0.7838 0.1190 1.2155 0.1845 

10 0.1518 0.3305 0.0502 0.7356 0.1117 1.1408 0.1732 

Car in Power Category "Power ~ 119" 

1 0.3306 0.7945 0.2626 1.4162 0.4682 2.0379 0.6737 

2 0.3306 0.6590 0.2179 1.1747 0.3884 1.6905 0.5589 

3 0.3306 0.5630 0.1861 1.0036 0.3318 1.4442 0.4775 

4 0.3306 0.4914 0.1625 0.8760 0.2896 1.2606 0.4168 

5 0.3306 0.4360 0.1441 0.7772 0.2569 1.1184 0.3697 

6 0.2808 0.3979 0.1117 0.7092 0.1992 1.0206 0.2866 

7 0.2808 0.3659 0.1027 0.6522 0.1831 0.9386 0.2635 

8 0.2808 0.3387 0.0951 0.6037 0.1695 0.8687 0.2439 

9 0.2808 0.3152 0.0885 0.5619 0.1578 0.8085 0.2270 

10 0.2808 0.2948 0.0828 0.5255 0.1476 0.7562 0.2123 
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Table 12 

Bonus-Malus Coefficients and A Posteriori Premiums 

Exponential Loss Function (c = 12.93) for Policyholder Age 30 

Car in Power Category "Power ~ 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BP(e) 
t+l 

BMF(e) 
t+l 

pte) 
t+l 

BMF(e) 
t+l 

pte) 
t+l 

BMF(e) 
t+l 

pte) 
t+l 

1 0.1787 0.9635 0.1722 1.1676 0.2087 1.3718 0.2451 

2 0.1787 0.9313 0.1664 1.1236 0.2008 1.3159 0.2352 

3 0.1787 0.9022 0.1612 1.0846 0.1938 1.2669 0.2264 

4 0.1787 0.8758 0.1565 1.0495 0.1876 1.2232 0.2186 

5 0.1787 0.8516 0.1522 1.0177 0.1819 1.1838 0.2115 

6 0.1518 0.8324 0.1264 0.9927 0.1507 1.1531 0.1750 

7 0.1518 0.8144 0.1236 0.9694 0.1472 1.1245 0.1707 

8 0.1518 0.7974 0.1210 0.9476 0.1438 1.0978 0.1666 

9 0.1518 0.7813 0.1186 0.9270 0.1407 1.0728 0.1628 

10 0.1518 0.7660 0.1163 0.9076 0.1378 1.0492 0.1593 

Car in Power Category "Power ~ 119" 

1 0.3306 0.9359 0.3094 1.1298 0.3735 1.3238 0.4377 

2 0.3306 0.8835 0.2921 1.0597 0.3503 1.2359 0.4086 

3 0.3306 0.8390 0.2774 1.0013 0.3310 1.1636 0.3847 

4 0.3306 0.8003 0.2646 0.9513 0.3145 1.1023 0.3644 

5 0.3306 0.7660 0.2532 0.9075 0.3000 1.0491 0.3468 

6 0.2808 0.7396 0.2077 0.8743 0.2455 1.0089 0.2833 

7 0.2808 0.7154 0.2009 0.8439 0.2370 0.9724 0.2731 

8 0.2808 0.6931 0.1946 0.8161 0.2292 0.9391 0.2637 

9 0.2808 0.6723 0.1888 0.7904 0.2219 0.9084 0.2551 

10 0.2808 0.6530 0.1834 0.7665 0.2152 0.8800 0.2471 
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Appendix: Credibility Models with Quadratic and 

Exponential Loss Functions 

Let us consider a sequence of random variables {Xl, X2, X3, ... } and 
a risk parameter 8 where 8 is a random variable or possibly a sequence 
of random variables. We assume the sequence of random variables 
{XI,X2,X3, ... 18} are independent. The first two moments of the XiS 

are assumed to be finite. Moreover, the conditional mean of the XiS is 
given by 

for i = 1,2,3, .... 

Proposition 4. 

Ild8) = IE [Xi 18] 

IE[lli (8)] = Ili 

(i) The minimum of IE [Iln+ I (8) - 'Yn (Xl, X2,·.· , Xn) r on all the mea­

surable (unctions 'Yn : lRn 
-+ lR is obtained for 

'Y;i(XI,X2, ... ,Xn ) =IE[lln+I(8)IXI,X2, ... ,Xn]. 

(ii) The minimum ofIE[ exp [ - C(lln+I<8) - 'Yn (XI,X2, ... ,Xn»)]] on 

all the measurable {unctions 'Yn : lRn 
-+ lR satisfying the constraint 

lE['Yn (Xl, X2, .. · ,Xn )] = Iln+l is obtained for 

'Y;i(XI, ... ,Xn ) = Iln+l 

1 
+ -IE[lnIE[exp(-clln+I<8))IXI, ... ,Xn]] 

C 

- ~ lnIE [exp( -Clln+I(8» IXI, ... , Xn] J. 
(This constraint is made in order to guarantee financial equilib­

rium.) 
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Proof: (i) This is a classic result, and its proof can be found in many 
statistical textbooks. An easy way to see it consists in noting that 

lE[ (I1n+d8 ) - 'I'n(XI, ... ,Xn ») 2 

= lE[ (I1n+1 (8) - 'I'~ (Xl, ... ,Xn) 

+'I'~(XI' ... ,Xn) -'I'n(XI, ... ,Xn )/] 

= lE[ (I1n+d8 ) - 'I'~ (Xl, ... , Xn) ) 2] 

+lE[('I'~(XI' ... ,Xn) -'I'n(XI, ... ,Xn»)2], 

which is clearly minimal for 'I'n == 'I';t. 
(ii) Starting from 

lE[ exp [ - C(l1n+d8) - 'I'n(Xl. ... ,Xn»)] 

=lE[[ eXP[C'I'n(XI, ... ,Xn)}lE[exp[ -Cl1n+d8 )]IXI, ... ,XnJ] 

= lE[ exp [c ('I'n (Xl, ... , Xn) - 'I'~ (Xl, ... , Xn» ] 

exp[Cl1n+dexp[lElnlE[exp[ -Cl1n+d8)]IXI, ... ,Xn]]. 

Now, let us apply Jensen's inequality to get 

lEexp [ - C(l1n+d8) - 'I'n(XI, ... ,Xn»)] 

;::: exp [ClE ['I'n(XI, ... ,Xn) - 'I'~(XI, ... ,Xn )]] 

exp [Cl1n+1 ] exp [lElnlE[ exp [ - Cl1n+d8) ] IXI, ... , Xn]]. 

Because of the constraint on the expectation of the 'I'ns, the first expo­
nential is 1, thus completing the proof. D 
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