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We establish exponential bounds for the hypergeometric distribution which include a finite sampling cor-
rection factor, but are otherwise analogous to bounds for the binomial distribution due to León and Perron
(Statist. Probab. Lett. 62 (2003) 345–354) and Talagrand (Ann. Probab. 22 (1994) 28–76). We also ex-
tend a convex ordering of Kemperman’s (Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math. 35 (1973)
149–164) for sampling without replacement from populations of real numbers between zero and one: a pop-
ulation of all zeros or ones (and hence yielding a hypergeometric distribution in the upper bound) gives the
extreme case.
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1. Introduction and overview

In this paper, we derive several exponential bounds for the tail of the hypergeometric distribution.
This distribution emerges as an extreme case in the setting of sampling without replacement
from a finite population. We begin with a description of this setting. Consider a population C

containing N elements, C := {c1, . . . , cN }, with ci ∈ R. Let N = |C| denote the cardinality of
this set, a the value of the minimum element, b the value of the maximum element, and μ :=
(N−1)(

∑N
i=1 ci), the population mean. Let 1 ≤ i ≤ n ≤ N , and Xi denote the ith draw without

replacement from this population. Finally, let Sn :=
∑n

i=1 Xi denote the sum of this sampling
procedure, and let X̄n := Sn/n denote the sample mean.

R.J. Serfling obtained the following bound.

Finite Sampling Bound 1 (Serfling [20]). For 1 ≤ n ≤ N , Sn the sum in sampling without re-

placement, and λ > 0:

P
(√

n(X̄n − μ) ≥ λ
)

≤ exp

(

−
2λ2

(1 − f ∗
n )(b − a)2

)

, (1.1)

where f ∗
n := (n − 1)/N .

This result applies to sampling without replacement from any finite bounded population. Let
D,N ∈ N such that D < N . Then as a special case we may apply the bound to a population
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of N elements containing D 1’s and N − D 0’s. Note that in this specific case Sn =: Sn,D,N ∼
Hypergeometric(n,D,N).

For the hypergeometric distribution, the following facts are well known:

P(Sn = k) =
(

D
k

)(

N−D
n−k

)

(

N
n

)
, max

{

0, n − (N − D)
}

≤ k ≤ min{D,n},

E(Sn) = n

(

D

N

)

, (1.2)

Var(Sn) = n

(

D

N

)(

1 −
D

N

)(

1 −
n − 1

N − 1

)

=: nμD,N (1 − μD,N )(1 − fn)

with the final line defining μD,N := D/N and fn := (n− 1)/(N − 1). Applying Serfling’s result
to the case of the hypergeometric distribution immediately gives

P
(√

n(X̄n − μD,N ) ≥ λ
)

≤ exp

(

−
2λ2

(1 − f ∗
n )

)

(1.3)

since (b − a)2 = (1 − 0)2 = 1. Comparison of the factor 1 − f ∗
n in Serfling’s bound to the factor

1 − fn in (1.2) suggests the following question: can Serfling’s bound be improved to

P
(√

n(X̄n − μ) ≥ λ
)

≤ exp

(

−
2λ2

(1 − fn)(b − a)2

)

(1.4)

in general, or at least in the special case of the hypergeometric distribution?
To date, the improvement conjectured in (1.4) has not been obtained. For the special case of

the hypergeometric, Hush and Scovel derived the following bound by extending an argument
given by Vapnik. See [13] and [24].

Hypergeometric Bound 1 (Hush and Scovel [13]). Suppose Sn ∼ Hypergeometric(n,D,N).
Then for all λ > 0 we have

P
(√

n(X̄n − μD,N ) ≥ λ
)

≤ exp
(

−2αn,D,N

(

nλ2 − 1
))

, (1.5)

where

αn,D,N :=
(

1

n + 1
+

1

N − n + 1

)

∨
(

1

D + 1
+

1

N − D + 1

)

.

More recently, Bardenet and Maillard have improved a deficiency in Serfling’s inequality that
occurs when more than half the population is sampled without replacement by using a reverse-
martingale argument. The statement here is a specialization of their Theorem 2.4 to the hyperge-
ometric case. See [1] for additional discussion.
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Hypergeometric Bound 2 (Bardenet and Maillard [1]). Suppose Sn ∼ Hypergeometric(n,

D,N). Then for all λ > 0 and n < N we have

P
(√

n(X̄n − μD,N ) ≥ λ
)

≤ exp

(

−
2λ2

(1 − n/N)(1 + 1/n)

)

.

We will justify the special consideration given to the hypergeometric distribution relative to
the goal of obtaining (1.4) by adapting a result of Kemperman [15] to derive a convex order
between samples without replacement from populations consisting of elements in [0,1] and the
hypergeometric distribution. We will then demonstrate how one may use this convex order to
obtain exponential bounds for the more general problem of sampling without replacement from a
bounded, finite population. In doing so, we return to the setting of Serfling. In this setting, we will
consider the variance of the population as well. Anticipating this, we conclude the introduction
with a specialization of a bound of Bardenet and Maillard which incorporates information about
the population variance into the bound.

Finite Sampling Bound 2 (Bardenet and Maillard [1]). For 1 ≤ n < N , Sn the sum in sampling

without replacement from a population c := {c1, . . . , cN }, δ ∈ [0,1], and λ > 0, we have

P
(√

n(X̄n − μ) ≥ λ
)

≤ exp

(

−
λ2

2(γ 2 + (2/3)(b − a)(λ/
√

n))

)

+ δ, (1.6)

where

a := min
1≤i≤N

ci, b := max
1≤i≤N

ci, f ∗
n := (n − 1)/N,

μ := (1/N)

N
∑

i=1

ci, σ 2 := (1/N)

N
∑

i=1

(ci − μ)2,

γ 2 :=
(

1 − f ∗
n

)

σ 2 + f ∗
n cn−1(δ) and cn(δ) := σ(b − a)

√

2 log(1/δ)

n
.

2. Exponential bounds

Binomial distributions arise when sampling with replacement from a population consisting only
of 0’s and 1’s. As we saw in the Introduction, hypergeometric distributions arise when sampling
without replacement from such populations. Intuitively, sampling without replacement is more
informative than sampling with replacement: when items are not replaced, eventually, when n =
N , the entire population is sampled. This being the case, it is natural to guess that upper bounds
which apply to binomial tail probabilities will also apply to the hypergeometric tail probabilities.

Hoeffding [11] proved that this guess is true for exponential bounds derived via the Cramér–
Chernoff method. This is because a convex order exists between samples with and without re-
placement (Hoeffding proves this order in his Theorem 4). Convex orders between a variety of
sampling plans were subsequently explored by Kemperman [15] and Karlin [14].
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Note that by Ehm (Theorem 2 [4]; see also Holmes, Theorem 3.2 [12]), the total variation
distance between the hypergeometric distribution P

hyper
n,D,N and the binomial distribution P bin

n,D/N

satisfies

dTV
(

P
hyper
n,D,N ,P bin

n,D/N

)

≤
n − 1

N − 1
,

so we expect that the binomial bounds will be essentially optimal when (n − 1)/(N − 1) → 0.
Here we are interested in sampling scenarios in which (n − 1)/(N − 1) � 0. Given the sim-

ilarity in scenarios that produce binomial and hypergeometric probabilities, one might expect
that the binomial exponential bounds provide a clue to the form that hypergeometric exponen-
tial bounds will take: hypergeometric bounds look like binomial bounds, with a finite sampling
correction factor included. Indeed, this is the case when we compare the bound of Serfling (1.1)
to Hoeffding’s uniform bound (Theorem 2.1, [11]), since the only difference between the two is
the quantity 1 − f ∗

n . We therefore state several exponential bounds which apply to the binomial
distribution.

Binomial Bound 1 (León and Perron [16]). Let n ≥ 1, p ∈ (0,1), λ <
√

n/2, and X1, . . . ,Xn

be independent Bernoulli(p) random variables. Then

P
(√

n(X̄n − p) ≥ λ
)

≤
√

1

2πλ2

(

1

2

)

√√
n + 2λ

√
n − 2λ

e−(2λ2). (2.1)

The second bound was established by Talagrand [22], pages 48–50. The statement here is
taken from van der Vaart and Wellner [23], pages 460–462:

Binomial Bound 2 (Talagrand [22]). Fix p0 and consider p such that 0 < p0 ≤ p ≤ 1−p0 < 1.
Suppose for n ∈ N that X1, . . . ,Xn are i.i.d. Bernoulli(p) random variables. Then there exist

constants K1 and K2 depending only on p0, such that:

(i) For all λ > 0, P
(√

n(X̄n − p) = λ
)

≤
K1√

n
exp

(

−
[

2λ2 +
λ4

4n

])

.

(ii) For all 0 < t < λ,
(2.2)

P
(√

n(X̄n − p) ≥ t
)

≤
K2

λ
exp

(

−
[

2λ2 +
λ4

4n

])

exp
(

5λ[λ − t]
)

.

(iii) For all λ > 0, P
(√

n(X̄n − p) ≥ λ
)

≤
K2

λ
exp

(

−
[

2λ2 +
λ4

4n

])

.

Another well-known exponential bound which applies to sums of independent random vari-
ables (and consequently the binomial distribution) was discovered by Bennett [2]. Bennett’s
bound incorporates information about the population variance, and so obtains notable improve-
ments when the population variance is small. This statement of Bennett’s inequality specialized
to the binomial setting is adapted from Shorack and Wellner [21].



Sampling without replacement: Exponential bounds 1915

Binomial Bound 3 (Bennett [2]). Let X1, . . . ,Xn i.i.d. Bernoulli(μ), with 0 < μ ≤ 1/2. Then

for all λ ≥ 0

P
(√

n(X̄n − μ) ≥ λ
)

≤ exp

(

−
λ2

2μ(1 − μ)
ψ

(

λ
√

nμ(1 − μ)

))

, (2.3)

where ψ(λ) := (2/λ2)h(1 + λ) where h(λ) := λ(logλ − 1) + 1.

Inspecting the form of (2.1), (2.2), and (2.3), we notice that when these bounds are compared
to the hypergeometric tail bound (1.3) obtained from Serfling’s bound they do not take advantage
of the finite sampling setting. Our hope then is we can derive probability bounds which look like
the preceding binomial expressions, but improved by a finite-sampling correction factor. Such
improved bounds exist and are the main results of this paper. Their statements follow.

Theorem 1. Suppose Sn ∼ Hypergeometric(n,D,N). Define μ := D/N , and suppose N > 4
and 2 ≤ n < D ≤ N/2. Then for all 0 < λ <

√
n/2 we have

P
(√

n(X̄n − μ) ≥ λ
)

≤
√

1

2πλ2

(

1

2

)

√

(

N − n

N

)(√
n + 2λ

√
n − 2λ

)(

N − n + 2
√

nλ

N − n − 2
√

nλ

)

(2.4)

× exp

(

−
2

1 − n/N
λ2

)

exp

(

−
1

3

(

1 +
n3

(N − n)3

)

λ4

n

)

.

Theorem 2. Suppose
∑n

i=1 Xi ∼ Hypergeometric(n,D,N). Define ψ := n/N and μ := D/N ,
and let n < D. Fix μ0,ψ0 > 0 such that 0 < μ0 ≤ μ ≤ 1−μ0 < 1 and 0 < ψ0 ≤ ψ ≤ 1−ψ0 < 1.
Then there exist constants K1,K2 depending only on μ0 and ψ0 such that:

(i) For all λ > 0,

P
(√

n(X̄n − μ) = λ
)

≤
K1√

n
exp

(

−
2λ2

1 − n/N

)

exp

(

−
(

1

4
+

1

3

(

n

N − n

)3)
λ4

n

)

.

(ii) For all 0 < t < λ,
(2.5)

P
(√

n(X̄n − μ) ≥ t
)

≤
K2

λ

⎛

⎜

⎜

⎝

exp

(

−
2λ2

1 − n/N

)

exp

(

−
(

1

4
+

1

3

(

n

N − n

)3)
λ4

n

)

× exp

(

λ(λ − t)

(

4

1 − n/N
+ 1 +

4n3

3(N − n)3

))

⎞

⎟

⎟

⎠

.

(iii) For all λ > 0,

P
(√

n(X̄n − μ) ≥ λ
)

≤
K2

λ
exp

(

−
2λ2

1 − n/N

)

exp

(

−
(

1

4
+

1

3

(

n

N − n

)3)
λ4

n

)

.

We are also able to obtain an analogue of Bennett’s inequality by using an important repre-
sentation of the hypergeometric distribution as a sum of independent Bernoulli random variables
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with different means. This representation results from a special case of results established by
Vatutin and Mikhaı̆lov [25] (also see Ehm [4], Theorem A, and Pitman [18]).

Hypergeometric Representation Theorem 1. If 1 ≤ n ≤ D ∧ (N − D), then

Sn,D,N =d

n
∑

i=1

Yi, (2.6)

where Yi ∼ Bernoulli(πi) are independent.

We may use this representation along with Bennett’s inequality to obtain a Bennett-type ex-
ponential bound for Hypergeometric random variables (this bound was also discussed earlier in
[7], though without proof). The proof of this claim is short, so we will provide it here.

Theorem 3. Suppose Sn,D,N ∼ Hypergeometric(n,D,N) with 1 ≤ n ≤ D ∧ (N − D). Define

μN := D/N , σ 2
N := μN (1 − μN ), and 1 − fn := 1 − (n − 1)/(N − 1) is the finite-sampling

correction factor. Then for all λ > 0

P
(√

n(X̄n,D,N − μN ) > λ
)

≤ exp

(

−
λ2

2σ 2
N (1 − fn)

ψ

(

λ
√

nσ 2
N (1 − fn)

))

, (2.7)

where ψ(λ) := (2/λ2)h(1 + λ) and h(λ) := λ(logλ − 1) + 1.

Proof. Under the hypotheses it follows from (2.6) that

P
(√

n(X̄n,D,N − μN ) > λ
)

= P

(

n−1/2
n

∑

i=1

(Yi − μi) > λ

)

≤ exp

(

−
λ2

2(
∑n

1 πi(1 − πi)/n)
ψ

(

λ · n−1/2

(
∑n

1 πi(1 − πi)/n)

))

(2.8)

= exp

(

−
λ2

2(nμN (1 − μN )(1 − fn)/n)
ψ

(

λ · n−1/2

(nμN (1 − μN )(1 − fn)/n)

))

= exp

(

−
λ2

2σ 2
N (1 − fn)

ψ

(

λ
√

nσ 2
N (1 − fn)

))

.

Note that (2.8) follows by applying Bennett’s inequality (his general inequality, rather than
the binomial specialization), which is applicable since each Yi is independent Bernoulli(μi) and
hence Yi − μi ≤ 1 a.s. for 1 ≤ i ≤ n. This gives the bound. �

Since ψ(v) ≥ 1/(1 + v/3) for all v ≥ 0 (Shorack and Wellner [21], Proposition 1, page 441),
Theorem 3 immediately yields following Bernstein type tail bound.
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Corollary 1. With the same assumptions and notation as in Theorem 3,

P
(√

n(X̄n,D,N − μN ) > λ
)

≤ exp

(

−
λ2/2

σ 2
N (1 − fn) + λ/3

√
n

)

. (2.9)

Detailed proofs of the bounds (2.4) and (2.5) are provided in Section 4. The proofs of these
two bounds are complicated and do not proceed by the Cramér–Chernoff method. The proof of
(2.4) adapts the argument of León and Perron for the binomial distribution to the hypergeometric
case. In adapting the argument, we derive an analogue of a well-known binomial tail probability
bound going back to at least Feller [5], pages 150–151: see Lemma 7 for details. The proof
of (2.5) adapts Talagrand’s argument to the hypergeometric setting. The tools developed in the
course of the proofs are specialized to the analysis of binomial coefficients. As such, they may
prove useful in understanding how to analyze the tail of distributions such as the multinomial
and multivariate hypergeometric by providing guidance for parametrizations which could appear
in those settings after the application of Stirling’s formula.

Note that if N ր ∞ with n fixed, (2.4) yields a slight improvement of (2.1), the bound of León
and Perron, since it contains a quartic term in the exponential. Recovery of this sort is exactly the
behavior we would expect in the limit, since (2.1) bounds binomial probabilities and as N ր ∞
with n/N → 0 the hypergeometric law converges to the binomial. A similar limiting argument
shows we may recover (2.2) from (2.5) as well as (2.3) from (2.7).

Also observe that the bounds (2.4) and (2.5) contain terms involving 1 − n/N , which in-
corporates information about the proportion of the population sampled into the bound. This
sampling fraction is sharper than the improvement conjectured in Serfling’s bound: 1 − n/N <

1− (n−1)/(N −1) < 1− (n−1)/N . For λ > (
√

n(N −n))/(2(2N −n)), the expression outside
the exponential terms in (2.4) exceeds the non-exponential expression in (2.1). However, for such
λ the increase in magnitude is compensated for by the 1 − n/N term appearing in the exponent.

Figure 1 demonstrates the benefit of including a finite-sampling correction factor inside the
exponential term: when enough of the population is sampled, the difference between the binomial
and hypergeometric bounds can differ by as much as 1/4 for specific deviation values. Figure 2
compares the performance of the new hypergeometric bounds to each other and to the bounds
of Serfling (1.1) and Hush and Scovel (1.5). It also provides some insight as to when (2.4) out-
performs (2.7) and vice-versa. The finite-but-unspecified constants appearing in (2.5) prevent its
inclusion in the figures. Additionally, the constants are not immediately comparable to those in
(2.2) because they depend on how one chooses to truncate the sampling fraction and population
proportion. The bound (2.5) demonstrates that the factor 1 − n/N in the exponential may apply
for all λ > 0 as long as a suitable leading constant is selected.

Chatterjee [3] used Stein’s method to derive very general concentration bounds for statistics
based on random permutations. For example, here is a restatement of his Proposition 1.1: let
{ai,j : 1 ≤ i, j ≤ N} be a collection of numbers in [0,1] and let S ≡

∑N
i=1 ai,π(i) where π ∼

uniformly on all permutations of {1, . . . ,N}. Then

P
(∣

∣S − E(S)
∣

∣ ≥ t
)

≤ 2 exp

(

−
t2

4E(S) + 2t

)

for all t > 0.
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Figure 1. Comparison of León and Perron’s binomial bound (2.1) to the new hypergeometric bound (2.4).
In Figure 1(a), the sample size n is set to 250 and 1000 for both bounds. The population size N is taken to
be 2001 in both cases. In the legend, lines with the description “Bin” correspond to the binomial bound of
León and Perron (2.1), while lines with the description “Hg” correspond to the new hypergeometric bound
(2.4). In Figure 1(b), we plot the difference between León and Perron’s binomial bound (2.1) to the new
hypergeometric bound (2.4) at the fixed deviation-values λ ∈ {1/4,1/3,1/2,1}. We let n vary between 10
and 1000 to illustrate the impact of introducing the finite-sampling correction factor into the exponential
term of the probability bound.

The statistic S was first studied by Hoeffding [10]. The special case which yields the set-
ting of Serfling’s inequality is ai,j := 1[i≤n]cj for 1 ≤ i, j ≤ N where 1 ≤ n < N . Then

S =
∑n

i=1 cπ(i)
d= Sn where Sn =

∑n
i=1 Xi is as defined in the first paragraph of Section 1 above.

In this special case E(S) = nc̄N = nμ and Chatterjee’s (Bernstein type) bound becomes

P
(

n−1/2(Sn − nμ) ≥ λ
)

≤ exp

(

−
λ2

4c̄N + 2λ/
√

n

)

(2.10)

for all λ > 0.
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Figure 2. These plots compare the various exponential bounds for the hypergeometric distribution. In these
plots we fix the population to N = 2001, and the sample size to n = 100. The plots consider a setting
with smaller variances by setting D = 200 in the first plot (so D/N = 1/10) and D = 500 in the sec-
ond (so D/N = 1/4). We see that the bound of Theorem 1 (2.4) performs comparably with the bound
of Theorem 3 (2.7) in the setting D = 200 (2a), and surpasses it when D = 500 (2b). This suggests that
when D/N < 1/10, the bound of Theorem 3 will perform better than the bound of Theorem 1, and when
1/10 ≤ D/N < 1/2, the converse.

Goldstein and Işlak [6] recently used a variant of Stein’s method to give another inequality for
the tails of Hoeffding’s statistic S:

P
(∣

∣S − E(S)
∣

∣ > t
)

≤ 2 exp

(

−
t2

2(σ 2
A + 8‖a‖t)

)

, (2.11)

where ‖a‖ ≡ maxi,j≤N |ai,j − ai·|,

ai· =
1

N

N
∑

j=1

aij , a·j =
1

N

N
∑

i=1

aij , a·· =
1

N2

N
∑

i,j=1

aij , and
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σ 2
A =

1

N − 1

∑

i,j≤N

(aij − ai· − a·j + a··)
2.

Specializing (2.11) to the setting of Serfling’s inequality (with ai,j := 1[i≤n]cj ) yields

P
(

n−1/2|Sn − nc̄N | > λ
)

≤ 2 exp

(

−
λ2/2

σ 2
c (1 − fn) + 8‖c‖λ/

√
n

)

, (2.12)

where σ 2
c = N−1 ∑N

j=1(cj − c̄N )2 and ‖c‖ ≡ maxj≤N |cj − c̄N |. This Bernstein type bound is

in the same setting as Serfling’s inequality, but the bound has an explicit dependence on σ 2
c . This

is similar to the bound of Bardenet and Maillard (1.6) which incorporates variance information
through the parameter γ 2.

Further specialization of (2.12) to the (one-sided) hypergeometric setting (with cj = 1{j ≤ D}
for j = 1, . . . ,N ) yields

P
(

n−1/2(Sn − n(D/N)
)

> λ
)

≤ exp

(

−
λ2/2

(D/N)(1 − D/N)(1 − fn) + 8{(D/N) ∨ (1 − D/N)}λ/
√

n

)

(2.13)

= exp

(

−
λ2/2

σ 2
N (1 − fn) + 8{μN ∨ (1 − μN )}λ/

√
n

)

.

This bound differs from the bound given in (2.9) (the Bernstein type corollary of Theorem 3) only
through the second term in the denominator inside the exponential: note that 8{μN ∨ (1−μN )} ≥
4 > 1/3.

Comparing the Bernstein type bounds (2.12) and (2.13) to Serfling’s inequality (1.3) with b =
1 and a = 0, we see that the bound of Goldstein and Işlak is smaller than Serfling’s bound when
λ ≤

√
n/(32(c̄N ∨ (1− c̄N )))(1−4σ 2

N +4σ 2
Nfn −f ∗

n ). Similarly, we see that Chatterjee’s bound
(2.10) is smaller than Serfling’s bound only if c̄N ≤ (1− (n−1)/N)/8 and then λ ≤

√
n(1− (n−

1)/N − 8c̄N )/4. Figure 3 gives a comparison of Serfling’s bound, Chatterjee’s bound, Bardenet
and Maillard’s bound (1.6), Goldstein and Işlak’s bound (2.13), and the Bennett type bound (2.7)
in the further hypergeometric special case with n = 100, N = 2001, and D ∈ {101,200}; note
that in the case D = 200, c̄N = D/N ≈ 0.10 so 8c̄N ≈ 0.8 while 1 − (n − 1)/N) ≈ 1 − 0.05
so the first condition holds and then Chatterjee’s bound should win approximately when λ ≤√

n(0.15)/4 ≈ 1.5/4.
Comparing (2.13) to (2.10), we find the Goldstein–Işlak bound improves Chatterjee’s bound

when λ ≤
√

n(2c̄N − σ 2
N (1 − fn))/(8(c̄N ∨ (1 − c̄N )) − 1). In Figure 3, this region is approx-

imately equal to λ ≤ 0.08 when D = 101 and λ ≤ 0.18 when D = 200. From Figure 3(b), we
see that the improvement of Goldstein and Işlak’s bound to those of Chatterjee and Serfling
is very small in this region. From Figure 3(a), we see that Chatterjee’s bound is smaller than
both the Goldstein and Işlak bound (2.13) as well as Serfling’s bound, when D/N is small and
0.08 ≤ λ ≤

√
n(0.55)/4 ≈ 1.37, but that all three are improved by Bardenet and Maillard’s bound

(1.6) and the Bennett type bound (2.7).
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Figure 3. Comparison of Serfling’s bound (1.3), Chatterjee’s bound (2.10), and the bound of Goldstein
and Işlak (2.13), Bardenet and Maillard’s bound (1.6), and Theorem 3. In Figure 3(a), the sample size is
n = 100, the population size is N = 2001, and the number of successes is D = 101. In Figure 3(b), the
sample size remains n = 100, the population size remains N = 2001, but D = 200.

3. Convex order for the hypergeometric distribution

When sampling without replacement from a finite population concentrated on [0,1], the hyper-
geometric distribution occupies an extreme position with respect to convex order. This extreme
position offers additional reason to give the hypergeometric distribution special consideration,
since we might hope to adapt bounds for its tail to the tails of the random variables it dominates
through the convex order.

The extreme position of the hypergeometric distribution was essentially proved by Kemper-
man [15]. In his paper, Kemperman studied (among many other things) finite populations ma-
jorized by nearly Rademacher populations; through transformation, this describes the hyperge-
ometric setting. We say nearly Rademacher since Kemperman’s analysis resulted in majorizing
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populations consisting entirely of −1’s and 1’s with the exception of a single exceptional element
α with −1 < α < 1.

Here, we revisit his argument, modified so it applies to a population with elements between
0 and 1. We then provide an extension of the argument in order to obtain a hypergeometric
population which sub-majorizes this initial population. Since the extension follows naturally
from Kemperman’s majorization result, we begin with his procedure here. We start with relevant
definitions from Marshall, Olkin, and Arnold [17].

Definition 1. For a vector x = (x1, . . . , xN ) ∈ R
N , let

x[1] ≥ x[2] ≥ · · · ≥ x[N ]

denote the components of x in decreasing order.

Definition 2. For x,y ∈ R
N ,

x ≺ y if

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

k
∑

i=1

x[i] ≤
k

∑

i=1

y[i], k = 1, . . . ,N − 1,

N
∑

i=1

x[i] =
N
∑

i=1

y[i],

where x ≺ y is read as “x is majorized by y”.

Definition 3. For x,y ∈ R
N ,

x ≺w y if

k
∑

i=1

x[i] ≤
k

∑

i=1

y[i], k = 1, . . . ,N,

where x ≺w y is read as “x is weakly sub-majorized by y” or, more briefly, “x is sub-majorized

by y”.

Figure 4 provides an illustration of these definitions. In the following lemma, we restate Kem-
perman’s procedure so it constructs a majorizing hypergeometric population. See Section 4,
pages 165–168 in [15] for the original Rademacher argument.

Lemma 1 (Kemperman [15]). For any finite population x ∈ R
N , such that 0 ≤ xi ≤ 1 for all

1 ≤ i ≤ N , there exists a population c ∈ R
N , consisting only of 0’s, 1’s, and at most a single

element between 0 and 1, which majorizes the original population. In fact, c consists of D 1’s,
N − D − 1 0’s, and a number α ∈ [0,1) where D and α are determined by D = ⌊N x̄N⌋, and

α = N x̄N − D.

Proof. For an updated version of Kemperman’s argument see the longer arXiv version, [8]. �
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Figure 4. The initial population line in the display coresponds to c = {0,1/14,2/14, . . . ,13/14,1}. The
majorizing population contains seven 0’s, seven 1’s, and a single exceptional element of 1/2. The sub-ma-
jorizing population contains seven 0’s and eight 1’s. In the display, each population is sorted in decreasing
order; the corresponding lines show the cumulative sum of the ordered population elements.

Lemma 2. For any finite population x ∈R
N , such that 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ N , there exists

a population z ∈R
N , consisting only of 0’s and 1’s, which sub-majorizes the original population.

Proof. Consider a finite population x ∈ R
N which obeys the hypotheses. Using Lemma 1, we

may construct a population y ∈ R
N which majorizes x. By Lemma 1, we know that y consists

only of 0’s, 1’s, and at most a single exceptional element yN between 0 and 1.
If the exceptional element is either exactly 0 or exactly 1, we are done. So, suppose 0 <

yN < 1. Create a new population z ∈ R
N such that zi = yi for 1 ≤ i ≤ N − 1, and zN = 1. This

population z then sub-majorizes y and hence sub-majorizes x, completing the proof. �

Lemma 3. Suppose x ∈ R
N is a population consisting only of 0’s, 1’s, and a single exceptional

element, x1, such that 0 < x1 < 1. Suppose y ∈R
N is a population whose elements are the same

as those in x, except y1 = 1 and so y1 > x1. Let X1, . . . ,Xn denote a sample without replacement

from x, and Y1, . . . , Yn denote a sample without replacement from y, 1 ≤ n ≤ N . Finally, suppose

φ is a continuous convex increasing function on R. Then

Eφ

(

n
∑

i=1

Xi

)

≤ Eφ

(

n
∑

i=1

Yi

)

. (3.1)

Proof. We adapt Kemperman’s (1973) argument for Rademacher populations to the current set-
ting of hypergeometric sub-majorization.
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Observe that

Eφ

(

n
∑

i=1

Xi

)

=
1

(

N
n

)

∑

φ(xi1 + · · · + xin),

where the sum is over all sets of indices 1 ≤ i1 < i2 < · · · < in ≤ N . Note the same holds for
sampling without replacement from y, with suitable substitution. Therefore,

(

N

n

)

[

Eφ

(

n
∑

i=1

Yi

)

− Eφ

(

n
∑

i=1

Xi

)]

=
∑

(

φ(y1 + yi2 + · · · + xin) − φ(x1 + xi2 + · · · + xin)
)

,

where the sum is over all distinct indices 2 ≤ i2 < i3 < · · · < in ≤ N . Note that sets of indices
with i1 > 1 cancel out by definition of the two populations. Since φ is assumed convex increasing,
each term of the sum is non-negative. Hence, the entire sum is non-negative as well. This gives
the claim. �

We next specialize a proposition stated in Marshall, Olkin, and Arnold [17], page 455, to the
current problem. Proof of the general statement given in the text is credited to Karlin; proof for
the specific cases of sampling with and without replacement to Kemperman. As proof is given in
Marshall, Olkin, and Arnold, we simply state the result here.

Lemma 4. Let x ∈ R
N be an arbitrary finite population. Let y ∈ R

N be a finite population which

majorizes x. Let X1, . . . ,Xn denote a sample without replacement from x, and Y1, . . . , Yn denote

a sample without replacement from y, 1 ≤ n ≤ N . Finally, suppose φ is a continuous convex

increasing function on R. Then

Eφ

(

n
∑

i=1

Xi

)

≤ Eφ

(

n
∑

i=1

Yi

)

.

Note that Lemma 4 requires majorization between populations. We may combine the preced-
ing lemmas to demonstrate the following claim.

Theorem 4. For any finite population x ∈ R
N , such that 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ N , there

exists a population y ∈ R
N , consisting only of 0’s and 1’s which sub-majorizes the original

population. Let X1, . . . ,Xn denote a sample without replacement from x, and Y1, . . . , Yn denote

a sample without replacement from y, 1 ≤ n ≤ N . Finally, suppose φ is a continuous convex

increasing function on R. Then

Eφ

(

n
∑

i=1

Xi

)

≤ Eφ

(

n
∑

i=1

Yi

)

.
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Proof. Suppose x ∈ R
N is a finite population which satisfies the hypotheses. We may use

Lemma 1 to construct a population z ∈ R
N such that z majorizes x, and z consists only of 0’s,

1’s, and at most a single exceptional element between 0 and 1. For 1 ≤ n ≤ N , let Z1, . . . ,Zn

denote a sample without replacement from z. By Lemma 4, we then have the order

Eφ

(

n
∑

i=1

Xi

)

≤ Eφ

(

n
∑

i=1

Zi

)

. (3.2)

Next, by Lemma 2 we may construct a population y ∈ R
N consisting only of 0’s and 1’s that

sub-majorizes z. Then by (3.1) we have

Eφ

(

n
∑

i=1

Zi

)

≤ Eφ

(

n
∑

i=1

Yi

)

. (3.3)

Combining (3.2) and (3.3) proves the claim. �

Inequality (2.7) provides an opportunity to apply Theorem 4. Recalling the notation of the
Introduction, let c := {c1, . . . , cN } be a population such that 0 ≤ ci ≤ 1 for 1 ≤ i ≤ N , a = 0,
b = 1, and c̄N + 1/N ≤ 1/2. Using Kemperman’s algorithm, as stated in Lemma 1, there exists
a population m := {m1, . . . ,mN } which majorizes c such that mi ∈ {0,1} for 1 ≤ i ≤ N − 1,
and 0 ≤ mN ≤ 1. In the following, suppose 0 < mN < 1, since if mN = 0 or mN = 1 we can
apply (2.7) directly.

Since c ≺ m, we have m̄N = c̄N . Using Lemma 2, there is a population {h1, . . . , hN } with
hi ∈ {0,1} for 1 ≤ i ≤ N that sub-majorizes c. By the preceding construction, we have hi = mi

for 1 ≤ i ≤ N − 1, and hN ≡ 1 > mN .
Without loss of generality, relabel m and h so that: for 1 ≤ i ≤ D − 1 we have hi = mi = 1;

for i = D we have hD = 1 > mD > 0; for D + 1 ≤ i ≤ N we have hi = mi = 0. Denote the
exceptional element of m by α := mD . With the populations so modified, we derive bounds for
the difference between the populations means:

1

N
≥ h̄N − m̄N =

hD − mD

N
=

1 − α

N
≥ 0. (3.4)

By construction, we thus have

m̄N ≤ h̄N ≤ m̄N +
1

N
≤

1

2
.

Suppose then that we sample n < D items without replacement from c. Let Xi denote the sample
without replacement from c, and let Hi denote a corresponding sample without replacement
from h. Then for t > 0

P

(

n
∑

i=1

Xi − nμc ≥ t

)

≤ inf
r>0

E exp(r
∑n

i=1 Xi)

exp(rt + rnμc)

≤ inf
r>0

E exp(r
∑n

i=1 Hi)

exp(rt + rnμc)
(3.5)
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= inf
r>0

exp
(

rn(μh − μc)
)E exp(r

∑n
i=1(Hi − μh))

exp(rt)

≤ inf
r>0

exp

(

r
n

N

)

E exp(r
∑n

i=1(Hi − μh))

exp(rt)
(3.6)

= inf
r>0

exp

(

r
n

N

)

E exp(r
∑n

i=1(Yi − πi))

exp(rt)

≤ inf
r>0

exp

(

r
n

N
− rt + n

(
∑n

i=1 πi(1 − πi)

n

)

(

er − 1 − r
)

)

(3.7)

= inf
r>0

exp

(

r
n

N
− rt + nγ 2(er − 1 − r

)

)

, (3.8)

where in the final line we write γ 2 := (1/n)
∑n

i=1 πi(1 − πi). The inequality at (3.6) follows
by (3.4). The inequality at (3.5) follows by Theorem 4. The inequality at line (3.7) follows by
Shorack and Wellner, page 852, display (b) [21].

At this point, we may continue from (3.8) and optimize over r . Doing so yields an optimal
choice of

r∗ = log

(

1 +
Nt − n

nNγ 2

)

.

Using this value, however, yields an exponential bound that is somewhat difficult to compare
to (2.7). If instead we simply choose

r∗
2 = log

(

1 +
t

nγ 2

)

,

we obtain a bound similar in performance to the bound we find using r∗, but has the benefit of
easy comparison to (2.7). The choice r∗

2 corresponds to the optimal value of r when the original
population is majorized by a hypergeometric population. We continue from (3.8) using r∗

2 , and
obtain

P

(

n
∑

i=1

Xi − nμc ≥ t

)

≤ exp

(

n

N
log

(

1 +
t

nγ 2

))

· exp

(

−t

[(

1 +
nγ 2

t

)

log

(

1 +
t

nγ 2

)

− 1

])

(3.9)

= exp

(

n

N
log

(

1 +
t

nγ 2

))

· exp

(

−
t2

2nγ 2
ψ

(

t

nγ 2

))

.

Writing λ = t/
√

n , and substituting γ 2 = (D/N)(1 − D/N)(1 − fn) ≡ σ 2
N (1 − fn), we obtain

the following bound:

P
(√

n(X̄n − μc) ≥ λ
)

≤
(

1 +
λ

√
nσN (1 − fn)

)n/N

exp

(

−
λ2

2σ 2
N (1 − fn)

ψ

(

λ
√

nσ 2
N (1 − fn)

))

.
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In this form, the cost of sub-majorization is clear when compared to (2.7): we incur the leading
term outside the exponent. By shifting and scaling the population, we may use this bound to
obtain the following theorem for the general problem of sampling without replacement:

Theorem 5. Let c := {c1, . . . , cN } be a population with a = min1≤i≤N ci and b = max1≤i≤N ci

both finite. Let d := {(c1 −a)/(b−a), . . . , (cN −a)/(b−a)}. Suppose first that d is majorized by

a Hypergeometric population such that D/N ≤ 1/2. From this Hypergeometric population define

σ 2
N := (D/N)(1 − D/N). Then the following bound holds for a sample without replacement of

n < D items from c:

P
(√

n(X̄n − μc) ≥ λ
)

≤ exp

(

−
λ2

2(b − a)2σ 2
N (1 − fn)

ψ

(

λ
√

n(b − a)σ 2
N (1 − fn)

))

. (3.10)

If instead d̄N + 1/N ≤ 1/2, then the following bound holds for a sample without replacement of

n < D items from c:

P
(√

n(X̄n − μc) ≥ λ
)

≤
(

1 +
λ

√
n(b − a)σN (1 − fn)

)n/N

(3.11)

× exp

(

−
λ2

2(b − a)2σ 2
N (1 − fn)

ψ

(

λ
√

n(b − a)σ 2
N (1 − fn)

))

.

Two-sample rank tests provide an opportunity to explore the behavior of the bounds of The-
orem 5. Following the exposition in Chapter 4 of Hájek, Šidák, and Sen [9] (with the nota-
tion modified), let Y1, . . . , Yn and Z1, . . . ,Zm be random samples with continuous distributions
FY and FZ . Form the pooled sample Yn+j = Zj , j = 1, . . . ,m, and N = n + m. Let Ri (i =
1, . . . ,N ) denote the rank of the observation Yi in the ordered sequence Y(1) < Y(2) < · · · < Y(N).
To test the null hypothesis H0 : FY = FZ against alternatives of shifts in location, one may use
the Wilcoxon test (see page 96, [9]). The test statistic, expectation under the null, and variance
under the null are

SW :=
n

∑

i=1

Ri, ESW =
1

2
n(n + m + 1) and Var(SW ) =

1

12
nm(n + m + 1).

Under the null, SW may be viewed as the sum in a sample without replacement from the popula-
tion cW := {1,2, . . . ,N}, where a = 1 and b = N . Shifting and scaling the population produces
dW := {0,1/(N −1), . . . , (N −2)/(N −1),1} . If N is even, then dW is majorized by a Hyperge-
ometric population containing N/2 1’s and N/2 0’s, and hence σ 2

N = (D/N)(1 − D/N) = 1/4.
If we additionally assume n ≤ m, we may use (3.10) to study its finite sample behavior. Doing
so we find for λ > 0

P

(√
n

(

X̄n −
(N + 1)

2

)

≥ λ

)

≤ exp

(

−
2λ2

(n + m − 1)2(1 − fn)
ψ

(

2λ
√

n(n + m − 1)(1 − fn)

))

.
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Figure 5. Comparison of the bounds of Theorem 5 to Bardenet and Maillard’s bound (1.6) and Serfling’s
bound. The first Figure 5(a), corresponds to the Wilcoxon example. The second Figure 5(b), corresponds to
the Klotz example.

Serfling’s bound (1.1) may be applied in this case as well; through its application we find

P

(√
n

(

X̄n −
(N + 1)

2

)

≥ λ

)

≤ exp

(

−
2λ2

(n + m − 1)2(1 − (n − 1)/(n + m))

)

.

Finally, we may use Bardenet and Maillard’s bound (1.6) with δ = δf = 1 × 10−7 to analyze the
situation as well. Figure 5 compares the performance of these three bounds when n = m = 250.
In this case, we see that the bounds are comparable, with Bardenet and Maillard’s bound per-
forming the best, and Serfling’s performance superior to (3.10). This occurs because the variance
component (D/N)(1 − D/N) (which is close to 1/4 when n = m = 250) that appears in the
bound is the variance of the majorizing hypergeometric population rather than the variance of
the shifted and scaled population dw (which is close to 1/12 when n = m = 250). Bardenet and
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Maillard’s bound performs well because it incorporates information about the variance of the
untransformed population into its bound.

Another example is found in the Klotz test, which is used to test the null H0 : FY = FZ against
alternatives of differences in scale (see [9], page 104). Recalling N := n + m, the test statistic,
expectation under the null, and variance under the null are

SK :=
n

∑

i=1

[


−1
(

Ri

N + 1

)]2

, ESK =
n

N

N
∑

i=1

[


−1
(

i

N + 1

)]2

,

and

VarSK =
nm

N(N − 1)

N
∑

i=1

[


−1
(

i

N + 1

)]4

−
m

n(N − 1)
(ESK)2.

Defining the population

cK :=
{

ci :=
[


−1
(

i

N + 1

)]2

,1 ≤ i ≤ N

}

,

we may view SK under the null as the sum in a sample without replacement from cK . If n +
m = 500, we may compute cK , and find a ≈ 6.26 × 10−6 and b ≈ 8.29. Shifting and scaling
the population produces dK , which is bounded by 0 and 1. This population is majorized by a
population containing 59 1’s, 440 0’s, and a single exceptional element approximately equal to
0.044. Hence, it is sub-majorized by a population containing 60 1’s and 440 0’s. Supposing that
n = 60 and m = 440, we may use (3.11) to analyze this scenario since the mean of the sub-
majorizing population is 3/25 (also note (D/N)(1 − D/N) = 66/625 in this case). Doing so
(with the conservative approximation that b − a ≈ 8.29), we find for λ ≥ 0 that

P
(
√

60(X̄60 − μK) ≥ λ
)

≤
(

1 +
λ

√
60(8.29)(66/625)(440/499)

)3/25

× exp

(

−
λ2

2(8.29)2(66/625)(440/499)
ψ

(

λ
√

60(8.29)(66/625)(440/499)

))

.

Once again, we may apply Serfling’s uniform bound. Doing so here, we find

P
(
√

60(X̄60 − μK) ≥ λ
)

≤ exp

(

−
2λ2

(441/500)(8.29)2

)

. (3.12)

As in the Wilcoxon example, we may use Bardenet and Maillard’s bound (1.6) with δ = δf =
1 × 10−7 to analyze the situation. Figure 5 also compares the performance of these three bounds
for the special case n = 60 and m = 440. In this case, we again see that Bardenet and Mail-
lard’s bound performs the best, but that the bound obtained via sub-majorization now improves
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on Serfling’s result. This is because the variance component of the sub-majorizing hypergeo-
metric population, (D/N)(1 − D/N) = 66/625 = 0.1056 < 1/4 reflects some of the variabil-
ity of the untransformed population. However, the untransformed population dK has variance
σ 2 ≈ 0.0258; this variability is captured in the bound of Bardenet and Maillard, and so we see
the improved performance.

Thus we see that (sub-)majorization, as a strategy for finding exponential bounds which incor-
porate information about the population variance in the problem of sampling without replacement
from a bounded finite population, can produce sub-optimal results. As we saw, this is because the
(sub-)majorizing hypergeometric population can be more variable than the underlying population
from which we sample. However, if our goal is to find uniform exponential bounds, this infor-
mation loss is immaterial: such bounds apply to all underlying populations, regardless of their
variability. Hence the analysis of the hypergeometric distribution which produced Theorems 1
and 2. We turn to the proofs of these bounds in the concluding section.

4. Proofs of the bounds

Our proofs depend on a version of Stirling’s formula from Robbins [19].

Lemma 5. For n ∈ N0

√
2πn

(

n

e

)n

e1/(12n+1) ≤ n! ≤
√

2πn

(

n

e

)n

e1/(12n). (4.1)

To prove (2.4), we will need some additional tools. We start with the following lemma.

Lemma 6. Suppose Sn ∼ Hypergeometric(n,D,N) with 1 ≤ n < D ≤ ⌊N/2⌋ and 1 ≤ k ≤ n −
1. Then for k ≥ n(D/N) we have

P(Sn = k) ≤
1

√
2π

√
D(N − D)n(N − n)

√
k(D − k)(n − k)(N − D − (n − k))N

(4.2)

× exp

(

−
2nN

N − n
u2

)

exp

(

−
n

3

(

1 +
n3

(N − n)3

)

u4
)

.

Proof. The proof follows by direct analysis. Using Stirling’s formula (4.1), we have

P(Sn = k) =
(

D
k

)(

N−D
n−k

)

(

N
n

)

≤
1

√
2π

√
D(N − D)n(N − n)

√
k(D − k)(n − k)(N − D − (n − k))N

×
DD(N − D)N−Dnn(N − n)N−n

kk(D − k)D−k(n − k)n−k(N − D − (n − k))N−D−(n−k)NN
(4.3)
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×
exp( 1

12D
+ 1

12(N−D)
+ 1

12n
+ 1

12(N−n)
)

exp( 1
12k+1 + 1

12(D−k)+1 + 1
12(n−k)+1 + 1

12(N−D−(n−k))+1 + 1
12N+1 )

=: A · B · C.

We consider the B term first. Define u := k/n − μ, recalling μ := D/N . We then have

B =
DD(N − D)N−D/NN

( k
n
)k · (1 − k

n
)n−k · (D−k

N−n
)D−k(1 − D−k

N−n
)N−n−(D−k)

=
(D
N

)D(1 − D
N

)N−D

( k
n
)k(1 − k

n
)n−k(D−k

N−n
)D−k(1 − D−k

N−n
)N−n−(D−k)

=
(D
N

)D

( k
n
)k(D−k

N−n
)D−k

·
(1 − D

N
)N−D

(1 − k
n
)n−k(1 − D−k

N−n
)N−n−(D−k)

=
(D
N

)k(D
N

)D−k

( k
n
)k(D−k

N−n
)D−k

·
(1 − D

N
)n−k(1 − D

N
)N−D−(n−k)

(1 − k
n
)n−k(1 − D−k

N−n
)N−n−(D−k)

=
(

μ

u + μ

)k( N−n
N

D−k
D

)D−k

·
(

1 − μ

1 − (u + μ)

)n−k( N−n
N

N−n−(D−k)
N−D

)N−D−(n−k)

= exp
(

−n�(u,μ)
)

·
(N−n

N
)N−n

(D−k
D

)D−k(
N−D−(n−k)

N−D
)N−D−(n−k)

= exp
(

−n�(u,μ)
)

· B2,

where the first factor corresponds to the same function as in Talagrand’s argument for the bino-
mial distribution [22], pages 48–50, and we recall

�(u,μ) := (u + μ) log

(

u + μ

μ

)

+
(

1 − (u + μ)
)

log

(

1 − (u + μ)

1 − μ

)

.

Now, we can further rewrite B2 as

B2 =
( N−n

N
D−k
D

)D−k

·
( N−n

N

N−n−(D−k)
N−D

)N−D−(n−k)

=: exp(−Ŵ),

where

Ŵ = − log(B2)

= (D − k) log

[

(D−k
D

)

(N−n
N

)

]

+
[

N − n − (D − k)
]

log

[

(
N−n−(D−k)

N−D
)

(N−n
N

)

]

= (N − n)

(

D − k

N − n

)

log

[

(D − k)/D

(N − n)/N

]

+
(

1 −
D − k

N − n

)

log

[

[N − n − (D − k)]/(N − D)

(N − n)/N

]

.
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Now k = n(u + μ), so

D − k

N
= μ −

n

N
(u + μ) = μ(1 − n/N) − (n/N)u

and

(D − k)/N

(N − n)/N
=

μ(1 − (n/N)) − (n/N)u

1 − n/N
= μ −

n/N

1 − n/N
u.

Thus we also have

1 −
(D − k)/N

(N − n)/N
= 1 − μ +

n/N

1 − (n/N)
u.

Thus it follows that, with f = fN := n/N , f̄ = f̄N := 1 − fN ,

Ŵ

N − n
=

(

μ −
f

f̄
u

)

log

[(

μ −
f

f̄
u

)

1

μ

]

+
(

1 − μ +
f

f̄
u

)

log

[(

1 − μ +
f

f̄
u

)

1

1 − μ

]

= �

(

f

f̄
u,1 − μ

)

,

where � is as defined above. Thus the B term can be rewritten as

B = exp

(

−n�(u,μ) − (N − n)�

(

f

f̄
u,1 − μ

))

.

Now � satisfies �(0,μ) = 0, ∂
∂u

�(0,μ) = 0, and, as in Talagrand (as well as van der Vaart and
Wellner [23], pages 460–461),

∂2

∂u2
�(u,μ) =

4

1 − 4(u − (1/2 − μ))2
≥ 4

(

1 + 4
(

u − (1/2 − μ)
)2)

.

Thus

∂2

∂u2

[

n�(u,μ) + (N − n)�

(

f

f̄
u,1 − μ

)]

= n
4

1 − 4(u − (1/2 − μ))2
+ (N − n)

4(f/f̄ )2

1 − 4((f/f̄ )u − (μ − 1/2))2

≥ 4n
(

1 + 4
(

u − (1/2 − μ)
)2) + 4(N − n)(f/f̄ )2

(

1 + 4

(

f

f̄
u − (μ − 1/2)

)2)

.

Integration across this inequality yields

∂

∂u

[

n�(u,μ) + (N − n)�

(

f

f̄
u,1 − μ

)]

≥ 4n

(

u +
1

3
u3

)

+ 4(N − n)

(

f

f̄

)2(

u +
1

3

(

f

f̄

)2

u3
)
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= 4

(

n + (N − n)

(

n

N − n

)2)

u (4.4)

+
4

3

(

n + (N − n)

(

n

N − n

)4)

u3

=
4nN

N − n
u +

4

3
n

(

1 +
n3

(N − n)3

)

u3.

Here we used

∫ u

0

(

1 + 4
(

v − (1/2 − μ)
)2)

dv = u +
4

3

(

v − (1/2 − μ)
)3

∣

∣

∣

∣

u

0

= u +
4

3

[

u − (1/2 − μ)3 −
(

−(1/2 − μ)
)3]

= u +
4

3

[(

u − (1/2 − μ)
)3 + (1/2 − μ)3]

≥ u +
4

3

[

(u/2)3 + (u/2)3]

= u + (1/3)u3,

where the inequality follows since the function β �→ (u − β)3 + β3 is minimized by β = u/2:
with hu(β) ≡ (u − β)3 + β3,

h′
u(β) = 3(u − β)2(−1) + 3β2 = 3

{

β2 −
(

β2 − 2uβ + u2)}

= 3u{2β − u} = 0 if β = u/2,

while h′′
u(β) = 6u > 0. Similarly,

∫ u

0

(

1 + 4

(

f

f̄
v − (μ − 1/2)

)2)

dv = u +
4

3

(

f

f̄
v − (μ − 1/2)

)3
f̄

f

∣

∣

∣

∣

u

0

= u +
4

3

f̄

f

[

f

f̄
u − (μ − 1/2)3 −

(

−(μ − 1/2)
)3

]

= u +
4

3

f̄

f

[(

f

f̄
u − (μ − 1/2)

)3

+ (μ − 1/2)3
]

≥ u +
4

3

f̄

f

[(

f u

f̄ 2

)3

+
(

f u

f̄ 2

)3]

= u +
1

3

(

f

f̄

)2

u3.
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Integrating across (4.4) yields

n�(u,μ) + (N − n)�

(

f

f̄
u,1 − μ

)

≥
2nN

N − n
u2 + (1/3)n

(

1 +
n3

(N − n)3

)

u4.

Thus the B term in (4.3) has the following bound:

B ≤ exp

(

−
2nN

N − n
u2

)

exp

(

−
n

3

(

1 +
n3

(N − n)3

)

u4
)

. (4.5)

We next analyze the C term in (4.3). We have

C =
exp( 1

12D
+ 1

12(N−D)
+ 1

12n
+ 1

12(N−n)
)

exp( 1
12k+1 + 1

12(D−k)+1 + 1
12(n−k)+1 + 1

12(N−D−(n−k))+1 + 1
12N+1 )

= exp

(

1

12D
−

1

12(D − k) + 1

)

exp

(

1

12(N − D)
−

1

12(N − D − (n − k)) + 1

)

× exp

(

1

12n
−

1

12k + 1

)

exp

(

1

12(N − n)
−

1

12(n − k) + 1

)

exp

(

−
1

12N + 1

)

(4.6)

= exp

(

−12k + 1

[12D][12(D − k) + 1]

)

exp

(

−12[n − k] + 1

[12(N − D)][12([N − D] − [n − k]) + 1]

)

× exp

(

1 − 12(n − k)

12(12k + 1)n

)

exp

(

1 − 12(N − 2n + k)

12(12(n − k) + 1)(N − n)

)

exp

(

−
1

12N + 1

)

≤ 1,

where the final inequality follows since k ∈ [⌈nμ⌉, . . . , n−1] and n ≤ D ≤ ⌊N/2⌋ which implies
that each exponential argument preceding the inequality is negative. This gives a bound of 1 on
the product. As the A term in (4.3) is already in the claimed form, combining (4.5) and (4.6)
proves the claim. �

Next, we develop an upper bound for hypergeometric tail probabilities. This bound is similar to
that discussed by Feller for the binomial [5], pages 150–151. To our knowledge this result is new.

Lemma 7. Suppose Sn,D,N ∼ Hypergeometric(n,D,N), N > 4 and 1 ≤ n,D ≤ N − 1. For

k > (nD)/N , we have

P(Sn,D,N ≥ k) ≤ P(Sn,D,N = k)

(

k(N − D − n + k)

Nk − nD

)

. (4.7)

Proof. Suppose first that n ≤ D and k = n. Then (4.7) becomes

P(Sn,D,N ≥ n) ≤ P(Sn,D,N = n)

(

n(N − D − n + n)

Nn − nD

)

= P(Sn,D,N = n)

(

n(N − D)

n(N − D)

)

= P(Sn,D,N = n).
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Since P(Sn,D,N ≥ n) = P(Sn,D,N = n), the result holds in this case. Next, suppose D < n and
k = D. Then (4.7) becomes

P(Sn,D,N ≥ D) ≤ P(Sn,D,N = D)

(

D(N − D − n + D)

ND − nD

)

= P(Sn,D,N = D)

(

D(N − n)

D(N − n)

)

= P(Sn,D,N = D).

Since P(Sn,D,N ≥ D) = P(Sn,D,N = D), the result holds in this case too.
If (n,D,N) is a population such that ⌊(nD)/N⌋ + 1 = n ∧ D, we are done. Supposing this is

not the case, let ⌊(nD)/N⌋+ 1 ≤ (j − 1) < j ≤ n∧D. Assume the result holds when k = j . We
will show this implies the result holds for k = j − 1. We have

P(Sn,D,N ≥ j − 1)

= P(Sn,D,N = j − 1) + P(Sn,D,N ≥ j)

≤ P(Sn,D,N = j − 1) + P(Sn,D,N = j)

[

j (N − D − n + j)

Nj − nD

]

(by induction hypothesis)

= P(Sn,D,N = j − 1)

[

1 +
P(Sn,D,N = j)

P (Sn,D,N = j − 1)

[

j (N − D − n + j)

Nj − nD

]]

= P(Sn,D,N = j − 1)

[

1 +
(D − j + 1)(n − j + 1)

j (N − D − n + j)

[

j (N − D − n + j)

Nj − nD

]]

= P(Sn,D,N = j − 1)

[

1 +
(D − j + 1)(n − j + 1)

Nj − nD

]

.

Under the current assumption, the right-hand side equals

P(Sn,D,N = j − 1)

[(

(j − 1)(N − D − n + j − 1)

N(j − 1) − nD

)]

so we see it is enough to show
[(

(j − 1)(N − D − n + j − 1)

N(j − 1) − nD

)]

−
[

1 +
(D − j + 1)(n − j + 1)

Nj − nD

]

≥ 0.

Combining terms and simplifying, we find this equivalent to showing

N(D − j + 1)(n − j + 1)

(Nj − nD)(N(j − 1) − nD)
≥ 0.

Since we assume ⌊(nD)/N⌋ + 1 ≤ (j − 1) < j ≤ n ∧ D, we see that each term in parentheses in
the fraction is non-negative. In particular, since j ≥ ⌊(nD)/N⌋ + 2 > (nD)/N + 1, we have

N(j − 1) − nD > N
(

(nD)/N
)

− nD = 0.
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Thus, the expression is non-negative. This implies the claim. �

We next prove a technical lemma.

Lemma 8. Fix N > 4. Suppose that n < D ≤ ⌊N/2⌋ and that γ := (N − n)/n. For all triples

(μ,u, γ ) ∈
[

n + 1

N
,

1

2

]

×
(

0,
1

2

]

× (1,∞)

we have

μ(1 − μ)(u + μ)(γ (1 − μ) + u)

(1 − u − μ)(γμ − u)
≤

1

4

(u + (1/2))(γ (1 − (1/2)) + u)

(1 − u − (1/2))(γ (1/2) − u)
. (4.8)

We pause to outline the strategy used to prove this statement, since the proof requires a rather
detailed algebraic argument. We break the quantity into two functions, f and g, the second of
which, g, is parabolic on μ ∈ [(n+1)/N,1/2]. We demonstrate that f is maximized at μ = 1/2.
We do this by obtaining the only root which falls in the interval, determining that it yields a local
minimum, and finally showing the function is larger at the upper boundary of μ = 1/2.

We then show that g has a local maximum in the interior of the interval (for 0 < u < 1/2).
Using the quadratic g function as a scaling function, we then define an upper envelope to the
function of interest in terms of f , along with a second function that agrees with the function of
interest at μ = 1/2. By defining the two new functions in terms of f (scaled by positive numbers,
which are obtained at fixed-points of g), we are still able to claim these functions are maximized
at μ = 1/2.

We then demonstrate the function of interest increases monotonically between the value of
μ where it intersects its envelope and μ = 1/2. We finally show that at the right endpoint of
μ = 1/2, the quantity of interest exceeds its envelope at the left end-point. This will prove the
claim; the details now follow.

Proof of Lemma 8. With the previous comments in mind, define the following functions:

f (μ) :=
μ(1 − μ)

(1 − u − μ)(γμ − u)
and

(4.9)
g(μ) := (u + μ)

(

γ (1 − μ) + u
)

.

Note that the product f (μ)g(μ) gives the quantity on the left-hand side of (4.8). We first analyze
f (μ). Taking its derivative, we find

f ′(μ) =
u((γ − 1)μ2 + 2μ(1 − u) − (1 − u))

(1 − u − μ)2(u − γμ)2
.

Seeking critical points, we find f ′(μ) has the following roots:

±
√

(1 − u)(γ − u) + u − 1

γ − 1
.
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Since μ ∈ (0,1/2), only the positive root is of potential interest. Since γ > 1 under the current
restrictions, we have

√
(1 − u)(γ − u) + u − 1

γ − 1
≥

√

(1 − u)2 + u − 1

γ − 1
= 0.

Additionally, we can see
√

(1 − u)(γ − u) + u − 1

γ − 1
≤

1

2

since, after algebra, it is equivalent to showing

0 ≤
(γ − 1)2

4

which follows under the assumptions. A similar argument shows that the corresponding root with
the negative radical is always negative, and therefore does not affect the current investigation.
Next, differentiate again and evaluate the second derivative at the root. We then find

f ′′(μ)

∣

∣

∣

(
√

(1−u)(γ−u)+u−1
γ−1 )

=
[2(γ − 1)4(1 − u)u(γ − u)][(γ 2 + 1)u + 2γ

√
(1 − u)(γ − u) − γ 2 − γ ]

[
√

(1 − u)(γ − u) − γ (1 − u)]3[γ (
√

(1 − u)(γ − u) − 1) + u]3

=:
[a(u, γ )][b(u, γ )]

[c(u, γ )]3[d(u, γ )]3
.

We next show that this quantity is positive for any (u, γ ) ∈ (0,1/2) × (1,∞). It is clear that
a(u, γ ) is always positive under the current assumption, since each term in the product is positive.

We next claim b(u, γ ) < 0 for all (u, γ ) ∈ (0,1/2)× (1,∞). This claim is equivalent to show-
ing

2γ
√

(1 − u)(γ − u) < γ 2(1 − u) + (γ − u).

Since both sides are positive, we square both sides and simplify to find that the claim is equivalent
to showing

0 < (γ − 1)2(−γ + γ u + u)2.

As this last claim follows for any admissible pair, we conclude that b(u, γ ) < 0 for all (u, γ ) ∈
(0,1/2) × (1,∞).

We next show that c(u, γ ) < 0 for all (u, γ ) ∈ (0,1/2) × (1,∞). This claim is equivalent to

(1 − u)(γ − u) < γ 2(1 − u)2

which, after expanding and re-arranging, is equivalent to the claim

0 < (γ − 1)(1 − u)(γ − γ u − u)
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for all (u, γ ) ∈ (0,1/2) × (1,∞). On this set, it is clear γ − 1 and 1 − u are positive for any
admissible pair. Hence, we need only show (γ − γ u − u) > 0 on this set. But this is equivalent
to claiming γ (1 −u) > u for any pair on this set, which is true because γ > 1 and u < 1/2. Thus
we conclude c(u, γ ) < 0 for all (u, γ ) ∈ (0,1/2) × (1,∞).

We finish this sub-argument by showing d(u, γ ) > 0 for (u, γ ) ∈ (0,1/2)×(1,∞). This claim
is equivalent to

γ
√

(1 − u)(γ − u) > γ − u

for all admissible pairs. Since both sides are positive, we square and simplify to find the claim
equivalent to

p(u) := γ 2 − γ 2u − γ + u > 0.

Viewing the left-hand side as a function of u, we differentiate to see that p′(u) = 1 − γ 2 < 0 for
any choice of γ > 1. So, p(u) decreases in u for any γ > 1. Hence

p(u) > γ 2 −
γ 2

2
− γ +

1

2
=

γ 2 − 2γ + 1

2
=

(γ − 1)2

2
> 0.

Thus, we conclude d(u, γ ) > 0 for (u, γ ) ∈ (0,1/2) × (1,∞).
To summarize: we have shown that for all (u, γ ) ∈ (0,1/2)×(1,∞), a(u, γ ) > 0, b(u, γ ) < 0,

c(u, γ ) < 0 and d(u, γ ) > 0. This means that

f ′′(μ)

∣

∣

∣

(
√

(1−u)(γ−u)+u−1
γ−1 )

=
[a(u, γ )][b(u, γ )]

[c(u, γ )]3[d(u, γ )]3
> 0.

Therefore we have found a local minimum of f (μ) that falls in [(n + 1)/N,1/2]. Therefore, the
maximum must be achieved at one of the endpoints.

We next show that the maximum is in fact achieved at μ = 1/2. To do this, we compare the
difference. Plugging in the definition γ = (N − n)/n, and simplifying, we find:

f

(

1

2

)

− f

(

n + 1

N

)

=
nu(N − 2n − 2)(nu(N − 2n − 2) + N)

(1 − 2u)(N(1 − u) − n − 1)(N − 2nu − n)((n + 1)(N − n) − nNu)
.

Each term in this expression is positive for all u ∈ (0,1/2) and hence the entire expression is
positive. To see this, first observe that the restriction n < D ≤ ⌊N/2⌋ means that the maximum
value n can attain is ⌊N/2⌋−1. This implies N −2n−2 ≥ 0. Since we also restrict u ∈ (0,1/2),
we also have (N(1 − u) − n − 1) ≥ 0 and (N − 2nu − n) ≥ 0. Finally note that

(n + 1)(N − n) − nNu ≥ (n + 1)(N − n) −
nN

2
=

n(N − 2n − 2)

2
+ N ≥ 0.

We conclude that f (μ) is maximized at μ = 1/2 over all choice of (u, γ ) ∈ (0,1/2) × (1,∞).
We next consider the function g(μ), defined in (4.9). We write it again, its first two derivatives,

and its critical point μ∗ for subsequent discussion. As this function is much simpler than f (μ),
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we present these quantities without comment.

g(μ) = (u + μ)
(

γ (1 − μ) + u
)

,

g′(μ) = −2γμ + γ − γ u + u,

g′′(μ) = −2γ and

μ∗ =
γ (1 − u) + u

2γ
.

Since g′′(μ) < 0 for any choice of (u, γ ) ∈ (0,1/2) × (1,∞), we see that μ∗ is a local maxi-
mum. For any γ > 1, we also see the critical point decreases for u ∈ (0,1/2), from a value of 1/2
at u = 0 to a value of (1/4) + (1/(4γ )). As γ ր ∞, this approaches 1/4 asymptotically. Hence
for any (u, γ ) ∈ (0,1/2) × (1,∞), the maximum of the function is attained for μ ∈ (0,1/2).
Since we are ultimately interested in understanding the product f (μ)g(μ), we next show that
the maximum of g occurs at a value greater than the local minimum of f . We do this by com-
paring their difference to zero. The claim

[

γ (1 − u) + u

2γ

]

−
[√

(1 − u)(γ − u) + u − 1

γ − 1

]

> 0

is equivalent to the claim

(γ − 1)
(

γ (1 − u) + u
)

+ 2γ (1 − u) > 2γ
√

(1 − u)(γ − u).

Both sides of this inequality are positive. So, we square them and simplify to find that the claim
is equivalent to the claim

(γ − 1)2(γ (1 − u) − u
)2

> 0.

The claim follows by the final form, since the square each quantity positive. We now define three
related functions.

ue(μ) := g

(

γ (1 − u) + u

2γ

)

f (μ) =
(1 − μ)μ(γ + γ u + u)2

4γ (1 − μ − u)(γμ − u)
,

t (μ) := g(μ)f (μ) =
μ(1 − μ)(u + μ)(γ (1 − μ) + u)

(1 − u − μ)(γμ − u)
and

ep(μ) := g(1/2)f (μ) =
(1 − μ)μ(1 + 2u)(γ + 2u)

4(1 − μ − u)(γμ − u)
.

First notice that t (μ) is the quantity of interest, which we wish to show is maximized at μ = 1/2.
As defined, the function ue(μ) is an upper envelope of t (μ), with agreement at μ = (γ (1 −u)+
u)/(2γ ). ep(μ) is defined so that ep(1/2) = t (1/2), that is ep agrees with t at the end-point of
the μ-interval. Consider the behavior of t (μ) on μ ∈ [(γ (1 − u) + u)/(2γ ),1/2]. We have

t ′(μ) = 1 − 2μ +
(γ + 1)u2(γμ2 − μ2 + 2μ − 2μu + u − 1)

(1 − μ − u)2(γμ − u)2
. (4.10)
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Since μ ≤ 1/2, the sign of t ′(μ) may be determined by the behavior of the third term in the
numerator. We consider its behavior separately. Let

a(μ) := γμ2 − μ2 + 2μ − 2μu + u − 1,

a′(μ) = 2
(

1 − u + μ(γ − 1)
)

> 0 and

a

(

γ (1 − u) + u

2γ

)

=
(γ − 1)(u − γ (1 − u))2

4γ 2
> 0.

We see then that a(μ) will be non-negative for μ ∈ [(γ (1 − u) + u)/(2γ ),1/2]. Therefore,
t ′(μ) > 0 on the same interval. Hence, t (μ) is increasing on the same interval. Finally, consider
the difference

ep(1/2) − ue

(

n + 1

N

)

(4.11)

=
Nu

(

2u2(N − 2n)(N − 2n − 1)(2n(N − n − 1) + N)

+ Nu(N − n)(N − 2n − 3) + (N − n)2(N − 2n − 2) − 4nNu3(N − 2n − 1)

)

4(1 − 2u)(N − n)(N − n − 2nu)(N(1 − u) − n − 1)(N − n + nN(1 − u) − n2)
,

where we have again substituted the definition γ = (N −n)/n. We will now argue that this quan-
tity is positive for all n ∈ {1, . . . , ⌊N/2⌋−2}. This is sufficient to demonstrate t (μ) is maximized
at μ = 1/2, since we are supposing n < D ≤ ⌊N/2⌋. This restriction is necessary to handle the
sign-change implicit in the term (N − 2n − 3). There, for n = ⌊N/2⌋ − 2 it equals (for integer
values of N/2) 1, while it flips signs for N/2 − 1. However, this sign-change is not problematic
since our assumptions imply at n = N/2 − 1 that D = N/2, which is the value we are trying to
demonstrate maximizes t (μ).

We will demonstrate positivity by analyzing the terms in the expression. For simplicity, we
will assume N/2 is an integer, though the same analysis will hold for odd values of N . We will
consider some of the denominator terms first. We have, using the assumptions,

(N − n) +
(

nN(1 − u) − n2) ≥
n(N − 2n − 2)

2
+ N > 0.

We also have

N − n − 2nu ≥ N − 2n ≥ N − N + 4 > 0.

So we see all terms in the denominator are positive for any choice of (u,n). Hence, it is enough
to show that under our assumptions

z(u) := 2u2(N − 2n)(N − 2n − 1)
(

2n(N − n − 1) + N
)

+ Nu(N − n)(N − 2n − 3) − 4nNu3(N − 2n − 1) ≥ 0.

First viewing the left-hand-side as a function of u, we observe the following computations:

z′(u) = 4u(N − 2n)(N − 2n − 1)
(

2n(N − n − 1) + N
)

+ N(N − n)(N − 2n − 3) − 12nNu2(N − 2n − 1),
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z′′(u) = 4(N − 2n)(N − 2n − 1)
(

2n(N − n − 1) + N
)

− 24nNu(N − 2n − 1),

z′′′(u) = −24nN(N − 2n − 1) ≤ 0.

From the third derivative, we see z′′(u) is decreasing in u. Since z′′(0) = 4(N − 2n − 1)(N +
2n(N − n − 1))(N − 2n) > 0, we calculate the value of the second derivative at u = 1/2 to find

z′′(u)|u=1/2 = 4(N − 2n− 1)
(

4n3 + 4n2 + 2nN2 +N2 − 6n2N − 7nN
)

=: 4(N − 2n− 1)φ(n),

where we define the function φ(n) in-line. We analyze the sign of φ(n) for n ∈ {1, . . . , ⌊N/2⌋ −
2}. Treating n as continuous temporarily, we differentiate twice to find

φ′′(n) := 24n − 12N + 8.

Since we assume n ∈ {1, . . . , ⌊N/2⌋ − 2}, we see

φ′′(n) = 24n − 12N + 8 ≤ 24

(

N

2
− 2

)

− 12N + 8 = −40 ≤ 0.

This implies φ(n) is concave in n. Evaluating at the admissible endpoints, we find

φ(1) = 8 + N(3N − 13) and

φ
(

(N/2) − 2
)

=
N2 + 12N − 32

2
.

For N ≥ 4, both of these expressions are positive. By concavity we conclude φ(n) ≥ 0. There-
fore, we have that

z′′(u)|u=1/2 > 0,

and so we conclude z′′(u) > 0 for all u ∈ (0,1/2]. But since

z′(u)|u=0 = N(N − n)(N − 2n − 3) > 0,

we infer that z′(u) > 0 for all u ∈ (0,1/2]. Finally, since z(0) = 0, we conclude that z(u) > 0 for
all u ∈ (0,1/2]. But this implies that

ep(1/2) − ue

(

n + 1

N

)

> 0. (4.12)

Therefore, we can define the following function

maj(μ) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ue(μ), if μ ∈
[

n + 1

N
,
γ (1 − u) + u

2γ

]

,

t (μ), if μ ∈
(

γ (1 − u) + u

2γ
,

1

2

]

.

Observe that for all μ ∈ [(n + 1)/N,1/2], we have maj(μ) ≥ t (μ). Additionally, we know that
maj(μ) is maximized at μ = 1/2: the argument following (4.10) shows for μ such that maj(μ) =
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t (μ), maj(μ) strictly increases; the argument following (4.12) shows maj(μ) increases to its
maximum on the interval. Finally, since we know maj(1/2) = ep(1/2) = t (1/2), we conclude
t (μ) is maximized at μ = 1/2 for all choice of (u, γ ) ∈ (0,1/2] × (1,∞). This completes the
proof. �

We are now ready to prove (2.4).

Proof of Theorem 1. Pick λ, k > 0 such that k =
√

nλ + nμ, k ≥ n(D/N). We then have

P
(√

n(X̄ − μ) ≥ λ
)

= P

(

n
∑

i=1

Xi ≥ k

)

≤

[

P

(

n
∑

i=1

Xi = k

)]

(

k(N − D − n + k)

Nk − nD

)

by (4.7)

(4.13)

≤
[

1
√

2π

√
D(N − D)n(N − n)

√
k(D − k)(n − k)(N − D − (n − k))N

(

k(N − D − n + k)

Nk − nD

)]

×
[

exp

(

−
2nN

N − n
u2

)

exp

(

−
n

3

(

1 +
n3

(N − n)3

)

u4
)]

by (4.2)

= [A] ·
[

exp

(

−
2nN

N − n
u2

)

exp

(

−
n

3

(

1 +
n3

(N − n)3

)

u4
)]

.

Recall that u := (k/n) − (D/N) in the previous bound. Define f := n/N , f̄ := 1 − fN = (N −
n)/N , μ := D/N , and furthermore, define the ratio

γ :=
f̄

f
=

N − n

n
.

We may then write:

D − k =
(

N
D

N
− n

k

n

)

= n

(

N

n
μ −

k

n

)

= n

(

N

n
μ − u − μ

)

= n(γμ − u).

Similarly, we have

N − n − (D − k) = N − n − n(γμ − u) = n(γ − γμ + u) = n
(

γ [1 − μ] + u
)

.

Using these parametrizations, we may write

[A] =
1

√
2π

√

D(N − D)n(N − n)

k(D − k)(n − k)(N − D − (n − k))N

(

k(N − n − (D − k))

Nn((k/n) − (D/N))

)

=
1

√
2π

√

D(N − D)n(N − n)k2(N − n − (D − k))2

k(D − k)(n − k)(N − n − (D − k))N3n2

(

1

u

)
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=
√

(N − n)

2πnNu2

√

D

N

(

1 −
D

N

)

(k/n)

(1 − k/n)

(N − n − (D − k))

(D − k)
(4.14)

=
√

(N − n)

2πnNu2

√

μ(1 − μ)
(u + μ)

(1 − u − μ)

γ (1 − μ) + u

γμ − u

≤
√

(N − n)

2πnNu2

√

1

4

(u + (1/2))(γ (1 − (1/2)) + u)

(1 − u − (1/2))(γ (1/2) − u)

with the last inequality following by (4.8) established in Lemma 8. Observe under these
parametrizations u = λ/

√
n. Hence, if we use (4.14) to provide an upper bound for (4.13), sub-

stitute λ/
√

n for u, and then simplify, the claim is proved. �

Some of the machinery developed in the preceding lemmas will be adapted to prove (2.5). The
argument follows.

Proof of Theorem 2. Suppose now that 1 ≤ n < D ≤ N − 1. We consider k such that 0 ∨ n +
D − N < k ≤ n. The decomposition of a Hypergeometric probability into A, B , and C terms
stated in (4.3) still applies. For k ≥ n(D/N), the bound on the B term in (4.5) still holds. Thus,
we may write

B ≤ exp

(

−
2nN

N − n
u2

)

exp

(

−
n

3

(

1 +
n3

(N − n)3

)

u4
)

(4.15)

= exp

(

−
2n

1 − n/N
u2

)

exp

(

−
n

4
u4

)

exp

(

−
n

12
u4

)

exp

(

−
[

n4

3(N − n)3

]

u4
)

.

Also recall we showed that C ≤ 1 at (4.6) when n ≤ D ≤ N/2. In fact, the expression at (4.6)
shows C ≤ 1 under the current assumptions. When n ≤ N/2, all exponential arguments may be
determined to be negative by inspection. When n > N/2, the only fraction whose sign is unclear
is

1 − 12(N − 2n + k)

12(12(n − k) + 1)(N − n)
.

However, this remains negative under the current assumptions since n > N/2 implies k ≥ n +
D − N . Therefore, N + k ≥ n + D and so N + k − 2n ≥ D − N ≥ 0. We thus conclude C ≤ 1.
Here though, we provide a new analysis of the A term under the current assumptions.

Case 1. First restrict k so that μ0 < k
n

< 1 − μ0
2 . We then have

A =
1

√
2π

√

D(N − D)n(N − n)

k(D − k)(n − k)(N − D − (n − k))N

=
N

√
2πn

√

D/N(1 − D/N)(1 − n/N)

k/n(D − k)(1 − k/n)(N − D − n + k)
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≤
N

√
2πn

√

(1/4)(1 − ψ0)

μ0(D − n + nμ0/2)(μ0/2)(N − D − n + nμ0)
(4.16)

≤
N

√
2πn

√

(1/4)(1 − ψ0)

μ0(nμ0/2)(μ0/2)(nμ0)

=
1

(n/N)
√

n

√

2(1/4)(1 − ψ0)

πμ4
0

≤
1

√
n

√
(1 − ψ0)

ψ0

√

2πμ4
0

.

Combining (4.16) with (4.15) and (4.6), we have the bound

(

D
k

)(

N−D
n−k

)

(

N
n

)
≤

Kc1√
n

exp

(

−
2n

1 − n/N
u2

)

exp

(

−
n

4
u4

)

exp

(

−
n

12
u4

)

exp

(

−
[

n4

3(N − n)3

]

u4
)

,

where

Kc1 =
[
√

(1 − ψ0)

ψ0

√

2πμ4
0

]

.

Case 2. Next, suppose that 1 − μ0
2 ≤ k

n
< 1. This implies that

u =
k

n
−

D

N
≥ 1 −

μ0

2
−

D

N
≥ 1 −

μ0

2
− (1 − μ0) =

μ0

2
.

We can bound the A term by

A =
1

√
2π

√

D(N − D)n(N − n)

k(D − k)(n − k)(N − D − (n − k))N

=
N

√
2π

√

D/N(1 − D/N)(1 − n/N)

k/n(D − k)(n − k)(N − D − n + k)

≤
N

√
2π

√

(1/4)(1 − ψ0)

(1 − μ0/2)(D − n + 1)(n − n + 1)(N − D − n + n(1 − μ0/2))

≤
N

√
2π

√

(1/4)(1 − ψ0)

(1 − μ0/2)(n(1 − μ0/2))
=

n(N/n)
√

n

√

(1/4)(1 − ψ0)

2π(1 − μ0/2)2

≤
n(1/ψ0)√

n

√

(1/4)(1 − ψ0)

2π(1 − μ0/2)2
=

n
√

n

√

(1/4)(1 − ψ0)

2πψ2
0 (1 − μ0/2)2

.
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Taking the exp(− n
12u4) term from (4.15) we have

n exp

(

−
n

12
u4

)

≤ n exp

(

−
n

12

(

μ0

2

)4)

= n exp

(

−
μ4

0

192
n

)

.

This is maximized at

n =
192

μ4
0

,

and so

n exp

(

−
m

12
u4

)

≤
192

μ4
0e

.

Combining the remaining terms in (4.5) together with this bound of the A term and the C bound
of 1 yields

(

D
k

)(

N−D
n−k

)

(

N
n

)
≤

Kc2√
n

exp

(

−
2n

1 − n/N
u2

)

exp

(

−
n

4
u4

)

exp

(

−
[

n4

3(N − n)3

]

u4
)

,

where

Kc2 =
√

(1/4)(1 − ψ0)

2πψ2
0 (1 − μ0/2)2

(

192

μ4
0e

)

.

Case: k = n. When k = n there are only two binomial coefficients to consider in the hyper-
geometric probability. Therefore, we must derive a new bound via Stirling’s formula. Doing so
yields

(

D
n

)(

N−D
0

)

(

N
n

)
=

D!(N − n)!
(D − n)!N !

≤

√

D(N − n)

(D − n)N

DD(N − n)(N−n)

(D − n)(D−n)NN

× exp

(

1

12D
+

1

12(N − n)
−

1

12(D − n) + 1
−

1

12N + 1

)

=: A′B ′C′.

We can bound C′ by

C′ = exp

(

12(N − D) + 1

(12D)(12N + 1)
−

12(N − D) + 1

(12(N − n))(12(D − n) + 1)

)

= exp

(

[12(N − D) + 1]([(12(N − n))(12(D − n) + 1)] − [(12D)(12N + 1)])
[(12D)(12N + 1)][(12(N − n))(12(D − n) + 1)]

)

≤ 1
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with the final bound following since (N − D) > 0 and [(12(N − n))(12(D − n) + 1)] <

[(12D)(12N + 1)]. Continuing with B ′ we have

B ′ =
DD(N − n)(N−n)

(D − n)(D−n)NN
=

(D/N)D((N − n)/N)(N−D)

((D − n)/(N − n))D−n

=
(

(N − n)/N

(D − n)/D

)D−n(
(N − n)/N

(N − n − (D − n))/(N − D)

)(N−D)(
D

N

)n

= exp
(

−Ŵ + n log(μ)
)

,

where, as before, we have

Ŵ = (N − n)

[(

D − n

N − n

)

log

(

(D − n)/D

(N − n)/N

)

+
(

1 −
D − n

N − n

)

log

(

[N − n − (D − n)]/(N − D)

(N − n)/N

)]

.

Using the previous analysis, we can write

B ′ = exp

(

−(N − n)�

(

f

f̄
u,1 − μ

)

+ n log(μ)

)

= exp
(

−(N − n)�(γ,u) + n log(1 − u)
)

,

where we define γ := f

f̄
u, f := fN = n

N
and f̄ := f̄N = 1 − fN = N−n

N
and use the equality

u = 1 − μ under the current hypothesis. Using the analysis from van der Vaart and Wellner,
page 461, re-parametrized to the situation at hand, we obtain

�(γ,u) ≥ 2γ 2 + γ 4/3.

We also have the bound via the Taylor expansion:

log(1 − u) = −

[ ∞
∑

k=1

uk

k

]

≤ −

[

7
∑

k=1

uk

k

]

.

Hence,

B ′ ≤ exp

(

−(N − n)

[

2

(

f

f̄
u

)2

+
((f/f̄ )u)4

3

]

+ n log(1 − u)

)

= exp

(

−2

(

n2

N − n

)

u2 −
1

3

(

n4

(N − n)3

)

u4 + n log(1 − u)

)

≤ exp

(

−2

(

n2

N − n

)

u2 −
1

3

(

n4

(N − n)3

)

u4 − n

[

7
∑

k=1

uk

k

])
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= exp

(

−
(

2nN

N − n

)

u2 −
1

3

(

n4

(N − n)3

)

u4 − nu +
3nu2

2
−

nu3

3
−

nu6

6
−

nu7

7

)

× exp

(

−
nu4

4

)

exp

(

−
nu5

5

)

≤ exp

(

−
2n

1 − m/N
u2

)

exp

(

−
1

3

(

n4

(N − n)3

)

u4
)

exp

(

−
nu4

4

)

exp

(

−
nu5

5

)

,

where the last inequality follows since for x > 0

x +
x3

3
+

x6

6
+

x7

7
−

3

2
x2 > 0.

For x ≥ 0 this polynomial has a global minimum at 0 and local minimum at x ≈ 0.851662 with
a value of approximately 0.0796078. Finally, we have

A′ =

√

D(N − n)

(D − n)N
=

n
√

n

√

(D/N)(1 − n/N)

(D − n)n/N
≤

n
√

n

√

(1 − μ0)(1 − ψ0)

ψ0
,

where the final inequality uses the fact that D − n ≥ 1 in this case. Taking the expression

exp(−nu5

5 ) from the bound on B ′, and observing u = 1 − D
N

≥ μ0 we have

n exp

(

−
nu5

5

)

≤ n exp

(

−
μ5

0

5
n

)

≤
5

μ5
0e

since xe−x ≤ e−1 for x > 0. Combining the bounds on A′, B ′, and C′, we have shown
(

D
n

)(

N−D
0

)

(

N
n

)
≤

Kc3√
n

exp

(

−
2n

1 − n/N
u2

)

exp

(

−
1

3

(

n4

(N − n)3

)

u4
)

exp

(

−
nu4

4

)

,

where

Kc3 =

√

(1 − μ0)(1 − ψ0)

ψ0

(

5

μ5
0e

)

.

Hence if we set K1 = max(Kc1,Kc2,Kc3), we have the bound
(

D
k

)(

N−D
n−k

)

(

N
n

)
≤

K1√
n

exp

(

−
2n

1 − n/N
u2

)

exp

(

−
1

3

(

n4

(N − n)3

)

u4
)

exp

(

−
nu4

4

)

. (4.17)

Plugging in the definitions k =
√

nλ + nμ and u = k/n − μ

P

(

n
∑

i=1

Xi = k

)

= P
(√

n(X̄ − μ) = λ
)

≤
K1√

n
exp

(

−
2λ2

1 − n/N

)

exp

(

−
1

3

(

n

N − n

)3
λ4

n

)

exp

(

−
λ4

4n

)

.
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This gives inequality (i). To obtain inequality (ii), define, for any n,N pair subject to our
conditions,

h(x) =
(

2

1 − n/N

)

x2 +
(

1

3

(

n

N − n

)3

+
1

4

)

x4 =: ax2 + bx4

with a, b > 0 since N > n. Hence h is convex. Therefore, as in the Talagrand argument, we also
have h(x) ≥ h(u) − (x − u)h′(u) for all x. Also for 0 ≤ x ≤ 1 we see h′(x) = 2ax + 4bx3 has
linear envelopes

2ax ≤ h′(x) ≤ (2a + 4b)x.

Let 0 < t < λ ≤
√

n. Let k0 = ⌈nD
N

+
√

nt⌉ = ⌈nμ +
√

nt⌉. Using the bound at (4.17), we have

∑

k≥k0

(

D
k

)(

N−D
n−k

)

(

N
n

)
≤

∑

k≥k0

K1√
n

exp

(

−nh(u) − n

[

k

n
−

D

N
− u

]

h′(u)

)

=
K1√

n
exp

(

−nh(u)
)

∑

k≥k0

exp
([

nu − (k − nμ)
]

h′(u)
)

≤
K1√

n
exp

(

−nh(u)
)

[

exp([nu − (k0 − nμ)]h′(u))

1 − exp(−h′(u))

]

≤
K1√

n
exp

(

−nh(u)
)

[

Kab

h′(u)
exp

([

nu − (k0 − nμ)
]

h′(u)
)

]

≤
K1√

n
exp

(

−nh(u)
)

[

Kab

2au
exp

(

[nu −
√

nt][2a + 4b]u
)

]

=
K2√
nu

exp
(

−nh(u)
)

[

exp

(

nu

(

u −
t

√
n

)

[2a + 4b]
)]

,

where Kab is a constant that depends on a and b, and hence n and N (which we further explain
below), and

K2 =
K1Kab

2
.

We determine Kab by observing 1−e−v ≥ v/M for 0 ≤ v ≤ v0 where M = Mv0 = v0/(1−e−v0)

together with

h′(u) ≤ (2a + 4b)u ≤ 2a + 4b (since u ≤ 1)

=
4

1 − n/N
+

(

1 +
4

3

(

n/N

1 − n/N

)3)

≡ vN

≤
4

ψ0
+

4

3

(1 − ψ0)
2

ψ3
0

≡ v0.
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Therefore Ka,b can be taken to be M = v0/(1 − e−v0) or MN = vN/(1 − e−vN ) depending on
how much dependence on n and N we leave in the bounds. Again by definition we have that

2a + 4b =
(

4

1 − n/N

)

+
(

1 +
4

3

(

n

N − n

)3)

.

Therefore we have for all 0 < t < λ

P
(√

n(X̄n − μ) ≥ t
)

=
∑

k≥k0

(

D
k

)(

N−D
n−k

)

(

N
n

)

≤
K2√
nu

exp
(

−nh(u)
)

exp

(

nu

(

u −
t

√
n

)[(

4

1 − n/N

)

+
(

1 +
4

3

(

n

N − n

)3)])

=
K2

λ
exp

(

−nh

(

λ
√

n

))

exp

(

λ(λ − t)

[(

4

1 − n/N

)

+
(

1 +
4

3

(

n

N − n

)3)])

which gives inequality (ii). Inequality (iii) is obtained by setting t = λ. This completes the proof.
�
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