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Many inexplicable phenomena in low-temperature many-body physics are a result of macroscopic
quantum effects. Such macroscopic quantumness is often evaluated via long-range entanglement, that is,
entanglement in the macroscopic length scale. Long-range entanglement is employed to characterize novel
quantum phases and serves as a critical resource for quantum computation. However, the conditions under
which long-range entanglement is stable, even at room temperatures, remain unclear. In this regard, this
study demonstrates the unstable nature of bipartite long-range entanglement at arbitrary temperatures,
which exponentially decays with distance. The proposed theorem is a no-go theorem pertaining to the
existence of long-range entanglement. The obtained results are consistent with existing observations,
indicating that long-range entanglement at nonzero temperatures can exist in topologically ordered phases,
where tripartite correlations are dominant. The derivation in this study introduces a quantum correlation
defined by the convex roof of the standard correlation function. Further, an exponential clustering theorem
for generic quantum many-body systems under such a quantum correlation at arbitrary temperatures is
established, which yields the primary result by relating quantum correlation with quantum entanglement.
Moreover, a simple application of analytical techniques is demonstrated by deriving a general limit on the
Wigner-Yanase-Dyson skew and quantum Fisher information; this is expected to attract significant
attention in the field of quantum metrology. Notably, this study reveals the novel, general aspects of low-
temperature quantum physics and clarifies the characterization of long-range entanglement.
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I. INTRODUCTION

A. Background

In quantum many-body physics, macroscopic quantum
effects such as superconductivity, Bose-Einstein conden-
sation, quantum spin liquid, and quantum topological order
are critical features of exotic quantum phenomena. In these
phenomena, the length scale of the quantum effect is
comparable to that in the real world. However, the
clarification of such macroscopic quantum effects remains
a crucial problem in modern physics, and various methods
for characterizing quantumness in the macroscopic length
scale have been proposed [1–4]. In particular, over the last
two decades, quantum entanglement has become a repre-
sentative measure for the quantumness [5,6]. Several
studies have investigated the entanglement behaviors in
quantum many-body systems from various perspectives

[7–16]. These advances in quantum entanglement
have significantly contributed toward improving our
understanding and establishing efficient classical and
quantum algorithms to simulate quantum many-body
systems [17–21].
A critical question regarding many-body quantum entan-

glement is whether entanglement can exist in the macro-
scopic length scale. Such entanglement is often referred to
as long-range entanglement, which plays a crucial role not
only in characterizing quantum phases [22,23] but also in
realizing quantum computing [24–26]. It can be inferred
that temperature plays an essential role in this context.
Moreover, owing to the fragility of quantumness, thermal
noise destroys the entanglement, making the length scale of
the entanglement short range. Indeed, at a sufficiently high
temperature where the possibility of thermal phase tran-
sition is eliminated, the quantum thermal state can be
classified as the trivial phase [27] (i.e., generated by the
finite-depth quantum circuit [22]). By contrast, at zero
temperature, various quantum systems are known to exhibit
long-range entanglement [28–32]. However, at nonzero but
low temperatures, where thermal phase transition can
occur, the effect of temperature on the entanglement
remains highly unclear. In this case, the effect of thermal
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noise is sufficiently suppressed, and it is possible to observe
long-range entanglement in this temperature regime.
Consequently, in such quantum systems, quantum phases
protected by the topological order can exhibit long-range
entanglement. It has been shown that, in the 4D toric code
model [33], long-range entanglement can occur even at
room temperatures [34,35] (see also Refs. [36,37]).
The purpose of this study is to identify the limitations

associated with the structure of long-range entanglement at
arbitrary nonzero temperatures. In the known example
involving long-range entanglement, the protection afforded
by the topological order plays an essential role. Moreover,
the topological order is inherently a tripartite correlation
[38–40]. However, these findings pose the following
fundamental question: Can the long-range entanglement
at nonzero temperatures only exist as (more than) tripartite
correlations, or equivalently, does bipartite entanglement
necessarily decay to zero at long distances under arbitrary
temperatures? We conjecture that the answer to this
question is yes (Fig. 1). The possibility of this conjecture
being true can provide crucial information related to
identifying the essence of long-range entanglement in
the quantum phases at nonzero temperatures, which can
further serve as a guideline in the search for candidate
systems suitable for quantum devices. The conjecture is
trivially true for arbitrary commuting Hamiltonians [41],
where all the local interaction terms commute with each
other. Hence, in the toric code model with the commuting
Hamiltonian, bipartite long-range entanglement is strictly

prohibited, regardless of the existence of the tripartite
long-range entanglement. Thus, as long as the commuting
Hamiltonian is considered, the conjecture does not contra-
dict the observations.
Thus far, rigorous and general studies on low-

temperature phases remain scarce. At low temperatures,
in contrast to high-temperature phases, the structures of
quantum many-body systems are considerably influenced
by the system details. Therefore, analyses of the low-
temperature properties are often considered as computa-
tionally hard problems [43,44]. In such situations, all the
long-range quantum effects are not strictly prohibited (e.g.,
off-diagonal long-range order [1]), with only a fraction of
them being forbidden at low temperatures. In the latter
example, the thermal area law is known as a representative
characterization of the low-temperature phases of many-
body systems, which is universally true at arbitrary temper-
atures [11,45,46]. It states that the entanglement between
two adjacent subsystems can reach the maximum of the size
of their boundaries. In other words, the area law implies that
entanglement should be localized around the boundary and
thus indirectly supports the argument presented.

B. Brief description of main results

Here, we provide an overview of the contributions of this
study. The quantum Gibbs state is denoted as ρβ at inverse
temperature β, where a short-range interacting Hamiltonian
is considered (further details are provided in Sec. II A). Let
ρβ;AB be a reduced density matrix on the subsystems A and
B, which are separated by distance R. For an arbitrary
choice of A and B, we focus on the entanglement between A
and B (Fig. 1).
First, the primary challenge faced when addressing the

main problem is that the entanglement for a mixed state
cannot be described in an analytically tractable form [e.g.,
Eqs. (20) and (79)]. Moreover, owing to the computational
hardness [47,48], the entanglement cannot be computed
even at numerical levels, except for specific cases [49].
However, in free fermion and harmonic chains, analytical
forms of entanglement negativity [50] [see Eq. (G1)] have
been obtained [51–53] at finite temperatures. These studies
considered the entanglement negativity between adjacent
subsystems A and B (i.e., R ¼ 0) on one-dimensional
chains and consequently analyzed the manner in which
the negativity is saturated with an increase in the sizes of A
and B (e.g., setting jAj ¼ jBj ¼ l and tuning length l). In
these systems, the saturation rate is approximately
expressed as e−l=OðβÞ, and Ref. [53] concluded that
quantum coherence can only be maintained for length
scales ofOðβÞ. Similar observations have been numerically
obtained for a more general class of many-body systems
[54,55]. Thus, these results strongly support the clustering
of bipartite entanglement in specific models.
To overcome the difficulties in the analysis of the

entanglement, first, a quantum correlation QCρðOA;OBÞ

FIG. 1. Entanglement between two separated subsystems A and
B. Considering the tripartite entanglement between subsystems
A, B, and C, long-range entanglement at nonzero temperatures
can be detected. It can also be observed in topologically ordered,
quantum, many-body systems. This study aims to elaborate on
the observation and prove that (more than) tripartite entanglement
is required for long-range entanglement. The quantum entangle-
ment between two systems is shown to decay exponentially
with distance at arbitrary nonzero temperatures, in any quantum
Gibbs state with short-range interacting Hamiltonians. Here, the
entanglement-length scale, at most, grows in a polynomial manner
with the inverse temperature β, as stated in inequalities (1)–(3).
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is introduced, which is defined based on the analogy of
the entanglement measure and obtained from the convex
roof of the standard correlation function CρðOA;OBÞ ¼
trðρOAOBÞ − trðρOAÞtrðρOBÞ, as in Eq. (33). The quantum
correlation QCρðOA;OBÞ is strongly associated with entan-
glement (see Sec. III). In particular, the upper bound of the
quantum correlation yields an upper bound for the entan-
glement measure of the positive-partial-transpose (PPT)
relative entanglement (Proposition 9). In general, the
exponential clustering of the quantum correlation at arbi-
trary temperatures of arbitrary dimensions can be proven
(see Theorem 10):

QCρβðOA;OBÞ≲ ðj∂Aj þ j∂BjÞe−R=ξβ ; ð1Þ

with ξβ ¼ OðβÞ, whose explicit form is expressed as
Eq. (54), where OA and OB are supported on subsets A
and B, respectively. The inequality (1) provides a quantum
version of the clustering theorem that generally holds at
arbitrary temperatures.
Based on the upper bound (1), it may be possible to

avoid the intractability of the quantum entanglement.
Further, using the association between the quantum corre-
lation and the entanglement, the following statement on
entanglement clustering is proven (see Corollary 11):

EPPT
R ðρβ;ABÞ≲ e−R=ξβþOðjAjþjBjÞ; ð2Þ

where EPPT
R ðρABÞ is the PPT relative entanglement (50).

Herein, two points can be improved: (i) A bound is
obtained for EPPT

R instead of the standard relative entangle-
ment ER, and (ii) the subset dependence is exponential (i.e.,
eOðjAjþjBjÞ) instead of polynomial [i.e., polyðjAj; jBjÞ]. To
address the first point, the zero-quantum correlation must
be related to the separable condition instead of the PPT
condition (Lemma 8). However, this point remains to be
addressed (Conjecture 7). Regarding the second point, the
inequality (2) in one-dimensional systems (Theorem 12,
Fig. 2) can be improved by refining the analyses based on
the belief propagation [56,57]:

EPPT
R ðρβ;ABÞ ≲ ðjAj þ jBjÞe−OðR=ξ2βÞ: ð3Þ

Thus, a significantly improved clustering theorem for the
bipartite entanglement measure in one-dimensional sys-
tems can be obtained.
Finally, as a related quantity, another type of quantum

correlation that is basedon theWigner-Yanase-Dyson (WYD)
skew information [58,59] is considered: Q̄ρðOA;OBÞ ≔R
1
0 QðαÞ

ρ ðOA;OBÞdα, with QðαÞ
ρ ðOA;OBÞ ≔ trðρOAOBÞ−

trðρ1−αOAρ
αOBÞ. In a previous study [58], it was numerically

verified that the quantity Q̄ρðOA;OBÞ exhibits an exponential
decay with distance, even at the critical point. Because the
WYD skew information is considered as a measure of
quantum coherence [60], the decay rate of Q̄ρðOA;OBÞ
has been dubbed as the “quantum coherence length” [58].
Consequently, using a similar analysis for the proof of Eq. (1),
it is proven that the numerical observations inRefs. [58,59] are
universally true (Theorem 13):

QðαÞ
ρβ ðOA;OBÞ ≲ ðj∂Aj þ j∂BjÞe−R=ξ0β ð4Þ

for arbitrary α, where ξ0β ¼ OðβÞ is explicitly expressed as
Eq. (62). The above inequality also yields the general limits on
the WYD skew information as well as the quantum Fisher
information:

I ðαÞ
ρβ ðKÞ ≲ βDn and F ρβðKÞ ≲ βDn; ð5Þ

with K being an arbitrary operator in the form of K ¼P
i∈ΛOi (Λ: total set of sites),where I

ðαÞ
ρβ ðKÞ andF ρβðKÞ are

the WYD skew (58) and quantum Fisher (65) information,
respectively. These general limits provide useful information
related to the application of quantum many-body systems to
quantum metrology [61–65].
The remainder of this paper is organized as follows. In

Sec. II, the precise setting and notations used throughout
the paper are formulated, coupled with the introduction to
certain preliminaries such as the Lieb-Robinson bound and
entanglement measure. In Sec. III, the quantum correlation
QCρðOA;OBÞ is introduced as the convex roof of the
standard correlation function. In addition, several rigorous
results on the relationships between the quantum correla-
tion and quantum entanglement are provided. Further, in
Sec. IV, the main results on the clustering theorem for the
quantum correlation [Eq. (1)] and the PPT relative entan-
glement [Eqs. (2) and (3)] are provided. Thereafter, in
Sec. V, the obtained results are demonstrated on the WYD
skew and quantum Fisher information [Eqs. (4) and (5)]. In
Sec. VI, the following topics relevant to the obtained results
are discussed: (i) the relationship between the macroscopic
quantum effect and quantum entanglement (Sec. VI A),
(ii) the relationship between entanglement clustering and
the quantumMarkov property (Sec. VI A), (iii) the relation-
ship between the quantum correlation and entanglement of
formation (Sec. VI C), (iv) optimality of the proposed main
theorems (Sec. VI D), and (v) extension of the results

· · · · · ·

FIG. 2. Schematic of 1D entanglement clustering. In the
obtained bound (2), the subset dependence eOðjAjþjBjÞ prohibits
its application to the upper bound of the entanglement between
two large blocks. In one-dimensional systems, this problem can
be resolved to obtain better subset dependence, as in Eq. (3).
Here, the characteristic length of bipartite entanglement becomes
Oðβ2Þ instead of OðβÞ.
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obtained to more general quantum states based on the
Bernstein-Widder theorem (Sec. VI E). Finally, in Sec. VII,
the study is summarized, along with a discussion regarding
the scope for future work.

II. SETUP AND PRELIMINARIES

Consider a quantum system on a D-dimensional lattice
with n sites. On each of the sites, the Hilbert space with
dimension d0 is assigned. Let Λ be the set of total sites.
Further, for an arbitrary subset X ⊆ Λ, the cardinality (the
number of sites contained in X) is denoted as jXj. In
addition, a complementary subset of X is denoted as
Xc ≔ ΛnX. For an arbitrary subset X ⊆ Λ, DX is defined
as the dimension of the Hilbert space on X, that is,

DX ¼ djXj0 . Finally, X ∪ Y is denoted as XY.
For arbitrary subsets X; Y ⊆ Λ, dX;Y is defined as the

shortest path length on the graph connecting X and Y, and
hence if X ∩ Y ≠ ∅, dX;Y ¼ 0. However, when X com-
prises only one element (e.g., X ¼ fig), the distance dfig;Y
is denoted as di;Y for simplicity. In addition, the surface
subset of X is denoted as ∂X ≔ fi ∈ Xjdi;Xc ¼ 1g.
For a subset X ⊆ Λ, the extended subset X½r� is

defined as

X½r� ≔ fi ∈ ΛjdX;i ≤ rg; ð6Þ

where X½0� ¼ X, and r is an arbitrary positive number (i.e.,
r ∈ Rþ). Based on the notation, for i ∈ Λ, it is concluded
that the subset i½r� is a ball region with radius r centered at
the site i. A geometric parameter γ is introduced, which is
determined based on the lattice structure alone. Further,
γ ≥ 1 is defined as a constant of Oð1Þ that satisfies the
following inequalities:

max
i∈Λ

ðj∂i½r�jÞ ≤ γrD−1; max
i∈Λ

ðji½r�jÞ ≤ γrD; ð7Þ

where r ≥ 1.

A. Hamiltonian and quantum Gibbs state

Throughout the study, generic Hamiltonians with few-
body interactions are considered. Here, the Hamiltonian is
expressed in the following k-local form:

H ¼
X
jZj≤k

hZ; max
i∈Λ

X
Z∶Z∋i

khZk ≤ g; ð8Þ

where each of the interaction terms fhZgjZj≤k acts on the
spins on Z ⊂ Λ. For an arbitrary subset L ⊂ Λ, the subset
Hamiltonian, which includes interactions in a subset L, is
denoted as HL:

HL ¼
X

Z∶Z⊂L
hZ: ð9Þ

To characterize the interaction strength of the
Hamiltonian, the following assumption is imposed:

max
fi;jg⊂Λ

X
Z⊃fi;jg

khZk ≤ Jðdi;jÞ; ð10Þ

where JðxÞ is a function that monotonically decreases with
x ≥ 0. Here, the short-range interaction is primarily con-
sidered, where the decay of the function JðxÞ is faster than
the exponential decay; in other words,

JðxÞ ≤ g0e−μ0x ðshort-range interactionÞ ð11Þ

with g0 ¼ Oð1Þ and μ0 ¼ Oð1Þ. The results can be gen-
eralized to a broader class of interactions, as discussed in
the Appendix B.
Using the Hamiltonian, the quantum Gibbs state can be

defined as follows:

ρβ ¼
e−βH

Zβ
; Zβ ¼ trðe−βHÞ; ð12Þ

where β is the inverse temperature. Throughout the paper,
by appropriately choosing the energy origin, Zβ ¼ 1 is
enforced, that is,

ρβ ¼ e−βH: ð13Þ
However, when considering a reduced density matrix on a
region L (L ⊂ Λ), it is denoted as ρβ;L:

ρβ;L ≔ trLcðρβÞ; ð14Þ

where trLc implies the partial trace for the Hilbert space on
the subset Lc.

B. Lieb-Robinson bound

Herein, we present the Lieb-Robinson bound that char-
acterizes the quasilocality via time evolution [66–69]. The
Lieb-Robinson bound is central to most of the derived
results in this study, and it is formulated as follows:
Lemma 1. (Lieb-Robinson bound [70]) For arbitrary

operators OX and OY with unit norm and dX;Y ¼ R, the
norm of the commutator ½OXðtÞ; OY � satisfies the following
inequality:

k½OXðtÞ; OY �k ≤ Cminðj∂Xj; j∂YjÞðevjtj − 1Þe−μR; ð15Þ

where C, v, μ are constants of Oð1Þ, which depend on the
system parameters, that is, k, g, g0, μ0, D, and γ.
Using the Lieb-Robinson bound (15), the approximation

of OXðtÞ onto a local region Y ⊃ X can be obtained. We
define OXðt; YÞ as
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OXðt; YÞ ≔
1

trYcð1̂Þ trYc ½OXðtÞ� ⊗ 1̂Yc ; ð16Þ

where trYcð� � �Þ is the partial trace for subset Yc; hence, the
operator OXðt; YÞ is supported on the subset Y ⊆ Λ. Note
that OXðt;ΛÞ ¼ OðtÞ. As shown in Ref. [71], for arbitrary
subsets Y ⊇ X, the following can be derived:

kOXðtÞ −OXðt; YÞk ≤ inf
UYc

k½OXðtÞ; UYc �k; ð17Þ

where infUYc
accepts all unitary operators UYc that are

supported on Yc. On selecting Y ¼ X½R� with R ∈ N, the
following inequality can be obtained using the Lieb-
Robinson bound (15):

kOXðtÞ −OXðt; X½R�Þk ≤ Cj∂Xjðevjtj − 1Þe−μR; ð18Þ

where the inequality (15) is applied to ½OXðtÞ; UX½R�c � with
UX½R�c an arbitrary unitary operator. Based on the above
inequality, it can be ensured that OXðtÞ ≈OXðt; X½R�Þ for
R≳ ðv=μÞt. Often, (v=μ) is referred to as the “Lieb-
Robinson velocity”: vLR ¼ v=μ. In Table I, the fundamen-
tal parameters used are summarized.
Provided the Lieb-Robinson bound holds, the

primary results of this study can be extended to more
general quantum systems such as long-range interacting
systems with power-law decaying interactions (see also
Appendix B).

C. Quantum entanglement

Here, the basic definition of quantum entanglement
[5,72] is presented. First, SEPðA∶BÞ is defined as a set
of separable quantum states on the subset AB. For an
arbitrary quantum state ρ, the reduced density matrix ρAB
satisfies ρAB ∈ SEPðA∶BÞ if and only if the following
decomposition exists:

ρAB ¼
X
s

psρs;A ⊗ ρs;B: ð19Þ

When ρAB is a pure state, ρAB ∈ SEPðA∶BÞ implies that ρAB
is given by the product state. Further, a quantum state ρAB is
defined to be entangled if and only if ρAB ∉ SEPðA∶BÞ.

In quantifying the entanglement, the relative entangle-
ment [73–75] can be adopted as follows:

EX
R ðρABÞ ≔ inf

σAB∈X
SðρABkσABÞ; ð20Þ

where X is the arbitrary class of quantum states (focus of
this study) and SðρABkσABÞ is the relative entropy:

SðρABkσABÞ ≔ tr½ρAB logðρABÞ� − tr½ρAB logðσABÞ�: ð21Þ

In particular, on choosing X ¼ SEPðA∶BÞ, the following is
denoted,

ERðρABÞ ≔ inf
σAB∈SEPðA∶BÞ

SðρABkσABÞ; ð22Þ

for simplicity.
The relative entanglement ERðρABÞ is also related to the

closeness of the target state to the zero-entangled state.
Pinsker’s inequality entails

kρAB − σABk1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðρABkσABÞ

p
ð23Þ

for an arbitrary σAB. Hence, definition (22) immediately
yields

δρAB ≔ inf
σAB∈SEPðA∶BÞ

kρAB − σABk1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERðρABÞ

p
: ð24Þ

The quantity δρAB yields meaningful upper bounds for
various entanglement measures. Using the continuity of
the information measures [76,77], most of the entangle-
ment measures are upper bounded by OðδρABÞ × logðDABÞ,
such as the entanglement of formation [78], the entangle-
ment of purification [77], the relative entanglement [79],
and the squashed entanglement [76,80].

D. Clustering theorem at high temperatures:
Known results

This section reviews an established clustering theorem
that holds above a threshold temperature, which is usually
determined by the convergence of the cluster expansion. In
high-temperature regimes, clustering of the entanglement
can be immediately derived by combining Pinsker’s
inequality and the exponential decay of the mutual infor-
mation (Corollary 4 below).
For an arbitrary quantum state ρ, the standard correlation

function CρðOA;OBÞ between observables OA and OB can
be defined as

CρðOA;OBÞ ≔ trðρOAOBÞ − trðρOAÞ · trðρOBÞ: ð25Þ

As a stronger concept of the bipartite correlation, the
mutual information IρðA∶BÞ between two subsystems A
and B can be defined as follows:

TABLE I. Fundamental parameters in our statements.

Definition Parameters

Spatial dimension D
Local Hilbert space dimension d0
Structure parameter of the lattice [see Eq. (7)] γ
Maximum number of sites involved in interactions
[see Eq. (8)]

k

Upper bound on the one-site energy [see Eq. (8)] g
Parameters in the Lieb-Robinson bound
[see Eq. (15)]

C, v, μ
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IρðA∶BÞ ≔ SρðAÞ þ SρðBÞ − SρðABÞ; ð26Þ

where SρðAÞ is the von Neumann entropy for the reduced
density matrix on subset A, that is, SρðAÞ≔ tr½−ρA logðρAÞ�,
with ρA being the reduced density matrix on A
[see Eq. (14)].
Previous studies [81,82] have provided the following

clustering theorem, which holds at arbitrary temperatures as
β ≲ logðnÞ (see also Ref. [83]):
Lemma 2. (1D clustering theorem) Let OA and OB be

arbitrary operators supported on subsets A and B, respec-
tively. When a quantum Gibbs state ρβ as in Eq. (13) with
D ¼ 1 is considered, the following inequality holds at
arbitrary temperatures β ≲ logðnÞ (n: system size) [81]:

CρβðOA;OBÞ ≤ polyðjAj; jBjÞ exp
�
−

R

eΩðβÞ

�
; ð27Þ

where dA;B ¼ R, and the notation ΩðβÞ denotes ΩðβÞ ∝
β1þz (z ≥ 0). In addition, the mutual information IρðA∶BÞ
decays exponentially with distance [82]:

IρðA∶BÞ ≤ polyðjAj; jBjÞ exp
�
−

R

eΩðβÞ

�
: ð28Þ

A similar result holds in arbitrary-dimensional systems:
Lemma 3. (high-dimensional clustering theorem)

Under the same setup as in Lemma 2, the following
inequality holds at arbitrary temperatures, such that β <
βc in arbitrary-dimensional systems [84–88]:

CρβðOA;OBÞ ≤ polyðjAj; jBjÞ exp
�
−

R
Oð1Þ

�
; ð29Þ

where βc is a constant that does not depend on the system
size. Furthermore, the mutual information IρðA∶BÞ decays
exponentially with distance [27]:

IρðA∶BÞ ≤ polyðjAj; jBjÞ exp
�
−

R
Oð1Þ

�
: ð30Þ

Lemmas 2 and 3 immediately imply the exponential
decay of the bipartite quantum entanglement. Consequently,
using Pinsker’s inequality (23) and the equation

IρðA∶BÞ ¼ SðρABkρA ⊗ ρBÞ; ð31Þ

the following corollary is obtained:
Corollary 4. In the temperature regimes β ≲ logðnÞ

(1D) and β < βc (high dimensions), the trace distance of
kρAB − ρA ⊗ ρBk1 exponentially decays with the distance
between regions A and B:

kρAB − ρA ⊗ ρBk1 ≤ polyðjAj; jBjÞe−OðRÞ: ð32Þ

Owing to ρA ⊗ ρB ∈ SEPðA∶BÞ, the above corollary
implies δρAB ≲ e−OðRÞ. For the relative entanglement (22),
ERðρABÞ ≤ polyðjAj; jBjÞe−OðRÞ is obtained from the
continuity bound [79]. Therefore, in high-temperature
regimes, the problem of bipartite entanglement clustering
can be easily proved using the established results [89].
Consequently, this study focuses on the low-temperature
regimes, where thermal phase transitions can occur and the
clustering of bipartite correlations may no longer be
satisfied.

III. QUANTUM CORRELATION

Before discussing the entanglement clustering theorem,
the quantum correlation function, defined as a convex roof
of the standard correlation function CρðOA;OBÞ in
Eq. (25), must be considered. Quantum correlation is a
natural quantum analog of the standard correlation function
and has a significant relationship with quantum entangle-
ment (Sec. III B). Quantum correlation is introduced for
two primary reasons:
(1) The clustering theorem for quantum correlation can

be proved in a completely general manner (Theo-
rem 10).

(2) The clustering of quantum correlation is also utilized
to prove the entanglement clustering theorems (Cor-
ollary 11 and Theorem 12).

A. Definition

For an arbitrary many-body quantum state ρ, the quan-
tum correlation for observables OA and OB can be defined
by the convex roof of the standard correlation function (25),
that is, CρðOA;OBÞ [¼ trðρOAOBÞ − trðρOAÞ · trðρOBÞ]:

QCρðOA;OBÞ ≔ inf
fps;ρsg

X
s

psjCρsðOA;OBÞj; ð33Þ

where minimization is performed for all possible decom-
positions of ρ such that ρ ¼ P

s psρs with ps > 0, and ρs is
a quantum state. Herein, the mixed convex roof was
adopted instead of the pure convex roof, for which
decomposed states fρsg are restricted to the pure state;
in other words, ρs ¼ jϕsihϕsj for ∀ s. This is because using
it ensures inequality (37) in Lemma 5. For example, the
mixed convex roof has been considered in Refs. [91–94].
Subsequently, the definition immediately implies

QCρðOA;OBÞ ¼ jCρðOA;OBÞj ð34Þ

when ρ is given by the pure state.
The quantum correlations for a density matrix ρ may be

different from those for a reduced density matrix ρL
(L ⊂ Λ), that is, QCρLðOA;OBÞ≠QCρðOA;OBÞ [Eq. (37)].
For example, consider the case wherein ρ is given by the
Greenberger-Horne-Zeilinger (GHZ) state as follows:
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1

2
ðj0Λi þ j1ΛiÞðh0Λj þ h1ΛjÞ; ð35Þ

where j0Λi (j1Λi) is the product state of j0ii (j1ii) states
(i ∈ Λ). Then, the quantum state ρ has a nonzero quantum
correlation, based on Eq. (34), while the reduced density
matrices in arbitrary subsystems L ⊂ Λ are given by a
mixed state of j0Li and j1Li, each of which exhibits no
correlations. Hence, no quantum correlations exist in the
reduced density matrix of the GHZ state.
As the basic properties of QCρðOA;OBÞ, the following

lemma is proven:
Lemma 5. Let OA and OB be arbitrary operators

supported on A and B, respectively. Subsequently, the
following inequalities are obtained:

QCρðOA;OBÞ ≤ jCρðOA;OBÞj ð36Þ

and

QCρLðOA;OBÞ ≤ QCρðOA;OBÞ; ð37Þ

where A ⊆ L and B ⊆ L. The second inequality is con-
sistent with the example of the GHZ state (35).
In addition, the quantum correlation satisfies the

following continuity bound. For two arbitrary quantum
states ρ and σ, the difference between QCρðOA;OBÞ and
QCσðOA;OBÞ is upper bounded as

jQCσðOA;OBÞ − QCρðOA;OBÞj ≤ 7
ffiffiffi
2

p
ϵ1=2; ð38Þ

where kOAk ¼ kOBk ¼ 1 and ϵ ¼ kσ − ρk1 are set.
Proof.—The proof of inequality (36) is obtained by

choosing the decomposition as ρ ¼ p1ρ1 with p1 ¼ 1 and
ρ1 ¼ ρ in definition (33). Regarding the second inequality,
the decomposition fps; ρsg is considered such that

X
s

psjCρsðOA;OBÞj ¼ QCρðOA;OBÞ: ð39Þ

For the reduced density matrix ρL, the decomposition using
fps; ρsg is chosen as

ρL ¼
X
s

psρs;L; ρs;L ¼ trLcðρsÞ: ð40Þ

Subsequently, jCρsðOA;OBÞj ¼ jCρs;LðOA;OBÞj is obtained,
and hence, inequality (37) is derived as

QCρLðOA;OBÞ ≤
X
s

psjCρs;LðOA;OBÞj

¼ QCρðOA;OBÞ: ð41Þ

Finally, the inequality (38) is proven via the application
of the method in Ref. [91] (Proposition 5). For the standard
correlation CρðOA;OBÞ, straightforward calculations yield

jCρðOA;OBÞj ≤ 1 ð42Þ

and

jCρðOA;OBÞ − CσðOA;OBÞj ≤ 3kρ − σk1; ð43Þ

where kOAk ¼ kOBk ¼ 1. Hence, we can choose param-
eters K and M in Eqs. (29) and (30) of Ref. [91] as K ¼
3= logðdXÞ and M ¼ 1= logðdXÞ, where dX is the total
Hilbert space dimension for ρ, that is, dX ¼ DΛ according
to this study’s notations. Thus, inequality (38) can be
obtained from Eqs. (31) and (51) and Proposition 5 of
Ref. [91]. This completes the proof. ▪

B. Condition for zero quantum correlation

As a trivial statement, we first prove the follow-
ing lemma:
Lemma 6. For a quantum state ρAB supported on A ∪ B,

the quantum correlation QCρABðOA;OBÞ is equal to zero for
arbitrary operators OA and OB if ρAB is not entangled
between the subsystems A and B [i.e., ρAB ∈ SEPðA∶BÞ]:

ρAB ∈ SEPðA∶BÞ → QCρABðOA;OBÞ ¼ 0 ð44Þ

for arbitrary pairs of OA, OB. Considering the contrapo-
sition of statement (44), it can be concluded that

QCρABðOA;OBÞ ≠ 0 for a pair of OA;OB

→ ρAB ∉ SEPðA∶BÞ: ð45Þ

Proof.—Considering definition (19) for SEPðA∶BÞ, there
exists a decomposition of

ρAB ¼
X
s

psρs;A ⊗ ρs;B ð46Þ

when the quantum state ρAB is not entangled. For such a
decomposition, the state ρAB exhibits no quantum correla-
tions for operators OA or OB:

QCρABðOA;OBÞ ≤
X
s

psjCρs;A⊗ρs;BðOA;OBÞj ¼ 0: ð47Þ

This completes the proof. ▪
Thus, zero entanglement has been proven to be a

sufficient condition for the zero-quantum correlation, as
in Eq. (44). However, this leads to the immediate question
of whether the converse is also true, that is,

QCρABðOA;OBÞ ¼ 0 for arbitrary pairs of OA;OB

⟶
?
ρAB ∈ SEPðA∶BÞ: ð48Þ

To address this question, the following conjecture is
proposed:
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Conjecture 7. Statement (48) is true. In other words, the
zero-quantum correlation for arbitrary pairs of OA, OB is
necessary and sufficient for zero entanglement.
The reason for considering the conjecture to be true is that
the following relationship exists for the standard correlation
function:

CρABðOA;OBÞ ¼ 0 for arbitrary pairs of OA;OB

↔ ρAB is a product state: ð49Þ

Hence, it is natural to expect that the quantum version of the
above relationship is true as well. Regarding the above
conjecture, at the very least, the following statement can be
proven:
Lemma 8. If QCρABðOA;OBÞ ¼ 0 for arbitrary pairs of

OA, OB, the Peres-Horodecki separability criterion [95,96],
i.e., the PPT condition, is satisfied. Thus, the operator ρTA

AB
has no negative eigenvalues, where TA is the partial
transpose with respect to the Hilbert space on the subset A.
Proof.—The statement is immediately followed by

Proposition 9 below. The condition that QCρABðOA;OBÞ ¼
0 for arbitrary pairs of OA, OB implies ϵ ¼ 0 in Eq. (51).
Hence, by applying ϵ ¼ 0 to inequality (52), ρAB ∈ PPT is
obtained, where PPT is a set of states such that the PPT
condition is satisfied [Eq. (50) below]. This completes the
proof. ▪
The above lemma shows that Conjecture 7 rigorously holds
for a certain class of quantum systems, such as 2 × 2, 2 × 3
quantum systems [96,97]. Thus, any attempt to prove or
disprove the conjecture in general cases must consider the
existence of the bound entanglement [98,99]. A possible
route to proving Conjecture 7 relies on the entanglement
witness [100–103]. However, appropriately reducing the
calculations of the witness to those of quantum correlations
is a challenging task. As shown in the proofs of Proposition
9 and Lemma 25 below, the calculation of the partial
transpose can be related to the quantum correlations.

C. PPT relative entanglement

Finally, in this section, quantum correlation is related to
the PPT relative entanglement. As shown in Lemma 8,
quantum correlation is proven to be strongly related to the
PPT condition. Consequently, using this property, quantum
correlations can be related to the following PPT relative
entanglement [104–107]:

EPPT
R ðρABÞ ≔ inf

σAB∈PPT
SðρABkσABÞ; ð50Þ

where X ¼ PPT is used in Eq. (20) with PPT a set of the
quantum states σAB that satisfy the PPT condition, that is,
σTA
AB ≽ 0 for σAB ∈ PPT. Because the PPT set includes the

separable set SEP (PPT ⊇ SEP), EPPT
R ðρABÞ is smaller than

or equal to ERðρABÞ, except for special cases. As shown in
Ref. [74], the PPT relative entanglement satisfies all basic

conditions for the entanglement measure (i.e., the four
conditions in Ref. [72]). In addition, it provides an upper
bound for Rains’ bound [108,109], which is strongly
related to the distillable entanglement [104,108].
As shown in the following proposition, the quantum

correlation (33) provides an upper bound for the PPT
relative entanglement (see Appendix E for the proof):
Proposition 9. Let ρAB be an arbitrary quantum state

such that

QCρABðOA;OBÞ ≤ ϵkOAk · kOBk ð51Þ

for two arbitrary operators OA and OB. Thus,

EPPT
R ðρABÞ ≤ 4DABδ̄ logð1=δ̄Þ ≤ 4DABδ̄

1=2;

δ̄ ≔ 4ϵminðDA;DBÞ; ð52Þ

where the second inequality is trivially derived from
x logð1=xÞ ≤ x1−1=e ≤ x1=2 for 0 ≤ x ≤ 1. Recall that
DAB is the Hilbert space dimension in the region AB.
Based on the proposition, if there are no quantum corre-
lations, that is, if ϵ ¼ 0 in Eq. (51), it can be ensured that
EPPT
R ðρABÞ ¼ 0, which also yields Lemma 8. Consequently,

the clustering theorem for the quantum correlation can be
associated with that for quantum entanglement. In the
following section, the generic quantum Gibbs states are
presented to satisfy the exponential clustering for quantum
correlations at arbitrary temperatures, thereby indicating
that the entanglement clustering theorem also holds.

IV. EXPONENTIAL CLUSTERING FOR
QUANTUM CORRELATIONS

In this section, the main theorems of this study on the
exponential clustering of the quantum correlations as well
as quantum entanglement are presented. The theorems
capture the universal structures of generic quantum
Gibbs states at arbitrary temperatures.
First, consider the following theorem on quantum

correlation (see Appendix D for the proof):
Theorem 10. LetOA andOB be arbitrary operators with

the unit norm that are supported on the subsets A ⊂ Λ and
B ⊂ Λ, respectively (dA;B ¼ R). Then, when a quantum
state ρ is given by a quantum Gibbs state with the short-
range Hamiltonian (11) (ρ ¼ ρβ), the quantum correlation
QCρβðOA;OBÞ is upper bounded as follows:

QCρβðOA;OBÞ
≤ Cβðj∂Aj þ j∂BjÞð1þ log jABjÞe−R=ξβ ; ð53Þ

where Cβ ¼ cβ;1 þ cβ;2, and the parameters cβ;1, cβ;2, and
ξβ can be defined as follows:
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ξβ ≔
4

μ

�
1þ vβ

π

�
; cβ;1 ≔ e2=ξβ

�
24

π
þ 12C

vβ

�
;

cβ;2 ≔ e2=ξβ
�
12þ 3C

π
þ 3C

vβ

�
½2þ logð1þ 2gβÞ�: ð54Þ

The basic parameters are summarized in Table I.
Remark. The constant Cβ depends on the inverse

temperature β; however, it increases, at most, logarithmi-
cally with β, that is, Cβ ¼ O(logðβÞ). By contrast, in the
limit of β → þ0, the upper bound for QCρβðOA;OBÞ
apparently breaks down. However, the temperatures
of β ≪ 1 correspond to the high-temperature regime;
hence, a significantly stronger statement (e.g., exponential
decay of the mutual information, see Sec. II D) can be
proven using the cluster expansion technique [27].
Therefore, the important temperature regime is β ≫ 1,
which cannot be captured by cluster expansion. Finally,
it must be considered that the inequality (53) yields
nontrivial upper bounds even for β ¼ OðnzÞ (z > 0).

A. Exponential entanglement clustering

The combination of Proposition 9 with Theorem 10
yields the following corollary:
Corollary 11. Let ρβ be a quantum state given by a

quantum Gibbs state with the short-range Hamiltonian (11).
Then, for arbitrary subsystems A and B separated by a
distance R (i.e., dA;B ¼ R), the PPT relative entanglement is
upper bounded by

EPPT
R ðρβ;ABÞ ≤ 8C1=2

β e−R=ð2ξβÞþ3 logðDABÞ ð55Þ
with fCβ; ξβg defined in Eq. (54), where we use
j∂Ajþ j∂Bj≤DAB, 1þ log jABj≤DAB, and minðDA;DBÞ≤
DAB in applying inequality (53) to (52).
In the above upper bound, the bipartite entanglement

decays exponentially beyond a distance R≳OðjAj þ jBjÞ.
Hence, the inequality is meaningless when A and B depend
on the system size (i.e., DAB ¼ eOðnÞ). However, it cannot
be improved using the decay of quantum correlations
alone. To highlight this, consider a random state jψ randi
that has the same property as the infinite temperature states,
provided the local regions are considered. As shown in
Refs. [110,111], the state jψ randi satisfies exponential
clustering for the standard correlation functions (25), which
clearly implies the exponential decay of quantum correla-
tions from inequality (36). However, the state jψ randi
exhibits a large quantum entanglement between A and
B, implying that the characteristics of the quantum Gibbs
state must be exploited.
Further, using the quantum belief propagation technique

[56,57], inequality (55) can be significantly improved for
one-dimensional cases (see Appendix F for the proof):
Theorem 12. Let H be a 1D quantum Hamiltonian with

a finite interaction length of k, at most. Thus, the PPT
relative entanglement is upper bounded by

EPPT
R ðρβ;ABÞ ≤ C̄β logðDABÞe−R=½6 logðd0Þξ

2
β �þ7gkβ; ð56Þ

where d0 is defined as the one-site Hilbert space dimension
and C̄β ≔ 24ðC̃β þ 16d40CβÞ1=2, withCβ defined in Eq. (54)
and C̃β defined in Eq. (F6) as

C̃β ≔ 1280

�
5þ 2Ceμk

π2
þ 2Ceμk

πvβ

�
2

: ð57Þ

Remark. The assumption of the finite interaction length
in the statement is not essential. However, without this
assumption, inequality (F35) in the proof becomes slightly
more complicated.
Here, the PPT relative entanglement has been consid-

ered. In addition, the definition of EPPT
R ðρβ;ABÞ is signifi-

cantly associated with that of entanglement negativity [50],
which is another popular entanglement measure, particu-
larly in the context of numerical calculations. Furthermore,
part of the above results pertaining to PPT relative
entanglement can be applied to entanglement negativity
(Appendix G).

V. QUANTUM CORRELATIONS BASED
ON THE SKEW INFORMATION

Herein, another type of quantum correlation based on the
WYD skew information [112–114] is considered:

I ðαÞ
ρ ðKÞ ≔ trðρK2Þ − trðρ1−αKραKÞ ð58Þ

for 0 < α < 1, where K is an arbitrary operator. The WYD
skew information is considered as a measure of the non-
commutability between ρ and K. However, as a represen-
tative application, it is utilized in formulating the
Heisenberg uncertainty relation for mixed states [115–
118]. More recently, the WYD skew information has
garnered attention in the context of the quantum coherence
theory [60,119–122].
In Refs. [58,59,123,124], the following quantity has

been defined to characterize quantum correlations:

Q̄ρðOA;OBÞ≔
Z

1

0

QðαÞ
ρ ðOA;OBÞdα

¼ trðρOAOBÞ−
Z

1

0

trðρ1−αOAρ
αOBÞdα ð59Þ

with

QðαÞ
ρ ðOA;OBÞ ≔ trðρOAOBÞ − trðρ1−αOAρ

αOBÞ: ð60Þ

The quantity QðαÞ
ρ ðOA;OBÞ is reduced to the standard

correlation function CρðOA;OBÞ when ρ is a pure state.
The authors in Refs. [58,59] numerically verified that the

quantum correlation defined by Q̄ρðOA;OBÞ decays expo-
nentially with a finite correlation length, even at critical
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points, in hard-core bosons and quantum rotors on a 2D
square lattice. However, whether these observations hold
universally at arbitrary temperatures remains unclear. This
problem can be resolved through the following theorem
(see Appendix C for the proof):
Theorem 13. The quantum correlation (60) is upper

bounded for 0 ≤ α ≤ 1 as follows:

QðαÞ
ρβ ðOA;OBÞ ≤ C0

β minðj∂Aj; j∂BjÞe−R=ξ0β ; ð61Þ

where C0
β and ξ

0
β are characterized solely by the parameters

in the Lieb-Robinson bound (15) as follows:

C0
β ¼

12þ 2C
π

þ 4C
vβ

; ξ0−1β ¼ μ

2þ ðvβÞ=π : ð62Þ

It is evident that the same upper bound trivially holds for
Q̄ρðOA;OBÞ in Eq. (59).
As shown in Appendix C, the proof technique employed
here is similar to that in Refs. [125,126], where the
clustering theorem for specific operators in fermion sys-
tems at arbitrary temperatures has been proven.
Thus, using Theorem 13, a general upper bound for the

WYD skew information (see Appendix C 2 for the proof)
can be obtained:
Corollary 14. Let K be an operator expressed as

K ¼
X
i∈Λ

Oi ðkOik ≤ 1Þ: ð63Þ

Then, the WYD skew information I ðαÞ
ρβ ðKÞ (0 ≤ α ≤ 1) is

upper bounded by

I ðαÞ
ρβ ðKÞ ≔ trðρβK2Þ − trðρ1−αβ KραβKÞ

≤ C̃0
βξ

D
β0n ¼ OðβDÞn; ð64Þ

where C̃0
β ≔ C0

β½ðμ=2ÞD þ γeμ=2D!�.

A. Quantum Fisher information

As a relevant quantity, the quantum Fisher information
F ρðKÞ, which is defined as follows [127], is considered:

F ρðKÞ ¼
X
s;s0

2ðλs − λs0 Þ2
λs þ λs0

jhλsjKjλs0 ij2; ð65Þ

where K ¼ P
i∈Λ Oi and ρ ¼ P

s λsjλsihλsj (λs > 0). Here,
λs and jλsi are defined by the spectral decomposition
ρ ¼ P

s λsjλsihλsj. When considering the quantum Gibbs
states (i.e., ρβ), λs ¼ e−βEs and jλsi ¼ jEsi are obtained,
where jEsi is the eigenstate of the Hamiltonian with the
corresponding eigenenergy Es. Subsequently, the quantum
Fisher information is expressed as

F ρβðKÞ ¼
XDΛ

s;s0¼1

2ðe−βEs − e−βEs0 Þ2
e−βEs þ e−βEs0

jhEsjKjEs0 ij2;

where DΛ is the dimension of the total Hilbert space.
The quantum Fisher information was introduced in the

field of quantum metrology [128–131]. As per the defi-
nition (65), the quantum Fisher information F ρðKÞ char-
acterizes the sensitivity of the quantum state ρ to the unitary
transformation e−iKθ. Specifically, the uncertainty in esti-
mating the parameter θ is lower-bounded by the quantum
Cramér-Rao bound [128,129]:

Δθ ≥
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mF ρðKÞ
p ; ð66Þ

where m is the number of independent measurements on
e−iKθρeiKθ. Thus, with an increase in the quantum Fisher
information, the required number of measurements
decreases. In the context of the entanglement theory, this
is also regarded among the representative measures for
macroscopic quantum entanglement [6,127,132–135]. In
recent studies, the quantum Fisher information has gar-
nered attention in the development of quantum technolo-
gies (see Refs. [6,136,137] for recent reviews).
The quantum Fisher information is associated

with the WYD skew information through the inequality

ðF ρβðKÞ=4Þ≤2I ðα¼1=2Þ
ρβ ðKÞ, which was proven in Theorem

2 of Ref. [138] (see also Ref. [139]). Hence, based on
inequality (64), the upper bound can be obtained as

F ρβðKÞ ≤ 8C̃0
βξ

D
β0n; ð67Þ

where C̃0
β and ξ

0
β are defined in Corollary 14. By contrast, a

general lower bound for the quantum Fisher information is
provided in Ref. [140]. Further, in Appendix H, several
discussions related to the fundamental properties of the
quantum Fisher information and quantum Fisher informa-
tion matrix, which plays an important role in quantum
correlation, are presented.
To discuss macroscopic entanglement using the quantum

Fisher information, the scaling exponent F ρβðKÞ ∝ np

(p ≤ 2) is considered. When p ¼ 2, the state is composed
of the superposition of macroscopically different quantum
states; for example, the GHZ state has p ¼ 2 [127,132]. By
contrast, when p ¼ 1, scaling is the same as the product
states, and macroscopic superposition does not exist.
Based on inequality (67), the scaling of the Fisher infor-
mation is always given by OðnÞ (i.e., p ¼ 1), provided
β ¼ poly- logðnÞ. Thus, the results obtained offer rigorous
proof for the absence of macroscopic superposition at finite
temperatures.
At the quantum critical point (i.e., β ¼ ∞), scaling of the

quantum Fisher information typically behaves as p > 1
[see Eq. (22) of Ref. [140]; for example, p ¼ 7=4 for the
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critical transverse Ising model [141,142]. The obtained
upper bound (67) characterizes the necessary temperature
required when applying the many-body macroscopic entan-
glement to quantum metrology [61–65]; this has attracted
considerable attention in recent studies.

VI. FURTHER DISCUSSION

A. Macroscopic quantum effect vs quantum
entanglement

The entanglement properties have been discussed in the
finite-temperature Gibbs state. This section shows that, in
general, the observations on the entanglement properties
for the finite-temperature mixed state are considerably
different from those for pure states. Nevertheless, the
typical unusual wave function at low temperatures in
condensed matter physics is worth discussing, such as
Bardeen-Cooper-Schrieffer states in a superconductor,
which exhibit off-diagonal long-range orders (ODLRO
[1]). In Refs. [143,144], Vedral discussed η-pairing states,
which are eigenstates in the Hubbard and similar models, to
explain high-temperature superconductivity. It was argued
that such states have a vanishing entanglement between two
sites as the distance diverges, whereas the classical corre-
lations remain finite even in the thermodynamic limit. In
addition, maximally mixed states with η-pairing states also
exhibit this property. Consequently, this observation sug-
gests that ODLRO is not directly associated with the
quantum entanglement discussed in this study. The quan-
tum entanglement properties in the finite-temperature
Gibbs state have not been analytically scrutinized under
a general framework thus far. However, recent large-scale
numerical computations involving two-dimensional trans-
verse field Ising models revealed that entanglement mea-
sured via the Rényi negativity is short-ranged, even at finite
critical temperatures [54,55]. This observation is consistent
with the general statement in the present study.

B. Relation to the quantum Markov property

In this subsection, a brief derivation of the relation
between the clustering of quantum entanglement and the
approximate quantum Markov property is presented.
For this purpose, the squashed entanglement

[80,145,146], defined using the conditional mutual infor-
mation IρABEðA∶BjEÞ for tripartite quantum systems, is
considered:

IρABEðA∶BjEÞ ≔ SρABEðAEÞ þ SρABEðBEÞ
− SρABEðABEÞ − SρABEðEÞ: ð68Þ

Recall that SρABEðLÞ is the von Neumann entropy for the
reduced density matrix on the subset L ⊆ ABE. Thus, the
squashed entanglement is defined as follows:

EsqðρABÞ ≔ inf
E

�
1

2
IρABEðA∶BjEÞjtrEðρABEÞ ¼ ρAB

�
; ð69Þ

where infE is considered over all extensions of ρAB, such
that trEðρABEÞ ¼ ρAB. In contrast to the PPT relative
entanglement (50), squashed entanglement is equal to zero
if and only if the quantum state is not entangled [145].
In addition, squashed entanglement is strongly related to

the quantum Markov property, which implies the following
equation for the arbitrary tripartition of total systems
(Λ ¼ A⊔C⊔B):

IρðA∶BjCÞ ¼ 0 for dA;B ≥ r0; ð70Þ

where r0 is a constant of Oð1Þ. When the Hamiltonian is
short-ranged and commuting, the above Markov property
strictly holds for quantum Gibbs states at arbitrary temper-
atures [147,148]. Further, the quantum Markov property
has a useful operational meaning [149], and it is crucial to
preparing the quantum Gibbs states on a quantum computer
[27,150–152]. Thus, for noncommuting Hamiltonians
with short-range interactions, it is conjectured that, in
general, the quantumMarkov property holds in an approxi-
mate sense:
Conjecture 15. (Quantum Markov conjecture) For

arbitrary quantum Gibbs states, the conditional mutual
information IρβðA∶BjEÞ (Λ ¼ A⊔E⊔B) exponentially
decays with the distance between A and B:

IρβðA∶BjEÞ ≤ polyðjAj; jBjÞe−dA;B=ξβ ð71Þ

with ξβ ¼ polyðβÞ.
If the inequality (71) holds, the exponential clustering for
the squashed entanglement is obtained as

Esqðρβ;ABÞ ≤
1

2
IρβðA∶BjEÞ

≤ polyðjAj; jBjÞe−dA;B=ξβ ; ð72Þ

where E ¼ ΛnðABÞ and ρABE ¼ ρβ are considered in
Eq. (69). Thus far, the above conjecture has been proven
only in high-temperature regimes, where thermal phase
transition cannot occur, that is, β ≲ logðnÞ in 1D cases
[152] and β < βc (βc ¼ Oð1Þ) in high-dimensional cases
[27]. Moreover, in these temperature regimes, regarding
entanglement, considerably stronger statements than
Eq. (72) (i.e., Corollary 4) have already been derived.
Finally, it is shown that inequality (72) cannot be used to

prove the exponential clustering of other quantum entan-
glement measures [e.g., the relative entanglement (22) or
the entanglement of formation (79)], in general.
To upper bound the other entanglement measures, it is

necessary to upper bound the quantity δρAB, which is defined
in Eq. (24) as δρAB ≔ infσAB∈SEPðA∶BÞkρAB − σABk1. This
characterizes the distance between the quantum ρAB and
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nonentangled states. The squashed entanglement yields the
following upper bound for δρAB [145,146]:

δρAB ≤ 42
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DABEsqðρABÞ

q
; ð73Þ

where DAB is the dimension of the Hilbert space of AB. If
EsqðρABÞ ≪ 1=DAB, it can be ensured that δρAB is sufficiently
small. However, DAB is exponentially large, with a size of
jABj. Hence, regardless of the quantumMarkov Conjecture
15 being proven, the distance δρβ;AB for the quantum Gibbs
state may still be considerably large when subsets A orB are
as large as the system size n. Thus, a problem similar to that
in inequality (52) of Proposition 9 is encountered. Therefore,
the clustering problem of bipartite entanglement cannot be
generalized to other entanglement measures by simply
clarifying the quantum Markov property.

C. General upper bound on the quantum correlation

Here, it is shown that the entanglement formation
[49,153] is a simple upper bound for the quantum corre-
lation QCρABðOA;OBÞ. The relation between the entangle-
ment of formation and the quantum correlation
QCρABðOA;OBÞ is derived from that between mutual
information IρABðA∶BÞ and the standard correlation func-
tion CρABðOA;OBÞ. The entanglement of formation is
defined as follows:

EFðρABÞ ≔ inf
fps;jψs;ABig

X
s

ps

2
I jψ s;ABiðA∶BÞ

¼ inf
fps;jψ s;ABig

X
s

psSjψ s;ABiðAÞ; ð74Þ

where I jψ s;ABiðA∶BÞ and Sjψ s;ABiðAÞ are the mutual infor-
mation and the von Neumann entropy for the reduced
density matrix on subset A, respectively. Furthermore,
inffps;jψ s;ABig is considered for arbitrary decomposition ρ ¼P

s psjψ s;ABihψ s;ABj with ps > 0. In addition, IρsðA∶BÞ ¼
2Sρs;ABðAÞ when ρs is a pure state.
The mutual information I jψs;ABiðA∶BÞ captures the entire

correlations between two subsystems [45]. Hence, it is
quite plausible that the entanglement of formation provides
an upper bound for quantum correlations. Indeed, the
following lemma connects the quantum correlation
QCρABðOA;OBÞ and the entanglement of formation:
Lemma 16. For arbitrary operators OA and OB, the

quantum correlation QCρABðOA;OBÞ is upper bounded
using the entanglement of formation EFðρABÞ as follows:

QCρðOA;OBÞ ≤ 2kOAk · kOBk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFðρABÞ

p
: ð75Þ

Proof.—First, we note that

X
s

psjCρs;ABðOA;OBÞj2 ≥
�X

s
psjCρs;ABðOA;OBÞj

�
2

;

ð76Þ

which yields

inf
fps;ρs;ABg

X
s

psjCρs;ABðOA;OBÞj2 ≥ ½QCρABðOA;OBÞ�2: ð77Þ

Hence, the aim is to provide an upper bound for the lhs in
the above inequality.
Second, the classical squashed (c-squashed) entangle-

ment [94], which is obtained from the mixed convex roof of
mutual information, is considered [154]:

Ec
sqðρABÞ ≔ inf

fps;ρs;ABg

X
s

ps

2
Iρs;ABðA∶BÞ; ð78Þ

where inffps;ρs;ABg is considered for all possible decom-
positions of ρAB such that ρAB ¼ P

s psρs;AB. The differ-
ence between QIρABðA∶BÞ and EFðρABÞ is whether the
decomposed quantum states of ρ are restricted to a pure
state [156]. Trivially, the entanglement of formation
EFðρABÞ is lower-bounded as

EFðρABÞ ≥ Ec
sqðρABÞ: ð79Þ

Finally, Ec
sqðρABÞ is compared with the lhs in Eq. (77).

For this purpose, the following inequality reported in
Eq. (5) of Ref. [45] is utilized:

IρABðA∶BÞ ≥
jCρABðOA;OBÞj2
2kOAk2 · kOBk2

: ð80Þ

The application of the above inequality to definition (78)
yields

Ec
sqðρABÞ ≥ inf

fps;ρs;ABg

X
s

ps

2
·
jCρs;ABðOA;OBÞj2
2kOAk2 · kOBk2

≥
½QCρABðOA;OBÞ�2
4kOAk2 · kOBk2

; ð81Þ

where Eq. (77) is used in the last inequality. Thus, by
combining the above inequality with Eq. (79), the main
inequality (75) is proven. This completes the proof. ▪

D. Optimality of the obtained bounds

Herein, the optimality of the correlation length ξβ or ξ0β in
Theorems 10 and 13 is discussed. The β dependence of the
correlation length ξβ (i.e., ξβ ∝ β) is shown to be qualita-
tively optimal, which cannot be improved, in general. This
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point is ensured by the correspondence of the inverse
temperatures and spectral gap as follows:

β ↔ 1=Δ; ð82Þ

with Δ being the spectral gap between the ground and first
excited states. Consequently, the correlation length of
OðΔ−1Þ in the gapped ground states [67,69,159] implies
the correlation length of OðβÞ in the thermal states.
To elaborate, first, the following inequality for the

number of energy eigenstates in an arbitrary energy shell
ðE − 1; E� [160–162] is assumed:

N E;1 ≤ ncE; ð83Þ

where N E;1 is the number of eigenstates within the energy
shell of ðE − 1; E�, and c is a constant of Oð1Þ.
Furthermore, the energy origin is set such that the ground
state’s energy is equal to zero. Here, the above condition is
satisfied in various types of quantum many-body sys-
tems [160].
Thus, under condition (83), the quantum Gibbs states ρβ

are close to the ground state ρ∞ in the sense that

kρβ − ρ∞k1 ≤ const ×
e−ðβ−c logðnÞÞΔ

β − c logðnÞ : ð84Þ

Therefore, the properties of the thermal states and the
ground state are approximately the same for β ≈ logðnÞ=Δ
as follows:

kρβ − ρ∞k1 ¼ 1=polyðnÞ: ð85Þ

When the ground state is nondegenerate and gapped, the
correlation function Cρ∞ðOA;OBÞ is expressed as [67,69]

Cρ∞ðOA;OBÞ ¼ QCρ∞ðOA;OBÞ ¼ const × e−OðΔÞR; ð86Þ

where Eq. (34) is used for the pure state in the first
equation. Subsequently, using the continuity bound (38),

QCρβðOA;OBÞ ¼ Cρ∞ðOA;OBÞ − 1=polyðnÞ
¼ const × e−OðΔÞR − 1=polyðnÞ
¼ const × e−OðRÞ=ðβ= logðnÞÞ − 1=polyðnÞ;

ð87Þ

where the second equation results from the fact that
β ≈ logðnÞ=Δ implies Δ ≈ logðnÞ=β. Thus, the quantum
correlation starts to decay for R≳ β= logðnÞ; hence, the
correlation length is proportional to β at sufficiently low
temperatures.
By contrast, for the WYD skew and quantum Fisher

information, there is scope for improvement in the present β
dependences, which have been assigned inequalities (64)

and (67), respectively. In the ground states, the WYD skew
and quantum Fisher information reduce to the variance of
the operator. For an arbitrary operator K expressed in
Eq. (63), the variance ðΔKÞ2 ¼ trðρ∞K2Þ − ½trðρ∞KÞ�2 is
upper bounded by [163,164]

I ðαÞ
ρ∞ ðKÞ ¼ ðΔKÞ2 ≤ const × Δ−1n: ð88Þ

The above inequality holds in infinite-
dimensional systems and long-range interacting systems;
hence, the (β, Δ) correspondence (82) indicates an
improvement in the current upper bounds as

I ðαÞ
ρβ ðKÞ ≤ OðβnÞ and F ρβðKÞ ≤ OðβnÞ; ð89Þ

which affords better bounds in dimensions greater than
1 (D ≥ 2).

E. Beyond quantum Gibbs states

Throughout the discussion, the equilibrium situation is
considered at a finite temperature. However, when consid-
ering a nonequilibrium density matrix, the entanglement
properties exhibit different properties, in general [165].
Consequently, a natural question arises as to whether the
current results hold for more general quantum states. Based
on definition (33) of the quantum correlation, concavity is
satisfied, that is,

QCρðOA;OBÞ ≤ p1QCρ1ðOA;OBÞ þ p2QCρ2ðOA;OBÞ

for an arbitrary decomposition of ρ ¼ p1ρ1 þ p2ρ2
(p1 > 0, p2 > 0). Hence, considering a quantum state in
the form of

ρ ¼
Z

∞

0

aðzÞe−zHdz ð90Þ

with aðzÞ being a non-negative function, Theorem 10 can
be applied to the state ρ. Subsequently, the state ρ has a
finite quantum correlation length while the entanglement
clustering is also satisfied. A similar discussion can also be

applied to the WYD skew information I ðαÞ
ρ ðKÞ and the

quantum Fisher information F ρðKÞ owing to their con-
cavities [166]. Herein, if the state ρ includes extremely low-
temperature states, for example,

R
∞
β0
aðzÞtrðe−zHÞ ≈ 1 with

β0 ≈OðnÞ, the state ρ is similar to low-temperature Gibbs
states; consequently, the quantum correlation length may
become large.
As an important class of quantum states, the following

density matrix is considered to be characterized by a
monotonically decreasing function FðxÞ:

ρ ¼ FðHÞ
tr½FðHÞ� ; ð91Þ
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where FðxÞ ≥ 0. This class of the quantum state is referred
to as the passive state [169,170], and it plays a crucial role
in quantum thermodynamics [171–174]. Moreover, the
quantum Gibbs state trivially corresponds to the case
FðxÞ ¼ e−βx. Based on the Bernstein-Widder theorem
[175–177], the passive state (91) can be represented in
the form of Eq. (90) if and only if the function FðxÞ is
completely monotonic as follows:

ð−1Þm dm

dxm
FðxÞ ≥ 0 ð92Þ

for arbitrary m ≥ 0. Therefore, for every passive state with
condition (92), structural restrictions similar to that for the
quantum Gibbs state must be imposed [178].

VII. SUMMARY AND FUTURE WORKS

This study primarily addressed the conjecture of the
exponential clustering of bipartite entanglement, which
revealed the fundamental aspect of long-range entangle-
ment. The entanglement was accessed via the introduction
of a novel concept, referred to as the quantum correlation
QCρðOA;OBÞ, which is defined by the convex roof of the
standard bipartite correlation function, as in Eq. (33).
Consequently, as a fundamental theorem, the exponential
clustering of the quantum correlation was derived, which
holds at arbitrary temperatures, even at the critical point of
thermal phase transition. Based on its definition and
exploiting the fact that it uses the convex roof, quantum
correlation exhibits properties similar to those of entangle-
ment. Subsequently, several basic statements in Sec. III
were derived, including the relationship between the
quantum correlation and the PPT relative entanglement
(Proposition 9). Further, based on the clustering theorem
for the quantum correlation, entanglement clustering the-
orems (Corollary 11 and Theorem 12) for PPT relative
entanglement (2) were presented. Moreover, using similar
analytical techniques, the exponential clustering of another
type of quantum correlation based on the WYD skew
information (Theorem 13) was derived, which yielded the
fundamental limitations of the WYD skew and quantum
Fisher information (Corollary 14). Consequently, these
serve as representative measures for quantum coherence
and macroscopic entanglement.
Furthermore, this study expressed simple and general no-

go theorems on the existence of long-range entanglement.
On the other hand, there is still room for improvement of
the present analytical techniques, and hence the obtained
results may be further strengthened. Based on the results
obtained, the strongest form of the bipartite entanglement
clustering may be expressed as follows:

½the strongest conjecture�
ERðρβ;ABÞ ≤ polyðjAj; jBjÞe−R=ξ̃β ð93Þ

for an arbitrary choice of A and B such that dA;B ¼ R,
where ξ̃β ¼ polyðβÞ and polyðxÞ denote a finite degree
polynomial. As shown in Sec. II C, from the continuity
bounds, inequality (93) yields the same upper bound for
other entanglement measures. However, the main theorems
presented in this paper did not arrive at this form of
entanglement clustering, and further investigations are
required to refine the current results.
In conclusion, this study unveiled a fundamental limit on

the characteristic length scale, such that certain types of
quantum effects can exist. Moreover, the present results do
not depend on system details, and they hold at arbitrary
temperatures. The understanding of the universal structural
constraints in low-temperature physics, which must be
satisfied for every quantummany-body system, still remains
limited. Consequently, identifying these constraints is a
critical task for understanding the complicated quantum
many-body phases as well as developing efficient algorithms
for quantum many-body simulations. This study is expected
to introduce a novel approach to address this profound
problem.
Finally, the following topics are mentioned as specific

open questions:
(i) First, deriving a clustering theorem for the relative

entanglement instead of the PPT relative entangle-
ment. This may be addressed by resolving Conjecture
7. Subsequently, Proposition 9 can be improved; in
other words, under the condition of (almost) zero
quantum correlations [i.e., Eq. (51)], a similar in-
equality to Eq. (52) may hold for the relative entan-
glement ERðρABÞ instead of EPPT

R ðρABÞ. This
improvement immediately yields the entanglement
clustering for other popular measures, such as the
entanglement of formations [see also the discussion
after Eq. (24)].

(ii) As a related problem, the ðjAj; jBjÞ dependence in
Corollary 11 may be improved under dimensions
greater than one. In the present form, the independ-
ence is in the exponential form, and hence, a mean-
ingful bound for the case of jAj and jBj being as large
as the systemsize cannot be obtained.To improve this,
as has been discussed after Corollary 11, considering
the operator correlations QCρðA;BÞ alone is not
sufficient. Instead, the complete information between
the two subsystems must be considered. However, at
the current stage, the problemmaybe challenging as it
should include an analogous difficulty to the data
hiding problem in the context of the area law con-
jecture at zero temperature [110,111,160].

(iii) Third, identifying the class of quantum coherence
measures [180], which are always short range at
nonzero temperatures, remains an intriguing prob-
lem. In this study, it was shown that bipartite
entanglement cannot exist at long distances; however,
as has been demonstrated in Sec. VI A, macroscopic
quantum effects do not necessarily imply long-

TOMOTAKA KUWAHARA and KEIJI SAITO PHYS. REV. X 12, 021022 (2022)

021022-14



distance entanglement. For example, quantum
discord, a well-known measure for quantum
correlation [181,182], only decays algebraically at
thermal critical points [58]. Thus, the current results
can still be expanded to include other coherence
measures.

(iv) Finally, the question remains as to whether entan-
glement clustering can be applied to more practical
problems such as the efficient simulation of quantum
Gibbs states. The clustering of entanglement im-
poses a strong constraint on the structure of quantum
Gibbs states. Hence, it is likely that the property can
be utilized to reduce computational complexity.

ACKNOWLEDGMENTS

T. K. was supported by the RIKEN Center for AIP, Japan
Society for the Promotion of Science KAKENHI (Grant
No. 18K13475) and Japan Science and Technology
Agency Precursory Research for Embryonic Science and
Technology (Grant No. JPMJPR2116). K. S. was supported
by JSPS Grants-in-Aid for Scientific Research
(No. JP16H02211 and No. JP19H05603).

APPENDIX A: SPECTRAL DECOMPOSITION
OF OPERATORS

As a convenient notation, Oω is defined for the arbitrary
operator O as follows [56]:

Oω ≔
X
i;j

hEijOjEjiδðEi − Ej − ωÞjEiihEjj; ðA1Þ

where fjEiig and fEig are the eigenstates and the corre-
sponding eigenvalues of H, respectively. The operator Oω

yields terms such as hEþ ωjOjEijEþ ωihEj. Based on the
above definition, the following can be obtained:

Z
∞

−∞
Oωdω ¼ O; Oω ¼ 1

2π

Z
∞

−∞
OðtÞe−iωtdt; ðA2Þ

and

adHðOωÞ ¼ ωOω; ½adHðOωÞ�† ¼ ωO†
ω;

½e−βH;Oω� ¼ ð1 − eβωÞe−βHOω; ðA3Þ

where adHð·Þ ≔ ½H; ·� is defined.

APPENDIX B: BEYOND SHORT-RANGE
INTERACTING SPIN SYSTEMS

1. Long-range interacting cases

This section discusses the manner in which the current
analyses can be generalized to systems with long-range
interactions, where the decay of the function JðxÞ in
Eq. (10) is given in a polynomial form:

JðxÞ ≤ g0
ðxþ 1Þα ðlong-range interactionÞ: ðB1Þ

When α > 2D, the Lieb-Robinson bound (15) can be
generalized to long-range interacting systems [183–189].
The Lieb-Robinson bound can be obtained in the following
form:

k½OXðtÞ; OY �k ≤ C0minðj∂Xj; j∂YjÞ tð1þ tÞηα
R−α̃ ; ðB2Þ

where ηα and α̃ depend on the spatial dimension D and the
decay exponent α. For example, a loose estimation affords
ηα ¼ α −D − 1 and α̃ ¼ α − 2D [187]. Nevertheless, a
quantitatively optimal estimation of the parameters ηα and α̃
remains unaddressed.
Using the Lieb-Robinson bound (B2), the main results

can be generalized to long-range interacting systems. In this
case, the exponential decay becomes the power-law decay.
Analyses using the Lieb-Robinson bound can be summa-
rized as follows:
(1) For the proof of Theorem 13, the Lieb-Robinson

bound is used in Eqs. (C23) or (C33).
(2) For the proof of Theorem 10, the Lieb-Robinson

bound is used in Eqs. (D65) and (D89).
(3) For the proof of Theorem 12, the Lieb-Robinson

bound is used in Eq. (F35).

2. Disordered systems

Other interesting systems include the disordered systems
where randomness is added to the Hamiltonians. In such
systems, the Lieb-Robinson bound can be proven to have
improved as follows [190,191]:

k½OXðtÞ; OY �k ≤ Cminðj∂Xj; j∂YjÞtηe−μR; ðB3Þ

where C, η, μ are constants of Oð1Þ, which depend on the
system parameters. In this case, the norm k½OXðtÞ; OY �k is
exponentially small with respect to the distance R up to
time t ∼ eOðRÞ. This leads to the quantum correlation length
of O(polylogðβÞ) in the main theorem (i.e., Theorems 10,
12, and 13).

3. Quantum boson systems

Finally, in quantum boson systems, the Hamiltonian is
locally unbounded (i.e., the parameter g is infinitely large,
as shown in Fig. I). In such systems, typically, the Lieb-
Robinson bound is not obtained with a finite Lieb-
Robinson velocity [192]. To extend the obtained results,
the study may need to be restricted to particular classes of
quantum many-body boson systems, such as free boson
systems [193,194], spin-boson models [195,196], and
Bose-Hubbard-type Hamiltonians [197–199]. The estab-
lishment of the Lieb-Robinson bound in boson systems is
still an active area of research.
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APPENDIX C: PROOFS OF THEOREM 13
AND COROLLARY 14

In this section, Theorem 13 is proven, followed by
Theorem 10. The proof for Theorem 10 is considerably
simpler than that for Theorem 10, although the essence for
both is similar.
Theorem 13 and the resulting Corollary 14 provide the

upper bounds for

QðαÞ
ρβ ðOA;OBÞ ≔ trðρβOAOBÞ − trðρ1−αβ OAρ

α
βOBÞ ðC1Þ

and

I ðαÞ
ρβ ðKÞ ≔ trðρβK2Þ − trðρ1−αβ KραβKÞ; ðC2Þ

with K ¼ P
i∈Λ OiðkOik ≤ 1Þ, respectively.

For the convenience of the readers, the rough forms of
the statements are provided. In Theorem 13,

QðαÞ
ρβ ðOA;OBÞ ≤ C0

β minðj∂Aj; j∂BjÞe−R=ξ0β ; ðC3Þ

where the parameters are Oð1Þ constants that are expressed
in Eq. (62). Furthermore, Corollary 14 provides the
inequalities

I ðαÞ
ρβ ðKÞ ≤ C̃0

βξ
D
β0n ¼ OðβDÞn; ðC4Þ

for the WYD skew information.

1. Remark on the parameter regime α ∉ ½0;1�
As is evident, in general, obtaining the same results for

the parameter regime α ∉ ½0; 1� is not possible.
Mathematically, the proof in Appendix C 3 breaks down
for α ∉ ½0; 1� because the function gα;βðtÞ in Eq. (C20) no
longer decays exponentially with t.
For example, when α ¼ −1, I ð−1Þ

ρ ðKÞ is referred to as the
purity of coherence [200]:

I ð−1Þ
ρ ðKÞ ¼ trðρK2Þ − trðρ2Kρ−1KÞ

¼ −
X
j;k

λ2k − λ2j
λj

jhλjjKjλkij2; ðC5Þ

where ρ ¼ P
j λjjλjihλjj is the spectral decomposition of ρ.

In general,

I ðαÞ
ρ ðKÞ ¼ trðρK2Þ − trðρ1−αβ KραKÞ

¼ −
X
j;k

λ1−αk − λ1−αj

λ−αj
jhλjjKjλkij2: ðC6Þ

For β ¼ poly½logðnÞ�, under the same assumption as for
Eq. (83), the quantum Gibbs state ρβ satisfies

λ0 ≈ 1; λj ¼ e−βEj : ðC7Þ

Hence, the quantum Gibbs state is approximately given by

the ground state. Thus, I ðαÞ
ρβ ðKÞ in Eq. (C6) includes the

following terms:

X
j

�
λ1−α0

λ−αj
þ λ1−αj

λ−α0

�
jhλjjKjλ0ij2

≈
X
j

ðe−αβEj þ eðα−1ÞβEjÞjhλjjKjλ0ij2: ðC8Þ

For α ∈ ½0; 1�, both e−αβEj and eðα−1ÞβEj decay with Ej,
whereas for α ∉ ½0; 1�, either e−αβEj or eðα−1ÞβEj grows
exponentially with Ej.
Typically, only jhλjjKjλ0ij2 ≲ e−const×Ej from Ref. [201]

can be ensured. Hence, for α < 0 (α > 1), there exists a
critical temperature βc ∝ 1=ð−αÞ [βc ∝ 1=ðα − 1Þ], such
that Eq. (C8) exponentially grows with the system size n for

β > βc. Therefore, a meaningful upper bound I ðαÞ
ρβ ðKÞ

cannot be obtained without additional conditions (such
as the high-temperature condition).

2. Proof of Corollary 14

First, Corollary 14 based on Theorem 13 is proven as
follows:

I ðαÞ
ρβ ðKÞ ¼

X
i;j

trðρβOiOjÞ − trðρ1−αβ Oiρ
α
βOjÞ

≤
X
i;j

C0
βe

−di;j=ξ0β

≤ C0
βjΛjmax

i∈Λ

X
j∈Λ

e−di;j=ξ
0
β ¼ C0

βζ0;ξ0βn ðC9Þ

with ζs;ξ ≔ maxi∈Λ
P

j∈Λ d
s
i;je

−di;j=ξ.
The parameter ζs;ξ is upper bounded by

ζs;ξ ≤ 1þ γe1=ξξsþDðsþDÞ!: ðC10Þ

Using definition (7) for the parameter γ, the proof is
straightforward as follows:

X
j∈Λ

dsi;je
−di;j=ξ ¼ 1þ

X∞
x¼1

X
j∶di;j¼x

xse−x=ξ

≤ 1þ γ
X∞
x¼1

xsþD−1e−x=ξ

≤ 1þ γ

Z
∞

0

xsþD−1e−ðx−1Þ=ξdx

¼ 1þ γe1=ξ
Z

∞

0

ξðξzÞsþD−1ezdz

¼ 1þ γe1=ξξsþDðsþDÞ!: ðC11Þ
Using Eq. (C10) and ξ0−1β ≤ μ=2, ζ0;ξ0β can be reduced to

the form
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ζ0;ξ0β ¼ 1þ γe1=ξ
0
βξDβ0D! ¼ ξ0Dβ ðξ−Dβ0 þ γe1=ξ

0
βD!Þ

≤ ξ0Dβ ½ðμ=2ÞD þ γeμ=2D!�: ðC12Þ

Thereafter, on applying the above inequality to Eq. (C9),
the desired inequality (C4) can be obtained. This completes
the proof. ▪

3. Proof of Theorem 13

Herein, the upper bound of QðαÞ
ρβ in Eq. (C1) is consid-

ered. Before beginning the proof, first, we consider the

following trivial upper bound for QðαÞ
ρ ðOA;OBÞ for arbi-

trary ρ as follows:

QðαÞ
ρ ðOA;OBÞ ≤ trðρjOAOBjÞ þ

trðρjOAj2Þ þ trðρjOBj2Þ
2

≤ ðkOAk þ kOBkÞ2=2 ¼ 2; ðC13Þ
where kOAk ¼ kOBk ¼ 1. For the proof of inequality
(C13), because trðρOAOBÞ ≤ trðρjOAOBjÞ is trivial, the
following must be proven:

jtrðρ1−αOAρ
αOBÞj ≤

trðρjOAj2Þ þ trðρjOBj2Þ
2

: ðC14Þ

Using the spectral decomposition of ρ ¼ P
s λsjλsihλsj,

jtrðρ1−αOAρ
αOBÞj

≤
X
s;s0

λ1−αs λαs0 jhλsjOAjλs0 ihλs0 jOBjλsij

≤
X
s;s0

λ1−αs λαs0
jhλsjOAjλs0 ij2 þ jhλs0 jOBjλsij2

2
: ðC15Þ

Using the Hölder inequality,X
s;s0

λ1−αs λαs0 jhλsjOAjλs0 ij2

¼
X
s;s0

ðλsjhλsjOAjλs0 ij2Þ1−αðλs0 jhλsjOAjλs0 ij2Þα

≤
�X

s;s0
λsjhλsjOAjλs0 ij2

�
1−α

�X
s;s0

λs0 jhλsjOAjλs0 ij2
�

α

¼
X
s;s0

λsjhλsjOAjλs0 ij2 ¼ trðρjOAj2Þ; ðC16Þ

where OAO
†
A ¼ jOAj2 is used in the last equation. Thus, on

applying inequality (C16) to (C15), inequality (C14) is
proven. Therefore, inequality (C13) is proven.
Thereafter, we consider the nontrivial upper bound

presented in Theorem 13, which utilizes the properties
of quantum Gibbs states. When ρ is a Gibbs state (i.e.,
ρ ¼ ρβ ¼ e−βH), ρ−αβ OAρ

α
β is reduced to the imaginary time

evolution. Therefore, at first glance, the quantity (C1) is not

upper bounded for low temperatures because the imaginary
time evolution eβαHOAe−βαH is usually unbounded [202].
To prove Theorem 13, a direct treatment of the imaginary
time evolution should necessarily be avoided. Instead, the
condition α ∈ ½0; 1� is utilized for this purpose. However,
for α ∉ ½0; 1�, the unboundedness of the norm of
eβαHOAe−βαH cannot be avoided, which is reflected in
the fact that the function gα;βðtÞ in Eq. (C20) converges
only for α ∈ ½0; 1�.
For this purpose, the imaginary time evolution is trans-

formed in an appropriate manner. Using the notation of
Eq. (A1),

trðρβOAOBÞ − trðρ1−αβ OAρ
α
βOBÞ

¼
Z

∞

−∞
trðρβOA;ωOB − ρ1−αβ OA;ωρ

α
βOBÞdω: ðC17Þ

Using ρβ ¼ e−βH, we obtain

ρβOA;ω − ρ1−αβ OA;ωρ
α
β ¼ e−βHðOA;ω − eαβHOA;ωe−αβHÞ
¼ e−βHð1 − eαβωÞOA;ω

¼ 1 − eαβω

1 − eβω
½e−βH;OA;ω�;

where Eq. (A3) is used in the last equation. Hence, using
the identity trð½OA;OB�O3Þ ¼ trðOA½OB;O3�Þ,

QðαÞ
ρβ ðOA;OBÞ ¼

Z
∞

−∞

1 − eαβω

1 − eβω
trð½e−βH;OA;ω�OBÞdω

¼
Z

∞

−∞

1 − eαβω

1 − eβω
trðe−βH½OA;ω; OB�Þdω:

ðC18Þ

From Eq. (A2),

Z
∞

−∞

1 − eαβω

1 − eβω
OA;ωdω

¼
Z

∞

−∞

1 − eαβω

1 − eβω
1

2π

Z
∞

−∞
OAðtÞe−iωtdtdω

¼
Z

∞

−∞
gα;βðtÞOAðtÞdt; ðC19Þ

where gα;βðtÞ is defined by the Fourier transform of
ð1 − eαβωÞ=ð1 − eβωÞ as

gα;βðtÞ ≔
1

2π

Z
∞

−∞

1 − eαβω

1 − eβω
e−iωtdω

¼ −iβ−1
X∞
m¼1

signðtÞe−2πmjtj=βð−1þ e−2πiαmsignðtÞÞ;

ðC20Þ
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where the proof of the second equation is provided in
Appendix C 3 a. Based on the above form, the following
can be obtained:

jgα;βðtÞj ≤ 2β−1
X∞
m¼1

e−2πmjtj=β

¼ 2β−1
e−2πjtj=β

1 − e−2πjtj=β
: ðC21Þ

Further, combining Eqs. (C18) and (C19) with inequality
(C21) yields

jQðαÞ
ρβ ðOA;OBÞj ¼

����
Z

∞

−∞
gα;βðtÞtrðρβ½OAðtÞ; OB�Þdt

����
≤ 2β−1

Z
∞

−∞

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt;

ðC22Þ

where trðρβ½OAðtÞ; OB�Þ ≤ k½OAðtÞ; OB�k are used.
Subsequently, using the Lieb-Robinson bound (15),

2β−1
Z

∞

−∞

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt

≤ minðj∂Aj; j∂BjÞ
�
4

π

�
1þ ξ0β

R

�
þ 2C

�
2

vβ
þ 1

π

�	
e−R=ξ

0
β :

ðC23Þ

The proof is provided in Appendix C 3 b. For R ≤ ξ0β=2, the
rhs in Eq. (C23) is larger than the trivial upper bound (C13).
Hence, R ≥ ξ0β=2 must be considered, which yields

2β−1
Z

∞

−∞

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt

≤ minðj∂Aj; j∂BjÞ
�
12þ 2C

π
þ 4C

vβ

�
e−R=ξ

0
β : ðC24Þ

On applying the above inequality to Eq. (C22), Theorem 13
is proven. ▪

a. Fourier transform of ð1 − eαβωÞ=ð1− eβωÞ
Herein, Eq. (C20) is proven. For this proof, the integral is

rewritten as follows:

1

2π

Z
∞

−∞

1 − eαβω

1 − eβω
e−iωtdω

¼
8<
:

1
2π

R
C−

1−eαβω
1−eβω e

−iωtdω for t < 0;

1
2π

R
Cþ

1−eαβω
1−eβω e

−iωtdω for t ≥ 0;
ðC25Þ

where the integral paths C− and Cþ are described in Fig. 3.

First, the case of t < 0 is considered. Then, using the
residue theorem,

1

2π

Z
C−

1 − eαβω

1 − eβω
e−iωtdω

¼ i
X∞
m¼1

Resω¼ð2πimÞ=β

�
1 − eαβω

1 − eβω
e−iωt

�
; ðC26Þ

where Resω¼ð2πimÞ=β is the residue at ω ¼ ð2πimÞ=β.
Owing to

iResω¼ð2πimÞ=β

�
1 − eαβω

1 − eβω
e−iωt

�

¼ iβ−1e2πmt=βð−1þ e2πimαÞ; ðC27Þ

Eq. (C26) can be reduced to

1

2π

Z
C−

1 − eαβω

1 − eβω
e−iωtdω

¼ iβ−1
X∞
m¼1

e2πmt=βð−1þ e2πimαÞ: ðC28Þ

In the same manner, we obtain

1

2π

Z
Cþ

1 − eαβω

1 − eβω
e−iωtdω

¼ −i
X∞
m¼1

Resω¼−ð2πimÞ=β

�
1 − eαβω

1 − eβω
e−iωt

�

¼ −iβ−1
X∞
m¼1

e−2πmt=βð−1þ e−2πimαÞ: ðC29Þ

By combining the two cases (C28) and (C29),

FIG. 3. Schematic of the integral paths in Eq. (C25).
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1

2π

Z
∞

−∞

1 − eαβω

1 − eβω
e−iωtdω

¼ −iβ−1
X∞
m¼1

signðtÞe−2πmjtj=βð−1þ e−2πiαmsignðtÞÞ:

This completes the proof of Eq. (C20). ▪

b. Proof of the inequality (C23)

We first consider the decomposition

Z
∞

−∞

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt

¼
Z
jtj>t0

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt

þ
Z
jtj≤t0

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt; ðC30Þ

where t0 ≔ μR=ð2vÞ is chosen. For the first term in the rhs
of Eq. (C30), from 1=ð1 − e−jxjÞ ≤ 1þ 1=jxj,

e−2πjtj=β

1 − e−2πjtj=β
≤ e−2πjtj=β

�
1þ 1

2πjtj=β
�
; ðC31Þ

which yields

Z
jtj>t0

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt

≤ 2

Z
jtj>t0

e−2πjtj=β
�
1þ 1

2πjtj=β
�
dt

≤
2β

π
e−2πt0=β

�
1þ 1

2πt0=β

�

¼ 2β

π
e−πμR=ðvβÞ

�
1þ vβ

πμR

�
≤
2β

π
e−R=ξ

0
β

�
1þ ξ0β

R

�
;

ðC32Þ

where k½OAðtÞ; OB�k ≤ 2kOAk · kOBk ¼ 2 and πμ=ðvβÞ ≥
ξ0−1β ¼ μ=½2þ ðvβÞ=π� are used in the first and last inequal-
ities, respectively. For the second term on the rhs of
Eq. (C30), the Lieb-Robinson bound (15) is used as

k½OAðtÞ; OB�k ≤ Cminðj∂Aj; j∂BjÞðevjtj − 1Þe−μR;

which yields

Z
jtj≤t0

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt

≤ Cminðj∂Aj; j∂BjÞe−μR

×
Z
jtj≤t0

e−2πjtj=β
�
1þ 1

2πjtj=β
�
ðevjtj − 1Þdt: ðC33Þ

The integral for jtj ≤ t0 is upper bounded as follows:

Z
jtj≤t0

e−2πjtj=β
�
1þ 1

2πjtj=β
�
ðevjtj − 1Þdt

≤ 2

Z
t0

0

eðv−2π=βÞtdtþ v
π=β

Z
1

0

Z
t0

0

e−2πt=βeλvtdtdλ

≤
�
2þ v

π=β

�Z
t0

0

evtdt ≤
�
2

v
þ 1

π=β

�
evt0 ; ðC34Þ

where evt − 1 ¼ vt
R
1
0 e

λvtdλ is used in the first inequality.
Further, the above inequality reduces inequality (C33) to

Z
jtj≤t0

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt

≤ Cminðj∂Aj; j∂BjÞ
�
2

v
þ 1

π=β

�
evt0−μR

≤ minðj∂Aj; j∂BjÞC
�
2

v
þ 1

π=β

�
e−R=ξ

0
β ; ðC35Þ

where we use t0 ¼ μR=ð2vÞ and μ=2 ≥ ξ0−1β ¼
μ=½2þ ðvβÞ=π�.
Thereafter, applying inequalities (C32) and (C35) to

Eq. (C30) yields

Z
∞

−∞

e−2πjtj=β

1 − e−2πjtj=β
k½OAðtÞ; OB�kdt ≤ minðj∂Aj; j∂BjÞ

×

�
2β

π

�
1þ ξ0β

R

�
þ C

�
2

v
þ 1

π=β

�	
e−R=ξ

0
β ;

which, in turn, affords inequality (C23). This competes the
proof. ▪

APPENDIX D: PROOF OF THEOREM 10

This section presents the proof for one of the primary
proposed theorems, which provides the exponential decay
of the quantum correlation defined by

QCρðOA;OBÞ ≔ inf
fps;ρsg

X
s

psjCρsðOA;OBÞj: ðD1Þ

In Theorem 10, the following inequality was proven:

QCρðOA;OBÞ
≤ Cβðj∂Aj þ j∂BjÞð1þ log jABjÞe−R=ξβ ; ðD2Þ
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where ξβ is aOðβÞ constant expressed as Eq. (54), andCβ is
obtained from cβ;1 þ cβ;2, with cβ;1 and cβ;2 defined
in Eq. (54).
Here, the logarithmic term 1þ log jABj originates from

the norm of ρ−1=2LOA
ρ1=2 and ρ−1=2LOB

ρ1=2 in Eq. (D17).
The explicit norm estimation is provided in Claim 22.

1. Proof of Theorem 10

For an arbitrary quantum state ρ, the spectral decom-
position of ρ is denoted as

ρ ¼
X
s

λsjλsihλsj: ðD3Þ

In the proof, the aim is to explicitly construct a set of
ensembles fpm; jϕmig such that

ρβ ¼
X
m

pmjϕmihϕmj; ðD4Þ

which satisfies inequality (D2). To prove the statements, the
following steps are adopted. In the first and second lemmas
(Lemmas 17 and 18), the generic quantum states are
considered, and they provide general statements regarding
the quantum correlations. Thereafter, in the third, fourth,
and fifth lemmas (Lemmas 19–21), the property of quan-
tum Gibbs states is utilized to provide an upper bound to
the quantum correlations.
In the first step, the general upper bound for the quantum

correlation is proven as follows:
Lemma 17. For an arbitrary operator O, LO is defined

as follows:

LO ≔
X
s;s0

2
ffiffiffiffiffiffiffiffiffi
λsλs0

p
λs þ λs0

hλsjOjλs0 ijλsihλs0 j: ðD5Þ

Then, for the two operators OA and OB, if

½LOA
;LOB

� ¼ 0; ðD6Þ

the quantum correlation is bound from above as follows:

QCρðOA;OBÞ

≤
1

4
k½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�k: ðD7Þ

Typically, condition (D6) is not satisfied. Further, in the
second lemma, consider the case where Eq. (D6) holds only
in an approximate sense. Thus, the lemma can be proven as
follows:
Lemma 18. For two arbitrary operators OA and OB, if

two operators L̃OA
and L̃OB

can be determined such that

½L̃OA
; L̃OB

� ¼ 0 ðD8Þ

and

kLOA
− L̃OA

k ≤ δ1; kLOB
− L̃OB

k ≤ δ2; ðD9Þ

the quantum correlation QCρðOA;OBÞ is upper bounded as
follows:

QCρðOA;OBÞ ≤ 3δ1 þ 3δ2

þ 1

4
k½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�k: ðD10Þ

The final task is to provide an upper bound for the
parameters fδ1; δ2g and the norm of the commutator
between ρ−1=2LOA

ρ1=2 and ρ1=2LOB
ρ−1=2. Thus, we first

consider an integral form of LO, which comprises the time
evolution of t ≈ β. The lemma on the basic properties of the
operator LO is proven as follows:
Lemma 19. Let ρ be a quantum Gibbs state as

ρ ¼ ρβ ¼ e−βH. Then, for an arbitrary operator O, the
operator LO is given as follows:

LO ¼
Z

∞

−∞
fβðtÞOðtÞdt; ðD11Þ

where fβðtÞ is defined as

fβðtÞ ¼
1

β coshðπt=βÞ : ðD12Þ

Furthermore, the norm of LO is upper bounded as follows:

kLOk ≤ kOk: ðD13Þ

Because the function fβðtÞ decays exponentially as
e−Oðjtj=βÞ, the operator LO is approximately constructed
using the time-evolved operator OðtÞ with t ≈ β.
Consequently, the Lieb-Robinson bound is applied to prove
the quasilocality of LO and construct the operators L̃OA

and
L̃OB

in Lemma 18. From Lemma 19, the following lemma,
which provides the upper bounds for δ1 and δ2, is proven:
Lemma 20. When ρ is given by the quantumGibbs state

with a short-range Hamiltonian, as in Eq. (11), δ1 and δ2 are
upper bounded as

δ1 ≤ eμ=ð2þ2vβ=πÞ
�
8

π
þ 4C

vβ

�
j∂Aje−μR=½4ð1þvβ=πÞ�;

δ2 ≤ eμ=ð2þ2vβ=πÞ
�
8

π
þ 4C

vβ

�
j∂Bje−μR=½4ð1þvβ=πÞ�: ðD14Þ

This lemma provides the upper bound for the first term of
the rhs in inequality (D10) as follows:

TOMOTAKA KUWAHARA and KEIJI SAITO PHYS. REV. X 12, 021022 (2022)

021022-20



3δ1 þ 3δ2 ≤ cβ;1ðj∂Aj þ j∂BjÞe−R=ξβ ; ðD15Þ

where the definition of cβ;1 and ξβ is used in Eq. (54).
Before detailing the estimation for the second term of the

rhs of Eq. (D10), it is shown that, for R − 2 ≤ ξβ, the upper
bound (D15) results in a trivial upper bound for
QCρðOA;OBÞ. Indeed, for R − 2 ≤ ξβ,

cβ;1ðj∂Aj þ j∂BjÞe−R=ξβ ≥ cβ;1e−R=ξβ

≥ e−ðR−2Þ=ξβ
24

π
≥
24

eπ
≈ 2.8104; ðD16Þ

which is larger than the trivial upper bound kOAk·kOBk¼1
[i.e., QCρðOA;OBÞ ≤ 1]. Therefore, we consider the
regime of R − 2 > ξβ in the following.
The final task involves estimating the commutator,

k½ðρ−1=2LOA
ρ1=2Þ; ðρ1=2LOB

ρ−1=2Þ�k: ðD17Þ

Herein, the quasilocality of ρ−1=2LOA
ρ1=2 must be charac-

terized. For ρ ¼ e−βH, it is obtained from the imaginary
time evolution of LOA

. For a large β, the unboundedness of
the imaginary time evolution usually occurs [202]. Notably,
owing to the specialty of LOA

, such an unboundedness can
be avoided, and the following lemma can be proven:
Lemma 21. The norm of the commutator (D17) is upper

bounded by

k½ðρ−1=2LOA
ρ1=2Þ; ðρ1=2LOB

ρ−1=2Þ�k

≤ 3e2=ξβ
�
8

π

�
1þ ξβ

R − 2

�
þ 4C

�
1

π
þ 1

vβ

�	
e−R=ξβ

× fj∂Aj½2þ logð1þ βkadHðOBÞkÞ�
þ j∂Bj½2þ logð1þ βkadHðOAÞkÞ�g

≤ e2=ξβ
�
48þ 12C

π
þ 12C

vβ

�
e−R=ξβ

× fj∂Aj½2þ logð1þ βkadHðOBÞkÞ�
þ j∂Bj½2þ logð1þ βkadHðOAÞkÞ�g; ðD18Þ

where R − 2 > ξβ is used in the second inequality.
To estimate the upper bound of kadHðOAÞk (kadHðOBÞk),

consider the norm of a commutator adHðOXÞ (kOXk ¼ 1)
for a general operator OX, which is upper bounded using
Eq. (8) as follows:

kadHðOXÞk ≤
X
i∈X

X
Z∶Z∋i

kadhZðOXÞk

≤ 2
X
i∈X

X
Z∶Z∋i

khZk · kOXk ≤ 2gjXj: ðD19Þ

Hence, using logð1þ xyÞ ≤ logð1þ yÞ þ logðxÞ for x ≥ 1
and y ≥ 0,

j∂Ajð2þ logð1þ βkadHðOBÞkÞÞ þ j∂Bjð2þ logð1þ βkadHðOAÞkÞÞ
≤ ðj∂Aj þ j∂BjÞð2þ logð1þ 2gβjABjÞÞ

≤ ðj∂Aj þ j∂BjÞ
�
2þ logð1þ 2gβÞ þ log jABj

log jABj þ 1

�
ðlog jABj þ 1Þ

≤ ðj∂Aj þ j∂BjÞ½2þ logð1þ 2gβÞ�ðlog jABj þ 1Þ: ðD20Þ

Thus, combining the above inequality with Eq. (D18), an
upper bound is provided for the second term of the rhs in
inequality (D10) by

1

4
k½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�k

≤ cβ;2ðj∂Aj þ j∂BjÞð1þ log jABjÞe−R=ξβ ; ðD21Þ

where the definitions of cβ;2 in Eq. (54) are used.
Thus, by applying inequalities (D15) and (D21) to

Lemma 18, the desired inequality (D2) can be obtained.
This completes the proof of Theorem 10. ▪

2. Proof of Lemma 17

In this proof, a technique similar to that outlined in
Ref. [167] is employed. Let fjψmig be a set of orthonormal

quantum states. Define the unitary matrix U, which
provides the quantum states: fjψmig in the base of fjλsigs,

jψmi ¼
X
s

Um;sjλsi: ðD22Þ

Then, by defining the ensemble fpm; jϕmig as

jϕmi ¼
1ffiffiffiffiffiffi
pm

p ffiffiffi
ρ

p jψmi; pm ¼ hψmjρjψmi; ðD23Þ

the density operator ρ is rewritten as

ρ ¼
X
m

pmjϕmihϕmj: ðD24Þ

In general, fjϕmig are not orthogonal to each other (i.e.,
hϕmjϕm0 i ≠ 0). For this decomposition, the quantum cor-
relation QCρðOA;OBÞ is upper bounded by
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QCρðOA;OBÞ ≤
X
m

pmjCjϕmiðOA;OBÞj; ðD25Þ

where CjϕmiðOA;OBÞ has been defined as a standard corre-
lation function, that is, CjϕmiðOA;OBÞ¼hϕmjOAOBjϕmi−
hϕmjOAjϕmihϕmjOBjϕmi. Our task is to identify a good set
fjψmig such that fjϕmig has a weak correlation with OA
and OB.
For an arbitrary operator O,

hϕmjOjϕmi ¼
X
s;s0

Um;s0U�
m;s

pm

ffiffiffiffiffiffiffiffiffi
λsλs0

p
hλsjOjλs0 i

¼
X
s;s0

Um;s0U�
m;s

pm

λs þ λ0s
2

hλsjLOjλs0 i

¼
X
s;s0

Um;s0U�
m;s

pm

1

2
hλsjfρ;LOgjλs0 i

¼ 1

2pm
hψmjfρ;LOgjψmi; ðD26Þ

where definition (D5) is used for LO from the second to
third equations. Here, the definition is shown again for the
convenience of the reader:

LO ≔
X
s;s0

2
ffiffiffiffiffiffiffiffiffi
λsλs0

p
λs þ λs0

hλsjOjλs0 ijλsihλs0 j: ðD27Þ

Herein, fjψmig are chosen as the simultaneous eigen-
states of LOA

and LOB
. Note that such a choice is possible

because of condition (D6), that is, ½LOA
;LOB

� ¼ 0. We then
obtain, from Eq. (D26),

hϕmjOAjϕmi ¼
1

2pm
hψmjfρ;LOA

gjψmi

¼ α1;m
pm

hψmjρjψmi ¼ α1;m ðD28Þ

and hϕmjOBjϕmi ¼ α2;m, where α1;m and α2;m are defined
as the mth eigenvalues of LOA

and LOB
, respectively.

Therefore, we obtain

hϕmjOAjϕmihϕmjOBjϕmi ¼ α1;mα2;m ðD29Þ

for an arbitrary m.
We next consider hϕmjOAOBjϕmi. Then, from

Eq. (D26),

hϕmjOAOBjϕmi ¼
1

2pm
hψmjfρ;LOAOB

gjψmi: ðD30Þ

Further, based on the equation, if LOAOB
¼ LOA

LOB
can be

obtained, hϕmjOAOBjϕmi ¼ α1;mα2;m can also be easily
proven in the same manner as for Eq. (D28). However, the
difficulty lies in the fact that, in general, LOAOB

≠ LOA
LOB

;
hence, a different approach is required.
For this purpose, first consider

hϕmjOjψm0 i ¼
X
s;s0

Um0;s0U�
m;sffiffiffiffiffiffi

pm
p

ffiffiffiffi
λs

p
hλsjOjλs0 i

¼
X
s;s0

Um0;s0U�
m;sffiffiffiffiffiffi

pm
p

ffiffiffiffiffiffiffiffiffi
λsλs0

p
hλsjOρ−1=2jλs0 i

¼
X
s;s0

Um0;s0U�
m;sffiffiffiffiffiffi

pm
p λs þ λ0s

2
hλsjLOρ−1=2 jλs0 i

¼ 1

2
ffiffiffiffiffiffi
pm

p hψmjfρ;LOρ
−1=2gjψm0 i; ðD31Þ

where LOρ−1=2 ¼ LOρ
−1=2 is used from definition (D27).

Subsequently,

hϕmjOAOBjϕmi ¼
X
m0

hϕmjOAjψm0 ihψm0 jOBjϕmi

¼ 1

4pm

X
m0

hψmjfρ;LOA
ρ−1=2gjψm0 ihψm0 jfρ; ρ−1=2LOB

gjψmi

¼ 1

4pm
hψmjfρ;LOA

ρ−1=2gfρ; ρ−1=2LOB
gjψmi; ðD32Þ

where
P

m0 jψm0 ihψm0 j ¼ 1 is used. Thus, Eq. (D32) is further reduced to

hϕmjOAOBjϕmi ¼
1

4pm
hψmjðρLOA

ρ−1=2 þ LOA
ρ1=2Þðρ1=2LOB

þ ρ−1=2LOB
ρÞjψmi

¼ 1

4pm
hψmjðρLOA

LOB
þ LOA

ρLOB
þ LOA

LOB
ρþ ρLOA

ρ−1LOB
ρÞjψmi: ðD33Þ
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Using LOA
jψmi ¼ α1;mjψmi and LOB

jψmi ¼ α2;mjψmi, the above equation can be reduced to

hϕmjOAOBjϕmi ¼
1

4pm
hψmjðρα1;mα2;m þ α1;mρα2;m þ α1;mα2;mρþ ρLOA

ρ−1LOB
ρÞjψmi

¼ 3

4
α1;mα2;m þ 1

4pm
hψmjρLOA

ρ−1LOB
ρjψmi; ðD34Þ

where hψmjρjψmi ¼ pm.
The remaining task entails estimating the error as

hψmjρLOA
ρ−1LOB

ρjψmi − pmα1;mα2;m: ðD35Þ

To obtain this, consider

hψmjρLOA
ρ−1LOB

ρjψmi ¼ hψmjρ1=2ðρ1=2LOA
ρ−1=2Þðρ−1=2LOB

ρ1=2Þρ1=2jψmi
¼ hψmjρ1=2ðρ−1=2LOB

ρ1=2Þðρ1=2LOA
ρ−1=2Þρ1=2jψmi

þ hψmjρ1=2½ðρ−1=2LOA
ρ1=2Þ; ðρ1=2LOB

ρ−1=2Þ�ρ1=2jψmi
¼ pmα1;mα2;m þ pmhϕmj½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�jϕmi; ðD36Þ

where LOA
jψmi ¼ α1;mjψmi and LOB

jψmi ¼ α2;mjψmi are used from the second to third equations. Thus, by applying
Eq. (D36) to Eq. (D34),

jhϕmjOAOBjϕmi − α1;mα2;mj ≤
1

4
k½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�k: ðD37Þ

Therefore, by combining the above inequality and
Eq. (D29) with (D25), inequality (D7) is proven. This
completes the proof. ▪

3. Proof of Lemma 18

The approach used in this proof is similar to that for the
proof of Lemma 17. Herein, fjψmig are chosen as the
simultaneous eigenstates of L̃OA

and L̃OB
, instead of LOA

and LOB
:

L̃OA
jψmi ¼ α̃1;mjψmi; L̃OB

jψmi ¼ α̃2;mjψmi: ðD38Þ

Then, the same inequality as in Eq. (D25) is obtained:

QCρðOA;OBÞ ≤
X
m

pmjCjϕmiðOA;OBÞj: ðD39Þ

We begin by estimating hϕmjOAjϕmihϕmjOBjϕmi. Using
Eq. (D26),

hϕmjOAjϕmi ¼
1

2pm
hψmjfρ;LOA

gjψmi

¼ α̃1;m þ 1

2pm
hψmjfρ; δLOA

gjψmi; ðD40Þ

where δLOA
≔ LOA

− L̃OA
. In the same manner,

hϕmjOBjϕmi¼ α̃2;mþ½1=ð2pmÞ�hψmjfρ;δLOB
gjψmi. Thus,

jhϕmjOAjϕmihϕmjOBjϕmi − α̃1;mα̃2;mj

≤
1

2pm
jhψmjfρ; δLOA

þ δLOB
gjψmij; ðD41Þ

which yields

X
m

pmjhϕmjOAjϕmihϕmjOBjϕmi − α̃1;mα̃2;mj

≤
1

2

X
m

jhψmjfρ; δLOA
þ δLOB

gjψmij: ðD42Þ

For an arbitrary operatorO, jhψmjOjψmij≤hψmkOkψmi;
hence,

X
m

jhψmjfρ; δLOA
þ δLOB

gjψmij

≤
X
m

hψmkfρ; δLOA
þ δLOB

gkψmi

≤ kfρ; δLOA
gk1 þ kfρ; δLOB

gk1
≤ 2kρk1 · ðkδLOA

k þ kδLOB
kÞ ≤ 2ðδ1 þ δ2Þ; ðD43Þ

where trðjOjÞ ¼ kOk1, kOþO0k1 ≤ kOk1 þ kO0k1 and
kOO0k1 ≤ kOk1 · kO0k are used for the arbitrary operators
O and O0, respectively. Further, applying inequality (D43)
to (D41) yields
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X
m

pmjhϕmjOAjϕmihϕmjOBjϕmi − α̃1;mα̃2;mj ≤ δ1 þ δ2: ðD44Þ

Next, the error that originates from hϕmjOAOBjϕmi is estimated. Consider the same equation as Eq. (D34):

hϕmjOAOBjϕmi¼
1

4pm
hψmjðρLOA

LOB
þLOA

ρLOB
þLOA

LOB
ρþρLOA

ρ−1LOB
ρÞjψmi

¼ 1

4pm
hψmjðρLOA

LOB
þLOA

ρLOB
þLOA

LOB
ρþLOB

ρLOA
Þjψmi

þ1

4
hϕmj½ðρ−1=2LOA

ρ1=2Þ;ðρ1=2LOB
ρ−1=2Þ�jϕmi; ðD45Þ

where, in the second equation, Eq. (D36) is used as follows:

hψmjρLOA
ρ−1LOB

ρjψmi¼ hψmjρ1=2ðρ−1=2LOB
ρ1=2Þðρ1=2LOA

ρ−1=2Þρ1=2jψmi
þhψmjρ1=2½ðρ−1=2LOA

ρ1=2Þ;ðρ1=2LOB
ρ−1=2Þ�ρ1=2jψmi

¼ hψmjLOB
ρLOA

jψmiþpmhϕmj½ðρ−1=2LOA
ρ1=2Þ;ðρ1=2LOB

ρ−1=2Þ�jϕmi: ðD46Þ

Further, in Eq. (D45),

hψmjρLOA
LOB

jψmi ¼ hψmjρLOA
ðα̃2;m þ δLOB

Þjψmi
¼ hψmjρðα̃1;mα̃2;m þ δLOA

α̃2;m þ LOA
δLOB

Þjψmi
¼ hψmjρα̃1;mα̃2;m þ ρδLOA

LOB
þ ρLOA

δLOB
− ρδLOA

δLOB
jψmi: ðD47Þ

In a similar manner,

hψmjLOA
ρLOB

jψmi ¼ hψmjα̃1;mρα̃2;m þ δLOA
ρLOB

þ LOA
ρδLOB

− δLOA
ρδLOB

jψmi;
hψmjLOA

LOB
ρjψmi ¼ hψmjα̃1;mα̃2;mρþ δLOA

LOB
ρþ LOA

δLOB
ρ − δLOA

δLOB
ρjψmi;

hψmjLOB
ρLOA

jψmi ¼ hψmjα̃1;mρα̃2;m þ LOB
ρδLOA

þ δLOB
ρLOA

− δLOB
ρδLOA

jψmi: ðD48Þ

Using the above equations, Eq. (D45) is reduced to

hϕmjOAOBjϕmi ¼ α̃1;mα̃2;m þ 1

4pm
hψmjðρLOA

δLOB
þ δLOA

ρLOB
þ δLOA

LOB
ρþ LOB

ρδLOA
Þjψmi

þ 1

4pm
hψmjðρLOA

δLOB
þ LOA

ρδLOB
þ LOA

δLOB
ρþ δLOB

ρLOA
Þjψmi

−
1

4pm
hψmjðρδLOA

δLOB
þ δLOA

ρδLOB
þ δLOA

δLOB
ρþ δLOB

ρδLOA
Þjψmi

þ 1

4
hϕmj½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�jϕmi; ðD49Þ

where hψmjρjψmi ¼ pm. Thus,

X
m

pmjhϕmjOAOBjϕmi − α̃1;mα̃2;mj

≤ ðkδLOA
k · kLOB

k þ kLOA
k · kδLOB

k þ kδLOA
k · kδLOB

kÞ þ 1

4
k½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�k; ðD50Þ

where analyses similar to those for inequality (D43) are used. Using condition (D9) and kLOA
k ≤ kOAk ¼ 1, which is

proven as inequality (D13) in Lemma 19, the inequality of

TOMOTAKA KUWAHARA and KEIJI SAITO PHYS. REV. X 12, 021022 (2022)

021022-24



X
m

pmjhϕmjOAOBjϕmi − α̃1;mα̃2;mj ≤ δ1 þ δ2 þ δ1δ2 þ
1

4
k½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�k ðD51Þ

is obtained. Further, by combining inequalities (D44) and (D51),

X
m

pmjhϕmjOAOBjϕmi − hϕmjOAjϕmihϕmjOBjϕmij

¼
X
m

pmjhϕmjOAOBjϕmi − α̃1;mα̃2;m − hϕmjOAjϕmihϕmjOBjϕmi þ α̃1;mα̃2;mj

≤
X
m

pmðjhϕmjOAOBjϕmi − α̃1;mα̃2;mj þ pmjhϕmjOAjϕmihϕmjOBjϕmi − α̃1;mα̃2;mjÞ

≤ 2δ1 þ 2δ2 þ δ1δ2 þ
1

4
k½ðρ−1=2LOA

ρ1=2Þ; ðρ1=2LOB
ρ−1=2Þ�k: ðD52Þ

When δ1 ≥ 1=2 or δ2 ≥ 1=2, the upper bound is
worse than the trivial bound 1, and hence, the inequality
is meaningful only for δ1 ≤ 1=2 and δ2 ≤ 1=2, which yields
δ1δ2 ≤ δ1 þ δ2. Thus, by applying the above inequality to
Eq. (D39), the main inequality (D10) is proven. This
completes the proof. ▪

4. Proof of Lemma 19

First, the eigenvalues fλsg and the eigenstates fjλsig are
rewritten as

λs ¼ e−βEs ; jλsi ¼ jEsi; ðD53Þ

where HjEsi ¼ EsjEsi. Then, for an arbitrary operator O,
definition (D5) provides

LO ¼
X
s; s0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−βðEs−E0

sÞ
p

1þ e−βðEs−E0
sÞ hEsjOjEs0 ijEsihEs0 j

¼
Z

∞

−∞

2
ffiffiffiffiffiffiffiffiffi
e−βω

p

1þ e−βω
Oωdω; ðD54Þ

where the notation of Eq. (A1) is used.
Using Eq. (A2), the above form is reduced to

LO ¼
Z

∞

−∞

2
ffiffiffiffiffiffiffiffiffi
e−βω

p

1þ e−βω
1

2π

Z
∞

−∞
OðtÞe−iωtdtdω

¼
Z

∞

−∞
fβðtÞOðtÞdt; ðD55Þ

with

fβðtÞ ≔
1

2π

Z
∞

−∞

2
ffiffiffiffiffiffiffiffiffi
e−βω

p

1þ e−βω
e−iωtdω: ðD56Þ

Further, by following the same analysis as in
Appendix C 3 a, it can be proven that fβðtÞ is given by

fβðtÞ

¼

8>>>>><
>>>>>:

i
X∞
m¼1

Resω¼ð2πim−iπÞ=β

�
2

ffiffiffiffiffiffiffiffiffi
e−βω

p

1þe−βω
e−iωt

�
for t < 0;

−i
X∞
m¼1

Resω¼ð−2πimþiπÞ=β

�
2

ffiffiffiffiffiffiffiffiffi
e−βω

p

1þe−βω
e−iωt

�
for t≥ 0;

¼

8>>><
>>>:

−
X∞
m¼1

2ð−1Þm
β

eπð2m−1Þt=β for t < 0;

−
X∞
m¼1

2ð−1Þm
β

e−πð2m−1Þt=β for t≥ 0;

¼
X∞
m¼1

2ð−1Þm
β

e−πð2m−1Þjtj=β ¼ 1

βcoshðπjtj=βÞ :

This completes the proof of Eq. (D11).
The proof of inequality (D13) is simply given as follows.

Owing to fβðtÞ ≥ 0,

kLOk ≤
Z

∞

−∞
fβðtÞkOðtÞkdt ≤ kOk

Z
∞

−∞
fβðtÞdt: ðD57Þ

Using the inverse Fourier transform

Z
∞

−∞
fβðtÞeiωtdt ¼

2
ffiffiffiffiffiffiffiffiffi
e−βω

p

1þ e−βω
ðD58Þ

with ω ¼ 0, the inequality (D57) is reduced to Eq. (D13).
This completes the proof. ▪

5. Proof of Lemma 20

First, consider the explicit construction of L̃OA
and L̃OB

,
such that ½L̃OA

; L̃OB
� ¼ 0. For this purpose, Eq. (D11) is

used in Lemma 19, and the time-evolved operator OAðtÞ is
approximated on A½r1� (see Fig. 4), which yields
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L̃OA
¼

Z
∞

−∞
fβðtÞOAðt; A½r1�Þdt; ðD59Þ

where the notation of OAðt; A½r1�Þ has been provided in
Eq. (16), and r1 is chosen appropriately. Note that L̃OA

is
now supported on the subset A½r1�. In the same manner,
L̃OA

is defined as

L̃OB
¼

Z
∞

−∞
fβðtÞOBðt; B½r2�Þdt: ðD60Þ

Thus, if we set r1 þ r2 < dA;B ¼ R, ½L̃OA
; L̃OB

� ¼ 0 is
obtained. Therefore, in the following discussions, r1 ¼
r2 ¼ ⌈R=2⌉ − 1 is chosen.
Using Eq. (D59), δ1 can be estimated as

δ1 ≤
Z

∞

−∞
fβðtÞkOAðtÞ −OAðt; A½r1�Þkdt: ðD61Þ

For the estimation of the integral, an approach similar to
that in Appendix C 3 b is used. First,

Z
∞

−∞
fβðtÞkOAðtÞ −OAðt; A½r1�Þkdt

¼
Z
jtj>t0

fβðtÞkOAðtÞ −OAðt; A½r1�Þkdt

þ
Z
jtj≤t0

fβðtÞkOAðtÞ −OAðt; A½r1�Þkdt; ðD62Þ

where t0 ≔ μr1=ð2vÞ. Owing to

fβðtÞ ¼
1

β coshðπjtj=βÞ ≤
2

β
e−πjtj=β;

kOAðtÞ −OAðt; A½r1�Þk ≤ 2kOAk ¼ 2; ðD63Þ

the first term is upper bounded as

Z
jtj>t0

fβðtÞkOAðtÞ −OAðt; A½r1�Þkdt

≤
4

β

Z
jtj>t0

e−πjtj=βdt ≤
8

π
e−πμr1=ð2vβÞ: ðD64Þ

The quantity kOAðtÞ −OAðt; A½r1�Þk is upper bounded
using the Lieb-Robinson bound (18), and hence, the second
term is upper bounded as

Z
jtj≤t0

fβðtÞkOAðtÞ −OAðt; A½r1�Þkdt

≤
2

β

Z
jtj≤t0

e−πjtj=βCj∂Ajðevjtj − 1Þe−μr1dt

≤
4C
β

j∂A
����
Z

t0

0

evjtje−μr1dt

≤
4C
vβ

j∂Aje−μr1þvt0 ¼ 4C
vβ

j∂Aje−μr1=2: ðD65Þ

Further, applying inequalities (D64) and (D65), Eq. (D62)
is reduced to

δ1 ≤
Z

∞

−∞
fβðtÞkOAðtÞ −OAðt; A½r1�Þkdt

≤
�
8

π
þ 4C

vβ

�
j∂Aje−min½μr1=2;πμr1=ð2vβÞ�

≤
�
8

π
þ 4C

vβ

�
j∂Aje−μr1=ð2þ2vβ=πÞ; ðD66Þ

where j∂Aj ≥ 1 is used in the second inequality. In the same
manner,

δ2 ≤
Z

∞

−∞
fβðtÞkOBðtÞ −OBðt; B½r2�Þkdt

≤
�
8

π
þ 4C

vβ

�����∂Bje−μr2=ð2þ2vβ=πÞ: ðD67Þ

Thus, applying r1 ¼ r2 ¼ ⌈R=2⌉ − 1, inequality (D14) is
proven. This completes the proof. ▪

6. Proof of Lemma 21

First, consider the integral expression of ρ�1=2LOρ
∓1=2

for an arbitrary operator O. Using

e�βH=2Oωe∓βH=2 ¼ e�βω=2Oω; ðD68Þ

FIG. 4. Approximations of LOA
and LOB

. To obtain the
approximations L̃OA

and L̃OB
, which commute with each other,

LOA
and LOB

are approximated onto the extended regions A½r1�
and B½r2� (r1 þ r2 < R), respectively. In Eqs. (D59) and (D60),
the explicit forms of LOA

and LOB
are presented.
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based on Eq. (D54), we obtain

ρ�1=2LOρ
∓1=2 ¼

Z
∞

−∞

2
ffiffiffiffiffiffiffiffiffi
e−βω

p

1þ e−βω
e�βω=2Oωdω: ðD69Þ

Using Eq. (A2), the above equation is reduced to

ρ�1=2LOρ
∓1=2

¼
Z

∞

−∞

2
ffiffiffiffiffiffiffiffiffi
e−βω

p

1þ e−βω
e�βω=2 1

2π

Z
∞

−∞
OðtÞe−iωtdtdω

¼
Z

∞

−∞
gβ;�ðtÞOðtÞdt; ðD70Þ

where gβðtÞ is defined as

gβ;�ðtÞ ¼
1

2π

Z
∞

−∞

2
ffiffiffiffiffiffiffiffiffi
e−βω

p

1þ e−βω
e�βω=2e−iωtdω: ðD71Þ

Further,

gβ;�ðtÞ ¼
1

2π

Z
∞

−∞
½� tanhðβω=2Þ þ 1�e−iωtdω

¼ δðtÞ � gβðtÞ; ðD72Þ

where δðtÞ is the delta function and gβðtÞ is the Fourier
transform of tanhðβω=2Þ.
As in Appendix C 3 a, herein,

gβðtÞ

¼

8>>>>><
>>>>>:

i
X∞
m¼1

Resω¼ð2πim−iπÞ=βðtanhðβω=2Þe−iωtÞ for t < 0;

−i
X∞
m¼1

Resω¼ð−2πimþiπÞ=βðtanhðβω=2Þe−iωtÞ for t≥ 0;

¼

8>>><
>>>:

i
X∞
m¼1

2

β
eπð2m−1Þt=β for t < 0;

−i
X∞
m¼1

2

β
e−πð2m−1Þt=β for t≥ 0;

¼−2i
β

signðtÞ
X∞
m¼1

e−πð2m−1Þjtj=β

¼−i
signðtÞ

β sinhðπjtj=βÞ¼
−i

β sinhðπt=βÞ : ðD73Þ

Consequently,

ρ�1=2LOρ
∓1=2 ¼ O�

Z
∞

−∞
gβðtÞOðtÞdt: ðD74Þ

For the proof of the lemma, the following two claims
must be proven:

Claim 22. LetO be an arbitrary operator supported on a
subset X ⊂ Λ. Then, the norm of ρ�1=2LOρ

∓1=2 is upper
bounded as

kρ�1=2LOρ
∓1=2k ≤ kOk log

�
1þ βkadHðOÞk

kOk
�
þ 2kOk:

ðD75Þ

Claim 23. Let O be the operator defined in Claim 22.
Then, for kOk ¼ 1, the operator ρ�1=2LOρ

∓1=2 is approxi-
mated on X½r� with an error of

kρ�1=2LOρ
∓1=2 − ðρ�1=2LOρ

∓1=2ÞX½r�k

≤ j∂Xj
�
8

π

�
1þ ξβ

2r

�
þ 4C

�
1

π
þ 1

vβ

�	
e−2r=ξβ ; ðD76Þ

where ðρ�1=2LOρ
∓1=2ÞX½r� is supported on X½r� and chosen

appropriately.
Using these claims, an upper bound for the norm of

Eq. (D17) can be provided. Let us approximate

O1 ≔ ρ−1=2LOA
ρ1=2 ≈O1;A½r1�;

O2 ≔ ρ1=2LOB
ρ−1=2 ≈O2;B½r2�; ðD77Þ

where r1 þ r2 < R. Then, from ½O1;A½r1�;O2;B½r2�� ¼ 0,

k½O1;O2�k ¼ k½O1 −O1;A½r1�;O2�
þ ½O1;A½r1�;O2 −O2;B½r2��k

≤ 2kδO1k · kO2k þ 2kδO2k · kO1k
þ 2kδO1k · kδO2k; ðD78Þ

where δO1 ≔ O1 −O1;A½r1� and δO2 ≔ O2 −O2;B½r2� are
defined, and kO1;A½r1�k ≤ kO1k þ kδO1k is used in the
inequality. For kδOsk > kOsk (s ¼ 1, 2), the above
inequality is worse than the trivial inequality, that is,
k½O1;O2�k ≤ 2kO1k · kO2k. Hence, only kδOsk ≤ kOsk
is considered, which yields

k½O1;O2�k ≤ 3ðkδO1k · kO2k þ kδO2k · kO1kÞ: ðD79Þ

By choosing r1 ¼ r2 ¼ ⌈R=2⌉ − 1 and applying Claims 22
and 23, the main inequality (D18) is obtained as follows:

k½O1;O2�k≤ 3e2=ξβ
�
8

π

�
1þ ξβ

R−2

�
þ4C

�
1

π
þ 1

vβ

�	
e−R=ξβ

×fj∂Aj½2þ logð1þβkadHðOBÞkÞ�
þ j∂Bj½2þ logð1þβkadHðOAÞkÞ�g; ðD80Þ

where kOAk ¼ kOBk ¼ 1. This completes the proof of
Lemma 21.
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a. Proof of Claim 22

From the integral expression (D74),

kρ�1=2LOρ
∓1=2k ≤ kOkþ






Z

∞

−∞
gβðtÞOðtÞdt





: ðD81Þ

In a standard approach, the following is used:






Z

∞

−∞
gβðtÞOðtÞdt





 ≤ kOk
Z

∞

−∞
jgβðtÞjdt: ðD82Þ

However, the integral of jgβðtÞj does not converge because
jgβðtÞj ∝ 1=t for t ≪ 1.
Thus, to obtain a refined bound, OðtÞ is parametrized as

OðλtÞ using the parameter λ. Subsequently,

OðtÞ ¼ Oþ
Z

1

0

d
dλ

OðλtÞdλ ¼ Oþ it
Z

1

0

adHðOÞðλtÞdλ;

ðD83Þ

which yields






Z

∞

−∞
gβðtÞOðtÞdt





 ≤





Z
jtj>δt

gβðtÞOðtÞdt




þ






Z
jtj≤δt

gβðtÞOdtþ
Z
jtj≤δt

it
Z

1

0

gβðtÞadHðOÞðλtÞdλdt






≤ 2kOk
Z
t>δt

1

β sinhðπt=βÞ dtþ 2kadHðOÞk
Z

δt

0

t
β sinhðπt=βÞ dt

≤
−2kOk

π
log

�
tanh

�
πδt
2β

�	
þ 2kadHðOÞk

π
δt ≤

2kOk
π

log

�
1þ 2β

πδt

�
þ 2kadHðOÞk

π
δt; ðD84Þ

where
R
jtj≤δt gβðtÞdt ¼ 0, 1= sinhðxÞ ≤ 1=x, and

−log½tanhðxÞ�≤ logð1þ1=xÞ are used in the second, third,
and fourth inequalities, respectively. Note that gβð−tÞ ¼
−gβðtÞ. Thus, by choosing δt ¼ kOk=kadHðOÞk,





Z

∞

−∞
gβðtÞOðtÞdt





≤2kOk
π

log

�
1þ2βkadHðOÞk

πkOk
�
þ2kOk

π
:

ðD85Þ

Therefore, by combining inequalities (D81) and (D85) with
2=π ≤ 1, inequality (D75) is proven. ▪

b. Proof of Claim 23

As in the proof of Lemma 20, we consider a similar
approximation to the one in Eq. (D59). Using the integral
expression (D74), we obtain

ðρ�1=2LOρ
∓1=2ÞX½r� ≔ O�

Z
∞

−∞
gβðtÞOðt; X½r�Þdt; ðD86Þ

which yields

kρ�1=2LOρ
∓1=2 − ðρ�1=2LOρ

∓1=2ÞX½r�k

≤
Z

∞

−∞
jgβðtÞj · kOðt; X½r�Þ −OðtÞkdt: ðD87Þ

Using 1= sinhðxÞ ≤ 2e−xð1þ 1=xÞ (x ≥ 0),

jgβðtÞj ¼
1

β sinhðπjtj=βÞ ≤
2e−πjtj=β

β

�
1þ 1

πjtj=β
�
: ðD88Þ

In addition, as per the Lieb-Robinson bound (18),

kOðtÞ −OXðt; X½r�Þk ≤ minðCj∂Xjðevjtj − 1Þe−μr; 2Þ:
ðD89Þ

Subsequently, analyses similar to those for Eqs. (C32),
(C33), and (C35) can be applied. For t0 ¼ μr=ð2vÞ, we
obtain

Z
∞

−∞
jgβðtÞj ·kOðt;X½r�Þ−OðtÞkdt

≤
Z
jtj>t0

2e−πjtj=β

β

�
1þ 1

πjtj=β
�
·2dt

þ
Z
jtj≤t0

2e−πjtj=β

β

�
1þ 1

πjtj=β
�
·Cj∂Xjðevjtj−1Þe−μrdt

≤
8e−πt0=β

π

�
1þ 1

πt0=β

�
þ4C

β
j∂Xj

�
1

v
þ 1

π=β

�
e−μrþvt0

≤ j∂Xj
�
8

π

�
1þ2vβ

πμr

�
e−πμr=ð2vβÞ þ4C

�
1

π
þ 1

vβ

�
e−μr=2

	

≤ j∂Xj
�
8

π

�
1þ ξβ

2r

�
þ4C

�
1

π
þ 1

vβ

�	
e−2r=ξβ ;

where the definition of ξβ ≔ 4=μð1þ vβ=πÞ is used in the
last inequality. This completes the proof of Claim 23. ▪

APPENDIX E: PROOF OF PROPOSITION 9

Herein, the proof of Proposition 9, which connects the
PPT relative entanglement and quantum correlation, is
presented. When the quantum correlation satisfies

QCρABðOA;OBÞ ≤ ϵkOAk · kOBk ðE1Þ
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for two arbitrary operatorsOA andOB, Proposition 9 yields

EPPT
R ðρABÞ ≤ 4DABδ̄ logð1=δ̄Þ ≤ 4DABδ̄

1=2; ðE2Þ

where δ̄ ≔ 4ϵminðDA;DBÞ.

1. Proof

In inequality (E2), if δ̄ > 1=DAB, the upper bound is
worse than the trivial bound, i.e., EPPT

R ðρABÞ ≤
log½minðDA;DBÞ� ≤ ð1=2Þ logðDABÞ. Hence, only the case
of δ̄ ≤ 1=DAB is considered.
The eigenstates of ρTA

AB with negative eigenvalues are
defined as fjηiigM0

i¼1. Then, the proof of Proposition 9 is
immediately obtained via the following lemma:
Lemma 24. For the quantum state ρAB given in

Proposition 9, the minimum negative eigenvalue of ρTA
AB

satisfies

δ ≔ − min
i∈½M0�

hηijρTA
ABjηii ≤ 4ϵminðDA;DBÞ ¼ δ̄; ðE3Þ

where the parameter ϵ has been defined in Eq. (E1).
To prove inequality (52), a quantum state σ̃AB is defined

as follows:

σ̃AB ¼ ð1 −DABδ̄ÞρAB þ δ̄ · 1̂AB; ðE4Þ
where trðσ̃ABÞ ¼ 1 since trðδ̄ · 1̂ABÞ ¼ DABδ̄. Because of
the definition of δ in Eq. (E3), we have σ̃TA

AB ≽ 0 (i.e.,
σ̃AB ∈ PPT). We then obtain

EPPT
R ðρABÞ ≤ SðρABkσ̃ABÞ: ðE5Þ

Subsequently, using the continuity bound on the relative
entropy (Theorem 196 of Ref. [203], or Ref. [79]),

SðρABkσ̃ABÞ ≤ δAB logðDABÞ − δAB logðδABÞ
− δAB log½λminðσ̃ABÞ� ðE6Þ

under the assumption of δAB ≤ 1=e, where δAB ≔ kρAB −
σ̃ABk1 and λminðσ̃ABÞ are defined as the minimum eigen-
values of σ̃AB. Based on definition (E4), λminðσ̃ABÞ ≥ δ̄ and

δAB ≤ 2DABδ̄: ðE7Þ

First, the case of 2DABδ̄ ≤ 1=e, that is, δ̄ ≤ 1=ð2eDABÞ, is
considered. Then, −δAB logðδABÞ ≤ −2DABδ̄ logð2DABδ̄Þ,
and hence, inequality (E6) reduces to

SðρABkσ̃ABÞ ≤ −2DABδ̄ logð2δ̄2Þ
≤ −4DABδ̄ logðδ̄Þ: ðE8Þ

In the case of δ̄ > 1=ð2eDABÞ, the rhs of the above
inequality is larger than the trivial upper bound

ð1=2Þ logðDABÞ. Therefore, by combining inequality (E8)
with (E5), the main inequality (52) is proven. This
completes the proof. ▪

2. Proof of Lemma 24

The next task is to estimate

min
i
hηijρTA

ABjηii ¼ inf
jηi
trðρTA

ABPηÞ ðE9Þ

under the assumption of Eq. (E1), where Pη ≔ jηihηj.
Therefore, first,

trðρTA
ABPηÞ ¼ trðρABPTA

η Þ
¼ trðρABPηÞ þ tr½ρABðPTA

η − PηÞ�

is rewritten, and the second term is subsequently proven to
be approximately equal to zero for an arbitrary quantum
state jηi. Because the eigenvalues of ρTA

AB do not depend on
the choice of basis [95], the basis that yields the Schmidt
decomposition of jηi is selected as follows:

jηi ¼
XDA

s¼1

νsjsA; sBi;
X
s

jνsj2 ¼ 1; ðE10Þ

where we assume DA < DB without loss of generality.
To verify this point, we first consider the qubit case, that

is, DA ¼ DB ¼ 2. Consider the proof of the follow-
ing lemma:
Lemma 25. When DA ¼ DB ¼ 2, we have

jtr½ρABðPTA
η − PηÞ�j ≤ 2ϵ; ðE11Þ

where the parameter ϵ is given in Eq. (E1).
To generalize the results of two qubits to two-qudit

systems, consider

PTA
η −Pη¼

XDA

s;s0∶s≠s0
νsνs0 ð−jsA;sBihs0A;s0Bjþ js0A;sBihsA;s0BjÞ

and

νsνs0 ð−jsA; sBihs0A; s0Bj þ js0A; sBihsA; s0BjÞ þ H:c:

¼ ðν2s þ ν2s0 Þðjηs;s0 ihηs;s0 jTA − jηs;s0 ihηs;s0 jÞ; ðE12Þ

where jηs;s0 i≔ ðν2s þν2s0 Þ−1=2ðνsjsA;sBiþνs0 js0A;s0BiÞ. Now,
the quantum state jηs;s0 i is reduced to a quantum state with
two qubits. Thus, from Lemma 25,

jtr½ρABðjηs;s0 ihηs;s0 jTA − jηs;s0 ihηs;s0 jÞ�j ≤ 2ϵ; ðE13Þ

which yields
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jtr½ρABðPTA
η −PηÞ�j

¼
X

1≤s<s0≤DA

ðν2s þν2s0 Þjtr½ρABðjηs;s0 ihηs;s0 jTA − jηs;s0 ihηs;s0 jÞ�j

≤ 2ϵ
X

1≤s<s0≤DA

ðν2s þν2s0 Þ≤ 4ϵDA: ðE14Þ

Consequently,

trðρABPTA
η Þ ≥ trðρABPηÞ − 4ϵDA ≥ −4ϵDA; ðE15Þ

where trðρABPηÞ ≥ 0 is used in the second inequality.
Further, using the above inequality,

inf
jηi
trðρTA

ABPηÞ ≥ −4ϵDA: ðE16Þ

When DB ≤ DA, the above lower bound is replaced by
inf jηitrðρTA

ABPηÞ ≥ −4ϵDB. Therefore, the parameter δ

(¼ −minihηijρTA
ABjηii) is upper bounded by

δ ≤ 4ϵminðDA;DBÞ: ðE17Þ

Using this, inequality (G4) is reduced to the main inequal-
ity (52). This completes the proof. ▪

a. Proof of Lemma 25

When DA ¼ DB ¼ 2, an arbitrary operator OAB is
described in the form of

OAB ¼
X

P¼x;y;z

ðJPσ̂1;Pσ̂2;P þ h1;Pσ̂1;P þ h2;Pσ̂2;PÞ ðE18Þ

by appropriately choosing the bases (see Lemma 1 of
Ref. [204] for an example), where A ¼ f1g and B ¼ f2g
and fσ̂x; σ̂y; σ̂zg are the Pauli matrices. Then, the partial
transpose TA only changes σ̂1;y → −σ̂1;y, and hence,

OAB −OTA
AB ¼ 2ðJyσ̂1;yσ̂2;y þ h1;yσ̂1;yÞ

¼ 2σ̂1;y ⊗ ðJyσ̂2;y þ h1;yÞ: ðE19Þ

In this manner, the following can be expressed:

PTA
η − Pη ¼ ΦA ⊗ ΦB; ðE20Þ

where kΦAk ≤ 2 and kΦBk ¼ 1 can be realized owing to
kPTA

η − Pηk ≤ 2. Subsequently, based on condition (E1)
and inequality (37) in Lemma 5,

QCρABðΦA;ΦBÞ ≤ QCρðΦA;ΦBÞ ≤ ϵkΦAk · kΦBk;

which yields

jtr½ρABðPTA
η − PηÞ�j

¼ jtrðρABΦA ⊗ ΦBÞj

≤
����
X
s

pstrðρs;AΦAÞtrðρs;BΦBÞ
����

þ
����
X
s

psðtrðρs;ABΦAΦBÞÞ − trðρs;AΦAÞtrðρs;BΦBÞ
����

≤
X
s

psjtrðρs;A ⊗ ρs;BΦA ⊗ ΦBÞj þ QCρABðΦA;ΦBÞ

≤
X
s

psjtr½ρs;A ⊗ ρs;BðPTA
η − PηÞ�j þ 2ϵ; ðE21Þ

where fρs;Ags and fρs;Bgs are the reduced density matrices
of fρs;ABgs, which are appropriately chosen such that they
yield QCρABðΦA;ΦBÞ.
The aim is to prove

tr½ρA ⊗ ρBðPTA
η − PηÞ� ¼ 0 ðE22Þ

for arbitrary ρA and ρB. Let uA and uB be unitary matrices
that diagonalize ρA and ρB, respectively. Then,

tr½ρA ⊗ ρBðPTA
η − PηÞ�

¼ tr½ρ̃A ⊗ ρ̃BðuA ⊗ uBÞðPTA
η − PηÞðuA ⊗ uBÞ†�

¼ tr½ρ̃A ⊗ ρ̃BðP̃†A
η − P̃ηÞ�; ðE23Þ

where ρ̃A ≔ uAρAu
†
A, ρ̃B≔ uBρBu

†
B, P̃η≔ðuA⊗uBÞPηðuA⊗

uBÞ†. Note that, by using the form (E10), PTA
η ¼ P†A

η is true,
with †A being the partial conjugate transpose. This yields

ðuA ⊗ uBÞP†A
η ðuA ⊗ uBÞ† ¼ P̃†A

η : ðE24Þ

In Eq. (E23), only the diagonal terms of ðP̃†A
η − P̃ηÞ

contribute to the value, as ρ̃A ⊗ ρ̃B is a diagonal matrix.
It is evident that all the diagonal terms in ðP̃†A

η − P̃ηÞ are
equal to zero, and hence, it can be concluded that Eq. (E23)
reduces to Eq. (E22). Thus, by applying Eq. (E22) to
inequality (E21), the main inequality (E11) is obtained.
This completes the proof. ▪

APPENDIX F: PROOF OF THEOREM 12

This section presents the proof of Theorem 12, where the
following inequality has been obtained for one-dimensional
quantum Gibbs states:

EPPT
R ðρβ;ABÞ ≤ C̄β logðDABÞe−R=½6 logðd0Þξ

2
β �þ7gkβ; ðF1Þ

where C̄β ≔ 24ðC̃β þ 16d40CβÞ1=2, with Cβ and C̃β defined
in Eqs. (54) and (57), respectively. Here, the assumption
of a finite interaction length has been imposed for
Hamiltonian H.
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1. Proof

For the proof, first, the subsystems A and B are
decomposed as follows (Fig. 5):

A ¼ A0⊔A1⊔A2; B ¼ B0⊔B1⊔B2; ðF2Þ

where jA1j ¼ jA2j ¼ jB0j ¼ jB1j ¼ l. Let h∂A1
(h∂B1

)
denote the interactions between A1 and A2 (B1 and B2):

h∂A1
¼

X
Z∶Z∩A1≠∅;Z∩A2≠∅

hZ;

h∂B1
¼

X
Z∶Z∩B1≠∅;Z∩B2≠∅

hZ: ðF3Þ

Then, the quantum Gibbs state ρβ can be described as

ρβ ¼ Φe−βðH−h∂A1−h∂B1 ÞΦ†; ðF4Þ

where Φ is an appropriate operator. It can be proven that Φ
is afforded by a quasilocal operator and approximated by
ΦA1;A2

⊗ ΦB1;B2
, which is formulated by the follow-

ing lemma:
Lemma 26. The operatorΦ in Eq. (F4) is approximated

as follows:

Φ̃ ¼ ΦA1;A2
⊗ ΦB1;B2

s:t:kρβ − ðΦ̃e−βðH−h∂A1−h∂B1 ÞΦ̃†Þk
1

≤ C̃βe−2l=ξβþ14gkβ ≕ δ1;l; ðF5Þ

where the correlation length ξβ has been defined in
Eq. (54), and

C̃β ≔ 1280

�
5þ 2Ceμk

π2
þ 2Ceμk

πvβ

�
2

: ðF6Þ

Further,

kΦ̃k ≤ e2gkβ: ðF7Þ

In the following, the main inequality (F1) is proven
based on the above lemma. For this purpose, ρ̃β and Z̃ are
defined as follows:

ρ̃β ¼
e−βðH−h∂A1−h∂B1 Þ

Z̃
;

Z̃ ≔ trðe−βðH−h∂A1−h∂B1 ÞÞ: ðF8Þ

Because

e−βðH−h∂A1−h∂B1 Þ ¼ e−βðHA0A1
þHA2CB2

þHB1B0
Þ; ðF9Þ

we obtain ρ̃β;AB in the form of

ρ̃β;AB ¼ ρ̃A0A1
⊗ ρ̃A2B2

⊗ ρ̃B0B1
; ðF10Þ

where ρ̃A0A1
, ρ̃A2B2

, and ρ̃B0B1
are normalized, respectively.

Here, δ̃ for ρ̃A2B2
is defined in the same manner as for

Eq. (E3), whereas σ̃A2B2
is defined as

σ̃A2B2
¼ ρ̃A2B2

þ δ̃ · 1̂A2B2
: ðF11Þ

Using the above σ̃A2B2
, σ̃AB is defined as

σ̃AB ≔
Z̃
Zσ̃

Φ̃ρ̃A0A1
⊗ σ̃A2B2

⊗ ρ̃B0B1
Φ̃†

¼ Z̃
Zσ̃

ðΦ̃ρ̃β;ABΦ̃† þ δ̃ · Φ̃ρ̃A0A1
⊗ 1̂A2B2

⊗ ρ̃B0B1
Φ̃†Þ;

ðF12Þ

where Zσ̃ is the normalization factor used to real-
ize trðσ̃ABÞ ¼ 1.
Note that σ̃TA

AB ≽ 0 can be proven as follows. Because
σ̃TA
A2B2

≽ 0, we obtain

ðρ̃A0A1
⊗ σ̃A2B2

⊗ ρ̃B0B1
ÞTA ≽ 0: ðF13Þ

Hence, by representing the spectral decomposition of the
above operator as

FIG. 5. For the proof, subsets A and B are decomposed into three pieces. The decomposed subsets, i.e., A1, A2, B2, and B1, are
considered such that they have the same cardinality, that is, jA1j ¼ jA2j ¼ jB2j ¼ jB1j ¼ l. The interactions between the subsystems A1

and A2 (B1 and B2) are denoted as h∂A1
(h∂B1

). Then, in the Hamiltonian H − h∂A1
− h∂B1

, the regions A0A1, A2CB2, and B1B0 are
decoupled. Consequently, using the quantum belief propagation, it is proven that regions A0 and B0 do not influence the entanglement
value. Then, the entanglement between A and B is characterized by the entanglement between A1A2 and B1B2. Further, because the size
of these regions is 2l, the dependence on the Hilbert space dimension in Eq. (55) is significantly improved.
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ρ̃A0A1
⊗ σ̃A2B2

⊗ ρ̃B0B1
¼

X
i

λ̃ijλ̃iihλ̃ij ðF14Þ

with λ̃i ≥ 0, the following is obtained:

ðΦ̃ρ̃A0A1
⊗ σ̃A2B2

⊗ ρ̃B0B1
Φ̃†ÞTA

¼
X
i

λ̃iðΦ�
A1;A2

⊗ ΦB1;B2
Þjλ̃iihλ̃ijðΦTA

A1;A2
⊗ Φ†

B1;B2
Þ

≽ 0; ðF15Þ

which yields the inequality σ̃TA
AB ≽ 0 from definition (F12).

In the following calculations, the aim is to estimate the
upper bound of kσ̃AB − ρβ;ABk1. We have

kσ̃AB − ρβ;ABk1
≤ kZ̃ Φ̃ ρ̃β;ABΦ̃† − ρβ;ABk1 þ kZ̃ Φ̃ ρ̃β;ABΦ̃† − σ̃ABk1:

ðF16Þ
For the first term, because Φ̃ is supported on A1A2 ∪ B1B2,

kZ̃ Φ̃ ρ̃β;ABΦ̃† − ρβ;ABk1 ¼ ktrCðZ̃ Φ̃ ρ̃βΦ̃† − ρβÞk1
≤ kρβ − ðΦ̃e−βðH−h∂A1−h∂B1 ÞΦ̃†Þk

1

≤ δ1;l; ðF17Þ
where δ1;l has been defined in Lemma 26. For the second
term, based on definition (F12),

kZ̃ Φ̃ ρ̃β;ABΦ̃†− σ̃ABk1 ≤





�
1−

1

Zσ̃

�
Z̃ Φ̃ ρ̃β;ABΦ̃†






1

þ δ̃ Z̃
Zσ̃

kΦ̃ρ̃A0A1
⊗ 1̂A2B2

⊗ ρ̃B0B1
Φ̃†k

1

≤
����1− 1

Zσ̃

����ð1þδ1;lÞþ
δ̃ Z̃
Zσ̃

kΦ̃k2;

ðF18Þ
where inequality (F17) is used with kρβ;ABk1 ¼ 1 for
deriving the first term of the rhs.
The remaining task entails estimating the parameters Z̃,

δ̃, and Zσ̃. Consider the proof of the following inequalities:

Z̃ ≤ e4gkβ; δ̃ ≤ δ2;R; δ2;R ≔ 16Cβe−R=ξβþ2l logðd0Þ;
1

Zσ̃
≤ 1þ 2δ̄l;R; δ̄l;R ≔ δ1;l þ δ2;Rd2l0 e8gkβ; ðF19Þ

where the case of δ̄l;R ≤ 1=2 is considered. In the case of
δ̄l;R > 1=2, the desired inequality (F24) below is trivially
true because, in this case, it becomes worse than the trivial
bound kσ̃AB − ρβ;ABk1 ≤ 2.
Proof of inequalities in Eq. (F19).—The first inequality

in Eq. (F19) for the partition function Z̃ can be immediately
derived using the Golden-Thompson inequality:

Z̃ ¼ trðe−βðH−h∂A1−h∂B1 ÞÞ
≤ trðe−βHeβðh∂A1þh∂B1 ÞÞ
≤ trðe−βHÞeβðkh∂A1kþkh∂B1kÞ ≤ e4gkβ; ðF20Þ

where we use trðe−βHÞ ¼ 1, and the norm of kh∂A1
k þ

kh∂B1
k is upper bounded in Eq. (F39).

In addition, for δ̃, Lemma 24 is applied with Theorem 10
to ρ̃A2B2

, which yields the second inequality in Eq. (F19):

δ̃ ≤ 4 minðDA2
;DB2

Þ × Cβðj∂A2j þ j∂B2jÞ
× ð1þ log jA2B2jÞe−R=ξβ

≤ 16Cβe−R=ξβþ2l logðd0Þ ¼ δ2;R; ðF21Þ

where we use jA2j ¼ jB2j ¼ l, j∂A2j ¼ j∂B2j ¼ 2, and 1þ
log jA2B2j ¼ 1þ logð2lÞ ≤ dl0 for d0 ≥ 2.
Finally, from Eq. (F12),

Zσ̃ ¼ trðZ̃ Φ̃ ρ̃β;ABΦ̃† þ δ̃ · Z̃ · Φ̃ρ̃A0A1
⊗ 1̂A2B2

⊗ ρ̃B0B1
Φ̃†Þ

≥ kρβ;ABk1 − kZ̃ Φ̃ ρ̃ABΦ̃† − ρβ;ABk1
− δ̃ · Z̃ · kΦ̃k2DA2B2

≥ 1 − δ1;l − δ2;Rd2l0 e8gkβ ¼ 1 − δ̄l;R; ðF22Þ

where, in the last inequality, DA2B2
¼d2l0 , Z̃ ≤ e4gkβ, and

kΦ̃k≤e2gkβ are used in Eq. (F7). Further, using 1=ð1 − xÞ ≤
1þ 2x for 0 ≤ x ≤ 1=2, the third inequality in Eq. (F19)
can be proven from the above inequality. This completes
the proof of the inequalities in Eq. (F19). ▪
Combining inequalities (F18) and (F19) yields

kZ̃ Φ̃ ρ̃β;ABΦ̃† − σ̃ABk1
≤ 2δ̄l;Rð1þ δ1;lÞ þ δ2;Re8gkβð1þ 2δ̄l;RÞ: ðF23Þ

Then, on applying inequalities (F17) and (F23) to (F16), we
obtain

kσ̃AB − ρβ;ABk1 ≤ 2δ̄2l;R þ 3δ̄l;R ≤ 4δ̄l;R; ðF24Þ

where δ̄l;R ≤ 1=2 is used for the second inequality.
Subsequently, on choosing l ¼ ⌈R=ð6 logðd0ÞξβÞ⌉,

δ̄l;R ¼ δ1;l þ δ2;Rd2l0 e8gkβ

¼ C̃βe−2l=ξβþ14gkβ þ 16Cβe−R=ξβþ4l logðd0Þþ8gkβ

≤ ðC̃β þ 16d40CβÞe−R=½3 logðd0Þξ
2
β �þ14gkβ ≕ δ̄AB: ðF25Þ

Finally, to apply the continuity bound (E6), λminðσ̃ABÞ
must be controlled. For this purpose, we consider

σ̃AB
0 ¼ ð1 − δ̄ABÞσ̃AB þ δ̄ABD−1

AB1̂AB; ðF26Þ
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which yields λminðσ̃AB0Þ ≥ δ̄ABD−1
AB. Note that σ̃AB0 ∈ PPT.

Then,

kσ̃AB0 − ρβ;ABk1 ≤ 4δ̄AB þ kσ̃AB0 − σ̃ABk1 ≤ 6δ̄AB: ðF27Þ

Inequality (E6) on relative entropy yields

Sðρβ;ABkσ̃0ABÞ ≤ 6δ̄AB logðDABÞ − 6δ̄AB logð6δ̄ABÞ
− 6δ̄AB log½λminðσ̃0ABÞ�

≤ 12δ̄AB logðDABδ̄
−1
ABÞ

≤ 24

ffiffiffiffiffiffiffi
δ̄AB

q
logðDABÞ; ðF28Þ

where x logðz=xÞ ≤ 2
ffiffiffi
x

p
logðzÞ is used for 0 ≤ x ≤ 2 and

z ≥ 2. Because EPPT
R ðρABÞ ≤ Sðρβ;ABkσ̃0ABÞ, the main

inequality (F1) is proven by applying the definition of
δ̄AB in Eq. (F25) to Eq. (F28). This completes the proof. ▪

a. Proof of Lemma 26

Using the quantum belief propagation [57], Φ is
described as follows:

Φ ≔ T e
R

1

0
ϕðτÞdτ;

ϕðτÞ ≔ −
β

2

Z
∞

−∞
FβðtÞ½h∂A1

ðHτ; tÞ þ h∂B1
ðHτ; tÞ�dt;

Hτ ≔ H − ð1 − τÞh∂A1
− ð1 − τÞh∂B1

; ðF29Þ

where T is the time ordering operator, h∂A1
ðHτ; tÞ ¼

eiHτth∂A1
e−iHτt. Here, FβðtÞ is defined as

FβðtÞ¼
1

2π

Z
∞

−∞
F̃βðωÞe−iωtdω; F̃ðωÞ≔ tanhðβω=2Þ

βω=2
:

The explicit form of FβðtÞ can be calculated as follows
[see Eq. (103) in Supplementary Information of
Ref. [205]:]

FβðtÞ ¼
2

βπ
log

�
eπjtj=β þ 1

eπjtj=β − 1

�
≤

4=ðβπÞ
eπjtj=β − 1

≤
4

βπ
e−πjtj=β

�
1þ 1

πjtj=β
�
; ðF30Þ

where log½ðexþ1Þ=ðex−1Þ�≤ 2=ðex−1Þ and 1=ðex−1Þ≤
e−xð1þx−1Þ are used for x ≥ 0.
Herein, an approximation is adopted as follows:

Φ̃ ≔ T e
R

1

0
ϕ̃ðτÞdτ;

ϕ̃ðτÞ ≔ −
β

2

Z
∞

−∞
FβðtÞ½h∂A1

ðHτ; t; A1A2Þ

þ h∂B1
ðHτ; t; B1B2Þ�dt; ðF31Þ

where the notations of Eq. (16) are used. Here,
h∂A1

ðHτ; t; A1A2Þ and h∂B1
ðHτ; t; B1B2Þ are supported on

A1A2 and B1B2, respectively. Because ½h∂A1
ðHτ; t; A1A2Þ;

h∂B1
ðHτ; t; B1B2Þ� ¼ 0, Φ̃ is given in the form of

Φ̃ ¼ ΦA1;A2
⊗ ΦB1;B2

: ðF32Þ

Consider the norm of Φ − Φ̃, which is upper bounded as

kΦ − Φ̃k ≤ e
R

1

0
ðkϕðτÞkþkϕ̃ðτÞkÞdτ

Z
1

0

kϕðτÞ − ϕ̃ðτÞkdτ;

ðF33Þ

where the analysis in Claim 25 of Ref. [46] is used. To
estimate the rhs of Eq. (F33), first consider

Z
1

0

ðkϕðτÞk þ kϕ̃ðτÞkÞdτ

≤ βðkh∂A1
k þ kh∂B1

kÞ
Z

∞

−∞
FβðtÞdt

¼ βðkh∂A1
k þ kh∂B1

kÞ; ðF34Þ

where kh∂A1
ðHτ; t; A1A2Þk ≤ kh∂A1

ðHτ; tÞk ¼ kh∂A1
k andR

∞
−∞ FβðtÞdt ¼ F̃ð0Þ ¼ 1 are used. Second, using the Lieb-
Robinson bound (18),

kh∂A1
ðHτ; tÞ − h∂A1

ðHτ; t; A1A2Þk
≤ kh∂A1

kminð2; 2Cðevjtj − 1Þe−μðl−kÞÞ; ðF35Þ

where j∂Suppðh∂A1
Þj ¼ 2 is used on a 1D chain, and it is

assumed that h∂A1
has the interaction length k [i.e.,

jSuppðh∂A1
Þj≤2k]. Note that kh∂A1

ðHτ;tÞ−h∂A1
ðHτ;

t;A1A2Þk is trivially smaller than 2kh∂A1
k.

Consequently, on combining the above inequality with
Eqs. (F29) and (F31), we obtain

kϕðτÞ − ϕ̃ðτÞk

≤
βðkh∂A1

k þ kh∂B1
kÞ

2

×
Z

∞

−∞
FβðtÞ minð2; 2Cðevjtj − 1Þe−μðl−kÞÞdt: ðF36Þ

Given the form of FβðtÞ in Eq. (F30), the same calcula-
tions as in Appendix C 3 b can be applied. Thus,
for t0 ¼ μl=ð2vÞ,
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kϕðτÞ − ϕ̃ðτÞk
βðkh∂A1

k þ kh∂B1
kÞ ≤

Z
∞

t0

4

βπ
e−πt=β

�
1þ 1

πt=β

�
· 2dtþ

Z
t0

0

4

βπ
e−πt=β

�
1þ 1

πt=β

�
· 2Cðevt − 1Þe−μðl−kÞdt

≤
8

π2

�
1þ 1

πt0=β

�
e−πt0=β þ 8Ceμk

βπ
e−μl

Z
t0

0

�
1þ 1

πt=β

�
ðevt − 1Þdt

≤
8

π2

�
1þ 1

πt0=β

�
e−πt0=β þ 8Ceμk

βπ
e−μl

�
evt0

v
þ evt0

π=β

�

¼ 8

π2

�
1þ 2βv

πμl

�
e−πμl=ð2βvÞ þ 8Ceμk

βπ

�
1

v
þ β

π

�
e−μl=2

≤
�
8

π2

�
1þ ξβ

2l

�
þ 8Ceμk

π

�
1

π
þ 1

vβ

�	
e−2l=ξβ ; ðF37Þ

where the definition of ξβ ≔ 4
μ f1þ ½ðvβÞ=π�g is used.

Owing to inequality (F34), the lhs of Eq. (F37) is trivially
smaller than 1. By contrast, for l ≤ ξβ=3, the rhs of
Eq. (F37) is larger than 20e−2=3=π2, which is worse than
the trivial upper bound. Hence, only the case of l ≥ ξβ=3 is
considered, which reduces Eq. (F37) to

kϕðτÞ − ϕ̃ðτÞk
βðkh∂A1

k þ kh∂B1
kÞ

≤
�
20þ 8Ceμk

π2
þ 8Ceμk

πvβ

�
e−2l=ξβ : ðF38Þ

From Eq. (8), the upper bound can be obtained as

kh∂A1
k ≤

X
i∈Suppðh∂A1 Þ

X
Z∶Z∋i

khZk ≤ jSuppðh∂A1
Þjg ≤ 2gk;

ðF39Þ

which reduces inequalities (F34) and (F38) to

Z
1

0

ðkϕðτÞkþkϕ̃ðτÞkÞdτ≤ 4gkβ;

kϕðτÞ− ϕ̃ðτÞk≤ 4gkβ

�
20þ8Ceμk

π2
þ8Ceμk

πvβ

�
e−2l=ξβ ;

ðF40Þ

respectively. Further, by applying the above inequalities to
Eq. (F33), the following is obtained:

kΦ − Φ̃k ≤ 16gkβe4gkβ
�
5þ 2Ceμk

π2
þ 2Ceμk

πvβ

�
e−2l=ξβ :

ðF41Þ

Finally, consider the norm of

ρβ− Φ̃e−βðH−h∂A1−h∂B1 ÞΦ̃†

¼ ρβ− Φ̃Φ−1ρβðΦ̃Φ−1Þ†
¼ð1− Φ̃Φ−1Þρβ½1− ðΦ̃Φ−1Þ†�þ Φ̃Φ−1ρβ½1− ðΦ̃Φ−1Þ†�
þð1− Φ̃Φ−1ÞρβðΦ̃Φ−1Þ†;

where Eq. (F4), that is, e−βðH−h∂A1−h∂B1 Þ ¼ Φ−1ρβðΦ†Þ−1, is
used. Subsequently, using the above equation,

kρβ − ðΦ̃e−βðH−h∂A1−h∂B1 ÞΦ̃†Þk
1

≤ kρβk1k1 − Φ̃Φ−1kðk1 − Φ̃Φ−1k þ 2kΦ̃Φ−1kÞ
≤ 3k1 − Φ̃Φ−1k2 þ 2k1 − Φ̃Φ−1k; ðF42Þ

where the triangle inequality is employed to obtain
kΦ̃Φ−1k ≤ k1 − Φ̃Φ−1k þ 1. Based on the inequality of
kΦ−1k ≤ e2gkβ, which is derived in the same manner as
Eq. (F34), we obtain

k1 − Φ̃Φ−1k ≤ kΦ−1k · kΦ − Φ̃k

≤ 16gkβe6gkβ
�
5þ 2Ceμk

π2
þ 2Ceμk

πvβ

�
e−2l=ξβ

≤ 16e7gkβ
�
5þ 2Ceμk

π2
þ 2Ceμk

πvβ

�
e−2l=ξβ

ðF43Þ

from inequality (F41), where xe6x ≤ e7x is used for x ≥ 0.
Therefore, by combining inequalities (F42) and (F43),

inequality (F5) can be obtained as follows:
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kρβ − ðΦ̃e−βðH−h∂A1−h∂B1 ÞΦ̃†Þk
1

≤ 1280

�
5þ 2Ceμk

π2
þ 2Ceμk

πvβ

�
2

e−2l=ξβþ14gkβ:

Finally, on the norm kΦ̃k, considering Eq. (F34),

kΦ̃k ≤ e
R

1

0
kϕ̃ðτÞkdτ ≤ e

β
2
ðkh∂A1kþkh∂B1kÞ ≤ e2gkβ;

which yields inequality (F7). This completes the proof. ▪

APPENDIX G: REMARK ON ENTANGLEMENT
NEGATIVITY

The PPT relative entanglement in Eq. (50) is relevant to
another definition of quantum entanglement. Herein, con-
sider entanglement negativity, which is given by [50]

ENðρABÞ ≔ log kρTA
ABk1: ðG1Þ

Using Proposition 9, the following corollary is obtained:
Corollary 27. Let ρ be an arbitrary quantum state

such that

QCρðOA;OBÞ ≤ ϵkOAk · kOBk ðG2Þ

for two arbitrary operators OA and OB; then,

ENðρABÞ ≤ kρTA
ABk1 − 1 ≤ 8ϵminðDA;DBÞDAB; ðG3Þ

where the first inequality is trivially derived from
logð1þ xÞ ≤ x for x ≥ 0. Recall that DAB is the Hilbert
space dimension in the region AB. Thus, by applying
Theorem 10 to inequality (G3), an inequality similar to
Eq. (55) can be derived.
Proof of Corollary 27.—First, because trðρTA

ABÞ ¼ 1,

kρTA
ABk1 ¼ 1þ

XM0

i¼1

2jhηijρTA
ABjηiij ≤ 1þ 2M0 · δ

≤ 1þ 2DAB · δ ðG4Þ

with δ ≔ −minihηijρTA
ABjηii, where M0 ≤ DAB. Here, the

value M0 can be as large as ðDA − 1ÞðDB − 1Þ, in general
(seeRef. [206]). Thus, using the upper bound on δ in Lemma
24, inequality (G3) is proven. This completes the proof. ▪
By contrast, an inequality similar to Eq. (F1) cannot be

derived for 1D quantum Gibbs states if entanglement
negativity is considered. This is explained as follows. As
shown in Lemma 26, the following was derived:

kρβ − Φ̃e−βðH−h∂A1−h∂B1 ÞΦ̃k
1
≤ e−l=OðβÞþOðβÞ; ðG5Þ

where Φ̃ has been supported on A1A2 ∪ B1B2. Thus, it is
concluded that, for l≳ β2,

ρβ ≈ Φ̃e−βðH−h∂A1−h∂B1 ÞΦ̃: ðG6Þ

The primary difficulty is that entanglement negativity
cannot satisfy a convenient continuity inequality. In
Eq. (16) of Ref. [90], it has been proven that, for arbitrary
quantum states ρAB and ρ0AB,

jENðρABÞ − ENðρ0ABÞj
≤ logð1þ

ffiffiffiffiffiffiffiffiffi
DAB

p
kρAB − ρ0ABk2Þ

≤ logð1þ
ffiffiffiffiffiffiffiffiffi
DAB

p
kρAB − ρ0ABk1Þ: ðG7Þ

Hence, even for kρ − ρ0k1 ¼ e−OðnzÞ (0 < z < 1), the dif-
ference in entanglement negativity can be significantly
large [207]. Therefore, error estimation (G5) cannot be
utilized for this purpose.
Adopting the same steps as those for Appendix F,

kðρβ − Φ̃e−βðH−h∂A1−h∂B1 ÞΦ̃†ÞTAk
1

needs to be calculated instead of

kρβ − Φ̃e−βðH−h∂A1−h∂B1 ÞΦ̃k
1

to obtain a meaningful upper bound for entanglement
negativity. However, in general, the partial-transpose oper-
ation can significantly increase the operator norm, that is,
kOTAk1 ≤minðDA;DAcÞkOk1, as shown in Refs. [209,210].
Owing to this difficulty, the possibility of deriving a
statement similar to Theorem 12 for entanglement nega-
tivity (G1) remains unclear. However, it is expected to be
proven for entanglement negativity by employing an
analysis similar to that in Ref. [211].

APPENDIX H: QUANTUM FISHER
INFORMATION MATRIX

Here, the definition (33) for the quantum correlation
QCρðOA;OBÞ proposed is compared with the quantum
Fisher information matrix. First, it should be noted that the
quantum Fisher information can be defined in the form of
the convex roof of the variance. If ρ is a pure state, the
quantum Fisher information F ρðKÞ simply reduces to the
variance of K:

F ρðKÞ ¼ 4ðhψ jK2jψi − hψ jKjψi2Þ; ðH1Þ

where ρ ¼ jψihψ j. For the general state ρ, the quantum
Fisher information is known to be equal to the convex roof
of the variance [167,168]:

F ρðKÞ ¼ 4 inf
fps;jψsig

X
s

psðhψ sjK2jψ si − hψ sjKjψ si2Þ;

ðH2Þ
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where minimization is considered for all possible decom-
positions of ρ, such that ρ ¼ P

s psjψ sihψ sj with ps > 0.
Thus, the quantum Fisher information shows a certain
similarity to the quantum correlation QCρðOA;OBÞ.
To view this similarity in more detail, consider the

following quantum Fisher information matrix [136]:

F ρðOi;OjÞ¼
X
s;s0

2ðλs−λs0 Þ2
λsþλs0

hλsjOijλs0 ihλs0 jOjjλsi: ðH3Þ

Herein,

F ρðKÞ ¼
X
i;j

F ρðOi;OjÞ: ðH4Þ

The quantum Fisher information matrix has been used in
the multiparameter quantum estimation theory [136,212–
214]. Then, the question remains as to whether it can be
associated with the convex roof of certain observables in
the analogy of Eq. (H2).
The partial answer to this question is yes. The quantum

Fisher information matrix is relevant to the following
quantity QC�

ρðOA;OBÞ, which is weaker than Eq. (33):

QC�
ρðOA;OBÞ ≔ inf

fps;ρsg

����
X
s

psCρsðOA;OBÞ
����; ðH5Þ

which is the minimization of the absolute value of the
average correlation. Based on the above quantity, the
following statement can be proven, which is similar to
Lemma 17:
Lemma 28. For two arbitrary operators OA and OB, if

½LOA
;LOB

� ¼ 0; ðH6Þ

the quantity QC�
ρðOA;OBÞ is upper bounded in Eq. (H5) as

follows:

QC�
ρðOA;OBÞ ≤

1

4
jF ρðOA;OBÞj: ðH7Þ

Here, the operator LO has been defined in Eq. (D5). If
condition (H6) holds only approximately (i.e., ½LOA

;LOB
�≈

0), a similar modification to Lemma 18 is required.
Remark. For the quantity QC�

ρðOA;OBÞ in Eq. (H5), at
first glance, no meaningful constraints on the entanglement
structure can be observed, as CρsðOA;OBÞ can have a
negative value. In other words, even if QC�

ρðOA;OBÞ is
equal to zero, QCρðOA;OBÞ may still be large. However,
the same statement as Lemma 8 can be proven for
QC�

ρðOA;OBÞ on the Peres-Horodecki separability criterion
(i.e., the PPT condition):

Lemma 29. Consider the proof for the following
statement:

QC�
ρABðOA;OBÞ ¼ 0 for arbitrary pairs of OA;OB

→ ρAB satisfies the PPT condition: ðH8Þ

From statement (H8) and inequality (H7), it is evident
that the quantum Fisher information matrix also plays a role
in quantum correlation measures.

1. Proof of Lemma 28

Herein, consider the proof of Lemma 17. Consider the
decomposition of ρ as follows:

ρ ¼
X
m

pmjϕmihϕmj;

jϕmi ¼
1ffiffiffiffiffiffi
pm

p ffiffiffi
ρ

p jψmi; pm ¼ hψmjρjψmi; ðH9Þ

where jψmi is chosen as the simultaneous eigenstates of
LOA

and LOB
with the corresponding eigenvalues α1;m and

α2;m, respectively. Then, an equation identical to Eq. (D29)
is obtained:

hϕmjOAjϕmihϕmjOBjϕmi ¼ α1;mα2;m: ðH10Þ

Next, consider the proof

X
m

pmhϕmjOAjϕmihϕmjOBjϕmi ¼
1

2
trðfρ;LOA

LOB
gÞ;

ðH11Þ

where f·; ·g is the anticommutator. By expanding the rhs of
Eq. (H11),

1

2
trðfρ;LOA

LOB
gÞ ¼ 1

2

X
m

hψmjfρ;LOA
LOB

gjψmi

¼
X
m

hψmjρjψmiα1;mα2;m; ðH12Þ

which reduces to the lhs of Eq. (H11) from pm ¼
hψmjρjψmi and Eq. (H10).
By contrast, using the spectral decomposition of

ρ ¼ P
s λsjλsihλsj,

1

2
trðfρ;LOA

LOB
gÞ

¼
X
s;s0

2λsλs0

λs þ λs0
hλsjOAjλs0 ihλs0 jOBjλsi; ðH13Þ

where the form of LO in Eq. (D5) is used. Further, by
combining Eqs. (H11) and (H13),

TOMOTAKA KUWAHARA and KEIJI SAITO PHYS. REV. X 12, 021022 (2022)

021022-36



X
m

pmhϕmjOAjϕmihϕmjOBjϕmi

¼
X
s;s0

2λsλs0

λs þ λs0
hλsjOAjλs0 ihλs0 jOBjλsi: ðH14Þ

Finally,X
m

pmhϕmjOAOBjϕmi ¼ trðρOAOBÞ

¼
X
s;s0

λs þ λs0

2
hλsjOAjλs0 ihλs0 jOBjλsi; ðH15Þ

where ½OA;OB� ¼ 0. Thus, by subtracting Eq. (H14) from
Eq. (H15),X
m

pmðhϕmjOAOBjϕmi − hϕmjOAjϕmihϕmjOBjϕmiÞ

¼
X
s;s0

ðλs − λs0 Þ2
2ðλs þ λs0 Þ

hλsjOAjλs0 ihλs0 jOBjλsi

¼ 1

4
F ρðOA;OBÞ ðH16Þ

is obtained. Therefore, on applying the above equation to
Eq. (H5), inequality (H7) is proven. This completes the
proof. ▪

2. Proof of Lemma 29

Consider the proof of the statement

QC�
ρABðOA;OBÞ¼ 0 for arbitrary pairs of OA;OB

→ ρAB satisfies the PPT condition: ðH17Þ
This statement can be easily evaluated via the following
discussion.
First, if inequality (52) in Proposition 9 can be proven by

assuming inequality (51) for QC�
ρðOA;OBÞ instead of

QCρðOA;OBÞ, the statement (H17) is obtained. Second,
in the proof of Proposition 9, inequality (51) is used only
for deriving the upper bound (E21) for the proof of Lemma
25. From the second to the third lines in Eq. (E21),
QCρðOA;OBÞ is used as an upper bound for

����
X
s

psðtrðρs;AΦAΦBÞÞ − trðρs;AΦAÞtrðρs;BΦBÞ
����;

however, QC�
ρðOA;OBÞ also serves as the upper bound for

the above quantity. Consequently, inequality (52) can be
proven using the constraint on QC�

ρðOA;OBÞ alone. This
completes the proof. ▪
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