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Many inexplicable phenomena in low-temperature many-body physics are a result of macroscopic
quantum effects. Such macroscopic quantumness is often evaluated via long-range entanglement, that is,
entanglement in the macroscopic length scale. Long-range entanglement is employed to characterize novel
quantum phases and serves as a critical resource for quantum computation. However, the conditions under
which long-range entanglement is stable, even at room temperatures, remain unclear. In this regard, this
study demonstrates the unstable nature of bipartite long-range entanglement at arbitrary temperatures,
which exponentially decays with distance. The proposed theorem is a no-go theorem pertaining to the
existence of long-range entanglement. The obtained results are consistent with existing observations,
indicating that long-range entanglement at nonzero temperatures can exist in topologically ordered phases,
where tripartite correlations are dominant. The derivation in this study introduces a quantum correlation
defined by the convex roof of the standard correlation function. Further, an exponential clustering theorem
for generic quantum many-body systems under such a quantum correlation at arbitrary temperatures is
established, which yields the primary result by relating quantum correlation with quantum entanglement.
Moreover, a simple application of analytical techniques is demonstrated by deriving a general limit on the
Wigner-Yanase-Dyson skew and quantum Fisher information; this is expected to attract significant
attention in the field of quantum metrology. Notably, this study reveals the novel, general aspects of low-

temperature quantum physics and clarifies the characterization of long-range entanglement.
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I. INTRODUCTION
A. Background

In quantum many-body physics, macroscopic quantum
effects such as superconductivity, Bose-Einstein conden-
sation, quantum spin liquid, and quantum topological order
are critical features of exotic quantum phenomena. In these
phenomena, the length scale of the quantum effect is
comparable to that in the real world. However, the
clarification of such macroscopic quantum effects remains
a crucial problem in modern physics, and various methods
for characterizing quantumness in the macroscopic length
scale have been proposed [1—4]. In particular, over the last
two decades, quantum entanglement has become a repre-
sentative measure for the quantumness [5,6]. Several
studies have investigated the entanglement behaviors in
quantum many-body systems from various perspectives
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[7-16]. These advances in quantum entanglement
have significantly contributed toward improving our
understanding and establishing efficient classical and
quantum algorithms to simulate quantum many-body
systems [17-21].

A critical question regarding many-body quantum entan-
glement is whether entanglement can exist in the macro-
scopic length scale. Such entanglement is often referred to
as long-range entanglement, which plays a crucial role not
only in characterizing quantum phases [22,23] but also in
realizing quantum computing [24-26]. It can be inferred
that temperature plays an essential role in this context.
Moreover, owing to the fragility of quantumness, thermal
noise destroys the entanglement, making the length scale of
the entanglement short range. Indeed, at a sufficiently high
temperature where the possibility of thermal phase tran-
sition is eliminated, the quantum thermal state can be
classified as the trivial phase [27] (i.e., generated by the
finite-depth quantum circuit [22]). By contrast, at zero
temperature, various quantum systems are known to exhibit
long-range entanglement [28-32]. However, at nonzero but
low temperatures, where thermal phase transition can
occur, the effect of temperature on the entanglement
remains highly unclear. In this case, the effect of thermal
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FIG. 1. Entanglement between two separated subsystems A and
B. Considering the tripartite entanglement between subsystems
A, B, and C, long-range entanglement at nonzero temperatures
can be detected. It can also be observed in topologically ordered,
quantum, many-body systems. This study aims to elaborate on
the observation and prove that (more than) tripartite entanglement
is required for long-range entanglement. The quantum entangle-
ment between two systems is shown to decay exponentially
with distance at arbitrary nonzero temperatures, in any quantum
Gibbs state with short-range interacting Hamiltonians. Here, the
entanglement-length scale, at most, grows in a polynomial manner
with the inverse temperature 3, as stated in inequalities (1)—(3).

noise is sufficiently suppressed, and it is possible to observe
long-range entanglement in this temperature regime.
Consequently, in such quantum systems, quantum phases
protected by the topological order can exhibit long-range
entanglement. It has been shown that, in the 4D toric code
model [33], long-range entanglement can occur even at
room temperatures [34,35] (see also Refs. [36,37]).

The purpose of this study is to identify the limitations
associated with the structure of long-range entanglement at
arbitrary nonzero temperatures. In the known example
involving long-range entanglement, the protection afforded
by the topological order plays an essential role. Moreover,
the topological order is inherently a tripartite correlation
[38-40]. However, these findings pose the following
fundamental question: Can the long-range entanglement
at nonzero temperatures only exist as (more than) tripartite
correlations, or equivalently, does bipartite entanglement
necessarily decay to zero at long distances under arbitrary
temperatures? We conjecture that the answer to this
question is yes (Fig. 1). The possibility of this conjecture
being true can provide crucial information related to
identifying the essence of long-range entanglement in
the quantum phases at nonzero temperatures, which can
further serve as a guideline in the search for candidate
systems suitable for quantum devices. The conjecture is
trivially true for arbitrary commuting Hamiltonians [41],
where all the local interaction terms commute with each
other. Hence, in the toric code model with the commuting
Hamiltonian, bipartite long-range entanglement is strictly

prohibited, regardless of the existence of the tripartite
long-range entanglement. Thus, as long as the commuting
Hamiltonian is considered, the conjecture does not contra-
dict the observations.

Thus far, rigorous and general studies on low-
temperature phases remain scarce. At low temperatures,
in contrast to high-temperature phases, the structures of
quantum many-body systems are considerably influenced
by the system details. Therefore, analyses of the low-
temperature properties are often considered as computa-
tionally hard problems [43,44]. In such situations, all the
long-range quantum effects are not strictly prohibited (e.g.,
off-diagonal long-range order [1]), with only a fraction of
them being forbidden at low temperatures. In the latter
example, the thermal area law is known as a representative
characterization of the low-temperature phases of many-
body systems, which is universally true at arbitrary temper-
atures [11,45,46]. It states that the entanglement between
two adjacent subsystems can reach the maximum of the size
of their boundaries. In other words, the area law implies that
entanglement should be localized around the boundary and
thus indirectly supports the argument presented.

B. Brief description of main results

Here, we provide an overview of the contributions of this
study. The quantum Gibbs state is denoted as p; at inverse
temperature 3, where a short-range interacting Hamiltonian
is considered (further details are provided in Sec. IT A). Let
pp.ap be areduced density matrix on the subsystems A and
B, which are separated by distance R. For an arbitrary
choice of A and B, we focus on the entanglement between A
and B (Fig. 1).

First, the primary challenge faced when addressing the
main problem is that the entanglement for a mixed state
cannot be described in an analytically tractable form [e.g.,
Egs. (20) and (79)]. Moreover, owing to the computational
hardness [47,48], the entanglement cannot be computed
even at numerical levels, except for specific cases [49].
However, in free fermion and harmonic chains, analytical
forms of entanglement negativity [50] [see Eq. (G1)] have
been obtained [51-53] at finite temperatures. These studies
considered the entanglement negativity between adjacent
subsystems A and B (i.e., R =0) on one-dimensional
chains and consequently analyzed the manner in which
the negativity is saturated with an increase in the sizes of A
and B (e.g., setting |A| = |B| = ¢ and tuning length #). In
these systems, the saturation rate is approximately
expressed as e ?/O¥) and Ref. [53] concluded that
quantum coherence can only be maintained for length
scales of O(f). Similar observations have been numerically
obtained for a more general class of many-body systems
[54,55]. Thus, these results strongly support the clustering
of bipartite entanglement in specific models.

To overcome the difficulties in the analysis of the
entanglement, first, a quantum correlation QCp(OA, Og)
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FIG. 2. Schematic of 1D entanglement clustering. In the
obtained bound (2), the subset dependence e“41+1B) prohibits
its application to the upper bound of the entanglement between
two large blocks. In one-dimensional systems, this problem can
be resolved to obtain better subset dependence, as in Eq. (3).
Here, the characteristic length of bipartite entanglement becomes
O(p?) instead of O(p).

is introduced, which is defined based on the analogy of
the entanglement measure and obtained from the convex
roof of the standard correlation function C,(0y4,0p) =
tr(p0,0p) — tr(pO,)tr(pOp), as in Eq. (33). The quantum
correlation QC, (0,4, Op) is strongly associated with entan-
glement (see Sec. III). In particular, the upper bound of the
quantum correlation yields an upper bound for the entan-
glement measure of the positive-partial-transpose (PPT)
relative entanglement (Proposition 9). In general, the
exponential clustering of the quantum correlation at arbi-
trary temperatures of arbitrary dimensions can be proven
(see Theorem 10):

QCP//(OAv OB) S (|8A| + |aB|)e_R/§/1’ (1)

with &; = O(f), whose explicit form is expressed as
Eq. (54), where O, and Ojp are supported on subsets A
and B, respectively. The inequality (1) provides a quantum
version of the clustering theorem that generally holds at
arbitrary temperatures.

Based on the upper bound (1), it may be possible to
avoid the intractability of the quantum entanglement.
Further, using the association between the quantum corre-
lation and the entanglement, the following statement on
entanglement clustering is proven (see Corollary 11):

EEPT(PAAB) < e RIGTOUAIIBD, (2)

where ERPT(p,p) is the PPT relative entanglement (50).
Herein, two points can be improved: (i) A bound is
obtained for ER'T instead of the standard relative entangle-
ment E, and (ii) the subset dependence is exponential (i.e.,
eOUAIFIB)) instead of polynomial [i.e., poly(|A|, |B|)]. To
address the first point, the zero-quantum correlation must
be related to the separable condition instead of the PPT
condition (Lemma 8). However, this point remains to be
addressed (Conjecture 7). Regarding the second point, the
inequality (2) in one-dimensional systems (Theorem 12,
Fig. 2) can be improved by refining the analyses based on
the belief propagation [56,57]:

EX(pya5) < (|A] + |B[)e R/, (3)

Thus, a significantly improved clustering theorem for the
bipartite entanglement measure in one-dimensional sys-
tems can be obtained.

Finally, as a related quantity, another type of quantum
correlation that is based on the Wigner-Yanase-Dyson (WYD)
skew information [58,59] is considered: Q,(Oy4,Op) :=
[L Y (04, Og)da, with Q) (0,4, 05) = tr(p0,0p)—
tr(p'=*04p*Op). In a previous study [58], it was numerically
verified that the quantity 0, (0, Op) exhibits an exponential
decay with distance, even at the critical point. Because the
WYD skew information is considered as a measure of
quantum coherence [60], the decay rate of Q,(O4.Op)
has been dubbed as the “quantum coherence length” [58].
Consequently, using a similar analysis for the proof of Eq. (1),
itis proven that the numerical observations in Refs. [58,59] are
universally true (Theorem 13):

05 (04. 0p) < (|0A] + |0B|)e™/% 4)

for arbitrary a, where &5 = O(p) is explicitly expressed as
Eq. (62). The above inequality also yields the general limits on
the WYD skew information as well as the quantum Fisher
information:

IW(K) <pPn and  F, (K)<pPn. (5

with K being an arbitrary operator in the form of K =
Y ien O; (A: total set of sites), where If,(;) (K)and F, (K) are
the WYD skew (58) and quantum Fisher (65) information,
respectively. These general limits provide useful information
related to the application of quantum many-body systems to
quantum metrology [61-65].

The remainder of this paper is organized as follows. In
Sec. II, the precise setting and notations used throughout
the paper are formulated, coupled with the introduction to
certain preliminaries such as the Lieb-Robinson bound and
entanglement measure. In Sec. III, the quantum correlation
QC,(04,0p) is introduced as the convex roof of the
standard correlation function. In addition, several rigorous
results on the relationships between the quantum correla-
tion and quantum entanglement are provided. Further, in
Sec. 1V, the main results on the clustering theorem for the
quantum correlation [Eq. (1)] and the PPT relative entan-
glement [Eqs. (2) and (3)] are provided. Thereafter, in
Sec. V, the obtained results are demonstrated on the WYD
skew and quantum Fisher information [Egs. (4) and (5)]. In
Sec. VI, the following topics relevant to the obtained results
are discussed: (i) the relationship between the macroscopic
quantum effect and quantum entanglement (Sec. VIA),
(ii) the relationship between entanglement clustering and
the quantum Markov property (Sec. VI A), (iii) the relation-
ship between the quantum correlation and entanglement of
formation (Sec. VI C), (iv) optimality of the proposed main
theorems (Sec. VID), and (v) extension of the results
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obtained to more general quantum states based on the
Bernstein-Widder theorem (Sec. VI E). Finally, in Sec. VII,
the study is summarized, along with a discussion regarding
the scope for future work.

II. SETUP AND PRELIMINARIES

Consider a quantum system on a D-dimensional lattice
with n sites. On each of the sites, the Hilbert space with
dimension d,, is assigned. Let A be the set of total sites.
Further, for an arbitrary subset X C A, the cardinality (the
number of sites contained in X) is denoted as |X|. In
addition, a complementary subset of X is denoted as
X¢:= A\X. For an arbitrary subset X C A, Dy is defined
as the dimension of the Hilbert space on X, that is,
Dy = di)x‘. Finally, X U Y is denoted as XY.

For arbitrary subsets X,Y C A, dyy is defined as the
shortest path length on the graph connecting X and Y, and
hence if X NY # @, dyxy = 0. However, when X com-
prises only one element (e.g., X = {i}), the distance dy;, y
is denoted as d;y for simplicity. In addition, the surface
subset of X is denoted as 90X := {i € X|d;xc = 1}.

For a subset X C A, the extended subset X[r| is
defined as

X[r]={i € Aldx; <r}, (6)

where X[0] = X, and r is an arbitrary positive number (i.e.,
r € RT). Based on the notation, for i € A, it is concluded
that the subset i[r] is a ball region with radius r centered at
the site i. A geometric parameter y is introduced, which is
determined based on the lattice structure alone. Further,
y > 1 is defined as a constant of O(1) that satisfies the
following inequalities:

max(|0i[r][) < yrP~t max(i[Al) <¢r® (7)

where r > 1.

A. Hamiltonian and quantum Gibbs state

Throughout the study, generic Hamiltonians with few-
body interactions are considered. Here, the Hamiltonian is
expressed in the following k-local form:

H=Yh,  max 3 fhl<g ()

|Z|<k Z:73i

where each of the interaction terms {/z}7 < acts on the
spins on Z C A. For an arbitrary subset L C A, the subset
Hamiltonian, which includes interactions in a subset L, is
denoted as H;:

Hy= > hy 9)

Z:.ZCcL

To characterize the interaction strength of the
Hamiltonian, the following assumption is imposed:

max Z ||]’ZZ||SJ(d,'.j), (10)
{L/}CAZD{I',]'}

where J(x) is a function that monotonically decreases with
x > 0. Here, the short-range interaction is primarily con-
sidered, where the decay of the function J(x) is faster than
the exponential decay; in other words,

J(x) < gge™*  (short-range interaction)  (11)
with gy = O(1) and py = O(1). The results can be gen-
eralized to a broader class of interactions, as discussed in
the Appendix B.

Using the Hamiltonian, the quantum Gibbs state can be
defined as follows:

_[j[-]

Zg '

pp= Zy = tr(e M), (12)

where f is the inverse temperature. Throughout the paper,

by appropriately choosing the energy origin, Zz =1 is
enforced, that is,

pp, = e_ﬂH_ (13)

However, when considering a reduced density matrix on a
region L (L C A), it is denoted as pg;:

ppr = trre(pg), (14)

where tr; implies the partial trace for the Hilbert space on
the subset L°.

B. Lieb-Robinson bound

Herein, we present the Lieb-Robinson bound that char-
acterizes the quasilocality via time evolution [66—69]. The
Lieb-Robinson bound is central to most of the derived
results in this study, and it is formulated as follows:

Lemma 1. (Lieb-Robinson bound [70]) For arbitrary
operators Oy and Oy with unit norm and dyy = R, the
norm of the commutator [Ox(7), Oy] satisfies the following
inequality:

1[0x (1), Oy]|| < Cmin(|0X]. [9Y]) (e = 1)e™*, (15)

’

where C, v, u are constants of O(1), which depend on the
system parameters, that is, k, g, go, o, D, and y.

Using the Lieb-Robinson bound (15), the approximation
of Ox(t) onto a local region Y D X can be obtained. We
define Ox(1,Y) as
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TABLE I. Fundamental parameters in our statements.
Definition Parameters
Spatial dimension D
Local Hilbert space dimension dy
Structure parameter of the lattice [see Eq. (7)] y
Maximum number of sites involved in interactions k

[see Eq. (8)]
Upper bound on the one-site energy [see Eq. (8)] g
Parameters in the Lieb-Robinson bound C, v, u

[see Eq. (15)]

1 ~
Ox(1,Y) i= ——try:[Ox(1)] ® lye, (16)

tryc(i)

where try (- - -) is the partial trace for subset Y°; hence, the
operator Ox(t,Y) is supported on the subset ¥ C A. Note
that Oy (t, A) = O(t). As shown in Ref. [71], for arbitrary
subsets Y 2 X, the following can be derived:

10x (1) = Ox(t. V)| < inf[[Ox(1). Uyelll. - (17)

where infy . accepts all unitary operators Uy that are
supported on Y¢. On selecting ¥ = X[R] with R € N, the
following inequality can be obtained using the Lieb-
Robinson bound (15):

10x(1) = Ox (1. X[R])|| < CloX|(e" = 1)e™®, (18)

where the inequality (15) is applied to [Ox(t), Ux(g)c] with
Ux(g- an arbitrary unitary operator. Based on the above
inequality, it can be ensured that Ox(r) =~ Ox(t, X[R]) for
Rz (v/u)t. Often, (v/u) is referred to as the “Lieb-
Robinson velocity”: vy g = v/u. In Table I, the fundamen-
tal parameters used are summarized.

Provided the Lieb-Robinson bound holds, the
primary results of this study can be extended to more
general quantum systems such as long-range interacting
systems with power-law decaying interactions (see also
Appendix B).

C. Quantum entanglement

Here, the basic definition of quantum entanglement
[5,72] is presented. First, SEP(A:B) is defined as a set
of separable quantum states on the subset AB. For an
arbitrary quantum state p, the reduced density matrix p,p
satisfies pyp € SEP(A:B) if and only if the following
decomposition exists:

PaB =Y _PsPsa ® Pss- (19)

When py is a pure state, p,g € SEP(A: B) implies that py
is given by the product state. Further, a quantum state p 4 is
defined to be entangled if and only if p,p & SEP(A:B).

In quantifying the entanglement, the relative entangle-
ment [73-75] can be adopted as follows:

Ez/}/ (PaB) = Gj?efxs (Paslloas), (20)

where X is the arbitrary class of quantum states (focus of
this study) and S(p4p||oap) is the relative entropy:

S(paslloas) = trlpaplog(pap)] — trlpaplog(eap)].  (21)

In particular, on choosing X = SEP(A: B), the following is
denoted,

Er(pap) = inf  S(paglloas). (22)

oapESEP(A:B)

for simplicity.

The relative entanglement E(p4p) is also related to the
closeness of the target state to the zero-entangled state.
Pinsker’s inequality entails

lpas —oaslli < V/2S(paslloas) (23)

for an arbitrary o4 Hence, definition (22) immediately
yields

6, = inf
Pas -, LESEP(A:B

)HPAB —ouglli < V2Er(pag)-  (24)
The quantity &, =~ yields meaningful upper bounds for
various entanglement measures. Using the continuity of
the information measures [76,77], most of the entangle-
ment measures are upper bounded by O(5,, ) x log(Dyp),
such as the entanglement of formation [78], the entangle-
ment of purification [77], the relative entanglement [79],
and the squashed entanglement [76,80].

D. Clustering theorem at high temperatures:
Known results

This section reviews an established clustering theorem
that holds above a threshold temperature, which is usually
determined by the convergence of the cluster expansion. In
high-temperature regimes, clustering of the entanglement
can be immediately derived by combining Pinsker’s
inequality and the exponential decay of the mutual infor-
mation (Corollary 4 below).

For an arbitrary quantum state p, the standard correlation
function C,(04, Op) between observables O4 and Op can
be defined as

C,(04,0p) = r(p0,0p) — tr(pOy) - tr(pOp).  (25)

As a stronger concept of the bipartite correlation, the
mutual information Z,(A:B) between two subsystems A
and B can be defined as follows:

021022-5
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T,(A:B) = S,(A) + S,(B) - S,(AB),  (26)

where S,(A) is the von Neumann entropy for the reduced
density matrix on subset A, that is, S ,(A) = tr[—p, log(p,)],
with p, being the reduced density matrix on A
[see Eq. (14)].

Previous studies [81,82] have provided the following
clustering theorem, which holds at arbitrary temperatures as
B < log(n) (see also Ref. [83]):

Lemma 2. (1D clustering theorem) Let O, and Op be
arbitrary operators supported on subsets A and B, respec-
tively. When a quantum Gibbs state py as in Eq. (13) with
D =1 is considered, the following inequality holds at
arbitrary temperatures f < log(n) (n: system size) [81]:

R
C1(02.00) < poly (AL B exp( = gz ). (27

where dy 3 = R, and the notation Q(f) denotes Q(f) «
A% (z > 0). In addition, the mutual information Z ,(A:B
decays exponentially with distance [82]:

7,(A:B) < poly(A]. |B|)exp<—%>. (28)

A similar result holds in arbitrary-dimensional systems:

Lemma 3. (high-dimensional clustering theorem)
Under the same setup as in Lemma 2, the following
inequality holds at arbitrary temperatures, such that f <
P, in arbitrary-dimensional systems [84—88]:

Bhe(~ ). (29)

where /3. is a constant that does not depend on the system
size. Furthermore, the mutual information Z,(A: B) decays
exponentially with distance [27]:

C,,(04.0p) < poly(|A

’

7,(A:B) < poly(|Al. |B]) exp <_o?1)>' (30)

Lemmas 2 and 3 immediately imply the exponential
decay of the bipartite quantum entanglement. Consequently,
using Pinsker’s inequality (23) and the equation

Z,(A:B) = S(pasllpa ® ps). (31)

the following corollary is obtained:

Corollary 4. In the temperature regimes f < log(n)
(1D) and f < p.. (high dimensions), the trace distance of
llpas — pa ® pgll; exponentially decays with the distance
between regions A and B:

B|)e R (32)

|pag = Pa ® pgll; < poly(]A

’

Owing to p, ® pp € SEP(A:B), the above corollary
implies 6, < e~9®)_ For the relative entanglement (22),
Eg(pag) < poly(JAl.|B|)e=®®) is obtained from the
continuity bound [79]. Therefore, in high-temperature
regimes, the problem of bipartite entanglement clustering
can be easily proved using the established results [89].
Consequently, this study focuses on the low-temperature
regimes, where thermal phase transitions can occur and the
clustering of bipartite correlations may no longer be
satisfied.

III. QUANTUM CORRELATION

Before discussing the entanglement clustering theorem,
the quantum correlation function, defined as a convex roof
of the standard correlation function C,(O4.0pg) in
Eq. (25), must be considered. Quantum correlation is a
natural quantum analog of the standard correlation function
and has a significant relationship with quantum entangle-
ment (Sec. III B). Quantum correlation is introduced for
two primary reasons:
(1) The clustering theorem for quantum correlation can
be proved in a completely general manner (Theo-
rem 10).

(2) The clustering of quantum correlation is also utilized
to prove the entanglement clustering theorems (Cor-
ollary 11 and Theorem 12).

A. Definition

For an arbitrary many-body quantum state p, the quan-
tum correlation for observables O, and Op can be defined
by the convex roof of the standard correlation function (25),
that is, C,(04, 0p) [= tr(p0O,0p) — tr(pOy) - tr(pOp)]:

QC)(04.0p) = inf > pilC, (04.05)]. (33)

Popst

where minimization is performed for all possible decom-
positions of p such that p = Y pp, with p; > 0, and p; is
a quantum state. Herein, the mixed convex roof was
adopted instead of the pure convex roof, for which
decomposed states {p,} are restricted to the pure state;
in other words, p, = |¢,) (¢,| for V s. This is because using
it ensures inequality (37) in Lemma 5. For example, the
mixed convex roof has been considered in Refs. [91-94].
Subsequently, the definition immediately implies

QC/)(OA’ OB) = |Cp(OA7 OB>| (34)

when p is given by the pure state.

The quantum correlations for a density matrix p may be
different from those for a reduced density matrix p;
(L C A), that is, QC, (04.,05)#QC,(0,4.03) [Eq. (37)].
For example, consider the case wherein p is given by the
Greenberger-Horne-Zeilinger (GHZ) state as follows:
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(104) + 114)) (COa] + (Ta]), (35)

SN

where |0,) (|14)) is the product state of |0;) (|1;)) states
(i € A). Then, the quantum state p has a nonzero quantum
correlation, based on Eq. (34), while the reduced density
matrices in arbitrary subsystems L C A are given by a
mixed state of |0;) and |1;), each of which exhibits no
correlations. Hence, no quantum correlations exist in the
reduced density matrix of the GHZ state.

As the basic properties of QC,(0Oy4, Op), the following
lemma is proven:

Lemma 5. Let O, and Op be arbitrary operators
supported on A and B, respectively. Subsequently, the
following inequalities are obtained:

QC,(04,03) <[C,(04, 0p)| (36)
and

QC,, (04, 05) £QC,(04, Op), (37)

where A C L and B C L. The second inequality is con-
sistent with the example of the GHZ state (35).

In addition, the quantum correlation satisfies the
following continuity bound. For two arbitrary quantum
states p and o, the difference between QC,(0y4, Op) and
QC,(0y4, Op) is upper bounded as

1QC,(04, 05) —QC, (0,4, 05)| < TV2e'2,  (38)

where ||O,4]| = ||Op|| =1 and € = |6 — p||; are set.

Proof.—The proof of inequality (36) is obtained by
choosing the decomposition as p = p;p; with p; = 1 and
p1 = p in definition (33). Regarding the second inequality,
the decomposition {p,,p,} is considered such that

ZPJCM (04.05)| = QC,(04. Op). (39)

For the reduced density matrix p; , the decomposition using
{Ps,ps} is chosen as

PL = PsPsi-
s

Subsequently, |C, (04,05)|=|C, ,(04.0p)| is obtained,
and hence, inequality (37) is derived as

psi = trpe(py). (40)

QC,,(04,08) < ZPs|CpS,L(OA, Op)|

= QC/)(OA’OB)' (41)

Finally, the inequality (38) is proven via the application
of the method in Ref. [91] (Proposition 5). For the standard
correlation C/,(O A, Op), straightforward calculations yield

|C,(04.0p)| <1 (42)

and
1Cy(O4. 0p) = C4(04., 0p)| <3|p =0l (43)
where ||O,4|| = ||O3|| = 1. Hence, we can choose param-

eters K and M in Egs. (29) and (30) of Ref. [91] as K =
3/log(dy) and M = 1/log(dy), where dy is the total
Hilbert space dimension for p, that is, dy = D, according
to this study’s notations. Thus, inequality (38) can be
obtained from Eqgs. (31) and (51) and Proposition 5 of
Ref. [91]. This completes the proof. [

B. Condition for zero quantum correlation

As a trivial statement, we first prove the follow-
ing lemma:

Lemma 6. For a quantum state p 45 supported on A U B,
the quantum correlation QC,, (04, Op) is equal to zero for
arbitrary operators O, and Oy if p,p is not entangled
between the subsystems A and B [i.e., pyp € SEP(A:B)]:

pap € SEP(A:B) - QC, (0,4,05) =0  (44)

for arbitrary pairs of O,, Op. Considering the contrapo-
sition of statement (44), it can be concluded that

QC,,,(04,05) #0 for a pair of Oy, Op
— pap & SEP(A:B). (45)

Proof.—Considering definition (19) for SEP(A: B), there
exists a decomposition of

Pap = Zpsps,A ® Py (46)

when the quantum state p,p is not entangled. For such a
decomposition, the state p,p exhibits no quantum correla-
tions for operators O4 or Op:

QC/’AB(OA’ 03) < ZplepJ<A®ps<B(0A’ 03)| =0. (47)

This completes the proof. [

Thus, zero entanglement has been proven to be a
sufficient condition for the zero-quantum correlation, as
in Eq. (44). However, this leads to the immediate question
of whether the converse is also true, that is,

QC,,,(04,05) =0 for arbitrary pairs of O4, Op
—pus € SEP(A:B). (48)

To address this question, the following conjecture is
proposed:
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Conjecture 7. Statement (48) is true. In other words, the
zero-quantum correlation for arbitrary pairs of Oy, Op is
necessary and sufficient for zero entanglement.

The reason for considering the conjecture to be true is that
the following relationship exists for the standard correlation
function:

C,,,(04.0p) =0 for arbitrary pairs of O4, Op

<> pap 1s a product state. (49)

Hence, it is natural to expect that the quantum version of the
above relationship is true as well. Regarding the above
conjecture, at the very least, the following statement can be
proven:

Lemma 8. If QC, (04, Op) = 0 for arbitrary pairs of
Oy, Ogp, the Peres-Horodecki separability criterion [95,96],
i.e., the PPT condition, is satisfied. Thus, the operator Pfo%
has no negative eigenvalues, where T, is the partial
transpose with respect to the Hilbert space on the subset A.

Proof.—The statement is immediately followed by
Proposition 9 below. The condition that QC, (0,4, 0p) =
0 for arbitrary pairs of O,, Op implies € = 0 in Eq. (51).
Hence, by applying ¢ = 0 to inequality (52), p4p € PPT is
obtained, where PPT is a set of states such that the PPT
condition is satisfied [Eq. (50) below]. This completes the
proof. m
The above lemma shows that Conjecture 7 rigorously holds
for a certain class of quantum systems, such as 2 x 2,2 x 3
quantum systems [96,97]. Thus, any attempt to prove or
disprove the conjecture in general cases must consider the
existence of the bound entanglement [98,99]. A possible
route to proving Conjecture 7 relies on the entanglement
witness [100-103]. However, appropriately reducing the
calculations of the witness to those of quantum correlations
is a challenging task. As shown in the proofs of Proposition
9 and Lemma 25 below, the calculation of the partial
transpose can be related to the quantum correlations.

C. PPT relative entanglement

Finally, in this section, quantum correlation is related to
the PPT relative entanglement. As shown in Lemma 8§,
quantum correlation is proven to be strongly related to the
PPT condition. Consequently, using this property, quantum
correlations can be related to the following PPT relative
entanglement [104-107]:

EfePT(PAB) == inf S(paplloas). (50)

643EPPT
where X = PPT is used in Eq. (20) with PPT a set of the
quantum states o4 that satisfy the PPT condition, that is,
ag% > 0 for 645 € PPT. Because the PPT set includes the
separable set SEP (PPT 2 SEP), EX'T(p,5) is smaller than
or equal to Ex(p4p), except for special cases. As shown in
Ref. [74], the PPT relative entanglement satisfies all basic

conditions for the entanglement measure (i.e., the four
conditions in Ref. [72]). In addition, it provides an upper
bound for Rains’ bound [108,109], which is strongly
related to the distillable entanglement [104,108].

As shown in the following proposition, the quantum
correlation (33) provides an upper bound for the PPT
relative entanglement (see Appendix E for the proof):

Proposition 9. Let p,p be an arbitrary quantum state
such that

QC,,,(04.0p) < €| O4]] - [|Og] (51)
for two arbitrary operators O, and Op. Thus,

ERT(pap) < 4Dapolog(1/8) < 4Dypo' /2,
6 := 4emin(Dy, Dp), (52)

where the second inequality is trivially derived from
xlog(1/x) < x'=1¢ <x'2 for 0<x <1 Recall that
D,p is the Hilbert space dimension in the region AB.
Based on the proposition, if there are no quantum corre-
lations, that is, if € = 0 in Eq. (51), it can be ensured that
E¥T(ps5) = 0, which also yields Lemma 8. Consequently,
the clustering theorem for the quantum correlation can be
associated with that for quantum entanglement. In the
following section, the generic quantum Gibbs states are
presented to satisfy the exponential clustering for quantum
correlations at arbitrary temperatures, thereby indicating
that the entanglement clustering theorem also holds.

IV. EXPONENTIAL CLUSTERING FOR
QUANTUM CORRELATIONS

In this section, the main theorems of this study on the
exponential clustering of the quantum correlations as well
as quantum entanglement are presented. The theorems
capture the universal structures of generic quantum
Gibbs states at arbitrary temperatures.

First, consider the following theorem on quantum
correlation (see Appendix D for the proof):

Theorem 10. Let O, and Oy be arbitrary operators with
the unit norm that are supported on the subsets A C A and
B C A, respectively (dy g = R). Then, when a quantum
state p is given by a quantum Gibbs state with the short-
range Hamiltonian (11) (p = py), the quantum correlation
QC/,ﬁ(O 4, Op) is upper bounded as follows:

QC/J/;(OA’ OB)
< C4(|0A| +10B|)(1 + log |AB|)e R4,  (53)

where Cy = ¢4 + ¢y, and the parameters cg;, ¢p,, and
¢y can be defined as follows:
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4
o, (1)

e 2 12+3C 3C
p2 b4 vﬂ

The basic parameters are summarized in Table I.
Remark. The constant C; depends on the inverse
temperature f; however, it increases, at most, logarithmi-
cally with g, that is, C; = O(log($})). By contrast, in the
limit of p — +0, the upper bound for QC, (Oy4.Op)
apparently breaks down. However, the temperatures
of f <1 correspond to the high-temperature regime;
hence, a significantly stronger statement (e.g., exponential
decay of the mutual information, see Sec. IID) can be
proven using the cluster expansion technique [27].
Therefore, the important temperature regime is > 1,
which cannot be captured by cluster expansion. Finally,
it must be considered that the inequality (53) yields
nontrivial upper bounds even for f = O(n?) (z > 0).

h = o2 (2 24 12C
p. Uﬂ

) [2 4 log(1 4 2g¢p)]. (54)

A. Exponential entanglement clustering

The combination of Proposition 9 with Theorem 10
yields the following corollary:

Corollary 11. Let py be a quantum state given by a
quantum Gibbs state with the short-range Hamiltonian (11).
Then, for arbitrary subsystems A and B separated by a
distance R (i.e., d4 g = R), the PPT relative entanglement is
upper bounded by

E,P}PT( p/},AB) < 8C;/ 2 ,~R/(25)+310g(Dap) (55)

with {Cj.&s} defined in Eq. (54), where we use
|OA| +|0B| <Dpp, 1 +10g|AB| < Dyp, and min(D4, Dy) <
D,p in applying inequality (53) to (52).

In the above upper bound, the bipartite entanglement
decays exponentially beyond a distance R 2> O(|A| + |B|).
Hence, the inequality is meaningless when A and B depend
on the system size (i.e., Dyp = eO(">). Howeyver, it cannot
be improved using the decay of quantum correlations
alone. To highlight this, consider a random state |w anq)
that has the same property as the infinite temperature states,
provided the local regions are considered. As shown in
Refs. [110,111], the state |w.nq) satisfies exponential
clustering for the standard correlation functions (25), which
clearly implies the exponential decay of quantum correla-
tions from inequality (36). However, the state |w nq)
exhibits a large quantum entanglement between A and
B, implying that the characteristics of the quantum Gibbs
state must be exploited.

Further, using the quantum belief propagation technique
[56,57], inequality (55) can be significantly improved for
one-dimensional cases (see Appendix F for the proof):

Theorem 12. Let H be a 1D quantum Hamiltonian with
a finite interaction length of k, at most. Thus, the PPT
relative entanglement is upper bounded by

E})ePT(Pﬂ.AB) < Cﬁ log(DAB)e_R/[mog(dO) ?’]Hgkﬁ’ (56)

where d, is defined as the one-site Hilbert space dimension
and Cj; := 24(Cs + 16d§Cy)"/?, with Cj; defined in Eq. (54)
and C'ﬂ defined in Eq. (F6) as

. 54 2Cet  2Cerk\2
C;:=1280 .
’ ( 7 v )

(57)

Remark. The assumption of the finite interaction length
in the statement is not essential. However, without this
assumption, inequality (F35) in the proof becomes slightly
more complicated.

Here, the PPT relative entanglement has been consid-
ered. In addition, the definition of EF'T(pj ) is signifi-
cantly associated with that of entanglement negativity [50],
which is another popular entanglement measure, particu-
larly in the context of numerical calculations. Furthermore,
part of the above results pertaining to PPT relative
entanglement can be applied to entanglement negativity
(Appendix G).

V. QUANTUM CORRELATIONS BASED
ON THE SKEW INFORMATION

Herein, another type of quantum correlation based on the
WYD skew information [112—114] is considered:

7,7 (K) = tr(pK?) — te(p'“Kp°K)  (58)
for 0 < a < 1, where K is an arbitrary operator. The WYD
skew information is considered as a measure of the non-
commutability between p and K. However, as a represen-
tative application, it is utilized in formulating the
Heisenberg uncertainty relation for mixed states [115—
118]. More recently, the WYD skew information has
garnered attention in the context of the quantum coherence
theory [60,119-122].

In Refs. [58,59,123,124], the following quantity has
been defined to characterize quantum correlations:

OA’OB / Q/ OA,OB
— tr(p0,40) / tr(p'0,4p"Op)da (59)
0
with

04" (04. 05) = (0, 0p) — tr(p' 04" Op).  (60)
The quantity Q,(,a)(O 4, Op) is reduced to the standard
correlation function C,(0y4, Op) when p is a pure state.
The authors in Refs. [58,59] numerically verified that the
quantum correlation defined by Q,(0,4, Op) decays expo-
nentially with a finite correlation length, even at critical
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points, in hard-core bosons and quantum rotors on a 2D
square lattice. However, whether these observations hold
universally at arbitrary temperatures remains unclear. This
problem can be resolved through the following theorem
(see Appendix C for the proof):

Theorem 13. The quantum correlation (60) is upper
bounded for 0 < a <1 as follows:

04(04.05) < Cymin(|0A].|0B|)e ™%, (61)

where C}, and 5;; are characterized solely by the parameters
in the Lieb-Robinson bound (15) as follows:

1242C 4C u
e - /=1 _ 2
s b3 +1}ﬂ’ % 2+ (vp)/n’ (62)

It is evident that the same upper bound trivially holds for
0,(04,0p) in Eq. (59).

As shown in Appendix C, the proof technique employed
here is similar to that in Refs. [125,126], where the
clustering theorem for specific operators in fermion sys-
tems at arbitrary temperatures has been proven.

Thus, using Theorem 13, a general upper bound for the
WYD skew information (see Appendix C 2 for the proof)
can be obtained:

Corollary 14. Let K be an operator expressed as

K=>"0

ieA

(ol < 1). (63)

Then, the WYD skew information 7 f,;o(K JO<a<l)is
upper bounded by

i) (K) = tr(pyK?)
< CZ& n =

—tr(pﬂ “Kp§K)
O(B)n, (64)

where Cj; := Cyl(u/2)P + ye!’Dl).

A. Quantum Fisher information

As a relevant quantity, the quantum Fisher information

F,(K), which is defined as follows [127], is considered:

p

2</1s _/Is’)z
(K) = ZW\MJKMS/)P, (65)

where K = )" ,cx O;and p = > AJ4,) (4] (4, > 0). Here,
A, and |4,) are defined by the spectral decomposition
P = > s AlAs) (4s]. When considering the quantum Gibbs
states (i.e., pp), 4, = e and |4,) = |E;) are obtained,
where |E,) is the eigenstate of the Hamiltonian with the
corresponding eigenenergy E;. Subsequently, the quantum
Fisher information is expressed as

D 2( e PEs — e—/)’El‘/)Z

e PE: 4 ¢PEy (ESKIE)P

‘7:.0/;<K) =

s.8'=1
where D, is the dimension of the total Hilbert space.
The quantum Fisher information was introduced in the
field of quantum metrology [128—131]. As per the defi-
nition (65), the quantum Fisher information 7 ,(K) char-
acterizes the sensitivity of the quantum state p to the unitary
transformation e~*X?. Specifically, the uncertainty in esti-
mating the parameter 6 is lower-bounded by the quantum
Cramér-Rao bound [128,129]:

1

where m is the number of independent measurements on
e %pe'K9 Thus, with an increase in the quantum Fisher
information, the required number of measurements
decreases. In the context of the entanglement theory, this
is also regarded among the representative measures for
macroscopic quantum entanglement [6,127,132-135]. In
recent studies, the quantum Fisher information has gar-
nered attention in the development of quantum technolo-
gies (see Refs. [6,136,137] for recent reviews).

The quantum Fisher information 1is associated
with the WYD skew information through the inequality

(F,,(K)/4)<2T, ,f; '/2) (K, which was proven in Theorem

2 of Ref. [138] (see also Ref. [139]). Hence, based on
inequality (64), the upper bound can be obtained as

F,(K) < 8C)Pn. (67)

where C‘;, and f’ﬁ are defined in Corollary 14. By contrast, a

general lower bound for the quantum Fisher information is
provided in Ref. [140]. Further, in Appendix H, several
discussions related to the fundamental properties of the
quantum Fisher information and quantum Fisher informa-
tion matrix, which plays an important role in quantum
correlation, are presented.

To discuss macroscopic entanglement using the quantum
Fisher information, the scaling exponent F, (K) o n”
(p <2) is considered. When p = 2, the state is composed
of the superposition of macroscopically different quantum
states; for example, the GHZ state has p = 2 [127,132]. By
contrast, when p = 1, scaling is the same as the product
states, and macroscopic superposition does not exist.
Based on inequality (67), the scaling of the Fisher infor-
mation is always given by O(n) (i.e., p = 1), provided
S = poly-log(n). Thus, the results obtained offer rigorous
proof for the absence of macroscopic superposition at finite
temperatures.

At the quantum critical point (i.e., § = ), scaling of the
quantum Fisher information typically behaves as p > 1
[see Eq. (22) of Ref. [140]; for example, p = 7/4 for the
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critical transverse Ising model [141,142]. The obtained
upper bound (67) characterizes the necessary temperature
required when applying the many-body macroscopic entan-
glement to quantum metrology [61-65]; this has attracted
considerable attention in recent studies.

VI. FURTHER DISCUSSION

A. Macroscopic quantum effect vs quantum
entanglement

The entanglement properties have been discussed in the
finite-temperature Gibbs state. This section shows that, in
general, the observations on the entanglement properties
for the finite-temperature mixed state are considerably
different from those for pure states. Nevertheless, the
typical unusual wave function at low temperatures in
condensed matter physics is worth discussing, such as
Bardeen-Cooper-Schrieffer states in a superconductor,
which exhibit off-diagonal long-range orders (ODLRO
[1]). In Refs. [143,144], Vedral discussed n-pairing states,
which are eigenstates in the Hubbard and similar models, to
explain high-temperature superconductivity. It was argued
that such states have a vanishing entanglement between two
sites as the distance diverges, whereas the classical corre-
lations remain finite even in the thermodynamic limit. In
addition, maximally mixed states with #-pairing states also
exhibit this property. Consequently, this observation sug-
gests that ODLRO is not directly associated with the
quantum entanglement discussed in this study. The quan-
tum entanglement properties in the finite-temperature
Gibbs state have not been analytically scrutinized under
a general framework thus far. However, recent large-scale
numerical computations involving two-dimensional trans-
verse field Ising models revealed that entanglement mea-
sured via the Rényi negativity is short-ranged, even at finite
critical temperatures [54,55]. This observation is consistent
with the general statement in the present study.

B. Relation to the quantum Markov property

In this subsection, a brief derivation of the relation
between the clustering of quantum entanglement and the
approximate quantum Markov property is presented.

For this purpose, the squashed entanglement
[80,145,146], defined using the conditional mutual infor-

mation Z, (A:B|E) for tripartite quantum systems, is
considered:
IPABE <A :B‘E) = SPABE (AE) + SPABE (BE)
- SPABE(ABE) - S/,ABE(E). (68)

Recall that S, (L) is the von Neumann entropy for the
reduced density matrix on the subset L C ABE. Thus, the
squashed entanglement is defined as follows:

. 1
Balpan) = {70, (A BIENc o) = pan b (69

where inf is considered over all extensions of p,p, such
that trz(papr) = pap- In contrast to the PPT relative
entanglement (50), squashed entanglement is equal to zero
if and only if the quantum state is not entangled [145].

In addition, squashed entanglement is strongly related to
the quantum Markov property, which implies the following
equation for the arbitrary tripartition of total systems
(A = AUCUB):

Ip(AIB|C) =0 for dA.B > ro, (70)

where r( is a constant of O(1). When the Hamiltonian is
short-ranged and commuting, the above Markov property
strictly holds for quantum Gibbs states at arbitrary temper-
atures [147,148]. Further, the quantum Markov property
has a useful operational meaning [149], and it is crucial to
preparing the quantum Gibbs states on a quantum computer
[27,150-152]. Thus, for noncommuting Hamiltonians
with short-range interactions, it is conjectured that, in
general, the quantum Markov property holds in an approxi-
mate sense:

Conjecture 15. (Quantum Markov conjecture) For
arbitrary quantum Gibbs states, the conditional mutual
information Z, (A:B|E) (A =AUEUB) exponentially
decays with the distance between A and B:

B|)e—dA.B/-f/; (71)

’

Zpﬁ(A:B|E) < poly(|A

with &5 = poly(f).
If the inequality (71) holds, the exponential clustering for
the squashed entanglement is obtained as

1
Esq(pﬂ,AB) < EIpﬁ (A :B|E)

< poly(|Al, [B[)e~rs/%, (72)

where E = A\(AB) and pspp = py are considered in
Eq. (69). Thus far, the above conjecture has been proven
only in high-temperature regimes, where thermal phase
transition cannot occur, that is, # <log(n) in 1D cases
[152] and < B, (f. = O(1)) in high-dimensional cases
[27]. Moreover, in these temperature regimes, regarding
entanglement, considerably stronger statements than
Eq. (72) (i.e., Corollary 4) have already been derived.

Finally, it is shown that inequality (72) cannot be used to
prove the exponential clustering of other quantum entan-
glement measures [e.g., the relative entanglement (22) or
the entanglement of formation (79)], in general.

To upper bound the other entanglement measures, it is
necessary to upper bound the quantity 6, ., which is defined
in Eq. (24) as §,,, = inf,, esep(a:)llPas — oasll;- This
characterizes the distance between the quantum p,p and
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nonentangled states. The squashed entanglement yields the
following upper bound for 6,,, [145,146]:

o, <42

PAB —

DppEyy (Pag) (73)

where D, is the dimension of the Hilbert space of AB. If
Es(pap) << 1/Dyp, itcanbe ensured that 6, is sufficiently
small. However, D,p is exponentially large, with a size of
|AB|. Hence, regardless of the quantum Markov Conjecture
15 being proven, the distance 5, = for the quantum Gibbs
state may still be considerably large when subsets A or B are
as large as the system size n. Thus, a problem similar to that
ininequality (52) of Proposition 9 is encountered. Therefore,
the clustering problem of bipartite entanglement cannot be
generalized to other entanglement measures by simply
clarifying the quantum Markov property.

C. General upper bound on the quantum correlation

Here, it is shown that the entanglement formation
[49,153] is a simple upper bound for the quantum corre-
lation QC,  (Oy4. Og). The relation between the entangle-
ment of formation and the quantum correlation
QC,,,(04,0p) is derived from that between mutual
information Z,  (A:B) and the standard correlation func-
tion C, (O4,0p). The entanglement of formation is
defined as follows:

Ps
E inf (A:B
F(Pap) = {Ps-lwsan)} zs: IWYAB )
= inf rS A 7 7
{vaw/s‘AE)} Z p ‘Wl‘vAB> ( ) ( )

where Z|, +(A:B) and S|, ,1(A) are the mutual infor-

mation and the von Neumann entropy for the reduced
density matrix on subset A, respectively. Furthermore,

infy, |, ..y 1s considered for arbitrary decomposition p =

> PslWsag) (Ws.ag| with pg > 0. 1In addition, 7, (A:B) =
28, .,(A) when p is a pure state.

The mutual information Z,, (A B) captures the entire
correlations between two subsystems [45]. Hence, it is
quite plausible that the entanglement of formation provides
an upper bound for quantum correlations. Indeed, the
following lemma connects the quantum correlation
QC,,, (04, Op) and the entanglement of formation:

Lemma 16. For arbitrary operators O, and Op, the
quantum correlation QC, (0,4, 0Op) is upper bounded

using the entanglement of formation Ex(p,p) as follows:

QC,(04, 0g) <2||04| - |05l EF(pag)-  (75)

Proof.—First, we note that

2
S PGy (04 O8) 2 (Zsmcpw(m, 03>|) ,
(76)

which yields

inf Y " pilC,,,,(04,05)?2[QC,,,(04,05). (77)

{PspPsan B

Hence, the aim is to provide an upper bound for the lhs in
the above inequality.

Second, the classical squashed (c-squashed) entangle-
ment [94], which is obtained from the mixed convex roof of
mutual information, is considered [154]:

Ps
E¢(pap) = inf Z T, ,(A:B),  (78)

{PsPsan}

where infy, , 1 is considered for all possible decom-
positions of p,p such that pyp = > pypsap. The differ-
ence between Q7, (A:B) and Ep(psp) is whether the
decomposed quantum states of p are restricted to a pure
state [156]. Trivially, the entanglement of formation
Er(pag) is lower-bounded as

Ep(pas) 2 E¢q(pas)- (79)

Finally, E¢(pag) is compared with the lhs in Eq. (77).
For this purpose, the following inequality reported in
Eq. (5) of Ref. [45] is utilized:

| pAB(OAv OB)|2

v >
210417 - 0s[1*

pup(AB) > (80)

The application of the above inequality to definition (78)
yields

. ps | PSAB(OA’OB)|2
ES (psp) = inf T T
apan) 2 inE D R0AE- 105

[QC,,,(04. 0p)
~ 40417 - N0l

(81)

where Eq. (77) is used in the last inequality. Thus, by
combining the above inequality with Eq. (79), the main
inequality (75) is proven. This completes the proof. m

D. Optimality of the obtained bounds

Herein, the optimality of the correlation length &4 or f}} in
Theorems 10 and 13 is discussed. The f dependence of the
correlation length & (i.e., &5 o f) is shown to be qualita-
tively optimal, which cannot be improved, in general. This

021022-12



EXPONENTIAL CLUSTERING OF BIPARTITE QUANTUM ...

PHYS. REV. X 12, 021022 (2022)

point is ensured by the correspondence of the inverse
temperatures and spectral gap as follows:

B < 1/A, (82)

with A being the spectral gap between the ground and first
excited states. Consequently, the correlation length of
O(A™") in the gapped ground states [67,69,159] implies
the correlation length of O(f) in the thermal states.

To elaborate, first, the following inequality for the
number of energy eigenstates in an arbitrary energy shell
(E —1,E] [160-162] is assumed:

Ny <nE, (83)

where N | is the number of eigenstates within the energy
shell of (E—1,E|, and ¢ is a constant of O(1).
Furthermore, the energy origin is set such that the ground
state’s energy is equal to zero. Here, the above condition is
satisfied in various types of quantum many-body sys-
tems [160].

Thus, under condition (83), the quantum Gibbs states pj
are close to the ground state p, in the sense that

e—([}'—c log(n))A
p—clog(n)’

Therefore, the properties of the thermal states and the
ground state are approximately the same for f§ ~ log(n)/A
as follows:

75 = Peolly < const x (84)

lPp = Poll; = 1/poly(n). (85)

When the ground state is nondegenerate and gapped, the
correlation function C, (0,4, Op) is expressed as [67,69]

C,.(04.05) =QC, (04.0p) = const x e" 94K (86)

where Eq. (34) is used for the pure state in the first
equation. Subsequently, using the continuity bound (38),

Qcp,,(OA, 0p) = C,_(04, 0p) — 1/poly(n)
= const x e" PR _ 1 /poly(n)
= const x e"OR)/(B/log(n) _ 1 /poly(n),
(87)

where the second equation results from the fact that
p~log(n)/A implies A ~log(n)/B. Thus, the quantum
correlation starts to decay for R = f3/log(n); hence, the
correlation length is proportional to f at sufficiently low
temperatures.

By contrast, for the WYD skew and quantum Fisher
information, there is scope for improvement in the present /3
dependences, which have been assigned inequalities (64)

and (67), respectively. In the ground states, the WYD skew
and quantum Fisher information reduce to the variance of
the operator. For an arbitrary operator K expressed in
Eq. (63), the variance (AK)? = tr(pK?) — [tr(poK)]? is
upper bounded by [163,164]

I\(K) = (AK)? < const x A~!n. (88)

The above inequality holds in infinite-
dimensional systems and long-range interacting systems;
hence, the (f, A) correspondence (82) indicates an
improvement in the current upper bounds as

Ty (K) < O(pn) and F, (K) < O(pn), (89)

which affords better bounds in dimensions greater than
1.(D >2).

E. Beyond quantum Gibbs states

Throughout the discussion, the equilibrium situation is
considered at a finite temperature. However, when consid-
ering a nonequilibrium density matrix, the entanglement
properties exhibit different properties, in general [165].
Consequently, a natural question arises as to whether the
current results hold for more general quantum states. Based
on definition (33) of the quantum correlation, concavity is
satisfied, that is,

QC,(04.05) < p1QC, (04, 0p) + p2QC,, (04, Op)

for an arbitrary decomposition of p = pp; + paps
(p1 > 0, p, > 0). Hence, considering a quantum state in
the form of

p= Am a(z)e #dz (90)

with a(z) being a non-negative function, Theorem 10 can
be applied to the state p. Subsequently, the state p has a
finite quantum correlation length while the entanglement
clustering is also satisfied. A similar discussion can also be
applied to the WYD skew information I,(f')(K ) and the
quantum Fisher information 7 ,(K) owing to their con-
cavities [166]. Herein, if the state p includes extremely low-
temperature states, for example, |, b a(z)wr(e M) ~ 1 with
o~ O(n), the state p is similar to low-temperature Gibbs
states; consequently, the quantum correlation length may
become large.

As an important class of quantum states, the following
density matrix is considered to be characterized by a
monotonically decreasing function F(x):

F(H)
w[F(H)]’

p= (91)
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where F(x) > 0. This class of the quantum state is referred
to as the passive state [169,170], and it plays a crucial role
in quantum thermodynamics [171-174]. Moreover, the
quantum Gibbs state trivially corresponds to the case
F(x) = e™#*. Based on the Bernstein-Widder theorem
[175-177], the passive state (91) can be represented in
the form of Eq. (90) if and only if the function F(x) is
completely monotonic as follows:

dm

-)"—F(x)>0 92
()" P () 52)
for arbitrary m > 0. Therefore, for every passive state with
condition (92), structural restrictions similar to that for the
quantum Gibbs state must be imposed [178].

VII. SUMMARY AND FUTURE WORKS

This study primarily addressed the conjecture of the
exponential clustering of bipartite entanglement, which
revealed the fundamental aspect of long-range entangle-
ment. The entanglement was accessed via the introduction
of a novel concept, referred to as the quantum correlation
QC,(04. Og), which is defined by the convex roof of the
standard bipartite correlation function, as in Eq. (33).
Consequently, as a fundamental theorem, the exponential
clustering of the quantum correlation was derived, which
holds at arbitrary temperatures, even at the critical point of
thermal phase transition. Based on its definition and
exploiting the fact that it uses the convex roof, quantum
correlation exhibits properties similar to those of entangle-
ment. Subsequently, several basic statements in Sec. III
were derived, including the relationship between the
quantum correlation and the PPT relative entanglement
(Proposition 9). Further, based on the clustering theorem
for the quantum correlation, entanglement clustering the-
orems (Corollary 11 and Theorem 12) for PPT relative
entanglement (2) were presented. Moreover, using similar
analytical techniques, the exponential clustering of another
type of quantum correlation based on the WYD skew
information (Theorem 13) was derived, which yielded the
fundamental limitations of the WYD skew and quantum
Fisher information (Corollary 14). Consequently, these
serve as representative measures for quantum coherence
and macroscopic entanglement.

Furthermore, this study expressed simple and general no-
go theorems on the existence of long-range entanglement.
On the other hand, there is still room for improvement of
the present analytical techniques, and hence the obtained
results may be further strengthened. Based on the results
obtained, the strongest form of the bipartite entanglement
clustering may be expressed as follows:

[the strongest conjecture]

Ex(pp.an) < poly(|A|.|B|)e~*/% (93)

for an arbitrary choice of A and B such that d4 3 = R,
where fﬂ = poly(f) and poly(x) denote a finite degree
polynomial. As shown in Sec. IIC, from the continuity
bounds, inequality (93) yields the same upper bound for
other entanglement measures. However, the main theorems
presented in this paper did not arrive at this form of
entanglement clustering, and further investigations are
required to refine the current results.

In conclusion, this study unveiled a fundamental limit on
the characteristic length scale, such that certain types of
quantum effects can exist. Moreover, the present results do
not depend on system details, and they hold at arbitrary
temperatures. The understanding of the universal structural
constraints in low-temperature physics, which must be
satisfied for every quantum many-body system, still remains
limited. Consequently, identifying these constraints is a
critical task for understanding the complicated quantum
many-body phases as well as developing efficient algorithms
for quantum many-body simulations. This study is expected
to introduce a novel approach to address this profound
problem.

Finally, the following topics are mentioned as specific
open questions:

(i) First, deriving a clustering theorem for the relative
entanglement instead of the PPT relative entangle-
ment. This may be addressed by resolving Conjecture
7. Subsequently, Proposition 9 can be improved; in
other words, under the condition of (almost) zero
quantum correlations [i.e., Eq. (51)], a similar in-
equality to Eq. (52) may hold for the relative entan-
glement Eg(psp) instead of ERT(p,p). This
improvement immediately yields the entanglement
clustering for other popular measures, such as the
entanglement of formations [see also the discussion
after Eq. (24)].

(ii) As a related problem, the (|A|,|B|) dependence in
Corollary 11 may be improved under dimensions
greater than one. In the present form, the independ-
ence is in the exponential form, and hence, a mean-
ingful bound for the case of |A| and |B| being as large
as the system size cannot be obtained. To improve this,
as has been discussed after Corollary 11, considering
the operator correlations QC,(A, B) alone is not
sufficient. Instead, the complete information between
the two subsystems must be considered. However, at
the current stage, the problem may be challenging as it
should include an analogous difficulty to the data
hiding problem in the context of the area law con-
jecture at zero temperature [110,111,160].

(iii) Third, identifying the class of quantum coherence
measures [180], which are always short range at
nonzero temperatures, remains an intriguing prob-
lem. In this study, it was shown that bipartite
entanglement cannot exist at long distances; however,
as has been demonstrated in Sec. VI A, macroscopic
quantum effects do not necessarily imply long-
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distance entanglement. For example, quantum
discord, a well-known measure for quantum
correlation [181,182], only decays algebraically at
thermal critical points [58]. Thus, the current results
can still be expanded to include other coherence
measures.

(iv) Finally, the question remains as to whether entan-
glement clustering can be applied to more practical
problems such as the efficient simulation of quantum
Gibbs states. The clustering of entanglement im-
poses a strong constraint on the structure of quantum
Gibbs states. Hence, it is likely that the property can
be utilized to reduce computational complexity.
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APPENDIX A: SPECTRAL DECOMPOSITION
OF OPERATORS

As a convenient notation, O
operator O as follows [56]:

is defined for the arbitrary

@

0, = Z<Ei|0|Ej>5(Ei —E; — o)|E;)(E;

, (A1)

where {|E;)} and {E;} are the eigenstates and the corre-
sponding eigenvalues of H, respectively. The operator O,,
yields terms such as (E + w|O|E)|E + w){E|. Based on the
above definition, the following can be obtained:

[e] 1 o0 .
/ O0,do=0, 0,=— | O@)e™d:, (A2)
— 27 J_
and
adH(Om) = a)O(m [adH(Om)]T = a)Oz{o’
e, 0,] = (1 =€) M0, (A3)

where ady(-) == [H, -] is defined.

APPENDIX B: BEYOND SHORT-RANGE
INTERACTING SPIN SYSTEMS

1. Long-range interacting cases

This section discusses the manner in which the current
analyses can be generalized to systems with long-range
interactions, where the decay of the function J(x) in
Eq. (10) is given in a polynomial form:

90
(x+1)*

J(x) < (long-range interaction). (B1)

When a > 2D, the Lieb-Robinson bound (15) can be
generalized to long-range interacting systems [183—189].
The Lieb-Robinson bound can be obtained in the following
form:

(1 4 1)t

8Y|) R—d ’

(B2)

9’

I[0x(2), Oyl|| < C"min(|6X

where 7, and @ depend on the spatial dimension D and the
decay exponent a. For example, a loose estimation affords
ng=a—D—1 and @ = a—2D [187]. Nevertheless, a
quantitatively optimal estimation of the parameters 7, and &
remains unaddressed.

Using the Lieb-Robinson bound (B2), the main results
can be generalized to long-range interacting systems. In this
case, the exponential decay becomes the power-law decay.
Analyses using the Lieb-Robinson bound can be summa-
rized as follows:

(1) For the proof of Theorem 13, the Lieb-Robinson

bound is used in Egs. (C23) or (C33).

(2) For the proof of Theorem 10, the Lieb-Robinson

bound is used in Egs. (D65) and (D8&9).

(3) For the proof of Theorem 12, the Lieb-Robinson

bound is used in Eq. (F35).

2. Disordered systems

Other interesting systems include the disordered systems
where randomness is added to the Hamiltonians. In such
systems, the Lieb-Robinson bound can be proven to have
improved as follows [190,191]:

I[0x(2), Oy]|| < Cmin(]0X

aY|)rreRk,  (B3)

where C, 7, u are constants of O(1), which depend on the
system parameters. In this case, the norm ||[Ox(¢), Oy]|| is
exponentially small with respect to the distance R up to
time ¢ ~ ¢“®)_ This leads to the quantum correlation length
of O(polylog(p)) in the main theorem (i.e., Theorems 10,
12, and 13).

3. Quantum boson systems

Finally, in quantum boson systems, the Hamiltonian is
locally unbounded (i.e., the parameter g is infinitely large,
as shown in Fig. I). In such systems, typically, the Lieb-
Robinson bound is not obtained with a finite Lieb-
Robinson velocity [192]. To extend the obtained results,
the study may need to be restricted to particular classes of
quantum many-body boson systems, such as free boson
systems [193,194], spin-boson models [195,196], and
Bose-Hubbard-type Hamiltonians [197-199]. The estab-
lishment of the Lieb-Robinson bound in boson systems is
still an active area of research.
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APPENDIX C: PROOFS OF THEOREM 13
AND COROLLARY 14

In this section, Theorem 13 is proven, followed by
Theorem 10. The proof for Theorem 10 is considerably
simpler than that for Theorem 10, although the essence for
both is similar.

Theorem 13 and the resulting Corollary 14 provide the
upper bounds for

05 (04, 05) = tr(p0405) — tr(p}“0ap05) (C1)
and
I},‘;)(K) = tr(p/;Kz) tI'( . aKpaK) <C2)

with K = ,cr 0;(]]0;|| £ 1), respectively.
For the convenience of the readers, the rough forms of
the statements are provided. In Theorem 13,

04 (0,4. 05) < Cymin( )e R/G,

(C3)

where the parameters are O(1) constants that are expressed
in Eq. (62). Furthermore, Corollary 14 provides the
inequalities

I (K) < Cpebn = O(B)n.

for the WYD skew information.

(C4)

1. Remark on the parameter regime a ¢ [0.1]

As is evident, in general, obtaining the same results for
the parameter regime a ¢ [0,1] is not possible.
Mathematically, the proof in Appendix C 3 breaks down
for a ¢ [0, 1] because the function g, 4(¢) in Eq. (C20) no
longer decays exponentially with 1.

For example, whena = —1,7," )(K ) is referred to as the
purity of coherence [200]:

7,V (K) = tr<p1<2> u(p*Kp'K)
2

:_Z 4

where p =}, 4;|4;)(4;] is the spectral decomposition of p.
In general,

(41K, (C5)

7, (K) = tr(pK2>

-

For # = poly[log(n)], under the same assumption as for
Eq. (83), the quantum Gibbs state p; satisfies

- tr(pl‘“Kp“K )
l—a

[(41K120 2. (C6)

/10%1, /1] :e_ﬂEj. (C7)

Hence, the quantum Gibbs state is approximately given by

the ground state. Thus, I,,/, (K) in Eq. (C6) includes the
following terms:

/11—0: l-a

5 () ki

~Z (e + el DPE (2K ]Ao) |-

(C8)

For a € [0, 1], both ¢~ and e(*"VPE; decay with E;,
whereas for a & [0, 1], either e=Ei or e(*VPE; grows
exponentially with E;.

Typically, only [(4;|K|4g)|* < e™°™>E from Ref. [201]
can be ensured. Hence, for a < 0 (a > 1), there exists a
critical temperature S, < 1/(—a) [f, x 1/(a—1)], such
that Eq. (C8) exponentially grows with the system size n for
B > p.. Therefore, a meaningful upper bound I,(,Z)(K)
cannot be obtained without additional conditions (such
as the high-temperature condition).

2. Proof of Corollary 14

First, Corollary 14 based on Theorem 13 is proven as
follows:

I(K) = Ztr(pﬁoioj) —tr

< Z C;}e_di._/'/'f;;

(pj*0ip30;)

|A|maxz e~ il = Cylogn (C9)
JEA
with ¢ ¢ = maxien Y jep df je™%0/<.
The parameter (¢ is upper bounded by
Coe < 14 yel/fetP(s + D)L (C10)

Using definition (7) for the parameter y, the proof is
straightforward as follows:

Zdije_dhj/f =14+ i Z XSe~V/¢

JEA x=1 jid; j=x

<l+y sz'JrD—le—x/§
x=1

IA

1+ 7//mxH»D—le—()c—l)/gdx
0

=1+ye/¢ /oo E(Ez)s TP 1erdz
0
=1 +yel/$&tP(s + D).

Using Eq. (C10) and 5;3—1 <u/2, 4’0_5;; can be reduced to
the form

(C11)
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Cog, = 1 +7e/9ERD! = EP (&3P + ye! DY)

< &P[(u/2)P +ye'/* D). (C12)

Thereafter, on applying the above inequality to Eq. (C9),
the desired inequality (C4) can be obtained. This completes
the proof. [

3. Proof of Theorem 13
Herein, the upper bound of Qf,(;) in Eq. (C1) is consid-
ered. Before beginning the proof, first, we consider the

following trivial upper bound for Q' (0,, O) for arbi-
trary p as follows:

tr(p|0al?) + tr(p|O4[*)
2

Q;(JOO(OA, Op) <tr(p|O,0p) +
< (oall +1105l)?*/2 = 2,

where ||O4|| = ||Og|| = 1. For the proof of inequality
(C13), because tr(p0O,0p) <tr(p|O40p|) is trivial, the
following must be proven:

(C13)

tr(p|O,4]?) + tr(p|Op)?)

|tr(p'~*0p“0p)| < 5

(C14)

Using the spectral decomposition of p = > A|4,) (4],

[tr(p'~*0,4p" Op)|
< Zﬂ;_aig’ ‘ <’13|0A |’15’> <ﬂs’ | OB|’15> |

l1—aa |</18|0A|)“X/>|2 + |<’1s’|OB|’1\>|2
<> AT 5 :

(C15)

Using the Holder inequality,

Z/lé“’%?, | <AS|OA |’1s’> |2

5,8

= Z (A (A1 04l20) ) = (A9 (4] Oal20) )

(Zx (4,04l |2> (Zl (451042 |2)
= ;/1 |{4:|0alA0)?

where 0,0 = |0,|? is used in the last equation. Thus, on
applying inequality (C16) to (C15), inequality (C14) is
proven. Therefore, inequality (C13) is proven.
Thereafter, we consider the nontrivial upper bound
presented in Theorem 13, which utilizes the properties
of quantum Gibbs states. When p is a Gibbs state (i.e.,
pP=ps= e PH), P 0P is reduced to the imaginary time
evolution. Therefore, at first glance, the quantity (C1) is not

= tr(p|0al?). (C16)

upper bounded for low temperatures because the imaginary
time evolution e#*7 0, e~ is usually unbounded [202].
To prove Theorem 13, a direct treatment of the imaginary
time evolution should necessarily be avoided. Instead, the
condition a € [0, 1] is utilized for this purpose. However,
for a ¢ [0,1], the unboundedness of the norm of
eP 0 e P cannot be avoided, which is reflected in
the fact that the function g, 4(¢) in Eq. (C20) converges
only for a € [0, 1].

For this purpose, the imaginary time evolution is trans-
formed in an appropriate manner. Using the notation of
Eq. (A),

tr(ps040p) — tr(py 0 4pO0g)

= / tr(pﬁOA,a)OB _pb_aOA.a)ngB)dw' (C17)

Using p; = e, we obtain

PpO04.w —P}_“OA,wp;’ = e (0, — PO, e~ )
_ e—/JH(l _ ea/}w)OA’w

N H9 OA.aJ]’

where Eq. (A3) is used in the last equation. Hence, using
the identity tr([O4, OplO3) = tr(04[0p, 05]),

w [ — e

Qﬁ@m%%i/ tw([e . 0, ,]0p)dw

e L =P

e_ﬂH[OA.(m OB])dw

(C18)
From Eq. (A2)
w | — e
[m 1 eﬁ‘“ OA wdw
o] — erx/)’u) 1 00 iy
[wmﬂ[m 0, (1)e " dtda
~ [“sustostiar, (€19)

where g, 4(t) is defined by the Fourier transform of
(1 —e®)/(1 — ) as

1 wl_eaﬁw —iw
2—”/_00 1_€/fwe "dw

=—ip! i sign(7)e
m=1

g(l,/}(t) =

—27rm|t\/ﬂ(_1 + e—2ﬂiamsign(t))

El

(C20)
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where the proof of the second equation is provided in
Appendix C 3 a. Based on the above form, the following
can be obtained:

o0
Gap (D] <2571 e72mmlils
m=1

e_zn‘t‘//”
1— e—2ﬂ|t|//i :

= 24! (Cc21)

Further, combining Egs. (C18) and (C19) with inequality
(C21) yields

1019(0,.04) = \ | 00,1040, 04y

e-2lil/p
<2p" /

T2 110
where tr(pg[04 (1), Og]) < ||[[04(1). Og]|| are used.
Subsequently, using the Lieb-Robinson bound (15),

2ﬁ/

< min(|0A|,|0B|) E ( fﬁ) + 20( 2 l)} e R,

a(2), Ogl||dt.

(C22)

e~27ltl/p

1 — o 27l/B 1[04 (1), Op]||dt

v w
(C23)
The proof is provided in Appendix C 3 b. For R < &;/2, the

rhs in Eq. (C23) is larger than the trivial upper bound (C13).
Hence, R > f}), /2 must be considered, which yields

o [T

12+2C 4C ,
5min(|aA|,|aB|)< i +U—ﬁ>e_R/§/f. (C24)

—275\1\/[}

11040, Oyl

On applying the above inequality to Eq. (C22), Theorem 13
is proven. u

a. Fourier transform of (1-¢%®)/(1-¢%*)

Herein, Eq. (C20) is proven. For this proof, the integral is
rewritten as follows:

_ Lofw
L 1 ¢ e—iwtdw
27[ PSS 1-— eﬂm
3w Je 1 i/:; e~ de fort <0,
- (C25)
1—¢ et
Efc e “dw  for 120,

where the integral paths C_ and C, are described in Fig. 3.

' Im(w)
(t < 0)
C_
- Re(w)
(t > 0)
Cy
FIG. 3. Schematic of the integral paths in Eq. (C25).

First, the case of t < 0 is considered. Then, using the
residue theorem,

1 1— e
Z/C 1_6/}{” e l()tda)

1-
=1 Z RCS =(2zim)/p ( 1—

aﬂw
—mut) , (C26)

where Res,,_(2zim)/p is the residue at w = (2zim)/p.
Owing to

. 1 — %o
lReSw=(2m-m)/ﬂ (m e—lwt)

— iﬂ—leZﬂml/ﬁ(_l + e27rima)’ (C27)

Eq. (C26) can be reduced to

L
2r Jo 1 —ef

0
— iﬂ—l ZEZHmI//}(_l =+ eZﬂima>'
m=1

(C28)

In the same manner, we obtain

1 1 — e®Po
ﬂ C, l—eﬂ“’

1 — o
=-i Z ReSo——(2zim)/p (W e‘"‘”)

m=1

e—iwtdw

— —iﬂ_l Z e—27rmt//3(_1 + e—2m‘ma)'

m=1

(C29)

By combining the two cases (C28) and (C29),
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1 oo]_eaﬂw —iwt
27T/—oo 1_eﬁwe dw

= —ip! Z Sign(t)e‘zﬂmlt‘/ﬂ(—l + e—Zﬂiamsign(t)).
m=1

This completes the proof of Eq. (C20). L]

b. Proof of the inequality (C23)

We first consider the decomposition

5] 8_2”|t|//j
/ WH[OA(I)’ Opl||dt

e_Z”If‘/ﬁ
= /II HTWH[OAO% Ogl||dt
t|>1, 1 —

o-2ll8
+/|< Tz 1104(0), Ogllldr. - (€30)
t<ty 1 —

where #, := uR/(2v) is chosen. For the first term in the rhs
of Eq. (C30), from 1/(1 —e ) < 1+ 1/]x],

e=27ltl/p 27t/8 (1 1
—— g se
[ o2aip =¢ ( i 2”|t|/ﬂ)’

(C31)

which yields

e_2ﬂ‘t‘/ﬁ
s CHORCA
t>t L —

1
< 2/ e=2mltl/p (1 + >dr
|7]>1, 27[|t|/ﬁ

< %e—Zﬂto/ﬂ 1+ !
T 2rxty/f

/
_ % e—ﬂpR/(l/‘/)') 1 + U_ﬁ < %e_R/}:/ﬁ 1 + i 5
T TUR /2 R

(C32)

where [[[04(1), Op]|| <2[|04] - [|Op]| = 2 and zp/ (vp) =
&y !'= u/[2 + (vp)/x] are used in the first and last inequal-

ities, respectively. For the second term on the rhs of
Eq. (C30), the Lieb-Robinson bound (15) is used as

1104 (7). Og]|| < Cmin(|OA. [0B[) ("M — 1)e7#%,

which yields

6_2”|t|/ﬂ
/< W|HOA(I)103”MI
<y 1L —

< Cmin(|0A|, |0B|)e R

s

1
5 €—2ﬂt/ﬁ<1 N ) el = e, (C33
The integral for |¢| < #, is upper bounded as follows:
/ e‘z’”/ﬁ<1 - )(e”’ e
|t]<to 2”|t|/ﬂ
< 2/’0 e(v—Zn//})td[+v/] /IO e—Znt//ieﬂvtdtdi
0 z/BJo Jo

0N [0 (2 1N
S(“%M ¢ dts(ﬁn/ﬂ)e ’

where e’ — 1 = vt [ ¢*"'dA is used in the first inequality.
Further, the above inequality reduces inequality (C33) to

(C34)

6—2”\f|//3
[ CHORCAIY

[|5[0 1 — e

< Cmin(|9A|, |0B]) (% n fr/Lﬂ> R

~ 2, 1w
< min(|0A 8B|)C<U+ﬂ/ﬁ)e s,

(C35)

’

where we use
w/ 2+ (vp)/x].

Thereafter, applying inequalities (C32) and (C35) to
Eq. (C30) yields

ty=uR/(2v) and p/2> & =

o e_Z”M/ﬁ A
| 1040, Oslar < min0al. 0B

2 & 2 VN -re
x[” <1+R>+C<v+ﬂ/ﬁ>}e s,

which, in turn, affords inequality (C23). This competes the
proof. m

APPENDIX D: PROOF OF THEOREM 10

This section presents the proof for one of the primary
proposed theorems, which provides the exponential decay
of the quantum correlation defined by

QC,(04,0p) = {inf}zps|cps(0A7OB)|' (D1)

Ps:Ps s

In Theorem 10, the following inequality was proven:

QC/)(OAv OB)

< C4(|0A| + |0B|)(1 +log |AB|)e~*/%,  (D2)

021022-19



TOMOTAKA KUWAHARA and KEIJI SAITO

PHYS. REV. X 12, 021022 (2022)

where £ is a O(f) constant expressed as Eq. (54), and Cy is
obtained from cp; + cgo, Wwith ¢z and ¢y, defined
in Eq. (54).

Here, the logarithmic term 1 + log |AB| originates from
the norm of p~1/2L, p'/? and p~'/2L, p'/? in Eq. (D17).
The explicit norm estimation is provided in Claim 22.

1. Proof of Theorem 10

For an arbitrary quantum state p, the spectral decom-
position of p is denoted as

P = Z’lsus></1s| (D3)

In the proof, the aim is to explicitly construct a set of
ensembles {p,,, |¢,,)} such that

Pp = me‘¢m> <¢m

. (D4)

which satisfies inequality (D2). To prove the statements, the
following steps are adopted. In the first and second lemmas
(Lemmas 17 and 18), the generic quantum states are
considered, and they provide general statements regarding
the quantum correlations. Thereafter, in the third, fourth,
and fifth lemmas (Lemmas 19-21), the property of quan-
tum Gibbs states is utilized to provide an upper bound to
the quantum correlations.

In the first step, the general upper bound for the quantum
correlation is proven as follows:

Lemma 17. For an arbitrary operator O, L, is defined
as follows:

2/ A Ay
L= S (401N AN (] D5
o - /Is+/ls’<S| |s>| s><s| ( )
Then, for the two operators O4 and Og, if
[Lo,,Lo,] =0, (D6)

the quantum correlation is bound from above as follows:
QCﬂ(O/U OB)

1
<7 2Lo,p'72). (01 2Lo,p™ ]|l (D7)

Typically, condition (D6) is not satisfied. Further, in the
second lemma, consider the case where Eq. (D6) holds only
in an approximate sense. Thus, the lemma can be proven as
follows:

Lemma 18. For two arbitrary operators O, and Og, if
two operators [ZO , and Z',OB can be determined such that

[EOA’ [:OB] =0 (Dg)

and

1£0, = Lo, <81, [1Lo, = Lo,ll <8, (DY)
the quantum correlation QC,(Oy4, Op) is upper bounded as

follows:
QCp(OA, Op) <36, + 36,

1
+71 [(p™V2Lo,p' ). (02 Lo, /)]l (D10)

The final task is to provide an upper bound for the
parameters {6;,6,} and the norm of the commutator
between p~'/2L, p'/? and p'/2L;,p~"/2. Thus, we first
consider an integral form of £, which comprises the time
evolution of ¢ ~ . The lemma on the basic properties of the
operator L is proven as follows:

Lemma 19. Let p be a quantum Gibbs state as
p =ps=ePH. Then, for an arbitrary operator O, the
operator L is given as follows:

o= /_ ® (001, (DI1)

where f;(t) is defined as
= 71 D12
Folt) = pcosh(zt/f) (D12)

Furthermore, the norm of L, is upper bounded as follows:

1ol < [lO]- (D13)

Because the function f4(7) decays exponentially as
e~OUl/P) | the operator L, is approximately constructed
using the time-evolved operator O(f) with 7=~ pf.
Consequently, the Lieb-Robinson bound is applied to prove
the quasilocality of £, and construct the operators EOA and
[:03 in Lemma 18. From Lemma 19, the following lemma,
which provides the upper bounds for §; and 6,, is proven:

Lemma 20. When p is given by the quantum Gibbs state
with a short-range Hamiltonian, as in Eq. (11), §; and 6, are
upper bounded as

5, < en/@r2oym) (8 L ACN o g ki a1
- T vf

5, < en/G+20p/m) <§ n 4_§> |OB|e-#R/B1+/5] (D14
VA v

This lemma provides the upper bound for the first term of
the rhs in inequality (D10) as follows:
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38) + 36, < ¢z (|0A] + |0B|)e®/%,  (D15)
where the definition of ¢4, and &4 is used in Eq. (54).

Before detailing the estimation for the second term of the
ths of Eq. (D10), it is shown that, for R — 2 < &y, the upper
bound (DI15) results in a trivial upper bound for
QC,(04. Og). Indeed, for R —2 < &g,

cp1 (|OA] + |0B|)e~R/% > Cﬁ.1e‘R/5ﬁ

> o ®2/52% 5 2 o 8104,
T en

(D16)

which is larger than the trivial upper bound ||O,4||-||Og|| =1
lie., QC,(04,0p) <1]. Therefore, we consider the
regime of R —2 > &; in the following.

The final task involves estimating the commutator,

1[(p= 2 Lo, p"?). (0" Lo, )]

Herein, the quasilocality of p~1/2L, p'/?> must be charac-
terized. For p = ¢™”H, it is obtained from the imaginary
time evolution of L), . For a large f3, the unboundedness of
the imaginary time evolution usually occurs [202]. Notably,
owing to the specialty of L, , such an unboundedness can
be avoided, and the following lemma can be proven:

Lemma 21. The norm of the commutator (D17) is upper
bounded by

(D17)

(™12 Lo,p'"2). (Lo~ )]

8 & 1 1
<32 |2 (14 2P 4c( 2 )| R/
saets [ (14575) +ae(o )

x {|0A][2 +log(1 + pllady (Op)|))]
+|0B|[2 +log(1 + fllady (04) )]}

< e (BHI12C  12CN g,
- 7 vp

x {|0A[2 +log(1 + fllady (O3)|])

]
+|9B|[2 +log(1 + fllady (04) )]} (D18)

where R —2 > &5 is used in the second inequality.

To estimate the upper bound of ||ad (0,)|| (|ladg(O3)|)),
consider the norm of a commutator ady(Oy) (||Ox| = 1)
for a general operator Oy, which is upper bounded using
Eq. (8) as follows:

ladi (0] <D~ D llady, (0x)]

ieX Z:73i

<2) > llkgll- Okl < 2g1X]. (D19)

i€X Z:735i

Hence, using log(1 + xy) <log(1 +y) + log(x) forx > 1
and y > 0,

|0A[(2 +log(1 + fllady (0p)|]) + [0B|(2 + log(1 + fllady (04)l]))
< (10A] + |0B|)(2 + log(1 + 295|AB))

2 +log(1 + 2gp) + log |AB|

< (10A] + |8B|)<

Thus, combining the above inequality with Eq. (D18), an
upper bound is provided for the second term of the rhs in
inequality (D10) by

|
il [(p™2Lo, p" ). (02 Lo, p7 /2]

< cp(10A[ + [0B])(1 + log |AB|)e=*/%,  (D21)
where the definitions of ¢4, in Eq. (54) are used.

Thus, by applying inequalities (D15) and (D21) to
Lemma 18, the desired inequality (D2) can be obtained.
This completes the proof of Theorem 10. [

2. Proof of Lemma 17

In this proof, a technique similar to that outlined in
Ref. [167] is employed. Let {|y,,) } be a set of orthonormal

log [AB| + 1
< (|0A]| + |0B])[2 + log(1 + 2gB)](log |AB| + 1).

)(log |AB| +1)

(D20)

quantum states. Define the unitary matrix U, which
provides the quantum states: {|y,,) } in the base of {|4,)},,

Then, by defining the ensemble {p,,, |¢.,.)} as
1
bm) = PIWm). P = Wulplw,), (D23
|Pm) \/ﬁf W) Wlplwn).  (D23)
the density operator p is rewritten as
P = me|¢m><¢m‘- (D24)

In general, {|¢,,)} are not orthogonal to each other (i.e.,
(Pm|dm) # 0). For this decomposition, the quantum cor-
relation QC,(Oy4, Op) is upper bounded by
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QC,(0,4,0p) < ZPm'C\qu)(OAa Op)

. (D25)

where Cy,, (04, Op) has been defined as a standard corre-
lation function, that is, Cyy ,(04,05)=((,,|04O0g|d,,)—
(Dn|OplPm) (Pm|Opldh,,). Our task is to identify a good set
{lw)} such that {|¢,,)} has a weak correlation with O,
and Op.

For an arbitrary operator O,

Um s’ U:;1s
(bl Olpn) = ZT Vg (4] 0l2g)

s,s’ m

Up,s Upis A5 + s
- Z S

s
s.s' pm

Um,s’ U*m,s 1
= ;p—i (Asl{ps LotlAg)

<’1s |£0|’1s’>

m

(wnl{p. Lot wm). (D26)

2pm
where definition (D5) is used for £, from the second to
third equations. Here, the definition is shown again for the

convenience of the reader:

<’1s | 0|/1s’> MY> U’s’ | .

Lo=) 2V Ay (D27)

5,8 /IS + ls/

Herein, {|w,,)} are chosen as the simultaneous eigen-
states of L, and L. Note that such a choice is possible
because of condition (D6), thatis, [Ly,, Ly,] = 0. We then
obtain, from Eq. (D26),

1
<¢m|0A|¢m> = g <l//m|{p’ ﬁOA}|Wm>

A1
= —=(Wulplwn) = i,
p 1

m

(D28)

and (¢,,|O3|¢,,) = a3, Where a, , and a, , are defined
as the mth eigenvalues of L, and Lo, respectively.
Therefore, we obtain

<¢m|OA|¢m><¢m|OB|¢m> = al,ma2,m (D29)
for an arbitrary m.
We next consider (¢,,|040p|¢,,). Then, from
Eq. (D26),
1
(@n|OaOpl ) = —<Wm|{p’£0AOB}|Wm>‘ (D30)

2pm

Further, based on the equation, if L, o, = Lo, Lo, can be
obtained, (¢,,|0405g|¢,) = a1 n,, can also be easily
proven in the same manner as for Eq. (D28). However, the
difficulty lies in the fact that, in general, Ly, 0, # Lo, Lo,
hence, a different approach is required.

For this purpose, first consider

U, U,
¢m OWm’ = e /15 ls 0/15’
(Dl Olw) ; N Vs (4|02
U, +U;
S Yo ns a0 lay)
S.S/ pm
Um’,s’ U;kn,s /1.? + /Ils
=Y kol
1
= ,L _]/2 ')y D31
2\/ﬁwfml{p 0P~ Hww) (D31)

where L, 12 = Lop™"/? is used from definition (D27).
Subsequently,

<¢m|OAOB|¢m> = Z<¢m|0A|V/m’><l//m’ |OB|¢m>

m

CApn S

|
=—Wul{p.Lo,p™ " Hp.p™ P Lo, Hwm).

4p,

Wanldp. Lo, o™ *Hww) w072 Lo, Y ym)

(D32)

where >, W) (w,s| =1 is used. Thus, Eq. (D32) is further reduced to

1
(] 0AOB| ) = —(wnl(pLo,p™ > + Lo, p"*) (Lo, + p7 Lo, p) W)

4p,,

1
= ——(wnl(PLo,Lo, + Lo,pLo, + Lo, Loy + L0 Loyp) Wm)-

4p,

(D33)
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Using Lo, |w,) = @1 m|w,) and Lo |w,,) = o, |w,,), the above equation can be reduced to

1
<¢m|OA OB|¢m> = <l//m|(pal,ma2.m + AL mP X + AL m X2 mpP + p‘COAp_l£OBp) |l//m>

4p
3

m

4

where (W, |plWm) = Pm-
The remaining task entails estimating the error as

To obtain this, consider

1
=70 A, +— <l//m |p‘c0Ap_1£03p|l//m>’

D34
4p, (D34)
<Wm |p£0Ap_1£03p|Wm> — Pm@1m®2 m- (D35)
WalpLo ™ Lo,plwm) = Walp' (02 Lo, p™ ) (072 Lo, 0" )0 )
= (Wulp" (0™ 2Lo,p" ) (P 2 Lo, ) |y,
+ Walp (712 Lo,p" %), (P Lo o™ )P W)
= PO @ + P Dl (072 L0, p"2). (02 Lo, p7 V)| ). (D36)

where Lo, [w,,) = a1 ulw,) and Lo, [w,,) = & |w,,) are used from the second to third equations. Thus, by applying

Eq. (D36) to Eq. (D34),

1
|<¢m|0AOB|¢m> - al,ma2,m| < Z ” [(p_l/z‘COApl/z)’ (pl/z‘COBp_l/z)] ”

Therefore, by combining the above inequality and
Eq. (D29) with (D25), inequality (D7) is proven. This
completes the proof. [

3. Proof of Lemma 18
The approach used in this proof is similar to that for the
proof of Lemma 17. Herein, {|w,,)} are chosen as the

simultaneous eigenstates of Eo,\ and EOB, instead of Ly,
and Lo,

Z"OA‘I//m> = dl,m|‘//m>’ ZO,_z; |l//m> = &2,m|l//m>' <D38)

Then, the same inequality as in Eq. (D25) is obtained:

QC,(04.05) <Y pulCiy,(04. 0p)l. (D39)

We begin by estimating (¢,,|04/¢) (#,,Op|¢b,,). Using
Eq. (D26),

1
<¢m|0A|¢m> = ? <l//m|{p’ ‘COA}|Wm>

B 1
=quy + 57— <l//m|{p’ 6£0A }|l//m>9 (D4O)

2pm

where 6Ly, =Ly, — EOA. In the same manner,
<¢m|03|¢m> = &Z,m + [1/(2pm)]<Wm|{p76£03}|l//m> ThUS,

(D37)

| <¢m|0A |¢m> <¢m|0B |¢m> - &l,de,m|

(wwl{p.8L0, + Lo, W)

1
< — D41
—_ 2pm ? ( )

which yields

me|<¢m|0A‘¢m> <¢m|08|¢m> - dlmdlml

1
<5 D |Wul{p.8Lo, +5L0, }wu)l-  (D42)

For an arbitrary operator 0, | (1,,| O} < (]| Ollw.):
hence,

> Nwul{p.6Lo, +6L0, Ywn)]
<D wul{p. Lo, + Lo, Hlym)

< H{p.6Lo, i + I{p. 6Lo, } i
<2lplly - (160, |l + [16L0,l) < 2(81 + 62),

(D43)

where (|0) = O], [[0+O'|l, < [|O|; +[|O"]]; and
l0O||l, < ||O]]; - ||0']| are used for the arbitrary operators
O and O/, respectively. Further, applying inequality (D43)
to (D41) yields
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mel<¢m|0A|¢m><¢m|OB|¢m> - dl,m&lm' < 61 + 52‘ (D44)

m

Next, the error that originates from (¢,,|04Og|p,,) is estimated. Consider the same equation as Eq. (D34):

1
(Pn|040g|d,,) = ap, Wnl(pLo, Lo, +LopLo, +Lo,Loyp+PLo, ™ Loyp)Wm)

1
= E (Wnl(pLo, Lo, +Lo,pLo, +Lo, Lo+ LopLo,) W)

1
+ 7 (@ull(0™12L0,p" ). (02 Loy~ )] ). (D45)

where, in the second equation, Eq. (D36) is used as follows:

WalpLop ' Lo,plWm) = Walp (072 L o, 0 2) (P 2L o, o~ )0 )
+Walp (072 Lo, "), (02 Lo o™ )] |y ,n)
= <Wm |'COB.0'COA |Wm> + Pm <¢m| [(p—l/ZL:OApl/Z)’ (pl/ZLOBp_]/z)] |¢m> (D46)

Further, in Eq. (D45),

<l//m|p£'0ALOB |Wm> = <l//m‘p£'0;, (&Z,m + 5LOB)|Wm>
= <l//m‘p<dl~m62,m + 5£0Ad2,m + £0A6£03)|Wm>
= (WmlpGy i 4+ pdLo, Lo, +pLo, Lo, —pSL,0Lo, W) (D47)

In a similar manner,

WinlLo,pLoylWm) = WnlGi mpGam +6Lo,pLo, + Lo,p0Lo, — L0, pLo, W),
WinlLo, LoylWm) = WnlGi m@omp + Lo, Loyp + Lo, 0Lo,p —L0,6Lo,plWm),
WinlLoypLo,lWm) = WnlG mpGam + Lo,pdLo, +0Lo,pLo, —L0,p0Lo, [Wi)- (D48)

Using the above equations, Eq. (D45) is reduced to
. 1
(B OAOpl ) = Gy @ + ap. Winl(pLo,0Lo, +0Lo,pLo, + Lo, Loyp + LoypdLo,) W)

+

4p Wml(pLo,6Lo, + Lo,pdLo, + Lo,6L0,p +Lo,pLO,) W)

- % Wnl(poLo,6L0, + 0Lo,p0Lo, + Lo, 0Lo,p + 6L0,p3L0, ) Wm)
3Bl Lo,p ). (Lo i), (D49)
where (w,,|plw.,n) = pm- Thus,
me|<¢m|0A03|¢m> = @1 @

1
< (16Lo, 1l - 1£0, I + 1£0, ]l - 8L 0, Il + 18£0,1I - [8£0, 1) + 3 (072 Lo,p"2). (p12Lo,p™ )], (DSO0)

where analyses similar to those for inequality (D43) are used. Using condition (D9) and ||L,|| < ||O4]| = 1, which is
proven as inequality (D13) in Lemma 19, the inequality of
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S Lo _
me|<¢m|0/\03|¢m> = Ayl m| <61 + 8, + 016, + 4 (e 1/2£0Ap1/2)7 (Pl/zﬁo,;ﬂ 1/2)]|| (D51)
is obtained. Further, by combining inequalities (D44) and (D51),
Zpin‘<¢m|OAOB|¢m> - <¢m|0A|¢m><¢m|OB|¢m>|
= me|<¢m|0AOB|¢m> - dl,de,m - <¢m|OA|¢m><¢m|OB|¢m> + dl,de,ml
< me(|<¢m’0AOB|¢m> - dl,de,m‘ + pm|<¢m|0A|¢m><¢m|OB|¢m> - dl,de,mD
1
<26, 426, + 816, + 4 (0712 Lo,p' ), (012 Lop™ ]I (D52)
|
When 6, >1/2 or 6, >1/2, the upper bound is  fy(r)
worse than the trivial bound 1, and hence, the inequality - ;
is meaningful only for §; < 1/2 and §, < 1/2, which yields iZRes o 2Ve P it fort <0
5,6, <8, + 6,. Thus, by applying the above inequality to — w=(rim=in) |\ 1} g~ © '
Eq. (D39), the main inequality (D10) is proven. This =
completes the proof. [ R 2ve i) fort>0
_lz S —2xim+in)/p 1+€—ﬁa) orr2>0,
4. Proof of Lemma 19 © A(_1\m
. . . —Zue”(zm‘l)’//” fort <0
First, the eigenvalues {/, } and the eigenstates {|4)} are < B ’
rewritten as = - 2ty
Z 22m=11/F fort >0,
Ay = e_/jES’ Ms> = ’E5>’ (D53) m=1 B
2D rem-tis !
where H|E) = E,|E,). Then, for an arbitrary operator O, Z 3 *W-
definition (D5) provides m=1
2+/e—PE~E) This completes the proof of Eq. (D11).
Lo = Z [ o PEED (ES|O|Eg)|E;)(Ey| The proof of inequality (D13) is simply given as follows.
sy T€ Owing to f4(t) >0,
0 24/ —po
1t 2ol < [~ sollowa <ol [~ synar.  ©s7)
where the notation of Eq. (A1) is used.
Using Eq. (A2), the above form is reduced to Using the inverse Fourier transform
2y _ﬁw 1 —iwt \/m
Lo= / 115 2;1/ O(te "™ dtdw / fp)e'dr = - (D58)
1+e ﬁm
= / fp(t)O(t)dt (D55)
— with @ = 0, the inequality (D57) is reduced to Eq. (D13).
. This completes the proof. [
with
1 e 2/ e P o S. Proof of Lemma 20 ) )
fplt) = 7)1t et e dw. (D56) First, consider the explicit construction of L, and L,
such that [£y,, Ly,] = 0. For this purpose, Eq. (D11) is
Further, by following the same analysis as in  usedin Lemma 19, and the time-evolved operator O, (1) is

Appendix C 3 a, it can be proven that fj(¢) is given by

approximated on A[r|] (see Fig. 4), which yields
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FIG. 4. Approximations of L, and L,,. To obtain the
approximations EOA and Zog’ which commute with each other,
Ly, and L, are approximated onto the extended regions A[r]
and B[r,] (r; + r, < R), respectively. In Egs. (D59) and (D60),
the explicit forms of Ly, and L, are presented.

Lo, = / " (00t Al ))dr. (D59)

where the notation of O4(t, A[r,]) has been provided in
Eq. (16), and r, is chosen appropriately. Note that L, is
now supported on the subset A[r|]. In the same manner,

Lo , 1s defined as

Lo, = /_ " £5(0)0p(1. Blr) . (D60)

Thus, if we set rj+r, <dsp =R, [ZOA,EOB] =0 is
obtained. Therefore, in the following discussions, r; =
r, = [R/2] — 1 is chosen.

Using Eq. (D59), §; can be estimated as

51 < / " 15(010a(0) = Oalr.AlnDldr. - (D61)

For the estimation of the integral, an approach similar to
that in Appendix C 3 b is used. First,

/_ " 14(0]104(6) = 0t Al

= Fa(O)|0A(t) — Oa(2, Alr])||dt

|t|>1o

+ Fp(0)]]04(t) = Ox(1, Alry]) | dt,

lt|<to

where 1 := pr;/(2v). Owing to

(D62)

1 2
_ Z o-ltl/p
Fplt) = pcosh(z|t|/f) < ﬂe ’

10a(1) = O4 (1, Alri])[| < 2] 04l = 2, (D63)

the first term is upper bounded as

FpD1|0a(1) = Oa(2. Alri])||d1

[t]>1o

4

<4 / ety < S mmni@m  (Dea)
[t]>10

- T

The quantity [|O4(f) — O4(2,A[ry])|| is upper bounded
using the Lieb-Robinson bound (18), and hence, the second
term is upper bounded as

Fp(D]|04(1) = Oa(2. Alr1])||d2

|t|<to

2
<2 / e~HIPClOA| (e = 1)e d
HE

4C i
S—|8A‘/Oe”|’e_”"dt
p 0

4C 4C
< — |0Ale~*nHV = —— |9A|e 1/, D65
< 10Ale g 10Ale (D65)

Further, applying inequalities (D64) and (D65), Eq. (D62)
is reduced to

5 < / " 14011040 = Oa(r.Alr)) s

< <§ + E) |8A|e—min[}”1/27”l”1/(2”ﬂ)]
7 vf

< (8 4C>|8A|e_ﬂrl/(2+21)ﬂ/ﬂ)7

=t (D66)

where |0A| > 11is used in the second inequality. In the same
manner,

5, < / " 14(01108(0) = Op(1. Blrs)

< §+£ aBle—Wz/(szﬂ/”)‘
“\r  vp

(D67)

Thus, applying r; = r, = [R/2] — 1, inequality (D14) is
proven. This completes the proof. [

6. Proof of Lemma 21
First, consider the integral expression of p*'/2L,pT!/2
for an arbitrary operator O. Using

eHPHI2Q o FFH/2 = otpol20 (D63)
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based on Eq. (D54), we obtain

00 I/ o—Po
pH2Lop T2 = / ieiﬂw/szda). (D69)
N I
Using Eq. (A2), the above equation is reduced to
p:i:l/ZE p$1/2
00 21/ —/)’m 00 .
— j:[iw/Z —iwt
_/ =l Zﬂ/_m O(t)e "™ dtdw
~ ["gpaotar (D70)
where g4(¢) is defined as
© 2V~ .
¢ :tﬂw/Z —iol . D71
pal) =5 [T o, (D7)
Further,
1 [ iot
gpa(t) = 7 [£ tanh(fw/2) + 1]e ™' dw
= 8(1) £ gy(1). (D72)

where §(f) is the delta function and g,(t) is the Fourier

transform of tanh(Bw/2).
As in Appendix C 3 a, herein,

95(1)

izResw:(zﬂim_m)/ﬂ(tanh(ﬂa)/Z)e""‘”) forr <0,

m=1

—i Z Res,,—(_ozim-+ir)/p(tanh(fw/2)e™"") for1>0,

[Se]

i %e”(zm‘l)’/ﬂ forr <0,

=1
Z An-8 for 120,

_2l S @m=1)|t|/8

m=1
. sign(¢) B —i
=~ psinh(alr]/p)  psinb(zt/f)’ (b73)
Consequently,

pEV2L T2 = Oi/mgﬁ(t)O(t)dt. (D74)

For the proof of the lemma, the following two claims
must be proven:

Claim 22. Let O be an arbitrary operator supported on a
subset X C A. Then, the norm of p='/2L,pT!/2 is upper
bounded as

 Plladn (0)]

||pi1/2£0p3F1/2|| < |0||10g< ||0||

) +2[|0].
(D75)

Claim 23. Let O be the operator defined in Claim 22.
Then, for ||O|| = 1, the operator p™'/2L,pT'/? is approxi-
mated on X[r] with an error of

12 LopTV 2 = (012 LopT )y |

8(,. & 1 1\] L,
i3 (1+5) sc(l )}, o

where (p=!/2Lop¥!/2)y, is supported on X[r] and chosen
appropriately.

Using these claims, an upper bound for the norm of
Eq. (D17) can be provided. Let us approximate

Oy =p~' 2Ly, p'?
0, = Pl/zﬁogﬂ_l/z

~ DI’A[rl]’

~ 0).B[r]s (D77)

where r| +r, < R. Then, from [O 41,1, O3 51,]] = 0,

1121, D2l = [I[D1 = D1 4] Do
+ [D1.apr] 02 = O2 50,
< 2[[8D0[] - |92 + 2[|6D2 | - (|21
+2[|601]] - (|69,

(D78)

where 69, := D) — Dy 4, and 60, := 0y — O, p|,) are
defined, and || 4| < [[O1]] + [|60;]] is used in the
inequality. For |[|69;] > ||O]] (s =1, 2), the above
inequality is worse than the trivial inequality, that is,
1191 D]l < 201Dy - [D2]]. Hence, only [I5D,]) < O]
is considered, which yields

1100, Do]ll < 3([I8D1 [ - D2/l + 1601 - [D4]]). - (D79)

By choosing r; = r, = [R/2] — 1 and applying Claims 22
and 23, the main inequality (D18) is obtained as follows:

1
R/
vﬁﬂe Réﬂ

(D80)

o il <36 2 (1422 ) ac( 1+

x {[0A[[2+1log(1 + fllady (Op)|])]
+10B|[2+log(1 + fllady (0,)[))]}.

where ||O,]| = ||Op|| = 1. This completes the proof of
Lemma 21.
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a. Proof of Claim 22

From the integral expression (D74),

However, the integral of |gj(#)| does not converge because
lgp(1)| o 1/t for t < 1.
Thus, to obtain a refined bound, O(¢) is parametrized as

oo O(At) using the parameter 4. Subsequently,
I 20p™ 2 < 01+ [~ asivotiar. - s
—o0 1 d 1
O(t) =0+ —O/ltdﬂzO—l—'t/ad O)(At)dA
In a standard approach, the following is used: ) A da @) “ o #(O)(4)
(D83)
gp()0(1)dt|| < ||0||/ lgp(t)lde. (D82)
‘/—oo / g which yields
co 1
’ / gp(1)O(t)dt|| < / O(t)dt||+ H/ gp(1)0dt + it/ gp(t)ady (O)(Ar)dAdt
—o0 \r|>61 [f| <6t [f| <5t 0
t
<2||l0 7dt+2 ad / ———dt
101 psimnGarggy @+ 219 N | i)
—2 2 2 2 2
2ﬂ /2 ot T
|
where fltlsét gp(t)dt =0, 1/sinh(x) < 1/x, and  |O(t) — Ox(t,X[r])|| < min(C|OX|(e"! — 1)e7#",2).

—log[tanh(x)]<log(1+1/x) are used in the second, third,
and fourth inequalities, respectively. Note that gz(—f) =
—gp(t). Thus, by choosing &t = [|O||/||ady (O)|],

« 2|0 2 d» (O
H/ g5(1)O(1)dt ngog(1+ Pllady ( )”>+
o T z|| O]

Therefore, by combining inequalities (D81) and (D85) with
2/m < 1, inequality (D75) is proven. [

T

(D85)

b. Proof of Claim 23

As in the proof of Lemma 20, we consider a similar
approximation to the one in Eq. (D59). Using the integral
expression (D74), we obtain

1 Lop™ )= 0% [ 7 gy(00(. Xlrhar. (D36

which yields

I 2 LopTV2 = (p=1 2 LopT'2) |
< [7 a1 lote.x1r) - o) ar. (D8)
Using 1/sinh(x) <2e™(1 + 1/x) (x > 0),
1 2e7lI/P 1
= . (D88
9 = B ahal/p) < P ( +zr|r|/ﬁ) (D88)

In addition, as per the Lieb-Robinson bound (18),

2||o]]

(D8Y)

Subsequently, analyses similar to those for Egs. (C32),
(C33), and (C35) can be applied. For 7y = ur/(2v), we
obtain

/_ ()]0 X1r) — 00 s

25_”t//}< 1 )

< 1+ -2dt

/r>t0 ﬁ ﬂ|[|/ﬁ

2e_”‘f‘/ﬁ 1

+/ <1+ )-cax e’ll — 1) e #dt
iz P ﬂltl/ﬂ ox|(e”~1)

() 7o (o)

< 1+ a e—errvzo
() PG

< |8X| |:§< 2Uﬁ> —aur/(2vp) +4C< 1 ) —ﬂr/2:|

- b4 vp

o) (L))

where the definition of &; := 4/u(1 + vf3/x) is used in the
last inequality. This completes the proof of Claim 23. =

APPENDIX E: PROOF OF PROPOSITION 9

Herein, the proof of Proposition 9, which connects the
PPT relative entanglement and quantum correlation, is
presented. When the quantum correlation satisfies

QC,,,(04,05) < €[|O4]| - | O]l (E1)
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for two arbitrary operators O, and Ogp, Proposition 9 yields

EXT(pap) < 4Dapdlog(1/8) < 4Dsps"%,  (E2)

where 6 == 4e min(Dy, Dp).

1. Proof

In inequality (E2), if 6 > 1/D,p, the upper bound is
worse than the trivial bound, ie., EYT(psp) <
log[min(Dy, Dp)] < (1/2)log(D,p). Hence, only the case
of 6 < 1/D,p is considered.

The eigenstates of pi"B with negative eigenvalues are
defined as {|n;) ?101- Then, the proof of Proposition 9 is
immediately obtained via the following lemma:

Lemma 24. For the quantum state p,p given in
Proposition 9, the minimum negative eigenvalue of pX*‘B
satisfies

8= —min (m;|py3|n;) < 4emin(Dy, Dy) =5,

E3
i€[My) ( )

where the parameter € has been defined in Eq. (El).
To prove inequality (52), a quantum state 6,5 1s defined
as follows:

Gap = (1 = Dapd)pap + 6 1ap. (E4)

where tr(G,45) = 1 since tr(5-1,45) = Dspb. Because of
the definition of & in Eq. (E3), we have oﬁ;‘; >0 (.e.,
645 € PPT). We then obtain

EIP"PT (PAB) < S(PAB ||5AB)- (ES)

Subsequently, using the continuity bound on the relative
entropy (Theorem 196 of Ref. [203], or Ref. [79]),

S(papllGap) < 0ap10g(Dag) — Saplog(dap)

— 625 10g[Anin(645)] (E6)

under the assumption of &, < 1/e, where 8,5 := ||pap —
Gaglly and Ay (645) are defined as the minimum eigen-
values of 6,5. Based on definition (E4), Apin(645) > 6 and

Sap < 2Dyp0. (E7)

First, the case of 2D,36 < 1/e, that is, 6 < 1/(2eDyp), is
considered. Then, —8,5l0g(S45) < —2D,5610g(2D56),
and hence, inequality (E6) reduces to

S(pal|Gag) < —2D,pdlog(267)

< —4D,blog(d). (E8)

In the case of &> 1/(2¢D,z), the ths of the above
inequality is larger than the trivial upper bound

(1/2)1og(Dyp). Therefore, by combining inequality (E8)
with (E5), the main inequality (52) is proven. This
completes the proof. [

2. Proof of Lemma 24
The next task is to estimate

min (o |pys ) = infir(p}Py) (E9)

under the assumption of Eq. (E1), where P, := |n){n|.
Therefore, first,

w(pyyPy) = w(pasPy’)
= tr(papPy) +trVAB(P;A - P,)]

is rewritten, and the second term is subsequently proven to
be approximately equal to zero for an arbitrary quantum
state |57). Because the eigenvalues of pi% do not depend on
the choice of basis [95], the basis that yields the Schmidt
decomposition of |) is selected as follows:

Dy
|l’]> = ZUS|SA7 sB>7 Z|ys|2 = 1’ (Elo)
s=1 s

where we assume D, < Dp without loss of generality.
To verify this point, we first consider the qubit case, that
is, Dy =Dp = 2. Consider the proof of the follow-
ing lemma:
Lemma 25. When D, = Dy = 2, we have

rlpas (P} = P)]| < 2. (E11)

where the parameter € is given in Eq. (El).
To generalize the results of two qubits to two-qudit
systems, consider

Dy
P;A—Pn: Z Vsl (=[sa.s8) (Sh. S|+ |5 58) (4. 55])
5.8 s#s
and
Vsl (=[sa. 58) (S, S| + [Sh. s) (4. 53[) + Hec.

= (@5 + 5 (In5.9) s ™ = ); (E12)

|ns,s’><7]s,s’
where |77s.s’> = (U%+Uf/)_]/2(y‘s|sAaSB> —I—Usr|S1/4,S%>). Now,

the quantum state |7, ) is reduced to a quantum state with
two qubits. Thus, from Lemma 25,
|tr[pAB(‘775,s’><'7s.s’|TA - |77s,s’><77s.s’|)” < 267 (E13)

which yields
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[trlpas(Py* = P,)]|
= Z (U% +U?’)|tr[pAB<|ns.s’><nS,s' |TA - ‘ns,s’> <’7s,s’|)]|

1<s<s'<D,
<2e (U} +1%) <4eD,. (E14)
1<s<s'<D,
Consequently,
tr(papPy*) > tr(papP,) —4€Dy > —4€D,,  (E15)

where tr(pspP,) >0 is used in the second inequality.
Further, using the above inequality,

i|n>ftr(p£’1‘3P,1) > —4¢D,. (E16)
n

When Dy < D,, the above lower bound is replaced by
infmtr(pigPﬂ) > —4€Dp. Therefore, the parameter &

(= — min; (n; |PfT{2;|’7i>) is upper bounded by

6 < 4emin(Dy, D). (E17)

Using this, inequality (G4) is reduced to the main inequal-
ity (52). This completes the proof. [

a. Proof of Lemma 25

When Dy =Dg =2, an arbitrary operator O,p is
described in the form of

Oup = Z (Jp61 pBap + hy p6y p + hy p6sp) (E18)

P=xy.z

by appropriately choosing the bases (see Lemma 1 of
Ref. [204] for an example), where A = {1} and B = {2}
and {6,,6,,6.} are the Pauli matrices. Then, the partial
transpose T, only changes 6,, — —&6; ,, and hence,

T, _ A A
Oap — Op = 2(J,61 62, + hy 61 )

- 26'1.), ® (Jy&ly + hl,)’)' (Elg)
In this manner, the following can be expressed:
Pt =P, =D, ® Op, (E20)

where ||®,|| <2 and ||®p|| = 1 can be realized owing to

| PYA — P,|| < 2. Subsequently, based on condition (E1)
and inequality (37) in Lemma 5,

QC,,, (@4, ®p) < QC,(Py, Dp) < €| @y]| - [|Dp

’

which yields

ltr[pap(Py* = P,)|
= |tr(pap®s @ Dp)

< Zpstr(ps,Aq)A)tr(ps,Bq)B)

+

Zps (tr(pS,ABq)A(I)B)) - tr(ps,AcDA)tr(ps.Bq)B)
s
< Zps|tr(ﬂs,A ® ps Py ® ©p)| +QC,,, (P4, Pp)
s

< Zps|tr[ps,A ® ps,B(P;A - Pn)]' + 267 (Ezl)

where {p; 4}, and {p, p}, are the reduced density matrices
of {ps.an},> Which are appropriately chosen such that they
yleld QC/)AB (q)Aﬁ q)B)

The aim is to prove

trlpa ® pp(Py* — P,)]=0 (E22)

for arbitrary p, and pp. Let u, and up be unitary matrices
that diagonalize p, and pjp, respectively. Then,

trlps ® pp(Py" — P,)]
=trlpy @ pplus ® ”B)(P;A —P,)(up ® ug)']

= tr[ﬁA ® ﬁB(P;A - F)r/)]’ (E23)

where jiy = uypauthy, pp = upppuy, Py=(uy @up)P,(us @
ug)’. Note that, by using the form (E10), P; 4= P;;A is true,
with f, being the partial conjugate transpose. This yields

(s ® up) Py (uy ® up)' = Py (E24)
In Eq. (E23), only the diagonal terms of (P — P,
contribute to the value, as g4 ® pp is a diagonal matrix.
It is evident that all the diagonal terms in (P}* — P,) are
equal to zero, and hence, it can be concluded that Eq. (E23)
reduces to Eq. (E22). Thus, by applying Eq. (E22) to
inequality (E21), the main inequality (E11) is obtained.
This completes the proof. L]

APPENDIX F: PROOF OF THEOREM 12

This section presents the proof of Theorem 12, where the
following inequality has been obtained for one-dimensional
quantum Gibbs states:

EIP;PT ( Pﬁ.AB) < C'/)» 10g(Dap) o~ R/[6108(do) &1+ T gk ., (F1)

where C := 24(Cjy + 16d3Cy)"/2, with C4 and C; defined
in Egs. (54) and (57), respectively. Here, the assumption
of a finite interaction length has been imposed for
Hamiltonian H.
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A1 AQ B2 Bl
Ao £ 0 I By
CO0CCE TR 6600000 00000
() ()
hoa, hoB,
FIG. 5. For the proof, subsets A and B are decomposed into three pieces. The decomposed subsets, i.e., A;, Ay, B>, and By, are
considered such that they have the same cardinality, that is, |A;| = |A,| = |B,| = |B;| = ¢. The interactions between the subsystems A,

and A, (B| and B,) are denoted as hy,, (hyp,). Then, in the Hamiltonian H — hys, — hyp, , the regions AgA;, A,CB,, and BB are
decoupled. Consequently, using the quantum belief propagation, it is proven that regions A, and B, do not influence the entanglement
value. Then, the entanglement between A and B is characterized by the entanglement between A, A, and B, B,. Further, because the size
of these regions is 27, the dependence on the Hilbert space dimension in Eq. (55) is significantly improved.

1. Proof

For the proof, first, the subsystems A and B are
decomposed as follows (Fig. 5):

A - AOL|Al|_|A2, B — BouBluBz, (F2)

where [A;| = |Ay| = [Bo| = |Bi| = 7. Let hpa, (hop,)
denote the interactions between A; and A, (B, and B,):

hoa = >, hg
Z:ZNA#D,ZNA#D

hop, = > hy. (F3)
Z:ZNB\#3.ZNB,#D

Then, the quantum Gibbs state p; can be described as
pp = q)e_ﬂ(H_h(')Al_h‘r)Bl)(DT, (F4)

where @ is an appropriate operator. It can be proven that ®
is afforded by a quasilocal operator and approximated by
Dy 4, ® Pp p,, which is formulated by the follow-
ing lemma:

Lemma 26. The operator ® in Eq. (F4) is approximated
as follows:

b = Dy 4, ® Pp, p,s.tllps— (qse_ﬂ<H_hﬁA‘_haB‘>‘f’T)||1
< Cpe /et =5, . (F5)

where the correlation length &g has been defined in
Eq. (54), and

. 542Cetk  2CeH 2
Cy:=1280 . F6
p < 7 nvf ) (F6)
Further,
|®]| < . (F7)

In the following, the main inequality (F1) is proven
based on the above lemma. For this purpose, ps and Z are
defined as follows:

e PH=hon, =hop,)

s = # ’
7 = tr(e PHhon ~hon ), (F8)
Because
e PH=hon,=hop,) — p=P(Haga, +HA2C82+HBIBO)’ (Fg)

we obtain pg 45 in the form of

Pp.AB = Pags, @ Pa,B, @ Pp,B,> (F10)
where pa 4, Pa,B,» and pp g, are normalized, respectively.
Here, 6 for Pa,p, 18 defined in the same manner as for
Eq. (E3), whereas 6,,p, is defined as

a8, = Pars, T 0 1a,p,. (F11)

Using the above 6y,5,, 645 is defined as

~ Z 5~ 5 0 D
Oyp = Z(DIDAOAI ® 0A,B, ®pBoqu)r
G

Z &5 Bt 155 7 s Gt
= Z(q)/)ﬂ,AB(D +6-Dpya, ® la,p, @ ppp,P').

o

(F12)

where Z; is the normalization factor used to real-

ize tr(G,p) = 1.
Note that oﬁ% > 0 can be proven as follows. Because

Ty .
64,5, = 0, we obtain

(Paga, ® 64,8, ® Pp,p,)" = 0. (F13)

Hence, by representing the spectral decomposition of the
above operator as
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Paga, ® 64,8, ® Ppp, = Zji|ji><ji| (F14)

with 1; > 0, the following is obtained:
(‘f)ﬁAoAI ® 64,8, ® ﬁBOBIqBT)TA
o o m T
= Z/L’(CI’A,,A2 ® Pp, 5,)|4i) (Al (DY 4, ® CDI;],BZ)
>0, (F15)

which yields the inequality @Txﬁ > 0 from definition (F12).
In the following calculations, the aim is to estimate the
upper bound of |64 — ppagll,- We have

H5AB —Pﬁ.ABH1
< ||Z(I~),5/3.AB(I~)T —ppasll;, + ||Zq3p~ﬂ,ABq3T — 64l
(F16)

For the first term, because @ is supported on A;A, U B, B,,

1Z® g ap®" = ppasll, = [lrc(Z® gp®" — pp)ll,
< ||/)/3 _ ((ﬁe_ﬂ(H_hé)m_h{)m)qu)”l
< 51,57 (Fl7)

where 6; , has been defined in Lemma 26. For the second
term, based on definition (F12),

1\ -~ -~ .
1—— | ZDjy 4 DF
( Z~> PB.AB

o

||Zq~)P~/3,ABq~)T —6apll; <

1

67 - _ . o
7 [@paa, ® 14,8, ® P, P,
o

< 2,

1 0z, -
(14617)+—|®

1——
Zs

(F18)

where inequality (F17) is used with ||pg4g|l; =1 for
deriving the first term of the rhs.

The remaining task entails estimating the parameters Z,
5, and Z;. Consider the proof of the following inequalities:

Z S e4gkﬂ’ 5 S 52.R’ 62.R = ]6Cﬂe_R/‘fﬂ+2f]0g(d0)’
1

Ser =010+ 8 pdy %P, (F19)

where the case of 6, < 1/2 is considered. In the case of
Sf,R > 1/2, the desired inequality (F24) below is trivially
true because, in this case, it becomes worse than the trivial
bound (|645 — ppasll, <2

Proof of inequalities in Eq. (F19).—The first inequality
in Eq. (F19) for the partition function Z can be immediately
derived using the Golden-Thompson inequality:

7 tr(e—ﬂ(H—haAl —hogl))

IA

tr(e_ﬂH Plhoa, +hos,) )

IA

tr(e=PH) P Uhon, I+l1hon, 1) < g4okp, (F20)
where we use tr(e#) =1, and the norm of ||y || +
|hog, || is upper bounded in Eq. (F39).

In addition, for §, Lemma 24 is applied with Theorem 10
to P4, p,» Which yields the second inequality in Eq. (F19):

5 <4 min(D,,, Dp,) x C4(|0A;| + [0B,])
x (1 4 log|A; B, |)e~R/%

< 16Cge RG220 10eldo) = 5, ¢, (F21)
where we use [A;| = |B,| = ¢, |0A,| = |0B,| = 2,and 1 +
log |A;B,| = 1 + log(2¢) < df for dy > 2.

Finally, from Eq. (F12),

T

Zs =t0(Z D pyp® + 5-7- Dpga, ® iAsz ® fp,,P")
> |lppasll, — |1ZDpapd’ —ppasll;
—6-Z-||®|* Dy,

>1—=8,p—86pd3l 3 = 16,4, (F22)

where, in the last inequality, Dy 5, =d3’, Z < ¢**, and
[|®@|| <e?* are used in Eq. (F7). Further, using 1/(1 — x) <
1 +2x for 0 < x < 1/2, the third inequality in Eq. (F19)
can be proven from the above inequality. This completes

the proof of the inequalities in Eq. (F19). [
Combining inequalities (F18) and (F19) yields

|Z® psap®" — 6asll,
<26, p(1

+810) + S g (1 4 26,5).  (F23)

Then, on applying inequalities (F17) and (F23) to (F16), we
obtain

1648 = Ppasll, < 235},1? + 36,8 <405, (F24)

where 9, < 1/2 is used for the second inequality.
Subsequently, on choosing £ = [R/(61og(dy)és)1.

Ssr = O1p + 8y gd3l 39
=C ﬂe—zf/cf,;ﬂztgk/i + 16C/; o~ R/&s+4¢ 1og(do)+89kp

< (Cy+ 16d4Cy)e F/BLe )Gl —. 5 - (F25)

Finally, to apply the continuity bound (E6), Ain(645)
must be controlled. For this purpose, we consider

Ga5' = (1 = 855)64p + 045D1p 1 45, (F26)
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which yields Ay, (645") > 645D 5- Note that 6,5" € PPT.
Then,

645" = Ppasll, <4645 + 6as’ — Gaplly < 6645.  (F27)
Inequality (E6) on relative entropy yields
S (pﬂ,ABHdLXB) < 6SAB log(Dyp) — 6SAB IOg(6SAB)
- 6SAB IOg[/Imin(g,/é\B)]
< 126,53 10g(Dapdyp)
< 244/6,510g(Dyp). (F28)

where xlog(z/x) < 2y/xlog(z) is used for 0 < x <2 and
z>2. Because ERT(pap) < S(psapll6yp), the main
inequality (F1) is proven by applying the definition of
o5 in Eq. (F25) to Eq. (F28). This completes the proof. m

a. Proof of Lemma 26

Using the quantum belief propagation [57], ® is
described as follows:

D= 'Tej;l ¢(7)d7,
A
¢<T) = 2 oo
H,:=H — (1 — T)haA] - (1 - T)haBl’

Fy(t)[hoa, (H,, t) + hop, (H,, t)]dt,
(F29)

where 7 is the time ordering operator, hy, (H,.t) =
eMe'hy, e Here, Fy(1) is defined as

Fﬂ(ﬂzi/_oopﬂ(a))e_iwtda), F(a)) ::%'

The explicit form of Fy(¢) can be calculated as follows

[see Eq. (103) in Supplementary Information of
Ref. [205]:]
2 em/F 41 4/(Br)
Fylt) = glog <ent//3 - 1> = A
4 1
< —e /b <1 + ) : F30
i w177 (30)

where log[(e*+1)/(e*—1)]<2/(e*—1) and 1/(e*—1) <
e *(1+x7") are used for x > 0.
Herein, an approximation is adopted as follows:

(f) — Tefol qg(r)dr’

35 == [ Fylolhon (A1)

+ hop, (H,, t,B1B,)]dt, (F31)

where the notations of Eq. (16) are used. Here,
hoa, (H,.t,A1A;) and hyp (H..t,B1B,) are supported on
AjA, and B,B,, respectively. Because [hys, (H,.1,A1A;),
hop,(H..t, B|B,)] = 0, ® is given in the form of

éz@A],Az ®®BI’BZ. (F32)

Consider the norm of ® — @, which is upper bounded as

= ! T b(z T 1 T
|®—®| < ef;,(lldﬂ( )IHlAE)Dd A () = §(7)||dr.

(F33)

where the analysis in Claim 25 of Ref. [46] is used. To
estimate the rhs of Eq. (F33), first consider

/O (6@ + 16z

< B(lon, 1|+ eom, ) / * Fy(t)di

—0o0

= Pllhoa, Il + llhos, 1), (F34)
where |[hoy, (H, 1, AjAs) || < [lhoa,(He, 1) = [l hoa, || and
J&, Fy(t)dt = F(0) = 1 are used. Second, using the Lieb-
Robinson bound (18),

lhoa, (He, 1) = hoa, (Ho 1, A1AS)||

< ||hga, || min(2,2C (e = 1)e~#“=0)), (F35)

where |0Supp(hy,, )| = 2 is used on a 1D chain, and it is
assumed that hy,, has the interaction length k [ie.,
Supp(hoa,)|<2k].  Note that ||hya, (H.1)—hoa, (H..
t,A1A,)|| is trivially smaller than 2|/4, |-

Consequently, on combining the above inequality with
Egs. (F29) and (F31), we obtain

p(z) = (o)
< Allhoa, || + 1hos,11)
- 2
x / " Fy(f) min(2,2C(e" — 1)e =0y,

(e8]

(F36)

Given the form of Fy(t) in Eq. (F30), the same calcula-
tions as in Appendix C3b can be applied. Thus,
for ty = u¢/(2v),
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l¢(z) = P (o)l
Bllhoa, I + llRog, 1) ~

IA

8 1
S—Z(I—F

k
)e—ﬂto/ﬁ | 8Ce” 8Cet
nty/p

pr

k
)e‘”’ﬂ/ﬂ n 8Cet

pr
8 2pv
. (1 n i) ot | 2) 4

where the definition of &, := ;{1 + [(v)/x]} is used.

Owing to inequality (F34), the lhs of Eq. (F37) is trivially
smaller than 1. By contrast, for ¢ <&z/3, the rhs of

Eq. (F37) is larger than 20e~%/3 /72, which is worse than
the trivial upper bound. Hence, only the case of £ > £5/3 is
considered, which reduces Eq. (F37) to

|#(z) = p(7)||
Blhoa, || + 1hos, II)
< (20—1— 8Cerk

8Cet*
7’ wop

)e—%’/@f. (F38)

From Eq. (8), the upper bound can be obtained as

lhoal < >~ > Izl < ISupp(hon,)lg < 29k,
i€Supp(hou, ) Z:23i

(F39)
which reduces inequalities (F34) and (F38) to
1 ~
A(||¢(T)|+|¢(T)I|)dfs4gkﬂ,
< 20+ 8Cetk  8Cet*
160) =90 < (24 B e,
T wuf
(F40)

respectively. Further, by applying the above inequalities to
Eq. (F33), the following is obtained:

5 4+ 2Cetk n 2C etk o215
7’ wof

|® — ®|| < 16gkBe*s <

(F41)

© 4 1
__ 7t - —ﬂl/ I vt
/ ﬂﬂe /ﬁ<1+7z/ﬂ> 2dt+/ ﬁﬂ ﬂ(l—l— /> 2C(e
_ﬂf
NGRS
B evto mo
‘ M( )

8Cetk
pr

8 5/; 8C€”k 1 1
<|l=l|1+=% S
= |22 < +2f> * r <ﬂ+vﬂ

e

—1)e N qr

L E) e Hl2

v T

(F37)

|
Finally, consider the norm of

_ ée_ﬂ(H_hle] —hop, )&)T
= (1=®0)p,[1 — (BD!) 7] + DD py[1 — (BD!)7]
+ (1= )py(GD)",

where Eq. (F4), that is, e 77~ ~hos) = @~1p, (1)~
used. Subsequently, using the above equation,

llps — (q}e—ﬂ(H—haA,—hasl)q3+)||]
< lloglly 11 = @@~ (|1 = 27!|| + 2[| 0D~ )
<31 — 7?2 + 2|1 — DD~

(F42)

where the triangle inequality is employed to obtain
[@D~!|| < |1 —DD!|| + 1. Based on the inequality of
|®~"|| < e?*, which is derived in the same manner as
Eq. (F34), we obtain

1-®d7| < |7 || - D
5+ 2Cet*
"

k
< 16gkfessks 2Ce" ) o215

nof
k k
< 16079 542Ce +2Ce" o215
- n? zvf

(F43)

from inequality (F41), where xe® < e’ is used for x > 0.
Therefore, by combining inequalities (F42) and (F43),
inequality (F5) can be obtained as follows:

021022-34



EXPONENTIAL CLUSTERING OF BIPARTITE QUANTUM ...

PHYS. REV. X 12, 021022 (2022)

||,0/; _ ((f)e_/j(H_hi)Al_hZ)b‘l)qN)T)Hl

54 2Cetc  2CeH*
51280( Tl p2te
z wvf

Finally, on the norm ||®||, considering Eq. (F34),

2
> o201+ 14gkp

1B]| < edo 1N < Alhon, I+1ham, ) < G20k,

which yields inequality (F7). This completes the proof. m

APPENDIX G: REMARK ON ENTANGLEMENT
NEGATIVITY

The PPT relative entanglement in Eq. (50) is relevant to
another definition of quantum entanglement. Herein, con-
sider entanglement negativity, which is given by [50]

Ex(pas) = 1og||paslls- (G1)
Using Proposition 9, the following corollary is obtained:

Corollary 27. Let p be an arbitrary quantum state
such that

QC,(04. Op) < €[|O4]| - [|Og]| (G2)
for two arbitrary operators O, and Op; then,
En(pas) < lloy3lli — 1 < 8emin(Dy, Dg)Dap,  (G3)

where the first inequality is trivially derived from
log(1 + x) < x for x > 0. Recall that D,y is the Hilbert
space dimension in the region AB. Thus, by applying
Theorem 10 to inequality (G3), an inequality similar to
Eq. (55) can be derived.

Proof of Corollary 27.—First, because tr(pi/l;) =1,

My
ksl =1+ 2[miloxsln)| < 1+2My -6

i=1
<1+2Dyp-6 (G4)
with 6 := —mini(ni|p£}§|ni), where M, < D,p. Here, the
value M, can be as large as (D, — 1)(Dg — 1), in general
(see Ref. [206]). Thus, using the upper bound on d in Lemma
24, inequality (G3) is proven. This completes the proof. m
By contrast, an inequality similar to Eq. (F1) cannot be
derived for 1D quantum Gibbs states if entanglement
negativity is considered. This is explained as follows. As
shown in Lemma 26, the following was derived:
lps — q;e—/}(H—haAl—hosl)qSHI < e~/10(B)+0p) (G5)
where ® has been supported on A;A, U B;B,. Thus, it is
concluded that, for £ = f?,

pp R He P H=hoa,=hos ) (G6)
The primary difficulty is that entanglement negativity
cannot satisfy a convenient continuity inequality. In
Eq. (16) of Ref. [90], it has been proven that, for arbitrary
quantum states p,p and p', .

‘EN(pAB) - EN(PZBN
<log(1 4+ \/Dasllpas = Pazll>)

<log(1 + \/Dagllpas — Pasll1)- (G7)
Hence, even for ||p —p'||; = e 9" (0 < z < 1), the dif-
ference in entanglement negativity can be significantly
large [207]. Therefore, error estimation (G5) cannot be
utilized for this purpose.

Adopting the same steps as those for Appendix F,

(pp — q}e—ﬂ<H—haAl—hasl)q§T)TA I,
needs to be calculated instead of
||p/), _ q}e—ﬁ(H—haAl—hasl)qN)Hl

to obtain a meaningful upper bound for entanglement
negativity. However, in general, the partial-transpose oper-
ation can significantly increase the operator norm, that is,
|04, <min(Dy, Dac)|| O], as shown in Refs. [209,210].
Owing to this difficulty, the possibility of deriving a
statement similar to Theorem 12 for entanglement nega-
tivity (G1) remains unclear. However, it is expected to be
proven for entanglement negativity by employing an
analysis similar to that in Ref. [211].

APPENDIX H: QUANTUM FISHER
INFORMATION MATRIX

Here, the definition (33) for the quantum correlation
QC,(04.0p) proposed is compared with the quantum
Fisher information matrix. First, it should be noted that the
quantum Fisher information can be defined in the form of
the convex roof of the variance. If p is a pure state, the
quantum Fisher information F,(K) simply reduces to the
variance of K:

f

o(K) = 4((w|K?y) — (w|K[w)?), (HI)

where p = |w)(y|. For the general state p, the quantum

Fisher information is known to be equal to the convex roof
of the variance [167,168]:

Z ps((Ws|K2|l//s> - <WS‘K|WS>2>’

(H2)

F

J(K) =4 inf

{pslws)}
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where minimization is considered for all possible decom-
positions of p, such that p = > p|y,) (y,| with p; > 0.
Thus, the quantum Fisher information shows a certain
similarity to the quantum correlation QC,(0,, Op).

To view this similarity in more detail, consider the
following quantum Fisher information matrix [136]:

]:p(ol,,oj):ZM

As|Oi| Ay ) (Ay O] As).
— /ls"_ﬂs’ <S| l’ S>< S| j| S>

(H3)

Herein,

(H4)

=> F,(0,.0))
i,j

The quantum Fisher information matrix has been used in
the multiparameter quantum estimation theory [136,212—
214]. Then, the question remains as to whether it can be
associated with the convex roof of certain observables in
the analogy of Eq. (H2).

The partial answer to this question is yes. The quantum
Fisher information matrix is relevant to the following
quantity QC} (0,4, Op), which is weaker than Eq. (33):

(H5)

QC;(04.0p) : —{1nf Zps ,.(04.0p)|.

PsPs}

which is the minimization of the absolute value of the
average correlation. Based on the above quantity, the
following statement can be proven, which is similar to
Lemma 17:
Lemma 28. For two arbitrary operators O, and Og, if
[Lo,-Lo,] =0, (Ho)
the quantity QC; (0,4, Op) is upper bounded in Eq. (H5) as
follows:

1
QC;(04.05) < Z|‘7:p(0A’ Ogp)|. (H7)

Here, the operator £, has been defined in Eq. (D5). If
condition (H6) holds only approximately (i.e., [Lo,.Lo,]~
0), a similar modification to Lemma 18 is required.
Remark. For the quantity QC,(0,, Op) in Eq. (H5), at
first glance, no meaningful constraints on the entanglement
structure can be observed, as C, (04, O0p) can have a
negative value. In other words, even if QC;(OA, Og) is
equal to zero, QC,(0,4, Op) may still be large. However,
the same statement as Lemma 8 can be proven for

QC; (04, Op) on the Peres-Horodecki separability criterion
(i.e., the PPT condition):

Lemma 29. Consider the proof for the following
statement:
QC;,,(04,05) =0 for arbitrary pairs of Oy, Op

— pup satisfies the PPT condition. (HS)

From statement (H8) and inequality (H7), it is evident
that the quantum Fisher information matrix also plays a role
in quantum correlation measures.

1. Proof of Lemma 28

Herein, consider the proof of Lemma 17. Consider the
decomposition of p as follows:

pP= me|¢m><¢m|7

) = ) Pw= Walplyn).  (H9)

1
VPm
where |y,,) is chosen as the simultaneous eigenstates of
Loy, and Ly, with the corresponding eigenvalues «; ,, and

a, > respectively. Then, an equation identical to Eq. (D29)
is obtained:

<¢m|0A‘¢m><¢m|OB‘¢m> = al,ma2,m' (H]O)

Next, consider the proof

tr({p. Lo,Lo,})

(H11)

1
zmjpm<¢m|oA|¢m><¢m|oB|¢m> -

where {-, -} is the anticommutator. By expanding the rhs of
Eq. (H11),

3700 Lo,Lo,}) = 5 3 Wallp.Lo,Lo, )

Z Wm|p|Wm A m %2 m>» (le)

which reduces to the lhs of Eq. (H11) from p,, =

Wmlplw,) and Eq. (H10).
By contrast, using the spectral decomposition of

- Zx /13|’1s> <’1s >

1
Etf({ﬂv Lo, Lo,})

2,y
- Z Ay + Ay

where the form of £, in Eq. (D5) is used. Further, by
combining Eqgs. (H11) and (H13),

<ls|0AMs’><ls’|03|ls>’ (H13)
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me <¢m‘0A|¢m> <¢m|08|¢m>

2A5A¢
= Z A (45104l2¢)(A¢10p|As). (H14)

As + Ay
Finally,

me <¢m‘0AOB|¢m> = tr(pOAOB)

(H15)

As + Ay
=75 (Al0alae) (401 05l4s).

where [Oy4, Og| = 0. Thus, by subtracting Eq. (H14) from
Eq. (HI5),

s s’)

1
= Zf/)(OA’ OB)

(j's_/ls’)2
= D E——— ﬂ, j,! A/ )/
SES/ 2(/1 + < s|0A| s>< s|08| s>

(H16)

is obtained. Therefore, on applying the above equation to
Eq. (HS5), inequality (H7) is proven. This completes the
proof. L]

2. Proof of Lemma 29

Consider the proof of the statement

QC;, . (04,05) =0 for arbitrary pairs of 04, Op

— pap satisfies the PPT condition.  (H17)

This statement can be easily evaluated via the following
discussion.

First, if inequality (52) in Proposition 9 can be proven by
assuming inequality (51) for QC;(0,4, Op) instead of
QC,(04. Op), the statement (H17) is obtained. Second,
in the proof of Proposition 9, inequality (51) is used only
for deriving the upper bound (E21) for the proof of Lemma
25. From the second to the third lines in Eq. (E21),
QC,(04. Op) is used as an upper bound for

> po(t(p aPa®p)) — tr(p, 4 D) tr(ps 5 P) |
s

however, QC;;(0,, Op) also serves as the upper bound for
the above quantity. Consequently, inequality (52) can be
proven using the constraint on QC;(Oy4, Op) alone. This
completes the proof. u
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