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EXPONENTIAL CONVERGENCE FOR A CONVEXIFYING EQUATION

Guillaume Carlier1 and Alfred Galichon2

Abstract. We consider an evolution equation similar to that introduced by Vese in [Comm. Partial
Diff. Eq. 24 (1999) 1573–1591] and whose solution converges in large time to the convex envelope of
the initial datum. We give a stochastic control representation for the solution from which we deduce,
under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in
time.
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1. Introduction

In an interesting paper [12], Vese considered the following PDE:

∂tu =
√

1 + |∇u|2 min(0, λ1(D2u)), u|t=0 = u0 (1.1)

where λ1(D2u) denotes the smallest eigenvalue of the Hessian matrix D2u. Vese proved, under quite general
assumptions on the initial condition u0, that the viscosity solution of (1.1) converges as t → ∞ to u∗∗

0 the convex
envelope of u0. Starting from this result, Vese developed an original and purely PDE approach to approximate
convex envelopes (which is in general a delicate problem as soon as the space dimension is larger than 2). More
recently, Oberman [7–9], noticed that the convex envelope can be directly characterized via a nonlinear elliptic
PDE of obstacle type and developed this idea for numerical computation of convex envelopes as well. As noticed
by Oberman, the solution of the PDE he introduced naturally has a stochastic control representation. This is
of course also the case for the evolutionary equation and, as we shall see, this representation will turn out to
be very useful to obtain convergence estimates.

In the present paper, we will focus on an evolution equation similar to (1.1) and will study some of its
properties thanks to the stochastic control representation of the solution.
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The paper is organized as follows. In Section 2, we introduce the convexifying evolution equation and recall
some basic facts about convex envelopes. In Section 3, we give a stochastic control representation for the
solution of the convexifying evolution equation. Section 4 gives some regularity properties of the solution. Our
exponential convergence result is then proved in Section 5 by simple probabilistic arguments. Finally, Section 6
is devoted to some concluding remarks. We apply our exponential convergence result to study the behavior of
some nonautonomous gradient flow and we finally make a link with some geometric flow by considering a family
of interpolating problems.

2. A convexifying evolution equation

In the present paper, we will consider a slight variant of (1.1), namely:

∂tu(t, x) = min(0, λ1(D2u(t, x))), (t, x) ∈ (0;∞) × R
d, u|t=0 = u0. (2.1)

From a PDE point of view, it may be worthwile to observe that the nonlinear operator involved in the equation
may be considered, in a degenerate case, as one of the Pucci extremal operators, which have been extensively
studied in the literature on fully nonlinear PDE’s (see for instance the book by Caffarelli and Cabré [2]).

In the sequel, we shall refer to (2.1) as the convexifying evolution equation. Following the same arguments
of the proof of Vese [12] (also see Rem. 3.4 below), one can prove under mild assumptions on u0 that the
solution converges pointwise to the convex envelope u∗∗

0 of the initial condition. Our aim will be to quantify
this convergence and this goal will be achieved rather easily by using a stochastic representation formula for
the solution of (2.1). Before we do so, let us recall some basic facts about the convex envelope.

Given a continuous (say) and bounded from below function u0 defined on R
d, the convex envelope of u∗∗

0 is
the largest convex function that is everywhere below u0. The convex envelope is a very natural object in many
contexts and in particular in optimization since u0 and u∗∗

0 have the same infimum but u∗∗
0 is in principle much

simpler to minimize since it is convex. One can also define u∗∗
0 as the supremum of all affine functions that are

below u0 and thus define u∗∗
0 as the “Legendre transform of the Legendre transform” of u0 (and this is where the

notation “∗∗” comes from). Rather than iterating the Legendre transform, let us recall the well-known formula:

u∗∗
0 (x) = inf

{
d+1∑
i=1

λiu0(xi) : λi ≥ 0,
d+1∑
i=1

λi = 1,
d+1∑
i=1

λixi = x

}
, ∀x ∈ R

d (2.2)

(the fact that one can restrict to d + 1 points follows from Carathéodory’s theorem) which can also be written
in probalistic terms as

u∗∗
0 (x) = inf {E(u0(x + X)) : E(X) = 0} . (2.3)

The latter formula strongly suggests that a good approximation for the convex envelope should be

u(t, x) := inf
σ : |σ|≤1

{
E

(
u0

(
x +

∫ t

0

√
2σsdWs

))}
(2.4)

for large t where (Ws)s≥0 is a standard Brownian motion, σs is a d × d-matrix valued process that is adapted
to the Brownian filtration and |σ| stands for the matrix norm |σ| :=

√
Tr(σσT ).

In order to keep things as elementary as possible, from now on, we shall always assume that u0 satisfies:

u0 ∈ C1,1(Rd), lim
|x|→∞

u0(x)
|x| = +∞, ∃R0 > 0 : u0 = u∗∗

0 outside BR0 . (2.5)

The coercivity assumption guarantees that the infimum in formula (2.2) is actually achieved. The assumption
that u0 and u∗∗

0 agree outside of some ball, will be convenient and allow us to work mainly on a ball instead
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of on the whole space. Indeed, thanks to (2.5), we claim that there exists R ≥ R0 such that, for any x ∈ BR0 ,
in the formula (2.2), it is enough to restrict the minimization to points xi in BR:

u∗∗
0 (x) = inf

{
d+1∑
i=1

λiu0(xi) : λi ≥ 0,

d+1∑
i=1

λi = 1,

d+1∑
i=1

λixi = x, xi ∈ BR

}
, (2.6)

for every x ∈ BR0 . To prove this claim, it is enough to remark that whenever the λi > 0’s and xi’s solve (2.2)
then u∗∗

0 is actually affine on the convex hull of the points xi, and then to note that the sets on which u∗∗
0 is

affine are necessarily bounded thanks to the coercivity of u0 and the fact that u0 = u∗∗
0 outside BR0 . Finally,

the assumption that u0 is C1,1 implies that so is u∗∗
0 (see [6]) and we will see that it also implies that u(t, .)

remains C1,1.

3. Stochastic control representation

As we shall see (but this should already be clear to stochastic control-oriented readers), the value function
of (2.4) is in fact characterized by the PDE:

∂tv = min(0, λ1(D2v)) (3.1)

in the viscosity sense (see [4] for an overview of the theory of viscosity solutions) that we now recall (for the
sake of simplicity, we will restrict ourselves to the framework of continuous solutions which is sufficient in our
context):

Definition 3.1. Let Ω be some open subset of R
d and let v be continuous on (0, +∞) × Ω, then v is:

• a viscosity subsolution of (3.1) on (0, +∞) × Ω if for every smooth function ϕ ∈ C2((0, +∞) × Ω) and
every (t0, x0) ∈ (0, +∞) × Ω such that (v − ϕ)(t0, x0) = max(0,+∞)×Ω(v − ϕ) one has

∂tϕ(t0, x0) ≤ min(0, λ1(D2ϕ(t0, x0)));

• a viscosity supersolution of (3.1) on (0, +∞)×Ω if for every smooth function ϕ ∈ C2((0, +∞)×Ω) and
every (t0, x0) ∈ (0, +∞) × Ω such that (v − ϕ)(t0, x0) = min(0,+∞)×Ω(v − ϕ) one has

∂tϕ(t0, x0) ≥ min(0, λ1(D2ϕ(t0, x0)));

• a viscosity solution of (3.1) on (0, +∞) × Ω if it is both a viscosity subsolution and a viscosity
supersolution.

We then have the following stochastic representation formula for (2.1):

Theorem 3.2. Under assumption (2.5), there is a unique continuous function u on [0, +∞) × R
d that agrees

with u0 at t = 0, that is a viscosity solution of (2.1) and that agrees with u∗∗
0 outside BR0 . It admits the following

representation

u(t, x) = inf
σ : |σ|≤1

{
E

(
u0

(
x +

∫ t

0

√
2σsdWs

))}
, t ≥ 0, x ∈ R

d (3.2)

where (Ws)s≥0 is a standard Brownian motion and |σ| stands for the matrix norm |σ| :=
√

Tr(σσT ).

Proof. Recalling that for every symmetric matrix S one has

min(0, λ1(S)) = min
|σ|≤1

Tr
(
σσT S

)
,

the fact that formula (3.2) actually defines a viscosity solution of (2.1) is a classical fact from stochastic control
theory (see for instance [5] or [11]), assumption (2.5) guarantees that the function defined by (3.2) agrees with
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u∗∗
0 outside BR0 . Continuity (local Lipschitz continuity in fact) of the value function defined by (3.2) will be

established in Section 4. It follows from well-known parabolic comparison principles (e.g Thm. 4.1 in [3]) that
if T > 0, v1 (respectively v2) is a viscosity subsolution (respectively supersolution) of (2.1) on (0, T )×BR0 such
that v1(t, x) ≤ v2(t, x) for (t, x) ∈ {0} × BR0 ∪ [0, T ] × ∂BR0 then v1 ≤ v2 on [0, T ] × BR0 . This proves the
uniqueness of a viscosity solution of (2.1) which equals u0 at t = 0 and that agrees with u∗∗

0 outside BR0 . �
Remark 3.3 (optimal feedback control). Very formally, if the solution u of the PDE were very well-behaved
then, as usual in control theory, one could find an optimal feedback (Markov) control depending on D2u (since
there is no drift). Introduce a time-dependent vector field Z = Z(t, y), as follows. If λ1(D2u(t, y)) < 0, then let
Z(t, y) be a unit eigenvector associated to λ1(D2u(t, y)) and let Z(t, y) = 0 otherwise. So that in any case:

Tr(σ(t, y)σ(t, y)T D2u(t, y)) = min(0, λ1(D2u(t, y))), and |σ(t, y)| ≤ 1,

where σ is the projector
σ(t, y) := Z(t, y) ⊗ Z(t, y).

Of course the problem is that σ is not well-defined: not only u does not need to be C2 but also it may be
the case that λ1 < 0 has multiplicity larger than 2. Ignoring those serious issues, let us consider the SDE:

dYt =
√

2σ(t, Yt)dWt

then σ is (again very formally) an optimal feedback control. We then have for t > s ≥ 0

u (t, y) = E [u (s, Yt) |Ys = y] ,

and, formally, the envelope theorem gives

∇u (t, y) = E [∇u (s, Yt) |Ys = y] .

Finally, notice that the drift of u(t, Yt) is the nonpositive quantity given by

∂tu(t, Yt) + Tr(σσT D2u(t, Yt)) = 2 min(0, λ1(D2u(t, Yt))).

Remark 3.4. One has u∗∗
0 ≤ u(t, .) ≤ u0 and u(., x) is nonincreasing and thus monotonically converges to

v(x) := limt→∞ u(t, x) = inft>0 u(t, x). Now, as shown by Vese in [12], v is necessarily convex (it is a viscosity
solution of the stationary equation) and since u∗∗

0 ≤ u(t, .) ≤ u0 this gives v = u∗∗
0 . In other words, u pointwise

monotonically converges to the convex envelope of the initial condition. Of course, in view of the representation
formulas (3.2) and (2.2) this convergence is not surprising. We shall see in the next sections how (3.2) can easily
give much more precise informations and provide in a simple way very strong convergence estimates.

4. Regularity properties of u

Lemma 4.1. If M > 0 is such that u0 − M
2 |.|2 is concave then u(t, .) − M

2 |.|2 is concave for every t > 0.

Proof. Set v0 := u0 − M
2 |.|2 and let (Xα)α∈A be a family of centered, R

d-valued, square integrable random
variables, then define

ϕ(x) = inf
α∈A

E(u0(x + Xα)), x ∈ R
d

we then have

ϕ(x) − M

2
|x|2 = inf

α∈A

{
E

(
v0(x + Xα) +

M

2
|Xα|2

)}

so that ϕ − M
2 |.|2 is concave as an infimum of concave functions. This proves the desired claim. �



EXPONENTIAL CONVERGENCE FOR A CONVEXIFYING EQUATION 615

Proposition 4.2. Let u0 be C1,1 and let M := ‖D2u0‖∞, then for every (t, s) ∈ (0, +∞) and every x ∈ R
d

one has
|u(t, x) − u(s, x)| ≤ M |s − t| (4.1)

and u(t, .) is C1,1 for every t and more precisely, one has ‖D2u(t, .)‖∞ ≤ M .

Proof. Let 0 < t < s, we already know that u(t, .) ≥ u(s, .). Let us assume for a moment that u0 is smooth and
let x ∈ R

d and let σ be an adapted process with values in the set of matrices with norm less than 1 such that

E

(
u0

(
x +

∫ s

0

√
2σdW

))
≤ u(s, x) + ε

then defining

Yh := x +
∫ h

0

√
2σdW, Zh := u0(Yh), s ≥ h ≥ 0

thanks to Itô’s formula, we thus get:

u(t, x) ≤ E(Zt) ≤ u(s, x) + ε − E(Zs − Zt)

= u(s, x) + ε − E

(∫ s

t

Tr(σσT D2u0(Yh))dh

)
≤ u(s, x) + ε + M(s − t)

and we conclude that (4.1) holds by letting ε → 0+. In the general case, one applies the same argument to the
regularization ρn�u0 (where ρn is, as usual, a sequence of mollifyers) and then passes to the limit to obtain (4.1).

Using (2.1), we then quite easily obtain that

λ1(D2v(t, x)) ≥ 0 on (0, +∞) × R
d, with v(t, x) := u(t, x) +

M

2
|x|2

in the viscosity sense which means that as soon as ϕ is smooth and v − ϕ has a (local or global) maximum
at (t0, x0) ∈ (0, +∞) × R

d then λ1(D2ϕ(t0, x0)) ≥ 0. To see that this implies that v(t, .) is convex, we invoke
the same arguments as in Lemma 1 in [1]. Assume on the contrary that there are t0 > 0, x0, y0 in R

d and
λ ∈ (0, 1) such that v(t0, λx0 + (1 − λ)y0) > λv(t0, x0) + (1 − λ)v(t0, y0). Without loss of generality, denoting
elements of R

d as (x1, x
′) ∈ R×R

d−1, we may assume that y0 = (0, 0), x0 = (1, 0), we may also assume (adding
if necessary some suitable affine function to v) that v(t0, 0) = v(t0, (1, 0)) < 0 and v(t0, (λ, 0)) > 0. We then
choose h ∈ (0, t0) and r > 0 such that

v(t, (0, x′)) < 0, v(t, (1, x′)) < 0, ∀(t, x′) ∈ [t0 − h, t0 + h] × Br. (4.2)

We then define
Ω := {(x1, x

′) ∈ (0, 1) × Br}, Q := (t0 − h, t0 + h) × Ω

and choose α > 0 such that v(t0, (λ, 0)) > αλ(1−λ)
2 . We then define

ϕ(t, (x1, x
′)) :=

α

2
x1(1 − x1) +

β

2
|x′|2 +

γ

2
(t − t0)2

with β and γ chosen so that
βr2 ≥ 2 max

Q
v, γh2 ≥ 2 max

Q
v. (4.3)

We then have v(t0, (λ, 0))−ϕ(t0, (λ, 0)) > 0 and by (4.2)–(4.3), v−ϕ ≤ 0 on ∂Q, hence v−ϕ achieves its maximum
on Q at an interior point of Q, but at this point one should have 0 ≤ λ1(D2ϕ) = −α which gives the desired
contradiction. This proves that u(t, .)+ M

2 |.|2 is convex for every t. Together with Lemma 4.1 this enables us to
conclude that u remains semiconvex and semiconcave is hence C1,1 with the estimate ‖D2u(t, .)‖∞ ≤ M . �
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Proceeding as in the proof of the two previous results and using the fact that the PDE is autonomous, one
gets:

Corollary 4.3. Suppose u0 satisfies (2.5), then Essinfλ1(D2u(t, .)) is nondecreasing with respect to t and
Esssupλd(D2u(t, .)) is nonincreasing with respect to t (where λd stands for the largest eigenvalue).

5. Exponential convergence to the convex envelope

Before we state our result concerning the convergence of u(t, .) to u∗∗
0 , we need two elementary lemmas.

Lemma 5.1. Let v : R
d → R and M ≥ 0 be such that v + M

2 |.|2 is convex, then for every r > 0 one has:

‖∇v‖L∞(Br) ≤ 2
(
M‖v‖L∞(Br+r′)

)1/2

with r′ =
2

Mr
‖v‖L∞(B2r) +

r

2
· (5.1)

Proof. Let r > 0, R > 0, for x ∈ Br a point of differentiability of v (which is a.e. the case) and h ∈ BR in R
d,

one first has
2‖v‖L∞(Br+R) ≥ v(x + h) − v(x) ≥ ∇v(x) · h − M

2
|h|2. (5.2)

Taking r = R, h = r∇v(x)|/|∇v(x)| and maximizing with respect to x ∈ Br thus gives

‖∇v‖L∞(Br) ≤ 2
r
‖v‖L∞(B2r) +

Mr

2
· (5.3)

We then take R = r′ with r′ defined by (5.1) and set h = ∇v(x)/M , thanks to (5.3), h ∈ BR, using (5.2) again,
we then get

|∇v(x)|2
2M

≤ 2‖v‖L∞(Br+r′ ), ∀x ∈ Br

which finally gives (5.1). �
Lemma 5.2. Let (Bt) be a standard one-dimensional Brownian motion, let r > 0, x ∈ (−r, r) and

τ := inf{t > 0 : x + Bt /∈ [−r, r]}

then for every t > 0, one has

P(τ ≥ t) ≤ q(r)t−1, with q(r) :=
1√
2π

∫ 2r

−2r

e−
s2
2 ds.

Proof. Let n be the integer part of t, we then have

P(τ ≥ t) ≤ P(|Bk − Bk−1| ≤ 2r, for k = 1, . . . , n)

and since (Bk −Bk−1)k=1,...,n are independent and normally distributed random variables, we immediately get
the desired estimate. �

Our main result then reads as:

Theorem 5.3. Under assumption (2.5), there exist C ≥ 0 and λ > 0 such that

‖u(t, .) − u∗∗
0 ‖L∞ ≤ Ce−λt, ∀t ≥ 0, (5.4)

and
‖∇u(t, .) −∇u∗∗

0 ‖L∞ ≤ Ce−λt, ∀t ≥ 0. (5.5)



EXPONENTIAL CONVERGENCE FOR A CONVEXIFYING EQUATION 617

Proof. First let us remark that if x /∈ BR0 , there is nothing to prove. Let us then recall (2.6), thanks to (2.5),
there is some ball BR containing BR0 , such that for any x ∈ BR0 , in the formula (2.2), it is enough to restrict
the minimization to points xi in BR. Let then x ∈ BR0 , let (x1, . . . , xd+1) ∈ B

d+1

R and (λ1, . . . , λd+1) be
nonnegative such that

d+1∑
i=1

λi = 1,

d+1∑
i=1

λixi = x,

d+1∑
i=1

λiu0(xi) = u∗∗
0 (x). (5.6)

We shall also assume that the points (x1, . . . , xd+1) are affinely independent (and this is actually without loss
of generality for what follows), the coefficients λi are then uniquely defined and are the unique barycentric
coordinates of x in the simplex K which is the convex hull of the points (x1, . . . , xd+1). We shall also assume
that all the coefficients λi are strictly positive (again this is not a restriction).

Let ε > 0 and let σs = 0, for s ∈ [0, ε], then set

v1 :=
Wε

|Wε| , τ1 := inf{t ≥ ε : x +
√

2v1 ⊗ v1(Wt − Wε) /∈ K}

and σs = v1 ⊗ v1 for s ∈ (ε, τ1]. By construction, x +
√

2v1 ⊗ v1(Wτ1 − Wε) a.s. belongs to a facet of K of
dimension d− 1. Let us denote by K1 this facet and by E1 the hyperplane parallel to this facet. Let then v2 be
Fε-measurable and uniformly distributed on Sd ∩ E1 and define

τ2 := inf{t ≥ τ1 : x +
√

2v1 ⊗ v1(Wτ1 − Wε) +
√

2v2 ⊗ v2(Wt − Wτ1) /∈ K1}

and σs = v2 ⊗ v2 for x ∈ (τ1, τ2].
We repeat inductively this construction d times and define successive (random and adapted) times τk, k =

1, . . . , d, directions v1, . . . , vk, and a piecewise constant control σs = vk ⊗ vk for s ∈ (τk−1, τk], in such a way
that x +

∫ t

0

√
2σsdWs belongs to a facet Kk of dimension d − k for t ∈ [τk, τk+1]. Let us extend the control σ

by 0 after time τd and set

Yt := x +
√

2
∫ t

0

σsdWs = Yt∧τd

and remark that at time τd the previous process has hit one of the vertices of K. By construction (Yt)t is
a continuous martingale and it is bounded since it takes values in the compact K, it therefore converges to Yτd

which is a discrete random variables with values in the vertices of K, {x1, . . . , xd+1}, we then have

E(Yτd
) = x =

d+1∑
i=1

P(Yτd
= xi)xi

which implies that P(Yτd
= xi) = λi by uniqueness of the barycentric coordinates. We thus have:

u∗∗
0 (x) = E(u0(Yτd

)) (5.7)

and then using the fact that Yt takes values in K and that u0 is locally Lipschitz:

u(t, x) ≤ E(u0(Yt)) ≤ E(u0(Yτd
)) + ‖∇u0‖L∞(K)E(|Yt − Yτd

|)
≤ u∗∗

0 (x) + diam(K)‖∇u0‖L∞(K)P(τd ≥ t).

We then remark that

{τd ≥ t} ⊂
d⋃

k=1

{
Tk ≥ t − ε

d

}
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where the Tk’s are the times the process (Ys)s spends on the (random) facet Kk−1 (setting K0 = K), the
previous probabilities can therefore be estimated by the probability that a one-dimensional Brownian motion
spends more than (t−ε)

d time in the interval [−diam(K), diam(K)]. Using Lemma 5.2, we thus get

P(τd ≥ t) ≤ Me−λ(t−ε)

for constants M and λ > 0 that depend only on d and diam(K). Letting ε → 0, we then obtain

u(t, x) ≤ u∗∗
0 (x) + diam(K)‖∇u0‖L∞(K)Me−λt

since we already know that u(t, .) ≥ u∗∗
0 , this terminates the proof of (5.4).

Finally, the estimate (5.5) easily follows from (5.4), Lemma 5.1 and the fact that u(t, .)−u∗∗
0 remains uniformly

semiconcave thanks to Lemma 4.1. �
Remark 5.4. Let us remark that in the inequality (5.4) in Theorem 5.3, the constant λ only depends on
the dimension and the diameter of the faces of the convex envelope on the set where {u0 > u∗∗

0 } whereas the
constant C also depends on the Lipschitz constant of u0 on the set of such faces. In (5.5), C also depends on
‖D2u0‖L∞.

6. Concluding remarks

6.1. A nonautonomous gradient flow

As a possible application of Theorem 5.3, one can prove convergence results for the Cauchy problem for the
non-autonomous gradient flow:

ẋ(t) = −∇u(t, x(t)), t > 0, x(0) = x0 (6.1)
where x0 ∈ R

d is an arbitrary initial position. Thanks to Proposition 4.2, the previous Cauchy problem possesses
a unique solution that is defined for all positive times. An easy consequence of Theorem 5.3 then reads:

Theorem 6.1. Let x0 ∈ R
d, and let x(.) be the solution of the Cauchy problem (6.1), then x(t) converges as

t → ∞ to some point y∞ that is a (global) minimum of u∗∗
0 .

Proof. Let us denote by F the (convex and compact) set where u∗∗
0 attains its minimum. Let y ∈ F , since

∇u∗∗
0 (y) = 0, using the convexity of u∗∗

0 and (5.5), we get

d
dt

(
1
2
|x(t) − y|2

)
= 〈∇u∗∗

0 (y) −∇u∗∗
0 (x(t)), x(t) − y〉 + 〈∇u∗∗

0 (x(t)) −∇u(t, x(t)), x(t) − y〉

≤ Ce−λt|x(t) − y|.

From which we easily deduce that |x(t) − y| + C
λ e−λt is nonincreasing for every y ∈ F so that miny∈F |x(t) −

y| + C
λ e−λt is also nonincreasing. There exists therefore some d∞ ≥ 0 such that

d(x(t), F ) := min
y∈F

|x(t) − y| → d∞ as t → ∞.

Now we claim that d∞ = 0; assume on the contrary that d∞ > 0 and let y ∈ F , we then have

δ := min{〈∇u∗∗
0 (x) −∇u∗∗

0 (y), x − y〉 : d(x, F ) = d∞} > 0

so that by the same computations as above, we obtain that for large enough t, one has

d
dt

(
1
2
|x(t) − y|2

)
≤ − δ

2
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which contradicts the convergence of |x(t) − y| as t → +∞. We thus have proved that d(x(t), F ) → 0 as
t → +∞ so that all limit points of the trajectory x(.) belong to F . Let y1 = limn x(tn) and y2 = limn x(sn)
with tn, sn → ∞ be two such limit points, since |x(t) − yi| converges as t → ∞ for i = 1, 2, we deduce that
|y1 − y2| = limn |x(tn) − y2| = limn |x(sn)− y2| = 0. Together with the compactness of F , this proves that x(t)
converges to some y∞ ∈ F as t → ∞. �

6.2. Interpolation with a geometric flow

This final section is devoted to an informal discussion on a natural interpolation between the HJB equa-
tion (2.1) and some geometric flow. Let us indeed remark that the HJB equation

∂tu = min(0, λ1(D2u)), u|t=0 = u0 (6.2)

can be imbedded into the family of PDE depending on a parameter θ ≥ 0:

∂tv = min(0, λ1(D2v + θ∇v ⊗∇v)), v|t=0 = v0. (6.3)

Now, let us formally remark that for θ > 0, v solves (6.3) if and only if u := eθv solves (6.2) with initial condition
u0 := eθv0 and therefore admits the representation formula:

v(t, x) =
1
θ

log
(

inf
σ : |σ|≤1

E

(
exp

(
θv0

(
x +

∫ t

0

√
2σsdWs

))))
, (6.4)

and, as t → ∞, eθv(t,.) converges to the convex envelope of eθv0 . Letting θ tend to +∞ in (6.3), we formally
obtain:

∂tv = min(0, λ1(D2v|∇v⊥ )), v|t=0 = v0 (6.5)

which is a geometric flow of motion by the principal negative curvature. One of course expects that the
evolution along this flow will tend to convexify the level-sets of v0. It is therefore natural to view (6.5) as
a quasi-convexification equation. Equation (6.3) therefore interpolates between a convexifying and a quasi-
convexifying evolution. There is also a stochastic representation formula for (6.5) due to Soner and Touzi [10],
which relies on a stochastic target problem different in nature from (6.4).
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Développement Durable and FiME, Laboratoire de Finance des Marchés de l’Énergie (www.fime-lab.org), and Chaire
Axa Assurance et Risques Majeurs. Both authors are grateful to an anonymous referee for several suggestions that led
to an improved presentation.

References

[1] O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints. J. Math. Pures Appl. 76 (1997)
265–288.
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