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Abstract.
The time-harmonic Maxwell equations do not have an ellipticnature by themselves. Their regu-
larization by a divergence term is a standard tool to obtain equivalent elliptic problems. Nodal
finite element discretizations of Maxwell’s equations obtained from such a regularization con-
verge to wrong solutions in any non-convex polygon. Modification of the regularization term con-
sisting in the introduction of a weight restores the convergence of nodal FEM, providing optimal
convergence rates for theh Version of Finite Elements,[21]. We prove exponential convergence
of hp FEM for the weighted regularization of Maxwell’s equationsin plane polygonal domains
provided thehp-FE spaces satisfy a series of axioms. We verify these axiomsfor several specific
families ofhp finite element spaces.

Introduction

0.a FEM discretizations of Maxwell equations

When applied to the discretization of boundary value problems associated with standard el-
liptic equations such as Laplace’s equation or the system ofelasticity, the convergence of the
Finite Element Method (FEM) is well understood by now, in particular for two-dimensional or
three-dimensional domains with corners and edges. Low convergence rates caused by edge and
vertex singularities can be overcome by a variety of techniques, such as isotropic or anisotropic
algebraic mesh refinement (h Version of FEM), increase of the polynomial degree (spectral
methods orp Version of FEM), or a combination of both, more precisely, bycombiningge-
ometricmesh refinement with an increase of the polynomial degreep. This latter method is
known as thehp Version of FEM and was introduced by BABUŠKA et al. [4, 9, 10, 35]. We
know from [5, 6, 27, 28] and [34] that, when the boundary of thedomain and the data are
piecewise analytic, thehp Version of the FEM gives approximate solutions to elliptic problems
with exponential convergence rates: This means that the error is divided by an asymptotically
constant factor as the polynomial degreep is increased by1, whereas the numberN of degrees
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of freedom is bounded by a power ofp (namely,p3 in 2D). In two dimensions, the error has
the ordere−bp ' e−b 3

√
N with a positive constantb.

Time-harmonic Maxwell equations form a system of order1 and, by themselves, do not
exhibit standard ellipticity. There are two main strategies to discretize them by FEM, see the
survey papers [30, 22]. The first one enforces the divergence-free constraint with the help of
a Lagrange multiplier and requires the use of special compatible polynomial bases and inter-
polants, respecting the commuting diagram properties (NÉDÉLEC and RAVIART-THOMAS el-
ements, known as edge elements). The second strategy transforms the Maxwell system into
an elliptic system of Helmholtz equations by “regularization”, which consists of adding in
the variational formulation a divergence term(u, v) 7→ 〈divu, div v〉 to the usual curl term
(u, v) 7→ 〈curl u, curl v〉. The new bilinear form is coercive on the spaceXN of electric fields
u with square integrable curl and divergence, satisfying theperfect conductor boundary con-
dition u × n = 0 on the boundary of the domain. Thus the discretization by a finite element
method based on nodal elements appears promising, and of simpler use and analysis than the
edge elements.

In practice, nodal discretizations of the Maxwell equations are suitable only for regular
domains or at best for convex polygons or polyhedra. Indeed,if the domain has reentrant
corners or edges, the subspace ofH

1 fields in XN is closed inXN , without being dense, see
[18, 24, 20]. Since any discrete conforming space based on a standard nodal finite element
method is contained inH1 , nodal FEM converges in this situation in general to a wrong solution,
see [19].

Nevertheless, a slight modification of that method restoresits full efficiency and accuracy:
In [21], COSTABEL-DAUGE introduced a positive weight in the divergence term which does not
alter the equivalence properties with the original Maxwellproblem, but enlarges the associated
energy space. They proved that there exist weight functionsso that the subspace of continuous
functions is now dense in the enlarged energy space restoring the possibility of Galerkin dis-
cretizations in electromagnetics based on nodal finite elements. In [21] it was also demonstrated
that nodalh Version FEM converge with optimal rates in the weighted energy space.

Numerical experiments [23] for the source problem as well asfor the eigenvalue problem
were first performed with the FE library ḾELINA [32], combining geometric mesh refinement
towards the corners with simultaneous increase of the polynomial degree of the approxima-
tion. These numerical experiments showed exponential convergence well-known forhp-FEM
applied to standard scalar second order elliptic equations. The experiments [23] were corrobo-
rated by computations with thehp-FE library CONCEPTS[26] using conforminghp-FEM on
geometric meshes of quadrilaterals with hanging nodes. This raised hope that the exponential
convergence of nodalhp-FEM for scalar problems could be transferred to Maxwell equations
via weighted regularization.

The main task of the present paper is to prove that this is true: For a wide range of contin-
uous, nodalhp finite element families

(
Mp,Xp

)
p≥1

based on geometric meshesMp and local
polynomial approximation spacesXp , we prove exponential convergence rates of the Galerkin
approximationsup to the solutionu in the weighted energy norms.

The reason why judicious combinations of polynomial degrees and geometric mesh refine-
ment give exponential convergence rates is the same as for the standard elliptic operators inves-
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tigated in [5, 6]: The asymptotics of the solution at a corneris a linear combination of terms of
the form rαψ(θ). But, whereas for “standard” problems investigated in [5, 6] the exponentα
is always> 0, for Maxwell problems in non-convex domains,α is < 0 (but still > −1) at any
reentrant corner. The weight which we use in the regularization is thenrγ with −α < γ ≤ 1.
The structure of the weight is thus similar to that of the singularities and combines perfectly
with the fundamental properties ofhp-FEM.

One of the main difficulties with nodal FEM for Maxwell’s equations is the strong singular-
ity of the solutions. It is known that the most singular part (the non-H1 contribution correspond-
ing to negative exponentsα) can be written in the form of the gradient of a singular potential:
For finite regularity, this is the BIRMAN -SOLOMYAK decomposition ([12], see also [21, 17] in
weighted spaces). Our exponential convergence proof for analytic data relies on generalizing
the Birman-Solomyak decomposition to weighted analytic spaces.

Our hp-FEM is based on a coercive formulation in spaces for which the embedding into
L

2 is compact. Therefore, thanks to standard tools (Céa Lemma), our approximation results
and the analytic regularity yield exponential convergenceof Maxwell solutions at any fixed fre-
quency. Moreover, as a direct consequence of the classical estimates of [8], we can derive also
exponential convergence ofhp-FEM approximations to Maxwell eigenvalues and eigenvectors.

This is in contrast to the situation with edge elements, where approximation estimates have
to be combined with the proof of thediscrete compactness propertywhich is not obvious for the
p Version [14, 13]. The price to pay for circumventing the discrete compactness in our analysis
is the construction of aC 1 hp-interpolant. We emphasize that is merely a technicality ofour
proof for a discrete analog of the Birman-Solomyak decomposition, but has no influence on the
hp-FE discretization which only uses nodal, LagrangianC 0 interpolants.

The hp Version FEM for edge elements is now widely used in practice,see [1, 33] for ex-
ample. It has not yet been thoroughly analyzed from a theoretical point of view for the Maxwell
equations, however. A step in that direction is [2] where exponential convergence is proved
for Raviart-Thomas elements when approximating a scalar Laplace equation in mixed form.
If combined with our result on an “analytic Birman-Solomyakdecomposition”, the approx-
imation result of [2] can provide exponential convergence towards Maxwell solutions in the
coercive case (e.g. in the presence of a non-zero conductivity).

0.b Plan and scope of the paper

We will concentrate on the following model situation: The domainΩ is a not necessarily convex
polygon with cornersc and openingsωc < 2π . The Maxwell source problem consists in find-
ing u ∈ L

2(Ω)2 with curlu ∈ L
2(Ω), divu = 0 andu×n = 0 on ∂Ω such thatcurl curlu = f

wheref is a divergence free field with analytic regularity. We postpone the analysis of thehp
FEM in three dimensions — the basic functional results of weighted regularization leading to
the convergence of theh Version are proved for three-dimensional polyhedra in [21].

In Section 1, we give a brief account of the weighted regularization introduced in [21]. Next,
in Section 2, we study analytic regularity for our Maxwell boundary value problem on polygons.
The main result in Theorem 2.7 and Corollary 2.8 gives a decomposition of the solution into
a “regular” part and a gradient containing the main corner singularity. The regularity of both
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the regular part and the potential of the gradient are characterized in terms of weighted analytic
spaces.

The subsequent part of the paper is devoted tohp finite element convergence analysis. It
is divided into an abstract part comprising Sections 3, 4, 5 and a specific part with applications
in Section 6. The abstract part axiomatizes mesh and degree selection principles sufficient for
exponential convergence for the specific examples ofhp-FE spaces that we have in mind. These
examples include the main classes of finite elements most frequently used inhp methods:

(a) Rectangles with hanging nodes, andQp polynomials,

(b) Conforming parallelograms and triangles, usingQp andPp polynomials respectively,

(c) Non-affineQ1 quadrilaterals with mappedQp polynomials.

Verification of the abstract axioms for these specific examples is done in Section 6.

The unified treatment of these (and other) examples requiresa certain degree of generality in
the hypotheses of the abstract part of our error analysis: wecannot stay within the framework of
“affine families of finite elements” where the polynomial spaces on the elements are generated
from one polynomial space on the reference element. For the non-affine quadrilaterals, approx-
imation spaces on an element are generated from polynomial spaces on the reference element
that are proper subspaces ofQp and depend on the element. We do not, however, try to present
a framework that is more abstract and general than strictly necessary.

In Section 3, we introduce the axioms to be satisfied by the families of meshes, and in
Section 4, those relating to the elementwise spaces and interpolation operators. At each level,
global exponential estimates are derived from generic local estimates, if applied to functions in
suitable weighted analytic spaces. In Section 5, the axiomson the families of discrete spaces
for the weighted regularization are introduced and the mainconvergence result (Theorem 5.2)
is immediately derived. In Section 6, we exhibit the different interpolation operators corre-
sponding to concrete situations(a), (b), and(c). The proofs of the local estimates rely on more
technical results (some of them “classical”), which we havegathered in the appendix Section 8.
We draw some conclusions in Section 7.

In this work, we assume for simplicity that the polynomial degree p of the elements is
constant throughout the geometric meshMp . We point out, however, that all our proofs and
results carry over to the case of linearly increasing polynomial degree vectors with positive slope
(see e.g. [34]). Our analysis simplifies even more in the lastlayer around the corners, where
our interpolant vanishes identically, thereby avoiding the analysis of low order interpolants in
weighted spaces in these elements.

The abstracthp convergence framework presented in this paper simplifies the proof of ex-
ponential convergence also in other situations because it is split into different estimates which
are proved independently, inside separate modules. For themore interesting and difficult case
of three-dimensional polyhedra, it can serve as a strategy for the convergence analysis of the
hp-FEM. The main difficulty that will have to be overcome in the 3-d case is the precise descrip-
tion of the analytic regularity of solutions of “standard” elliptic problems as well as Maxwell’s
equations on polyhedral domains. This analytic regularityis available for 2-d problems, but
has only partially been analyzed for 3-d problems [27, 28]. Another difficulty in the 3-d case
are anisotropic estimates (see [3, 16]) that are needed whenmesh refinements lead to strongly
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anisotropic meshes. In two dimensions, we can exclude strong anisotropy and stay in the frame-
work of shape-regular elements.

1 Weighted regularization

The domainΩ is a Lipschitz polygonal domain inR2 and the Cartesian coordinates arex =
(x1, x2). Let H0(curl ; Ω) be the subspace ofL2 fields u = (u1, u2) in Ω such that curlu ∈
L

2(Ω) (with curlu = ∂1u2−∂2u1 ) andu×n = 0 on ∂Ω (with n the unit outward normal field
to ∂Ω). The source problem reads: givenf ∈ L2(Ω) := L

2(Ω)2 with div f = 0,

find u ∈ H0(curl ; Ω) with div u = 0 :

∀v ∈ H0(curl ; Ω),

∫

Ω

curlu curlv dx =

∫

Ω

f · v dx. (1.1)

Let XN (Ω) be the subspace ofH0(curl ; Ω):

XN (Ω) :=
{
u ∈ H0(curl ; Ω) | div u ∈ L

2(Ω)
}
.

Thenu solves (1.1) if and only ifu solves

Find u ∈ XN (Ω) :

∀v ∈ XN (Ω),

∫

Ω

curlu curlv + div u div v dx =

∫

Ω

f · v dx. (1.2)

The variational formulation (1.2) allows to prove the existence and uniqueness of solution and,
moreover, to determine the singularities ofu near the corners ofΩ, see [20].

Let C be the set of the cornersc of Ω andrc the distance function toc. Let ωc denote the
interior opening angle ofΩ at vertexc. Let γ = (γc)c∈C

be a multi-exponent and denote by
rγ the weight function

rγ = min
c∈C

rγc

c (x).

The regularization with weight consists in introducingrγ in the definition of the variational
space and formulation: Let

X
γ
N (Ω) :=

{
u ∈ H0(curl ; Ω) | rγ divu ∈ L

2(Ω)
}
,

with its norm‖u‖
X

γ
N (Ω)

=
(
‖u‖2

L2(Ω)
+ ‖ curlu‖2

L2(Ω)
+ ‖rγ divu‖

L2(Ω)

)1/2
.

The corresponding variational formulation is

Find u ∈ X
γ
N (Ω) :

∀v ∈ X
γ
N (Ω),

∫

Ω

curlu curlv + rγ div u rγ div v dx =

∫

Ω

f · v dx. (1.3)

From theX
γ
N(Ω)-coercivity of the bilinear form, we get existence and uniqueness of a solution

of (1.3), and there holds, [21]
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Theorem 1.1 (i) For any multi-exponentγ = (γc)c∈C
with γc ∈ [0, 1], the fieldu solves(1.1)

if and only if u solves(1.3).
(ii) For any multi-exponentγ = (γc)c∈C

such that

∀c ∈ C , 0 ≤ γc and 1 − π/ωc < γc ≤ 1, (1.4)

the spaceH1
N(Ω) of H

1 fields with tangential boundary condition isdensein X
γ
N (Ω).

The finite element method for the weighted regularization consists in Galerkin approxima-
tion based on finite dimensional subspacesXp of X

γ
N (Ω):

Find up ∈ Xp :

∀vp ∈ Xp,

∫

Ω

curlup curlvp + rγ div up r
γ div vp dx =

∫

Ω

f · vp dx. (1.5)

By Céa’s lemma we have

‖u − up‖
X

γ
N (Ω)

≤ C‖u− vp‖
X

γ
N (Ω)

, ∀vp ∈ Xp. (1.6)

We are going to construct a class of families of finite elementapproximation spaces
(
Xp
)

p∈N

so that

• The dimension ofXp is O
(
p3
)
,

• We have an error estimate‖u − up‖
X

γ
N

(Ω)
≤ Ce−bp with C , b > 0 independent ofp,

provided the dataf has certain analyticity properties.

2 Analytic regularity

The error analysis of our method is based on two principles:

1. The decompositionu = w + gradϕ of the solution into a regular part and a gradient, in
the style of BIRMAN -SOLOMYAK [11]. Note that this is not a Hodge or Helmholtz type
decomposition whereu is represented by means of a vector and a scalar potential. The
latter would not provide the required additional regularity.

2. The use of weighted analytic function spaces of the type ofBabuška-Guo’s “countably
normed spaces” [5].

In [21], the error analysis of theh Version FEM was similarly based on the Birman-Solomyak
decomposition and regularity in weighted Sobolev spaces of(arbitrarily high but) finite order.

As usual for Maxwell’s equations, we will obtain our regularity results as corollaries of
better known results for the Laplace operator.



§ 2. ANALYTIC REGULARITY 7

2.a Corners

We gather in this section the notations relating to the geometry of the domain which will be
used all over the paper. We recall that we denote byC the set of the cornersc of Ω and byωc

the opening ofΩ in c. By C? we will denote the set of non-convex cornersc of Ω for which
ωc > π . The setC? can be empty in the case of a convex polygon. In this case, the analysis
will simplify, because we will not need the Birman-Solomyakdecomposition. Geometric mesh
refinement is generally needed also towards convex corners to achieve exponential convergence.

We also introduce an open covering(Θ0,Θc) of Ω separating the corners:

Ω = Θ0∪
⋃

c∈C

Θc :
(
Θc

)
c∈C

mutually disjoint, ∀c ∈ C , (c ∈ Θc and c 6∈ Θ0). (2.1)

We will further need a “larger” covering(Θ′
0,Θ

′
c) defined as follows: For any cornerc let Θ′

c

be a neighborhood such thatΘ′
c containsc and no other corner. We assume thatΘ′

c is larger
than Θc , which means that there exist two neighborhoodsVc ⊂⊂ V ′

c of c in R2 such that
Θc = Vc ∩ Ω and Θ′

c = V ′
c ∩ Ω. In a similar way, there exist open setsV0 ⊂⊂ V ′

0 disjoint
from C such thatΘ0 = V0 ∩ Ω andΘ′

0 = V ′
0 ∩ Ω.

Let Γc andΓ0 denote the respective parts of the boundary ofΩ:

Γc = ∂Ω ∩ Θc and Γ0 = ∂Ω ∩ Θ0.

and let us define similarlyΓ′
c andΓ′

0 relating toΘ′
c andΘ′

0 .

2.b Spaces

We first recall some definitions of weighted spaces,cf [31]. Let β = (βc) ∈ R|C | be a multi-
exponent andm a non-negative integer and let(rc, θc) be polar coordinates centered inc.

For anyv ∈ D ′(Ω) we define the semi-norm

|v|
Km

β
(Ω)

=
(
|v|2

Hm(Θ0)
+
∑

c∈C

∑

|α|=m

‖rβc+|α|
c ∂αv‖2

L2(Θc)

)1/2

. (2.2)

The weighted spaceKm
β (Ω) is the space ofv ∈ D ′(Ω) such that for allk , 0 ≤ k ≤ m, the

semi-norm|v|
Km

β
(Ω)

is finite.

Note that any derivative∂α is continuous fromK
m
β−|α|(Ω) into K

m−|α|
β (Ω). Moreover

K
m
β (Ω) is contained inHm(Ω) if and only if β ≤ −m (i.e. βc ≤ −m for any cornerc).

We also need the corresponding trace spaces. For anyv ∈ D(R2 \ C ) (i.e. with support
outside the set of corners) we define the semi-norm

|v|
Km

β
(∂Ω)

=
(
|v|2

Hm(Γ0)
+
∑

c∈C

‖rβc+m
c ∂m

rc
v‖2

L2(Γc)

)1/2

(2.3)

and the spaceKm
β (∂Ω) is the closure ofD(R2\C ) for the norm

(∑
0≤k≤m |v|2

Kk
β
(∂Ω)

)1/2
. Note

that for positive non-integers, K
s
β(∂Ω) can be defined by interpolation and the trace operator

is continuous fromK
m
β−1/2(Ω) into K

m−1/2
β (∂Ω).
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The analytic weighted spaceAβ(Ω) is the space ofv ∈ ⋂m∈N
K

m
β (Ω) such that

∃C > 0, ∀m ≥ 0, |v|
Km

β
(Ω)

≤ Cm+1m! (2.4)

and the trace spaceAβ(∂Ω) is the space ofv ∈ ⋂m∈N
K

m
β (∂Ω) such that∃C > 0, ∀m ≥ 0,

|v|
Km

β
(∂Ω)

≤ Cm+1m!.

Thus the derivative∂α is continuous fromAβ−|α|(Ω) into Aβ(Ω) and the trace is continuous
from Aβ−1/2(Ω) into Aβ(∂Ω).

We will also use the localized version of these spaces in eachneighborhoodΘc : then we
only need one weightβc and defineKm

βc
(Θc), Aβc

(Θc) in the natural way.
The following result gives the analytic weighted regularity of corner singular functions:

Lemma 2.1 Let ν ∈ R and ψ an analytic function on[0, ωc]. Then the functionrν
cψ(θc)

belongs toA−1−βc
(Θc) for all βc < ν .

The spacesAβ(Ω) are related to the spacesBl
β(Ω) of BABUŠKA-GUO [5]. If 0 < β < 1,

Aβ(Ω) coincides withB0
β(Ω), whereas for−1 < β < 0, Aβ(Ω) coincides withB1

β+1(Ω).
Finally, for −2 < β < −1, Aβ(Ω) is a closed subspace ofB2

β+2(Ω) and differs from it by
constants at the corner points.

2.c Shift theorem

Let L be a properly ellipticN × N system of second order, homogeneous with constant co-
efficients. LetB1, . . . , BN be homogeneous boundary operators of ordersm1, . . . , mN with
constant coefficients on each edge ofΩ, satisfying the Shapiro-Lopatinski covering condition
for L. Then, combining a dyadic partition ofΘ′

c and analytic type a priori estimates between
pairs of nested annular domains together with an homogeneity argument,cf [15], we can prove
(we use the notations of§2.a)

Theorem 2.2 Let u ∈ K
2
βc

(Θ′
c)

N satisfyLu ∈ Aβc+2(Θ
′
c)

N andBku ∈ Aβc+mk+1/2(Γ
′
c). Then

u ∈ Aβc
(Θc)

N .

Corollary 2.3 Let u ∈ K
2
β(Ω)N satisfyLu ∈ Aβ+2(Ω)N andBku ∈ Aβ+mk+1/2(∂Ω). Then

u ∈ Aβ(Ω)N .

We could apply this result to the Maxwell solutionu of problem (1.1) iff belonged to an
analytic space, sayA0(Ω)2 . Indeed, from the equivalent formulation (1.2), we can see thatu is
solution of the elliptic boundary value problem, withL the diagonal Laplace operator:

Lu = −f in Ω , u × n = 0, divu = 0 on ∂Ω. (2.5)

Using the results of [20], we find that the strongest singularity of u at the cornerc has the
exponentν = π/ωc − 1, and, hence, thatu belongs to the weighted spaceK2

−β(Ω) for any
β = (βc) with 0 ≤ βc < min{2, π/ωc}. As each component off belongs toA0(Ω) which is
contained inA−β+2(Ω), the shift theorem yields thatu belongs toA−β(Ω)2 .

But the spaceA−β(Ω)2 is not a subspace of the variational spaceXγ
N (Ω) for any relevant

choice ofγ , because the curls of its elements do not belong toL
2(Ω) in general. That is why we

have to take advantage of a splitting ofu in the form of a singular gradient part and a “regular”
part.
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2.d The Dirichlet problem for the Laplace operator

Consider a right hand sidef ∈ K
0
−δ(Ω) for δ ∈ [0, 1) (for δ = 0 in particularf ∈ L

2(Ω)) and
the solutionu of the Dirichlet problem

−∆u = f in Ω, u ∈ H
1
0(Ω). (2.6)

Denote bySc,k the singularitiesrkπ/ωc
c sin(kπθc/ωc), k ∈ N, of problem (2.6) at the cornerc.

From KONDRAT’ EV [31], we obtain a decomposition ofu at each cornerc ∈ C

(
u−

∑

k≥1
kπ/ωc<1+δ

dc,kSc,k

)∣∣∣
Θc

∈ K
2
−2−δ+ε(Θc) ∀ε > 0 (2.7)

(here ε can be omitted if no exponentkπ/ωc equals1 + δ ). The coefficientsdc,k depend
continuously onf ∈ K

0
−δ(Ω). In particular, forδ = 0, u

∣∣
Θc

belongs toK
2
−2(Θc) ⊂ H

2(Θc)

if c is a convex corner, and(u− dc,1Sc,1)
∣∣
Θc

belongs toK2
−2(Θc) if c is a non-convex corner,

i.e. c ∈ C? . Let δ∆ be defined as

δ∆ = min
{

1 , min
c∈C \C?

( π
ωc

− 1
)
, min

c∈C?

(2π
ωc

− 1
)}
. (2.8)

For anyδ ∈ [0, δ∆), if f ∈ K
0
−δ(Ω), u

∣∣
Θc

belongs toK
2
−2−δ(Θc) if c is convex, and(u −

dc,1Sc,1)
∣∣
Θc

belongs toK2
−2−δ(Θc) if not.

We obtain a global decomposition ofu on the whole domainΩ by an extension of the
singular functions: Letχc be a smooth function which is≡ 1 in Θc and≡ 0 outsideΘ′

c . Let
us defineS̃c by extendingχcSc,1 by zero outsideΘ′

c . Then

∀δ ∈ [0, δ∆) and f ∈ K
0
−δ(Ω), u−

∑

c∈C?

dc,1S̃c ∈ K
2
−2−δ(Ω). (2.9)

We easily check that̃Sc belongs toK2
−1−β(Ω) for anyβ with 0 ≤ βc < min{2, π/ωc}. But of

course,S̃c is not analytic insideΩ. That is why we need a proof for

Lemma 2.4 For any c ∈ C? , there exists a functionSc ∈ H
1
0(Ω) which also belongs to

A−1−β(Ω) for anyβ = (βc) with 0 ≤ βc < min{2, π/ωc}, such that for anyδ ∈ [0, δ∆):

(i) ∆Sc ∈ A−δ(Ω),

(ii) (Sc − Sc,1)
∣∣
Θc

∈ K
2
−2−δ(Θc),

(iii) For any cornerc′ 6= c , Sc

∣∣
Θc′

∈ K
2
−2−δ(Θc′).

PROOF. The functionS̃c belongs toK
2
−1−β(Ω), satisfies(ii) -(iii) and the relaxed version of

(i) : ∆S̃c ∈ L
2(Ω).

Let us embedΩ in a squareQ, extend∆S̃c by zero and denote this extension byfc . Let ψc ;n

be theL2(Q) projection offc on the spaceQn(Q) of polynomials of partial degree≤ n and
let ϕc ;n ∈ H

1
0(Ω) be the solution of the Dirichlet problem∆ϕc ;n = ψc ; n

∣∣
Ω

.



10 hp -FEM FOR THE WEIGHTED REGULARIZATION OFMAXWELL EQUATIONS

As ψc ;n
∣∣
Ω
→ ∆S̃c in L

2(Ω) asn → ∞ , thenϕc ;n → S̃c in the domain of∆. Therefore the
coefficientsdc ;n

c′,1 such that

∀c′ ∈ C?, (ϕc ; n − dc ; n
c′,1Sc,1)

∣∣
Θc′

∈ H
2(Θc′)

satisfy asn→ ∞

dc ;n
c′,1 −→ 1 if c′ = c and dc ;n

c′,1 −→ 0 if c′ 6= c

Therefore forn large enough, the matrix
(
dc ;n

c′,1

)
c∈C? ; c′∈C?

is non-singular. For such ann, there
exists for eachc ∈ C? a linear combination

Sc =
∑

c′∈C?

λc′ ; nϕc′ ;n such that ∀c′′ ∈ C?,
∑

c′∈C?

λc′ ;ndc′ ;n
c′′,1 = δc ;c′′ .

Since∆Sc is a polynomial onΩ, it belongs toA−δ(Ω) for any δ < 1. We easily check the
other properties(ii) -(iii) . Finally, we can see thatSc belongs toK2

−1−β(Ω) for anyβ = (βc)
with 0 ≤ βc < min{2, π/ωc} . Since∆Sc belongs toA−δ(Ω) which is contained inA1−β(Ω),
the shift theorem gives the analytic regularityA−1−β(Ω) for Sc .

As a corollary of Lemma 2.6 and of the shift theorem we obtain

Proposition 2.5 For all δ ∈ [0, δ∆) and for all f ∈ A−δ(Ω) there holds:

u−
∑

c∈C?

dc,1Sc ∈ A−2−δ(Ω).

2.e Principal singularities of Maxwell solutions

Let f ∈ L2(Ω) with div f = 0, and letu be the solution of problem (1.1) (or, equivalently,
of problem (1.2)). In [20] the singularities at the corners of Ω are described thoroughly: For
c ∈ C the associated Maxwell singular functions are the gradients of the Laplace singularities
gradSc,k and other fieldsTc,k of the form r

kπ/ωc
c ψ′(θc), — note thatgradSc,k has the form

r
kπ/ωc−1
c ψ(θc).

For u as above, there exist coefficientsdc,k and d ′
c,k such that (here and below, we use

boldface letters for spaces of vector functions)
(
u −

∑

k≥1
kπ/ωc<2

dc,k gradSc,k −
∑

k≥1
kπ/ωc<1

d ′
c,kTc,k

)∣∣∣
Θc

∈ K2
−2+ε(Θc) ∀ε > 0. (2.10)

The singularitiesgradSc,k belong toK2
−βc

(Θc) for βc < kπ/ωc . The singularitiesTc,k

belong toK2
−1−βc

(Θc) for βc < kπ/ωc . Thus we check that allgradSc,k for k ≥ 2 or for
k = 1 whenc 6∈ C? and allTc,k belong toK2

−1−δ(Ω) for any δ , 0 < δ < δ∆ . Thus we deduce
from (2.10) that

∀δ ∈ (0, δ∆),
(
u − dc,1 gradSc,1

)∣∣∣
Θc

∈ K2
−1−δ(Θc) if c ∈ C? (2.11)
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andu
∣∣
Θc

∈ K2
−1−δ(Θc) otherwise.

Settingϕ :=
∑

c∈C?
dc,1 Sc (with Sc the functions defined in Lemma 2.4) we have obtained

a global version of (2.11) on the whole domainΩ:

Lemma 2.6 Let f ∈ L2(Ω) with div f = 0, and letu be the solution of problem(1.1). There
existsϕ ∈ H

1
0(Ω) which also belongs toA−1−β(Ω) for any β = (βc) with 0 ≤ βc <

min{2, π/ωc} such that

∀δ ∈ (0, δ∆), u − gradϕ ∈ K2
−1−δ(Ω).

2.f Analytic regularity of Maxwell solutions

The main result of this section is the regularity ofu when f belongs to the analytic weighted
spaceA0(Ω).

Theorem 2.7 Let f ∈ A0(Ω) with div f = 0. Then the solutionu of problem(1.1)splits as

u = gradϕ + w with ϕ ∈ H
1
0 ∩ A−1−β(Ω) and w ∈ A−1−δ(Ω) (2.12)

for anyβ = (βc) with 0 ≤ βc < min{2, π/ωc} and for anyδ ∈ (0, δ∆).

PROOF. The existence and regularity ofϕ is known from Lemma 2.6. LetL be the diagonal
Laplace operator. Recall thatu solves problem (2.5). Thanks to property(i) in Lemma 2.4,
∆ϕ ∈ A−δ(Ω). We obtain thatLw = f − grad∆ϕ belongs toA1−δ(Ω). Moreover,w satisfies
the same essential boundary conditions asu , i.e. w × n = 0 on ∂Ω and, since divw = −∆ϕ,
divw

∣∣
∂Ω

belongs toA 1

2
−δ(∂Ω). Sincew already belongs toK2

−1−δ(Ω), the shift theorem yields
that w ∈ A−1−δ(Ω).

Thus the main singularities are written as a gradient, i.e. their curl is zero. This idea can
already be found in [11], but its application in the framework of weighted analytic spaces is
new.

Let us fix a weightγ convenient for the weighted regularization:1 − π/ωc < γc and
γc ∈ [0, 1], cf (1.4). The main property of such an exponent is thatβ := 1 − γ satisfies the
conditions of Theorem 2.7, thereforeϕ belongs toAγ−2(Ω). Thus, for a Maxwell solutionu
satisfying the splitting (2.12), there holds

‖u‖
X

γ
N (Ω)

≤ ‖∆ϕ‖
K0

γ (Ω)
+ ‖ϕ‖

H1(Ω)
+ ‖w‖

X
γ
N (Ω)

≤ ‖ϕ‖
K2

γ−2
(Ω)

+ ‖w‖
H1(Ω)

≤ ‖ϕ‖
K2

γ−2
(Ω)

+ ‖w‖
K1

−1(Ω)
.

We have obtained

Corollary 2.8 Let γ be a weight satisfying(1.4). Let δγ be the positive number,cf (2.8):

δγ = min
{
δ∆ , min

c∈C

( π
ωc

+ γc − 1
)}
. (2.13)
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Let f ∈ A0(Ω)2 with div f = 0. Then the solutionu of problem(1.1)splits as

u = gradϕ + w with ϕ ∈ H
1
0 ∩ Aγ−2−δ(Ω) and w ∈ A−1−δ(Ω) (2.14)

for any δ ∈ (0, δγ). Moreover we have the estimate of the energy norm ofu

‖u‖
X

γ
N (Ω)

≤ ‖ϕ‖
K2

γ−2
(Ω)

+ ‖w‖
K1

−1(Ω)
. (2.15)

Remark. If we takeγ = 1, we haveδγ = δ∆ .

3 Geometric meshes

We address in this section the principles which have to be satisfied by the geometric meshes
on whichhp-FEM spaces are constructed. Our definitions are so general as to cover geometric
meshes arising in practice and, in particular, all earlier definitions given e.g. in [29, 9, 10, 7]
and the references there. Geometric meshes based on our principles are realized in [25]. Not all
meshes satisfying the axioms of this section will be suitable for ourhp approximation schemes,
however: implicit conditions on the mesh stemming from the axioms on function spaces and
interpolation operators of Section 4 below may have to be imposed. In some cases, the algebraic
and analytic conditions on thehp-FE spaces can lead to conditions of purely geometric nature
on the mesh. An example for this is Lemma 6.2 below for bilinearly mapped, quadrilateral
elements.

We illustrate our definitions by three examples of geometricmeshes on a L-shaped domain,
in Figures 1, 2 and 3 corresponding to three categories(a), (b), and(c) of hp-FE spaces, re-
spectively, for which we eventually give complete proofs.

3.a Meshes and layers

From Theorem 2.7, we know that forf ∈ A0(Ω) the solutionu is analytic inΩ\C . More
precisely, for eachx ∈ Ω\C , the analytic Birman-Solomyak decomposition (2.12) yields that
the convergence radius of the Taylor series ofw and q at x can be bounded from below by
a constant times the distance fromx to C . As a consequence, in any domainK such that
K ⊂ Ω\C , the functionsw and q can be approximated by polynomials of degreep in K
with rate exp(−bp) whereb > 0 depends on theratio of infx∈K rc(x) versusdiam(K). The
principle underlyinghp-FEM is to keep this ratio uniformly bounded from above and below.

For this, we consider mesh familiesM =
(
Mp
)

p∈N
indexed by the integerp which corre-

sponds to the degree of the reference polynomial spaces, andsuch that, asp increases top+ 1,
only the “layer” of elements close to the corners is subdivided.

We adopt the following conventions.

A meshM on Ω is a finite set of (open) disjoint elementsK such that
⋃

K∈MK = Ω. Note
that, at this stage, we do not require the “usual” conformityconditions on the intersection of
the elementsK , considering “hanging nodes” as admissible, see below, Section 6.a.

An elementK ∈ M is either a convex quadrilateral with straight sides or a triangle, hence

K = FK(I2), with FK ∈
(
Q1
)2

, or K = FK(S2), with FK ∈
(
P1
)2



§ 3. GEOMETRIC MESHES 13

with FK a diffeomorphism, and with the reference elementsK̂ = I2 (unit square) orK̂ = S2

(unit simplex).

Each familyM consists of an infinite sequence of disjoint layersLp , p ≥ 0 and an infinite
sequence of nested terminal layersTp , p ≥ 1 such that for eachp ≥ 1

(M0)





Mp := L0 ∪ L1 ∪ . . . ∪ Lp−1 ∪ Tp (disjoint union) is a mesh onΩ

∀j ≥ 0, ∀K ∈ Lj , ∀K ′ ∈ Lj+2, K ∩K ′ = ∅,
∀c ∈ C , ∃K ∈ Tp, c ∈ K

The hypothesis of separation between the layersLj andLj+2 is not restrictive. It is introduced
mainly for later convenience.

L0

L1

L2

L3

T4

Figure 1: Mesh of squares with hanging nodes – case(a).

3.b σ -geometric meshes

Now we quantify the properties of the elementsK relating to their position with respect to the
corners. For doing this, we fix a covering(Θ0,Θc) of Ω as in (2.1). We denote byxK the
center ofK and byiK the following localization index:

If xK belongs toΘ0 , theniK := 0

If xK 6∈ Θ0 , ∃c ∈ C unique,xK ∈ Θc ; then iK := c.

Let dK be the following distanceparameter:

If iK = 0, thendK := 1

If iK = c, thendK := rc(xK).

Finally we denote byHK the homothety with centerxK and ratiodK , that is

HK(x) = xK + dK(x− xK)
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L0

L1

L2

L3

T4

Figure 2: Mesh with triangle elements – case(b).

and byK̆ the “semi-reference” element̆K = H−1
K (K) with the associated chart

F̆K := H−1
K ◦ FK (i.e. FK = HK ◦ F̆K)

Let ăK,i be the coefficients of̆FK and J̆K be its Jacobian determinant̆JK = detDF̆K .

Definition 3.1 Let M =
(
Mp
)

p∈N
be a family of meshes with the structure(M0). Let σ ∈

(0, 1). The familyM is geometricwith grading factorσ (“ σ -family” for short), if there exists
a regularity constantκ > 1 such that the following conditions(M1)–(M3) are satisfied:

(M1) The family of scaled diffeomorphisms
(
F̆K

)
K∈∪pMp is a uniformκ-family of map-

pings:
|J̆K | ≥ κ−1 on K̂ and ăK,i ≤ κ.

(M2) ∀p ≥ 1, ∀K ∈ Tp , κ−1σp ≤ dK ≤ κσp .

(M3) There exists a larger covering(Θ′
0,Θ

′
c), cf §2.a, ofΩ such that∀K ∈ ∪pM

p

If iK = 0, thenK ⊂ Θ′
0 ,

If iK = c , thenK ⊂ Θ′
c and

κ−1dK ≤ rc

∣∣
K
≤ κdK if K ∈ ∪jL

j , rc

∣∣
K
≤ κdK if K ∈ ∪jT

j .

We have written the conditions on the mesh families in the easiest way for their application
to error estimates. It is also interesting to draw consequences of these conditions on the layers
Lj to figure out the structure of the meshes.
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L0

L1

L2

L3

T4

Figure 3: Mesh withQ1 elements (trapezia) – case(c).

Let M =
(
Mp
)

p∈N
be aσ -family of meshes. Then there existsj0 such that for allj ≥ j0 ,

and for allK ∈ Lj the intersectionK ∩ Θ′
0 is empty. Thus, for allj ≥ j0 and for allK ∈ Lj ,

the localization index ofK is a cornerc and there holds

κ−2σj ≤ rc

∣∣
K
≤ κ2σj. (3.1)

3.c Patches

The construction ofhp-interpolants in Section 4 will be a two-step procedure. In the first step,
one constructs a basic interpolant defined elementwise which will in general not satisfy inter-
element continuity conditions. The construction may even start from a projection operator that
has no pointwise interpolation properties at all and which is then corrected on the element level
in order to interpolate a certain number of derivatives at the nodes.

In the second step, conformity, i.e. inter-element continuity, is achieved by the construction
of interface correctors that are defined on patches of elements (2 or 3 elements, in general) that
share an interface.

We now define the hypotheses that the geometry of such patcheswill have to satisfy.

Definition 3.2
(i) We call patcha subsetP of a meshM such that the interiorUP of ∪K∈PK is connected.

(ii) Let A be a subset of edges of elementsK ∈ M . We say that the patchP is associated with
A if ∪a∈A a is contained inUP .

(iii) For each patchP , we choose a center pointxP ∈ UP , and define its localization indexiP
and the distance parameterdP as before forK . We also denote byHP the homothety of center
xP and ratiodP .
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For a σ -family
(
Mp
)

p
, we denote byAp the set of (open) edgesa of all elementsK ∈

L0 ∪ . . . ∪ Lp−2 such thata ∩ ∂Ω = ∅.

Definition 3.3 We call admissible family of patchesassociated with theσ -family
(
Mp
)

p
a

family P =
(
Pp
)

p
where for anyp ≥ 2, we have the following properties:

(P1) For eachp, eachP ∈ Pp is a patch ofMp \ Tp , associated with a subset of edges
A = A(P ) ⊂ Ap so that theA(P ) are mutually disjoint andAp is the union of the
A(P ).

(P2) There exists an integerN such that for anyp ≥ 2 and each pointx ∈ Ω, x belongs
to at mostN different patchesP ∈ Pp .

(P3) There exists a larger covering(Θ′
0,Θ

′
c), cf §2.a, ofΩ such that∀P ∈ ∪pP

p

If iP = 0, thenUP ⊂ Θ′
0 ,

If iP = c , thenUP ⊂ Θ′
c and

κ−1dP ≤ rc

∣∣
UP

≤ κdP .

In the situation of standard conforming interfaces betweenelements, for any edgea there
exist at most two elementsK andK ′ which sharea, and the patchP associated withA = {a}
is K ∪K ′ . This is the situation for our concrete cases(b) and(c). In case(a), any hanging node
corresponds to a setA of three edges, corresponding to a patch of three elements.

4 hp-Interpolants

In this section, we describe the general structure of the function spaces and interpolation oper-
ators that will serve to construct the finite dimensional subspaces of the energy space used as
test and trial spaces, and analyze their approximation properties in weighted analytic spaces.

We want to construct conforming finite element approximations with error estimates based
on the decomposition (2.14) of the solutionu into a regular partw and a gradientgradϕ. This
means that we need to consider globally continuous approximations for bothw and gradϕ.
We shall have to approximategradϕ by gradients, thus requiringC 1 approximations forϕ.

Thus we have to construct vector valuedC 0 elements and scalarC 1 elements with the
additional property that the gradients of the latter belongto the same finite dimensional space
as the former. Note that in the implementation ofhp-FEM, only theC 0 elements will be used;
the C 1 elements are a purely theoretic tool required by our strategy of proving error estimates.

These requirements are specific to our method of approximation for Maxwell’s equations
and they demand a certain degree of flexibility and generality of the hypotheses for the function
spaces and interpolants.

We are going to introduce our collection of axioms in the order which could be the most
natural for the reader: In§4.a elementwise interpolants are defined independently on eachK .
This produces a global interpolantΠp on Ω, but we have to modify it on the element interfaces
(§4.b), at corners (§4.c), and, if essential boundary conditions have to be implemented, along
the boundary ofΩ (§4.e). The global operatorΠp has to satisfy enough nodal interpolation
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properties to allow all the mentioned correctionslocally. The first global interpolant has to
satisfy someanalytic type interpolation estimates(which will be proved for our examples in
Section 8), and the various corrections have to satisfystability estimates.

4.a Elementwise interpolants

For eachp ∈ N andK ∈ Mp , we give ourselves a first approximation spaceV p
K of finite

dimension and assume the existence of a linear operator

Πp
K : C

∞(K) → V p
K .

In the situation where the elementwise mapsFK are affine (e.g. our concrete cases(a) and(b))
we will take V p

K as Qp on parallelepipedsK – the polynomials of partial degrees less thanp
in the axes directions ofK , or Pp on triangles – the polynomials of global degree less than
p. In such a situation, it seems simpler and more usual to definethe discrete spaces and the
interpolants on the reference elementK̂ and to push them forward toK using the element
mapsFK : K̂ → K :

F ∗
K : u 7→ F ∗

Ku = u ◦ FK .

But in more general situations than the affine mapped rectangles – our case(c), we adopt the
converse point of view: We start definingΠp

K and V p
K and transport them on the reference

elementK̂ in order to introduce an axiom providing uniform estimates:Let

V̂ p
K = V p

K ◦ FK := F ∗
K(V p

K) and Π̂p
K = F ∗

KΠp
K(F ∗

K)−1 ,

i.e.
û = u ◦ FK and Π̂p

K û = (Πp
Ku) ◦ FK .

We assume the following approximation estimates in the Sobolev norm H
` , where` is fixed

(and will be chosen later, see Section 6):

(I1) For all û ∈ C ∞(K̂) and for all integerk such that̀ < k < p

‖û− Π̂p
K û‖H`( bK)

≤ Ψp,k‖û‖
Hk( bK)

(4.1)

where the convergence rateΨp,k does not depend onK .

As a consequence of(I1), if moreover(M1) holds, we have uniform interpolation error esti-
mates on thesemi-reference elements̆K = H−1

K (K)

‖ŭ− Π̆p
K ŭ‖H`(K̆)

≤ C Ψp,k‖ŭ‖
Hk(K̆)

(4.2)

with a constantC independent onK , p, k and

ŭ = u ◦HK and Π̆p
K ŭ = (Πp

Ku) ◦HK .
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Proposition 4.1 Let the family of meshesM =
(
Mp
)

p∈N
satisfy assumptions(M0), (M1) and

(M3). Let for anyp ≥ 1

Op := L0 ∪ L1 ∪ . . . ∪ Lp−1 and Ωp = Ω \
⋃

K∈Tp

K = int
( ⋃

K∈Op

K
)
.

We assume moreover that assumption(I1) holds. Foru ∈ C ∞(Ωp) let Πpu be defined on each
K ∈ Op by Πpu

∣∣
K

= Πp
K(u

∣∣
K

). Then for allβ ∈ R and all k with ` < k < p, we have the
estimate

‖u− Πpu‖
K`

β(Op)
≤ C Ψp,k‖u‖

Kk
β(Op)

. (4.3)

Here ‖v‖
K`

β(Op)
is the“broken norm”

(∑
K∈Op ‖v

∣∣
K
‖2

K`
β(K)

)1/2
, the constantC is indepen-

dent ofK , p, k , and ` and Ψp,k are as in(I1).

PROOF. Let K belong toOp . Thanks to assumption(M3), we can freeze the weight on each
element. Then by the homothetyHK we transport the norm tŏK . Here we denoteu

∣∣
K
◦HK

by ŭK . Let us prove first the following equivalence of norms, wherethe equivalence constants
do not depend onK , m ∈ N, u ∈ C ∞(K), β ∈ R:

‖u‖
Km

β
(K)

' dβ+1
K ‖ŭ‖

Hm(K̆)
(4.4)

Indeed,

‖u‖2

Km
β

(K)
'

∑

|α|≤m

‖rβ+|α|∂αu‖2

L2(K)

'
∑

|α|≤m

d
2(β+|α|)
K ‖∂αu‖2

L2(K)

'
∑

|α|≤m

d
2(β+|α|)
K d

2(1−|α|)
K ‖∂α

(
u ◦HK

)
‖2

L2(K̆)

=
∑

|α|≤m

d
2(β+1)
K ‖∂αŭ‖2

L2(K̆)

' d
2(β+1)
K ‖ŭ‖2

Hm(K̆)
.

Now we use (4.2) and (4.4) twice and obtain

‖u− Πpu‖
K`

β
(K)

' dβ+1
K ‖ŭ− Π̆p

K ŭ‖H`(K̆)

. dβ+1
K Ψp,k‖ŭ‖

Hk(K̆)

' Ψp,k ‖u‖
Kk

β
(K)

.

Squaring this inequality and summing over allK ∈ Op , we obtain (4.3).

If the boundsΨp,k have the special form (4.5), the exponential convergence rate for hp
methods follows immediately (Corollary 4.2). This specialform for theΨp,k will be verified
for our examples ofhp-FE spaces in Section 8.
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Corollary 4.2 Under the assumptions of Proposition4.1on the meshes and interpolation oper-
ators, we suppose moreover that the constantsΨp,k in estimate(4.1)have the following bounds:
There exists a constantc > 0 such that

(Ψp,k)
2 ≤ ck

(p− k)!

(p+ k)!
, ∀p, k > 0, k < p . (4.5)

Then for anyu in the analytic weighted spaceAβ(Ω) we have the exponential convergence of
the interpolation error

‖u− Πpu‖
K`

β(Op)
≤ C e−bp with b > 0 independent ofp. (4.6)

PROOF. Combining (4.3), (4.5) with (2.4) we obtain for anyk , ` < k < p

‖u− Πpu‖2

K`
β
(Op)

≤ C2k(k!)2 (p− k)!

(p+ k)!
.

By Stirling’s formulan! ' nne−n
√

2πn there existsδ > 0 such that

C2k(k!)2 (p− k)!

(p+ k)!
≤ δ2k (p− k)p−k kk kk

(p+ k)p+k
=
(p− k

p+ k

)p−k( δk

p+ k

)2k

.

Choosingk = p/(δ + 1), we obtain

C2k(k!)2 (p− k)!

(p+ k)!
=
( δk

(δ + 2)k

)p−k( δk

(δ + 2)k

)2k

=
( δ

δ + 2

)p(1+ 1

δ+1
)

.

With b := − log
(

δ
δ+2

)(1+ 1

δ+1
)/2

we have proved (4.6).

4.b Interface correctors on patches

With the elementwise defined spacesV p
K and operatorsΠp

K we associate broken spaces of func-
tions (discontinuous in general) on patchesP or on the whole domainΩ, and the corresponding
interpolation operators:

Let P =
(
Pp
)

p∈N
be an admissible family of patches. Letp ≥ 2 andP ∈ Pp . We define

C
∞(P ) =

∏

K∈P

C
∞(K) and V p(P ) =

∏

K∈P

V p
K .

These spaces are subspaces ofL∞(UP ), where we recall thatUP is the interior of∪K∈PK .

From our family of interpolantsΠp
K : C ∞(K) → V p

K we define the interpolation operator
Πp(P ) :=

∏
K∈P Πp

K which acts fromC ∞(P ) into V p(P ). The spaceC ∞(UP ) is a sub-
space ofC ∞(P ). Likewise, we define the interpolation operatorΠp(Op) on the setOp of non
terminal elements (we recall thatOp = L0 ∪ L1 ∪ . . . ∪ Lp−1 ).

We denote byV p
nod(P ) andV p

nod(O
p) the image ofC ∞(UP ) andC ∞(Ωp) by Πp(P ) and

Πp(Op), respectively:

V p
nod(P ) = Πp(P )

(
C

∞(UP )
)

and V p
nod(O

p) = Πp(Op)
(
C

∞(Ωp)
)
. (4.7)
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In the typical case where the basic interpolantsΠ̂p
K interpolate some derivatives at the corners

of the reference domain, the elements ofV p
nod will satisfy corresponding matching conditions at

the nodes of the mesh. They will, in general, still be discontinuous across the edges, however.
We will achieve interelement continuity by constructing interface correctors.

Let A = A(P ) be the set of (open) edgesa which is associated with the patchP , and let
B be the remaining set of edgesb of elementsK ∈ P . Since for alla ∈ A, a is contained in
UP , all the edges contained in∂UP belong toB . For a two-element patch in particularB is
exactly the set of edges contained in∂UP .

Each “active” edgea ∈ A runs between two elements of the patchP , hence for anyv ∈
V p(P ), thejump [v]a of v acrossa is well-defined.

The application of interface correctors possibly increases the degree of the local polynomial
spaces. To allow for such an increase, we admit a second family of spacesW p

K ⊃ V p
K together

with the following axioms on local interface correctors:

Definition 4.3 An interface correctorof order d ≥ 0 for the family of interpolants(Πp
K) on

the patchP ∈ Pp consists of
• discrete spacesW p

K ⊃ V p
K on eachK ∈ P ,

• an operatorRp
P : V p

nod(P ) →W p(P ) :=
∏

K∈P W
p
K for the correction of jumps[v]a on each

edgea ∈ A, satisfying the algebraic condition(I2) and the stability condition(I3):

(I2) For all v ∈ V p
nod(P ), the functionw := Rp

P v satisfies

∀a ∈ A, ∀α, |α| ≤ d, [∂αw]a = [∂αv]a

∀b ∈ B, ∀α, |α| ≤ d, ∂αw
∣∣
b

= 0.

(I3) With P̆ = H−1
P (P ), v̆ = v ◦ HP and R̆p

P = H∗
PR

p
P (H∗

P )−1 , there hold the uniform
estimates

‖R̆p
P v̆‖Hd+1(P̆ )

≤ C inf
{
‖v̆ − z̆‖

H`(P̆ )
| z̆ ∈ H

`(UP̆ )
}
.

HereH
`(P̆ ) is the broken norm and̀≥ d+ 1 is a fixed integer.

Remark 4.4 The existence of the functionw in (I2) implies that the jumps[∂αv]a vanish at the
common node ofa andb, for all functionsv in the range ofΠp . Therefore the mere existence
of an interface corrector implies that the basic “interpolant” Πp

K has indeed some interpolation
properties at the nodes, although we did not need to impose this before. In this way, hypothesis
(I2) is not only an explicit condition imposed onRp

P , but also an implicit condition onΠp
K .

This will have to be taken into account in the construction ofΠp
K in the examples of Section 6.

We obtain a similar statement to Proposition 4.1:

Proposition 4.5 We assume thatP =
(
Pp
)

p∈N
is an admissible family of patches satisfying

condition (P3) and that we have a family of interpolants(Πp
K). If the interface correctorRp

P

satisfies(I3) then for anyβ ∈ R and v ∈ V p
nod(P ), we have the estimate

‖Rp
Pv‖K

d+1

β
(P )

≤ C inf
{
‖v − z‖

K`
β
(P )

| z ∈ H
`(UP )

}
. (4.8)
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Note that the norm on the right hand side of (4.8) is a norm on the jumpsof v across the edges
a ∈ A.

4.c Interpolants in the corner regions

We do not use the interpolantsΠp
K whenK belongs toTp , but the trivial approximation by

zeroZp
Ku = 0. We need a transition fromZp

K to Πp
K . We denote bỹTp−2 := Tp∪Lp−1 ∪Lp−2

the extended terminal layer. We recall thatOp−2 is defined asLp−3 ∪ . . . ∪ L0 and that, in this
case,

Mp = T̃p−2 ∪ Op−2.

Definition 4.6 The corner interpolantZp
K is defined for allK ∈ T̃p−2 so that:

(I4) ForK ∈ Tp ∪ Lp−1 , Zp
K ≡ 0 and forK ∈ Lp−2 , Zp

K actsC ∞(K) → V p
K .

For any functionv ∈ C ∞(Ωp) and defined onΩ, the functionw =: Jpv defined on
all elementsK ∈ Mp by

∀K ∈ T̃p−2, w
∣∣
K

= Zp
Kv and ∀K ∈ Op−2, w

∣∣
K

= Πp
Kv

satisfiesw ∈ V p
nod(O

p).

(I5) For some integerm ≥ ` there hold the uniform stability estimates on the semi-
reference element

‖v̆ − Z̆p
K v̆‖H`(K̆)

≤ C ‖v̆‖
Hm(K̆)

.

whereC is independent ofp andK .

Proposition 4.7 Let the family of meshesM =
(
Mp
)

satisfy assumptions(M0), (M1), (M2)

and (M3). Assume moreover that(I5) holds. For u ∈ C ∞(Ωp) defined onΩ, let Zpu be
defined on eachK ∈ T̃p−2 by Zpu

∣∣
K

= Zp
K(u

∣∣
K

).

Then for allβ, β ′ ∈ R with β ′ ≤ β and all u ∈ K
m
β′(Ω), we have the estimate

‖u− Zpu‖
K`

β(eTp−2)
≤ C σp(β−β′)‖u‖

Km
β′(

eTp−2)
, (4.9)

where the constantC is independent ofp.

PROOF. Let K belong toTp ∪ Lp−1 . HereZp
Ku = 0.

‖u− Zpu‖
K`

β(K)
= ‖u‖

K`
β(K)

'
∑

|α|≤`

‖rβ+|α|∂αu‖
L2(K)

. sup
x∈K

r(x)β−β′
∑

|α|≤`

‖rβ′+|α|∂αu‖
L2(K)

' dβ−β′

K ‖u‖
K`

β′(K)

' σp(β−β′) ‖u‖
K`

β′(K)
. (4.10)
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If K belongs toLp−2 we use(I5) together with the usual scaling tŏK and we obtain the in-
equality‖u−Zpu‖

K`
β
(K)

≤ C‖u‖
K`

β
(K)

. Then we obtain (4.9) by combining this with estimates

like (4.10) above, since forK ∈ Lp−2 the sizedK is bounded byCσp , cf (M3) and (3.1).

4.d An interpolant of classC d with exponential estimates

We obtain such an interpolantIp = Ip
(d) by chaining together the previous spaces and inter-

polants: First recall from(I4) thatJp is the extension ofΠp by Zp :

∀K ∈ T̃p−2, Jpu
∣∣
K

= Zp
K

(
u
∣∣
K

)
and ∀K ∈ Op−2, Jpu

∣∣
K

= Πp
K

(
u
∣∣
K

)
(4.11)

Recall thatT̃p−2 = Tp ∪ Lp−1 ∪ Lp−2 andOp−2 = Lp−3 ∪ . . . ∪ L0 .

We define the global interface correctorRp by adding the contributions of all patches. Let
◦
Rp

P the extension by zero ofRp
P outsideP and set

Rpu =
∑

P∈Pp

◦
Rp

Pu, for u ∈ V p
nod(O

p). (4.12)

We recall that, by virtue of(P1), the patchesP ∈ Pp do not contain any terminal element
K ∈ Tp . ThereforeRpu

∣∣
K

= 0 for all K ∈ Tp .

Finally we apply the correctorRp to obtainIp : If (I1)-(I5) are satisfied for the integer
d ≥ 0, then we set for anyp ≥ 3 andu ∈ C ∞(Ωp) defined onΩ:

Ipu = Jpu− RpJpu. (4.13)

Note that according to(I4), Jpu ∈ V p
nod(O

p), so that (4.13) is well defined. Since the discrete
spaces satisfy the inclusionV p

K ⊂W p
K , the interpolantIp takes its values in the space

W p =
{
u ∈ L

2(Ω) | ∀K ∈ Mp, u
∣∣
K
∈W p

K

}
. (4.14)

Lemma 4.8 If assumptions(I1)-(I5) hold with d, then the interpolantIp takes its values in
the spaceW p

(d) := W p ∩ C d(Ω).

PROOF. Let u belong toC ∞(Ωp) andv = Ipu . It suffices to prove that for all edgesa of any
elementK ∈ Mp , the jumps[∂αv]a are zero for allα , |α| ≤ d.

• If a is an edge ofK ∈ Tp , thenJpu = Zpu = 0 anda is outside the support ofRp , therefore
v ≡ 0 in a neighborhood ofa, therefore its jumps are zero.

• If a is an edge ofK ∈ Lp−1 which does not belong toLp−2 , then, again,Jpu = Zpu =
0. Moreover if a is contained in a patchP , it does not belong to the setA(P ). Therefore
∂αRpJpu

∣∣
a

is zero for allα , |α| ≤ d.

• If a ∈ Ap (the set of the edges of theK ∈ Op−2 ), there exists a unique patchP ∈ Pp , such
that a ∈ A(P ). Then

[∂αv]a = [∂αJpu]a − [∂αRpJpu]a = 0, |α| ≤ d.

sinceJpu
∣∣
P

belongs toV p
nod(P ).

The combination of all axioms yields exponential convergence for the interpolant family
Ip :
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Theorem 4.9 Let the family of meshesM =
(
Mp
)

satisfy assumptions(M0)-(M3), the family
of patchesP =

(
Pp
)

assumptions(P1)-(P3), the family of interpolants assumptions(I1)-(I5)
for d ≥ 0. Then for anyβ ′ ∈ R, if u ∈ Aβ′(Ω), Ipu ∈ C d(Ω). If, moreover,(4.5) holds, We
obtain for all β > β ′ the exponential convergence rate

‖u− Ipu‖
K

d+1

β (Ω)
≤ C e−bp, with b > 0. (4.15)

PROOF. We have

‖u− Ipu‖
K

d+1

β
(Ω)

≤ ‖u− Jpu‖
K

d+1

β
(Ω)

+
∑

P∈Pp

‖Rp
PJ

pu‖
K

d+1

β
(P )

.

But
‖u− Jpu‖

K
d+1

β (Ω)
≤ ‖u− Zpu‖

K
d+1

β (eTp−2)
+ ‖u− Πpu‖

K
d+1

β (Op−2)
.

For ‖u − Zpu‖
K

d+1

β (eTp−2)
, we use (4.9). For‖u − Πpu‖

K
d+1

β (Op−3)
we use (4.6) (recall that

` ≥ d+ 1). And we obtain
‖u− Jpu‖

K
d+1

β
(Ω)

≤ C e−bp. (4.16)

By (4.8)

‖Rp
PJ

pu‖
K

d+1

β
(P )

≤ C inf
{
‖Jpu− z‖

K`
β
(P )

| z ∈ H
`(UP )

}

≤ C‖Jpu− u‖
K`

β
(P )

sinceu ∈ H
`(UP ).

Thanks to assumption(P2),
∑

P∈Pp

‖Jpu− u‖
K`

β(P )
≤ C‖Jpu− u‖

K`
β(Ω)

Using again (4.16), we obtain (4.15).

4.e Boundary correctors

We finally need (elementwise) boundary correctors to implement Dirichlet boundary conditions
in the discrete spaces. For our application to Maxwell, we only need to cancel the first trace
u
∣∣
∂Ω

. Thus, we do not address a more general theory.

We assume that we have constructed a family of interpolants(Jp) according to (4.11) and
that, moreover,(I1)-(I5) hold for a d ≥ 0 and thatp ≥ 2. Then, in particular,Jp is zero on
Tp ∪ Lp−1 and takes values in the spaceV p

nod(O
p).

Let K ∈ Op with at least one edgea contained in∂Ω. Let B be the set of remaining edges
of K . Since in the terminal layersTp ∪ Lp−1 the interpolant is already zero, no correction
is needed there. ForK ∈ Op−1 , let V p

a; nod(K) be the image underJp
K of the space{v ∈

C ∞(K) ; v
∣∣
a

= 0}. The next definition is in the same spirit (but simpler) as thedefinition of
the interface correctors.



24 hp -FEM FOR THE WEIGHTED REGULARIZATION OFMAXWELL EQUATIONS

Definition 4.10 A boundary corrector for the interpolantJp
K is an operatorBp

K : V p
a; nod(K) →

W p
K satisfying the algebraic condition(I6) and the stability condition(I7):

(I6) For all v ∈ V p
a; nod(K), the functionw := Bp

Kv satisfies

w
∣∣
a

= v
∣∣
a

and ∀b ∈ B, ∀α, |α| ≤ d, ∂αw
∣∣
b
= 0.

(I7) With B̆p
K = H∗

KB
p
K(H∗

K)−1 , there hold the uniform estimates

‖B̆p
K v̆‖Hd+1(K̆)

≤ C inf
{
‖v̆ − z̆‖

H`(K̆)
| z̆ ∈ H

`(K̆) with z̆
∣∣
ă

= 0
}
.

Note that the conditions on the edgesb ∈ B ensure that the extension by zero
◦
Bp

K of Bp
K

defines an operator which takes its values inC d(Ω). Note also that, sincea is contained in∂Ω,
so does not belong to any active setA(P ), the interface correctorsRp

P never modify the traces
on a.

We obtain again a similar statement to Proposition 4.5:

Proposition 4.11 Under the above hypotheses for anyβ ∈ R and v ∈ V p
a; nod(K), we have the

estimate

‖Bp
Kv‖K

d+1

β (K)
≤ C inf

{
‖v − z‖

K`
β (K)

| z ∈ H
`(K) with z

∣∣
a

= 0
}
. (4.17)

5 Exponential convergence

We are going to list the properties required thehp-subspacesXp so that the Galerkin solutionup

to the discrete problem (1.5) converges exponentially to the solutionu of the Maxwell problem
(1.3) (or equivalently (1.1)). Throughout, an admissible weightγ (i.e. such that (1.4) holds) for
the weighted regularization is fixed.

In the next section, we give three classes of concrete constructions for such discrete spaces,
based on different chains of discrete elementary subspacesand interpolants satisfying the con-
ditions (I1)-(I7). All examples are such thatN := dim Xp = O

(
p3
)
.

Let for each integerp ≥ 2 the two chains of elementary subspaces and interpolants

{
V p

(0),K , Πp
(0),K , W

p
(0),K , Z

p
(0),K , R

p
(0),P , B

p
(0),K satisfy(I1)-(I7) with (4.5) ford = 0

V p
(1),K , Πp

(1),K , W
p
(1),K , Z

p
(1),K , R

p
(1),P , B

p
(1),K satisfy(I1)-(I7) with (4.5) ford = 1

(5.1)
such that for allK ∈ Op

gradW p
(1),K ⊂W p

(0),K ×W p
(0),K . (5.2)

Then we set

Xp =
{
v ∈ X

γ
N | ∀K ∈ Tp, v

∣∣
K

= 0, ∀K ∈ Op, v
∣∣
K
∈W p

(0),K ×W p
(0),K

}
. (5.3)
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Remark 5.1 (i) Xp is equivalently defined as the subspace of thev in
∏

K∈Op W
p
(0),K ×W p

(0),K

which are zero onTp , continuous onΩ and satisfyv × n = 0 on ∂Ω.

(ii) Let Φp be the set of theϕ ∈ H
1
0(Ω) in

∏
K∈Op W

p
(1),K which are zero onTp andC 1 on Ω.

Then conditions (5.2) and (5.3) yield

gradΦp ⊂ Xp. (5.4)

Theorem 5.2 Let f ∈ A0(Ω) with div f = 0. Let the family of discrete spaces(Xp) be defined
according to(5.1)-(5.3), where the underlying family of meshesM = (Mp) satisfies conditions
(M0)-(M3). ThenN = dimXp = O(p3) asp→ ∞ and thehp-FE approximationsup defined
in (1.5) converge exponentially to the solutionu of problem(1.3), i.e. there areb, b′, C > 0
independent ofp such that

‖u − up‖
X

γ
N (Ω)

≤ C e−b′p = Ce−b 3
√

N as p→ ∞. (5.5)

PROOF. Corollary 2.8 gives the splittingu = gradϕ+ w (with ϕ ∈ H
1
0(Ω) andw ∈ H

1
N (Ω),

– let us recall thatH1
N (Ω) is the subspace ofH1(Ω)2 with zero tangential trace) together with

the weighted analytic regularity (2.14)

ϕ ∈ Aγ−2−δ(Ω) and w ∈ A−1−δ(Ω), with δ > 0.

We have the energy estimate (2.15)

‖u‖
X

γ
N (Ω)

≤ ‖ϕ‖
K2

γ−2
(Ω)

+ ‖w‖
K1

−1(Ω)
.

Therefore for anyup ∈ Xp in the formgradϕp + wp with ϕp ∈ Φp andwp ∈ Xp we have

‖u− up‖
X

γ
N

(Ω)
≤ ‖ϕ− ϕp‖

K2
γ−2

(Ω)
+ ‖w −wp‖K1

−1(Ω)
. (5.6)

Thus, we are going to chooseϕp ∈ Φp as an interpolant ofϕ andwp as an interpolant ofw .
Using (5.4), we have thatgradϕp + wp belongs toXp and is an interpolant foru.

Defining the boundary corrector

Bp
(1) =

∏

a∈ ∂Ω∩Op−1

◦
Bp

(1),K

with
◦
Bp

(1),K the extension by zero ofBp
(1),K , we modify the interpolant (4.13)

Ĩp
(1)ϕ = Jp

(1)ϕ−Rp
(1)J

p
(1)ϕ− Bp

(1)J
p
(1)ϕ.

Thanks to conditions(I6)-(I7) this interpolant acts fromAγ−2−δ(Ω) ∩ H
1
0(Ω) into Φp and

satisfies the same exponential estimates as in Theorem 4.9. Therefore we obtain forβ = γ − 2
andβ ′ = γ − 2 − δ the exponential estimate (note thatd+ 1 = 2)

‖ϕ− Ĩp
(1)ϕ‖K2

γ−2
(Ω)

≤ C e−bp, with b > 0. (5.7)
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For any edgea ∈ ∂Ω ∩ Op−1 , let τ a be a tangential unit vector toa. Then we can define the
tangential boundary corrector

Bp
(0)w =

∏

a∈∂Ω∩Op−1

◦
Bp

(0),K(w · τ a)

and we modify the interpolant (4.13)

Ĩp
(0)w = Jp

(0)w − Rp
(0)J

p
(0)w −Rp

(0)B
p
(0)J

p
(0)w.

This interpolant acts fromA−1−δ(Ω)∩H
1
N(Ω) into Xp . Again by a modification of Theorem 4.9,

we obtain forβ = −1 andβ ′ = −1 − δ the exponential estimate (nowd+ 1 = 1)

‖w − Ĩp
(0)w‖

K1
−1(Ω)

≤ C e−bp, with b > 0. (5.8)

The inequalities (5.6)-(5.8) yield (5.5).

6 Three concretehp-Element Families

Here we present the two chains of elementary subspaces and interpolants according to require-
ments (5.1)-(5.2) for three different families ofhp-elements for which we verify the conditions
of the preceding convergence analysis. The element families considered consist of(a) rectan-
gular elements on geometric meshes with hanging nodes, or(b) triangular elements on regular
geometric meshes, or(c) bilinearly mapped quadrilaterals on geometric meshes.

In each case, aC 1 conforminghp-interpolant will be be constructed on the geometric mesh
under consideration, implying exponential convergence ofthe correspondingC 0 hp-FEM for
the weighted regularization of Maxwell’s equations. Ourhp interpolants may also be of interest
in approximation of plate and shell problems. Further, our construction ofC 1 -conforminghp
interpolants is flexible:C 1 conforming interpolants on other geometric mesh families,e.g. on
combinations of affine quadrilaterals and triangles, with exponential convergence estimates are
readily constructed with the tools developed here.

Thus, in this section we are going to prove that the generic families of elements quoted above
satisfy conditions (5.1)-(5.2) with suitable choices of elemental polynomial spaces. All our
interpolants are based on the basic tensorial interpolantsΠp

d of the reference square constructed
and studied in§8.b. We note in particular that approximation estimates (8.20) are compatible
with the exponential bound (4.5) of theΨp,k .

For nodal and trace liftings we will use the following familyof polynomials on the standard
interval I = (0, 1): Let d ≥ 0 and i, 0 ≤ i ≤ d. There are (unique) functionsχd,i ∈ P2d+1

such that for allj , 0 ≤ j ≤ d there holds

χ
(j)
d,i(0) = δij and χ

(j)
d,i(1) = 0 . (6.1)

Generic trace lifting from one edge of a reference square or triangle are stated in§8.c and 8.d.
We do more specific constructions here for the interface correctors.
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Figure 4: Composite mesh with hanging nodes

6.a Affine quadrilaterals (rectangles) with hanging nodes

Here we consider affine quadrilaterals in the following restrictive sense:There exists a global
affine mapping which transforms the whole mesh into a rectangular mesh with hanging nodes.
Thus the directional derivatives∂1 and ∂2 are the derivatives along the axes of this global
affine mapping, and, from now on, we work directly on the rectangular mesh. We consider
rectangular elementsK with at most one hanging node per side. The reference elementis the
squareK̂ = (−1, 1)2 .

It is not hard to see that our analysis allows to combine several meshes of this type, plus
additional triangular and quadrilateral elements, under the condition that the matching between
different meshes is done in the unrefined regions, see Figure4. The geometric meshes investi-
gated in [2] are similar.

6.a.(i) Primary interpolants

The elemental spacesV p
(d),K for d = 0, 1 are transported from the same tensor spaceQp on the

reference squarêK .

The interpolantsΠp
(d),K are transported from the interpolantsΠp

d on K̂ constructed in The-

orem 8.5. Since in that case,Π̂p
K coincides withΠp

d , Theorem 8.5 gives immediately property
(I1) combined with the estimate (4.5) of theΨp,k .

6.a.(ii) Interface correctors

We now verify Properties(I2), (I3) in Definition 4.3, and construct the interface correctors of
orderd ≥ 0 on the patchesP ∈ Pp : the discrete spacesW p

(d),K = V p
(d),K here. We are going

to construct the liftingRp
(d),P .
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We note that, by construction ofΠp
(d),K , we have for any subsetP of the meshMp

V p
nod(P ) =

{
w | ∀K ∈ P, w

∣∣
K
∈ V p

K , ∀K,K ′ ∈ P, ∀N ∈ K ∩K ′,

∂j
1∂

k
2w
∣∣
K

(N) = ∂j
1∂

k
2w
∣∣
K ′

(N), 0 ≤ j, k ≤ d
}
. (6.2)
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Figure 5: Two patches in geometric mesh with hanging nodes and notation

It is sufficient to consider two types of patches shown in Fig.5. Denote byaj,k the edges of
elementKj , k = 1, 2, 3, 4.

• PatchP = (K1, K2) of two elements

The two elementsK1 and K2 share an entire, active edgea ∈ A, say, a = a1,1 = a2,1 .
The inactive edges (i.e. where the lifting of the jumps across a will have no influence) are
b ∈ B = {aj,k : j = 1, 2, k = 2, 3, 4}. Denote byN1, N2 the endpoints ofa, ∂a = {N1, N2}.
For anyV (0) ∈ V p

nod(P ), the tangential derivatives∂`
τ of the normal jumps[∂k

nV
(0)]a satisfy by

(8.19) the nodal compatibility conditions at the nodesNj , j = 1, 2

∂`
τ

[
∂k

nV
(0)
]
a
(Nj) = 0 ∀k, ` = 0, . . . , d . (6.3)

To remove the normal jumps ofV (0) acrossa, we make use directly of Proposition 8.6: there
exist polynomialsΦi(x1, x2) such that

∂`
n Φi

∣∣
a

= δi`
[
∂i

nV
(0)
]
a

and ∂`
n Φi

∣∣
∂K1\a = 0, 0 ≤ ` ≤ d .

The lifting Rp
d,P of V (0) ∈ V p

nod(P ) is then given by

Rp
d,P V

(0) :=





−
d∑

i=0

Φi(x1, x2) in K1

0 in K2





(6.4)

and the corrected function

V = V (0) +Rp
d,P V

(0) ∈ V p(Ki), i = 1, 2 (6.5)
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satisfies fork, ` = 0, . . . , d:

∂`
τ

[
∂k

n V
]
a
≡ 0 on a = K1 ∩K2 .

HenceV ∈ C d(K1 ∪K2) andRp
d,P satisfies(I2), (I3) for P = (K1, K2).

• PatchP = (K1, K2, K3) of three rectangles

The three rectangles have two edges in common: an edgea1 = K1 ∩ K2 ∈ A, i.e. a1 =
a1,1 = a2,1 and another edgea2 ∈ A shared by all three elements, say

a2 = a3,2 and a1,2 ⊂ a2, a2,2 ⊂ a2 ,

cf Fig. 5 (ii). The node• in Fig. 5 (ii) is hanging:N0 = a1 ∩ a1,2 ∩ a2,2 . By N1, N2, N3 , we
denote the ends of edgesa1, a2 ∈ A as shown in Fig. 5 (ii).

For u ∈ C∞(P ), defineV (0) ∈ V p
nod(P ) by V (0)|Ki

= Πp
d,Ki

u whered ≥ 0 is a fixed
degree of conformity. ThenV (0) satisfies in eachKi ∈ P the nodal exactness (8.19) of orderd
and the estimates

‖u− V (0)‖
H`(P )

≤ Ψp,k ‖u‖
Hk(P )

0 ≤ ` < k ≤ p (6.6)

with Ψp,k as in (4.5), where Sobolev norms overP are broken. We construct the lifting of class
C d for V (0) on P in three steps and refer to Figure 1, (ii).

(a) Lifting on edgea1 . The jumps[∂k
nV

(0)]a1
across edgea1 satisfy fork = 0, . . . , d the nodal

compatibility conditions (6.3) at the nodesNi , i = 0, 1. For sufficiently largep, [∂k
nV

(0)]a1

may be lifted as in case (i) toK1 by a trace-liftingR(1)
d V (0) ∈ Qp(K1) such that

V (1) :=

{
V (0) +R

(1)
d V (0), in K1, K2

V (0) in K3

(6.7)

is in C d(K1 ∪K2), and such that the values∂α V (0) , 0 ≤ α1, α2 ≤ d, in the nodes ofP are
not changed.

(b) Compatibility atN0 . It will be achieved by modifications ofV (1) in K1, K2 as follows.
By step (a),[∂`

2 V
(1)]a1

≡ 0, ` = 0, . . . , d. Therefore the jumpsJk` := ∂`
2[∂

k
1 V

(1)]a2
(N0) of

V (1) across edgea2 in hanging nodeN0 are well defined fork, ` = 0, . . . , d. For the lifting of
Jk` , we use the polynomialsχi,d ∈ P2d+1 introduced in (6.1) and set

R
(2)
d V (1) := −

d∑

k,`=0

Jk`

{
(−1)kχk,d(−x1)χ`,d(x2) in K1

(−1)k+`χk,d(−x1)χ`,d(−x2) in K2

,

R
(2)
d V (1) := 0 in K3 .

Then by (6.1)

∂i
1 ∂

j
2(R

(2)
d V (1)|K1

)(N0) = −
d∑

k,`=0

Jk,`(−1)k+i δikδj` = −Jij
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andJij is likewise attained by(R(2)
d V (1)|K2

)(N0). Moreover, forj = 0, . . . , d,

∂j
2(R

(2)
d V (1))

∣∣
K1

x2=0
= −

d∑

k,`=0

Jk`(−1)k χk,d(−x1) = ∂j
2(R

(2)
d V (1))

∣∣
K2

x2=0
,

i.e. [
∂j

2 R
(2)
d V (1)

]
a1

≡ 0 on a1, j = 0, . . . , d .

ThereforeR(2)
d V (1) ∈ C d(K1 ∪K2) and∂α R

(2)
d V (1) = 0 for 0 ≤ α1, α2 ≤ d in all nodes of

K1, K2 exceptN0 . Define

V (2) :=

{
V (1) +R

(2)
d V (1) in K1 ∪K2 ,

V (1) in K3 .
(6.8)

ThenV (2) ∈ C d(K1 ∪K2), [V (2)]a2
∈ Pp(ai,2) for i = 1, 2 and for0 ≤ k, ` ≤ d it holds

0 = [∂k
1 ∂

`
2(u− V (2))]a2

(Ni) = −[∂k
1 ∂

`
2 V

(2)]a2
(Ni), i = 0, 2, 3 . (6.9)

(c) Lifting on edgesai,2 . Therefore[∂k
1 V

(2)]a2
is a polynomial of degreep on the piecesa1,2 ,

a2,2 of a2 with ∂`
2[∂

k
1 V

(2)]a2
(Ni) = 0, i = 0, 2, 3, for k, ` = 0, 1, . . . , d. We may therefore lift

[∂k
1 V

(2)]ai,2
separately intoQp(Ki), i = 1, 2, such thatV (2) and its derivatives up to orderd

remain unchanged on∂Ki\ai,2 : call the liftingR(3)
d V (2) and set

V (3) :=

{
V (2) +R

(3)
d V (2) in K1 ∪K2 ,

V (2) in K3 .
(6.10)

ThenV (3) ∈ Qp(Ki), i = 1, 2, 3, V (3) ∈ C d(UP ) andV (3) is given by

V (3) :=

{
(I +R

(3)
d )(I +R

(2)
d )(I +R

(1)
d )V (0) in K1 ∪K2 ,

V (0) in K3

(6.11)

and the interface correctorRp
d,P , given by

Rp
d,P V

(0) :=

{
R

(1)
d V (0) +R

(2)
d V (1) +R

(3)
d V (2) in K1 ∪K2 ,

0 in K3

satisfies(I2).

To verify (I3), we observe that for any edgea in P , we have the trace inequality

‖ϕ|a‖
L2(a)

≤ C ‖ϕ‖
H1(P )

. (6.12)
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SinceR(1)
d V (0) depends only on[V (0)]a1

, we haveR(1)
d V (0) = R

(1)
d (V (0) − z) for any z ∈

C∞(UP ), and get for anyk ≥ d+ 1 with (6.12)

‖R(1)
d V (0)‖Hk(P ) ≤ C

d∑

i=0

‖[∂i
nV

(0)]‖Hk−i(a1)

= C

d∑

i=0

‖[∂i
nV

(0) − z]‖Hk−i(a1)

≤ C ‖V (0) − z‖Hk+1(P ) .

(6.13)

Likewise,

‖R(3)
d V (2)‖Hk(P ) ≤ C ‖V (2) − z‖Hk+1(P ) . (6.14)

ForR(2)
d , we observe that e.g. onK1 for any z ∈ C∞(UP )

‖R(2)
d V (1)‖Hk(K1) ≤ C

d∑

i,j=0

|Jij|

≤ C ‖V (1) − z‖H2d+2(P )

= C ‖V (0) +R
(1)
d V (0) − z‖H2d+2(P )

≤ C
{
‖z − V (0)‖H2d+2(P ) + ‖R(1) V (0)‖H2d+2(P )

}

(6.13)

≤ C ‖z − V (0)‖H2d+3(P ) ,

hence, for anyz ∈ C∞(UP ), 0 ≤ k ≤ d+ 1,

‖R(2)
d V (1)‖Hk(P ) ≤ C ‖z − V (0)‖H2d+3(P ) . (6.15)

With the definition ofV (2) , we get

‖V (2) − z‖Hk+1(P ) = ‖V (1) +R
(2)
d V (1) − z‖Hk+1(P )

≤ ‖V (0) − z‖Hk+1(P ) + ‖R(1)
d V (0)‖Hk+1(P ) + ‖R(2)

d V (1)‖Hk+1(P ) .

Combining this with (6.13) - (6.15), we get

‖Rp
d,P V

(0)‖Hd+1(P ) ≤ C ‖V (0) − z‖H2d+3(P ) . (6.16)

A density argument and a scaling imply(I3).
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6.a.(iii) Corner correctors
We have to define the corner interpolantZp

K , so to satisfy conditions(I4) and (I5). By defini-
tion, Zp

K is zero for anyK in the terminal layersTp ∪ Lp−1 . It remains to defineZp
K for any

K ∈ Lp−2 , so that the extension ofZp by Πp in Op−2 takes its values inV p
nod(O

p). According
to (6.2), this means that the nodal values∂j

1∂
k
2w(N), 0 ≤ j, k ≤ d, have to be uniquely defined

for anyK containingN .

Let u ∈ C ∞(Ωp) and letK ∈ Lp−2 . If K does not intersect anyK ′ with K ′ ∈ Lp−3 , we
setZp

Ku = 0. If not, let N be those verticesN which K shares with elementsK ′ ∈ Lp−3 ,
and letM be the set of the remaining nodes ofK . For anyp > 2d + 1, definew := Zp

Ku as
unique Hermite interpolant inQ2d+1(K) such that

∀N ∈ N , ∂j
1∂

k
2w(N) = ∂j

1∂
k
2u(N) and ∀N ∈ M , ∂j

1∂
k
2w(N) = 0, 0 ≤ j, k,≤ d.

The stability ofZp
K in H

2d+2(K̂) is obvious.

We then defineJpu according to(I4) by extendingΠp by Zp in Lp−2 ∩ Lp−1 ∩ Tp . Since
condition (M0) gives the separation between layersLp−3 and Lp−1 , the whole construction
above yields an elementw = Jpu which belongs toV p

nod(O
p) as required.

6.a.(iv) Boundary correctors
Let a be an edge contained in∂Ω and letK be the element containinga. We have to define
the lifting operatorBp

K satisfying(I6) and (I7). If K belongs toTp ∪ Lp−1 , nothing is to be
done, since the interpolantJp

K coincides withZp
K which vanishes there. Let nowK belong to

Op−1 andu ∈ C ∞(Ωp) ∩ H
1
0(Ω). We setw := Jp

Ku andϕ := w
∣∣
a
. Let N1 andN2 be the

endpoints of edgea.

If K belongs toOp−2 , Jp
K = Πp

K . Therefore, by (8.19), fori = 1, 2:

ϕ(j)(Ni) = ∂j
τu(Ni), j = 0, . . . , d. (6.17)

Sinceu
∣∣
a
≡ 0, we find thatϕ(j)(Ni) = 0, j = 0, . . . , d, which is condition (8.21). Thus,

Proposition 8.6 yieldsΦ0 definingBp
Kw with suitable trace properties and stability inH

d+1(K̂).

If K belongs toLp−2 , Jp
K is now defined as in the section above. IfNi belongs toN , then

(6.17) still holds, thereforeϕ(j)(Ni) = 0. If Ni belongs toM , ∂j
τw(Ni) is zero by construction

for j = 0, . . . , d. Thus we can end the construction as before.

6.a.(v) Conclusion
With W p

(d),K = Qp(K) for d = 0, 1, we check immediately property (5.2), i.e. the embedding
of gradW p

(1),K into W p
(0),K ×W p

(0),K . This ends the verification of all our axioms in the case of
rectangles with hanging nodes.

6.b Conforming parallelograms and triangles

We consider meshesMp formed with parallelograms and triangles, affine equivalent to the
reference elements, and we assume that they are conforming,that is, that the intersection of two
distinct elements is either empty, one node, or an entire edge. This case was already considered
in [29]. We show here how this case fits our axioms. Moreover the condition we will introduce
on triangles is simpler as inloc. cit., and generically always satisfied. We assume that(Mp)
satisfies(M0) − (M3).
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6.b.(i) Primary interpolants

• Parallelograms.Like in the rectangular case, the elemental spacesV p
(d),K for d = 0, 1 are

transported from the same tensor spaceQp on the squarêK . Again we takeW p
(d),T = V p

(d),T .

But now, whereas ford = 0 the interpolantΠp
(0),K is still transported from the interpolant

Πp
0 on K̂ , for d = 1 the interpolantΠp

(1),K is transported from the interpolantΠp
2 on K̂ ,

ensuring in particular the nodal interpolation for all verticesN of K

∂α(Πp
(1),Ku)(N) = ∂αu(N), ∀α, |α| ≤ 2. (6.18)

Theorem 8.5 gives immediately property(I1) combined with the estimate (4.5) of theΨp,k .

• Triangles.All trianglesT ∈ Mp are affine images of the reference elementS2 . We assume
that for eachk ≥ 0 and eachT ∈ Lk there is a parallelogramKT sharing three common
corners withT and such that

KT ⊂
⋃

T ′ ∈Lk ∪Lk−1

T ′.

Note that such an assumption is generically satisfied since the “width” of the layerLk−1 is larger
that the width ofLk , which is itself larger than the diameter ofT . In the above assumption, it
is of course understood thatKT does not itself belong toMp . Moreover, it is not assumed that
KT \ T belongs toMp (in other words, the fourth node ofKT does not need to be a node of
Mp ).

We omit the subscriptT on KT if its relation to triangleT is clear. ThenT = FT (S2),
K = FK(I2). As a consequence of assumptions(M1) − (M3) there exists a fixed integerM
such that for allT ∈ Op , the number of elementsT ′ ∈ Mp having a non-empty intersection
with KT is bounded byM .

We consider only the casesd = 0 and 1, which is sufficient for our application. The
elemental spacesV p

(d),T = P2p(T ) are transported fromP2p(S2) and we takeW p
(d),T = V p

(d),T .
We define the primary interpolants as

Πp
d,Tu := (Πp

2d(u|K ◦ FK)) ◦ F−1
T , d = 0, 1 (6.19)

transported from the interpolation operators (8.18) inI2 for orders0 and 2, – Note that we
need approximation estimates inHd+1 norm. TransportingΠp

d,T back toS2 usingF ∗
T , we find

for û ∈ C∞(I2)

Π̂p
d,T û := Πp

2dû|S2 ∈ Qp ⊂ P2p(S2). (6.20)

As a consequence of the approximation estimate (8.20), we obtain, instead (4.1)

‖û− Π̂p
d,T û‖Hd+1( bT )

≤ Ψp,k‖û‖
Hk( bK)

(6.21)

with the Ψp,k satisfying the exponential bound (4.5). The finite intersection condition above
allows to draw the same consequences from (6.21) than from (4.1).

Since the three nodesN of T are nodes of the associated parallelogramK , condition (8.19)
yields in particular that

Πp
0,Tu(N) = u(N) and ∀α, |α| ≤ 2, ∂αΠp

1,Tu(N) = ∂αu(N). (6.22)
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6.b.(ii) Interface correctors

From now on we equally denote byK parallelogram or triangle elements. The patches consist
of element pairsP = (K1, K2) which share an entire edgea, and whereK1 andK2 can be both
parallelograms, or both triangles, or one of each sort. We agree that ifK1 is a parallelogram,
so isK2 . Thanks to (6.22) the imageV p

(d),nod(P ) of C ∞(UP ) throughΠp
(d)(P ) is

V p
(d),nod(P ) =

{
w | w

∣∣
Kj

∈ V p
(d),Ki

, i = 1, 2, ∀N ∈ K1 ∩K2,

∂αw
∣∣
K1

(N) = ∂αw
∣∣
K2

(N), |α| ≤ 2d
}
. (6.23)

We are going to construct the liftingRp
(d),P . We set, foru ∈ C ∞(UP ),

V (1)|Ki
= Πp

Ki
u, i = 1, 2 .

We detail the proof ford = 1 (for d = 0, it is easier). Denote byn the normal toa pointing
from K1 into K2 . Then forj = 0, 1 the normal jumps

ϕj(s) =
[
∂j

n V
(1)
]
a
(s) ∈ P2p(a), (∈ Pp(a) if K1 parallelogram),

satisfy, by (6.23),
ϕ

(i)
j (s) = 0 s ∈ ∂a, i = 0, 1, 2 − j .

Applying Proposition 8.7 inK1 , with d = 1, if K1 is a triangle, and Proposition 8.6, ifK1 is a
parallelogram, gives a liftingR(2) V (1) in P2p(K1) if K1 is a triangle, and inQp(K1) if K1 is
a parallelogram, such that

V (2) :=

{
V (1) +R(2) V (1) in K1

V (1) in K2

(6.24)

belongs toC 1(UP ).

Remark 6.1 We obtained here an interpolant withC 1 -conformity. It is straightforward, using
a higher order vertex correction and Proposition 8.7, to obtain C d conforming interpolants for
any d > 1.

6.b.(iii) Conclusion

Like in the rectangular case, the corner corrector is constructed thanks to Lagrange and Hermite
interpolants on parallelogramsK or trianglesT : For d = 0 we simply use the Lagrange
interpolantsi0 ⊗ i0 : H

2(K) → Q1(K) on the parallelogram andI1
T : H

2(T ) → P1(T ) on the
triangle, whereas ford = 1 we make use of the Hermite interpolantsi2⊗ i2 : H

4(K) → Q3(K)
on the parallelogram and ArgyrisI5

T : H
4(T ) → P5(T ), which are such that

∂α
(
(i2 ⊗ i2)z

)
(N) = ∂αz(N), z ∈ H

4(K), N node ofK, |α| ≤ 2,

∂α(I5
T z)(N) = ∂αz(N), z ∈ H

4(T ), N node ofT, |α| ≤ 2.

As for the boundary correctors, they rely on Propositions 8.6 and 8.7. Finally the inclusion (5.2)
is obvious.
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6.c Bilinearly mapped quadrilaterals

Here, the elementsK ∈ Mp are images of̂I2 = (0, 1)2 under a bilinear map, i.e.K = FK(I2),
FK ∈ (Q1)2 , or, in coordinates,K 3 x = FK(x̂). The mappingFK is bijective and its Jacobian
is given by

DFK(x̂) =




∂x1

∂x̂1

∂x1

∂x̂2

∂x2

∂x̂1

∂x2

∂x̂2


 . (6.25)

Its determinant,JK(x̂) = det DFK(x̂) is an affine function of̂x .

In order to obtain aC 1 continuoushp-interpolant, we need to impose a geometric condition
on the mappingsFK . To state it, consider a patchP = (K+, K−) of two elements sharing edge
a as shown in Figure 6. IfJ+ , J− denote the Jacobians of the element mapsFK+

, FK−
, we

assume that there is a constantρ 6= 0 such that

J+|ba = ρ J−|ba . (6.26)

This condition does not hold for arbitrary bilinear elementmaps. We have

Lemma 6.2 Consider two elementsK+, K− sharing a common edgea as shown in Figure 6.
If the quantitiesa±, b± shown in Figure 6 satisfya+/b+ = a−/b− , then condition(6.26)holds.

Denoting byxK the center ofK and byHK(x) the homothety from Section 3.b, we have
for the semi-reference element̆K = H−1

K (K) that FK = HK ◦ F̆K where F̆K ∈ Q1(K̂)2 is
independent of the diameter of elementK , and it holds

JK(x̂) = det DFK(x̂) = det DHK det DF̆K .

Moreover, there existsγ > 0 independent ofK ∈ Mp and ofp such that

∀x̂ ∈ Î2 : γ−1 ≥ detDF̆K(x̂) ≥ γ > 0 . (6.27)

We assume below that we are in a semi-reference patch and omitthe “̆ ” from all quantities.

6.c.(i) Primary interpolants
The elemental approximation spaces at the leveld = 0 are

V p
(0),K = W p

(0),K = {v = v̂ ◦ F−1
K : v̂ ∈ Qp(Î2)} , (6.28)

and the corresponding interpolant is

Πp
(0),Ku :=

(
Πp

2 (u|K ◦ FK)
)
◦ F−1

K (6.29)

with Πp
2 as in Section 8.b below.

For the leveld = 1, we define moreover the spaces

V p
(1),K = {v = v̂ ◦ F−1

K : v̂ = J3
K v̂; v̂ ∈ Qp−4} .

W p
(1),K = {v = v̂ ◦ F−1

K : v̂ = J2
K v̂2 + J3

K v̂3, v̂2 ∈ Qp−2, v̂2 ∈ Qp−4}.
(6.30)

There holds
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Lemma 6.3 It holds
grad W p

(1),K ⊂W p
(0),K ×W p

(0),K .

PROOF. It holds, with ∂̂i = ∂
∂bxi
, ∂i = ∂

∂xi
,




∂x̂1

∂x1

∂x̂2

∂x1

∂x̂1

∂x2

∂x̂2

∂x2







∂̂1

∂̂2


 =

(
∂1

∂2

)
= (DFK)−1,>(x̂)




∂̂1

∂̂2


 .

For v = v̂ ◦ F−1
K , we havew = grad v = ŵ ◦ F−1

K with

ŵ = (DFK(x̂))−1,> ĝrad v̂ =
1

JK(x̂)
MK(x̂) ĝrad v̂

whereMK ∈ (P1)4 . For v̂ = J j
K v̂j , v̂j ∈ Qp−j , we find

ĝrad v̂ = J j
K ĝrad v̂j + j J j−1

K (ĝrad JK) v̂j

and hence forj ≥ 2 that

ŵ = J j−1
K MK ĝrad v̂j + j J j−2

K MK (ĝrad JK) v̂j .

If v̂j ∈ Qp−j , this expression shows that̂w ∈ (Qp)2 .

We define the elemental interpolantΠp
(1),K through a modification ofΠp

(0),K . We set first

P p
(1),Ku := J3

K Πp−4
(1),K(uJ−3

K ) , (6.31)

and we modifyP p
(1),K so to satisfy nodal interpolation properties of order2. Note thatP p

(1),K

has the same approximation properties asΠp
(0),K , i.e. (4.2) holds also forP p

(1),K . We cocatenate

P p
(1),K with a Hermite interpolantI5

K such that for anyu ∈ C 2(K),

I5
Ku has the formJ3

Kv with v = v̂ ◦ F−1
K and v̂ ∈ Q5(Î2)

and there holds for all nodesN of K

(
∂αI5

Ku
)
(N) =

(
∂αu

)
(N), ∀α, |α| ≤ 2 .

Finally we set
Πp

(1),K = P p
(1),K − I5

K ◦ P p
(1),K . (6.32)

Using the approximation properties ofP p
(1),K and the stability ofI5

K , we see that(I1) holds.

6.c.(ii) Interface correctors

Let P = (K+, K−) be a patch. We denote byJ+, J− the Jacobian determinants ofFK+
, FK−

.
We are in the situation shown in Fig. 6.
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The spacesV p
(d),nod(P ) are like in (6.23). Letz ∈ C∞(UP ). Since the cased = 0 is

standard, we fixd = 1 and construct in two steps aC 1 -lifting of

V (1) := Πp
(1)(P )z.

fig6.2.eps
165 × 54 mm x̂1

K̂+

x1

x̂2

1

N̂1

â

1

−1

a

b+

N1

a+

a−

FK+

b−

x2

K−

K+

N̂0

K̂−

(ii)(i)

N0

FK−

Figure 6: PatchP = (K+, K−) of two bilinearly mapped quadrilaterals sharing an edgea, and
reference patcĥP = (K̂+, K̂−)

(a) Lifting of
[
V (1)

]
a
. Writing V (1)

± = V (1)|K±
, we have

V
(1)
+ ◦ FK+

= J3
+ V̂

(1)
+ , V

(1)
− ◦ FK−

= J3
− V̂

(1)
− ,

with V̂
(1)
± ∈ Qp−4 . Noting thatFK+

|ba = FK−
|ba , we construct the liftingR(1) of [z − V (1)]a in

the reference patcĥP , for convenience. We have

[
V

(1)
+ − V

(1)
−
]
a
◦ FK±

|ba =
[
J3

+ V̂
(1)
+ − J3

− V̂
(1)
−
]

ba
.

Under assumption (6.26) then

[
V

(1)
+ − V

(1)
−
]
a
◦ FK+

|ba = J3
+

[
V̂

(1)
+ − ρ V̂

(1)
−
]

ba
,

and, sinceV (1) belongs toV p
(d),nod(P ), the jump[V̂

(1)
+ − ρ V̂

(1)
− ]ba vanishes to order two at̂N0

andN̂1 .

Let χ̂(x̂1) ∈ P5(0, 1) satisfy χ̂(j)(0) = δ0,j and χ̂(j)(1) = 0, j = 0, 1, 2. Then we define

R(1) V (1) =

{ (
J3

+(V̂
(1)
+ − ρ V̂

(1)
− )(x̂1, 0) χ̂(x̂2)

)
◦ F−1

K+
in K+ ,

0 in K−
(6.33)

and set
V (2) := V (1) +R(1) V (1) . (6.34)
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By construction,V (2) ∈ C0(UP ), and we have still

Dα V (2)(Ni) = (Dαz)(Ni) for i = 0, 1, |α| ≤ 2 . (6.35)

(b) Lifting of
[
∂x2

V (2)
]
a
. By (6.27), the mapsFK±

are nondegenerate inK± and the
directional derivatives∂x2

, ∂bx2
are nontangential to edgea. With

V
(2)
± ◦ FK±

= J3
± V̂

(2)
±

we have

(∂x2
V

(2)
+ ◦ FK+

)|ba = J2
+(p+,1 ∂bx1

V
(2)
+ + p+,2 ∂bx2

V
(2)
+ ) + J+ p+,3 V

(2)
+ (6.36)

and

(∂x2
V

(2)
− ◦ FK−

)|ba = J2
−(p−,1 ∂bx1

V
(2)
− + p−,2 ∂bx2

V
(2)
− ) + J− p−,3 V

(2)
− . (6.37)

In (6.36), (6.37),p±,1 andp±,2 are linear andp±,3 are quadratic polynomials in̂x1 .

We construct now the liftingR(2) V (2) such that

R(2) V (2) ∈W p
K+,2 , R(2) V (2) = 0 in K−,

∂x2
(R(2) V (2))|a = [∂x2

V
(2)
+ − ∂x2

V
(2)
− ]a ,

R(2) V (2)|a = 0

Dα(R(2) V (2))|b = 0 |α| ≤ 1, b ⊂ ∂K±\a .

(6.38)

This lifting will be obtained withV̂ (2) ∈ Qp−2 such that

R(2) V (2) ◦ FK+
= J2

+ V̂
(2) (6.39)

and such that

V̂ (2)|ba = 0 (6.40)

Dα V̂ (2)|bb = 0 |α| ≤ 1, b̂ ⊂ ∂K+\â ,

and (6.38) holds, i.e.

∂j
x2

(R(2) V (2))|a = δ1j [∂x2
V

(2)
+ − ∂x2

V
(2)
− ]a j = 0, 1. (6.41)

SinceV̂ (2)|ba ≡ 0, ∂bx1
V̂ (2)|ba ≡ 0 and it follows from (6.36) and (6.39) that

(∂x2
R(2) V (2)) ◦ FK+

|ba = J+ p+,2 ∂bx2
V̂ (2) . (6.42)

Sincep+,2 = ∂x1

∂bx1

∣∣
bx2=0

∈ P1(a) is independent of̂x1 , p+,2 = const 6= 0 on â . Using assump-

tion (6.26), we find from (6.36) and from (6.42) the followingequation for∂bx2
V̂ (2) :

J+ p+,2 ∂bx2
V̂ (2) = J2

+(p+,1 ∂bx1
V̂

(2)
+ + p+,2 ∂bx2

V̂
(2)
+ ) + J+ p+,3 V̂

(2)
+

− ρ2 J2
+(p−,1 ∂bx1

V̂
(2)
− + p−,2 ∂bx2

V̂
(2)
− ) − ρJ+p−,3 V̂

(2)
− .

(6.43)
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SinceV̂ (2)
± ∈ Qp−4 , (6.43) reads

J+ p+,2 ∂bx2
V̂ (2) = J+ ĝ(x̂1), ĝ ∈ Pp−2(â) , (6.44)

and we have
(∂α ĝ)(N̂i) = 0, i = 0, 1, |α| ≤ 1 . (6.45)

We set

V̂ (2) =

{
(p+,2)

−1 ĝ(x̂1) χ̂(x̂2) in K+ ,

0 in K̂−
(6.46)

whereχ̂(ξ) ∈ P5(â) satisfiesχ̂(j)(0) = δ1,j and χ̂(j)(1) = 0, j = 0, 1, 2.

ThenR(2) V (2) defined in (6.39), (6.46) satisfies (6.40), (6.41) andâ, b̂ ⊂ ∂K̂+, ∂K̂− , and,
since also∂j

bx1
(J+ ĝ)(N̂i) = 0 for i, j = 0, 1, we have(∂j

x1
ĝ)(N̂i) = 0 for i, j = 0, 1. Then it

follows that
Dα V̂ (2)(N̂) = 0 |α| ≤ 2 for all nodes ofK̂+, K̂− ,

andR(2) V (2) in (6.39), (6.46) satisfies all conditions (6.38) and also(DαR(2) V (2))(N̂) = 0

for |α| ≤ 2, N̂ node ofK+ . �

6.c.(iii) Conclusion

The corner and boundary correctors are constructed with thesame technique as in 6.c(i) for the
primary interpolants. All our axioms are then satisfied.

7 Concluding Remarks

In the present paper, we have proved exponential convergence of conforminghp-FE approxi-
mations for the weighted regularization of the time-harmonic Maxwell equations in polygons.
Let us conclude by emphasizing some points from the technical discussion of the preceding
sections.

We assumed that the exact bilinear form of the weighted regularization (1.3) for Maxwell’s
equations can be computed in ourhp-FEM – a rather strong assumption since the element stiff-
ness matrices contain the possibly non-polynomial weight functionrγ . Constraining thehp-FE
approximations to vanish in the terminal layer, using mesh axiom (M3 ) and the coercivity of
the bilinear form in (1.3), a Strang-type perturbation argument together with classical error es-
timates for Gaussian quadrature of analytic functions shows that the exponential convergence
rates are preserved even in the presence of numerical integration by product Gaussian rules with
a (fixed) amount of overintegration.

Our ‘hp-axiomatic approach’ contains a simple construction ofhp-interpolation operators
in the terminal mesh layers which vanish identically there.This eliminates the necessity for
error bounds of low order interpolants in the terminal layerby Hardy-type inequalities.

Thehp mesh and element classes admissible in the present convergence analysis are – even
when considered for standard elliptic boundary problems – more general than those previously
given (e.g in [27, 28]). In particular, thehp-convergence results in [27, 28] are special cases
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of our Axioms on meshes and local polynomial spaces. TheC 1 -conforminghp-interpolant on
bilinearly mapped quadrilateral meshes which is needed in the approximation of the potentials
implies also exponential convergence of thehp-FEM for the biharmonic problem on mapped
quadrilaterals in 2-d. The construction ofC 1 -conforminghp-interpolants on nonaffine, bilin-
early mapped geometric meshes of quadrilaterals is, to our knowledge, new and implies expo-
nential convergence ofhp-FEM for Kirchhoff type plate models. This generalizes whathas
been known for triangular meshes [29].

Moreover, the results arenot limited to geometric meshes of type a), b) and c) – in fact, our
proof technique gives exponential rates of convergence also on geometric mesh families with a
mixture of any of the above element types, as e.g. triangles and bilinearly mapped quadrilater-
als, of triangles and affine quadrilaterals with hanging nodes. Our concept of ‘semi-reference
elements’ allows also to treatcurved boundariesfor domains which are parametrized by a fixed
number of analytic patch maps stemming, for example, from NURBS-type CAD models of the
computational domain. This is confirmed by numerical experiments in [23].

8 Appendix: polynomial interpolants and trace liftings

We gather in this section the technical material relating toprojection operators and trace liftings
in polynomial spaces necessary for the proof of the previousresults. This material mainly comes
from [29, 34].

8.a Polynomial approximation results in one dimension

Let Î = (−1, 1) andp ≥ 0 be a polynomial degree andPp the set of all polynomials of degree
at mostp in Î . We have the following basic approximation result [34], Theorem 3.3.

Lemma 8.1 i) Every u ∈ L
2(Î) can be written as Legendre series

u(x) =

∞∑

n=0

unLn(x), un =
2n+ 1

2

∫ 1

−1

u(x)Ln(x)dx , (8.1)

which gives sense to the operatorπp defined as the truncated Legendre series

(πpu)(x) =

p∑

n=0

un Ln(x) ∈ Pp . (8.2)

ii) If u ∈ H
k(Î), k ≥ 1 integer, then there holds the estimate

‖u− πpu‖2
L2(bI)

≤ (p+ 1 − k)!

(p+ 1 + k)!
‖u(k)‖2

L2(bI)
, 0 ≤ k ≤ p+ 1 . (8.3)

Let d ≥ 0 be an integer. We need a projection operatorπp
d which is stable inHd+1 norm

(and satisfies error estimates for this norm too) and which keeps unchanged the traces in±1 up
to the orderd. We start by defining the restrictioñπp

d of πp
d to H

d+1
0 (Î). We recall that

∀u ∈ H
d+1
0 (Î) : (Dju)(±1) = 0, j = 0, . . . , d . (8.4)
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Sinceu(d+1) ∈ L
2(Î) we can definẽπp

du as

(π̃p
d u)(x) :=

∫ x

−1

∫ x1

−1

. . .

∫ xd

−1

πp−d−1 u(d+1)(xd+1) dxd+1 dxd . . . dx1 . (8.5)

It is obvious that(Djπ̃p
du)(−1) = 0 for j = 0, . . . , d. Integrating by parts on̂I and using

(8.4) we find thatu(d+1) is orthogonal toPd , therefore, ifp− d− 1 ≥ d, πp−d−1 u(d+1) is also
orthogonal toPd . Integrating by parts in (8.5) withx = 1, we can deduce that(π̃p

d u)(1) = 0.
We prove similarly that the other derivatives in1 are zero:

∀u ∈ H
d+1
0 (Î) : (Dj π̃p

d u)(±1) = 0, j = 0, . . . , d . (8.6)

We reduceu ∈ H
d+1(Î) to a functionH

d+1
0 (Î) by means of the Hermite type interpolantid :

Lemma 8.2 Let d ≥ 0 be an integer. For everyu ∈ H
d+1(Î) there exists a uniqueidu ∈ P2d+1

such that
(Djidu)(±1) = (Dju)(±1), j = 0, . . . , d . (8.7)

The operatorid is stable inH
d+1 norm:

‖idu‖Hd+1(bI) ≤ Cd ‖u‖Hd+1(bI) . (8.8)

This follows directly from the unisolvency of the conditions (8.7) for interpolation inP2d+1 .

Let u ∈ H
d+1(Î). We set forp ≥ 2d+ 1:

πp
du := idu+ π̃`

p(u− idu) . (8.9)

Let us denoteu − idu by ũ for short. Sincẽu belongs toH
d+1
0 (Î), ũ − π̃p

d ũ also belongs to
H

d+1
0 (Î) and the Poincaré inequality yields

‖Dj(ũ− π̃p
d ũ)‖L2(bI) ≤ Cd ‖ũ(d+1) − (π̃p

d ũ)
(d+1)‖

L2(bI), j = 0, . . . , d+ 1 . (8.10)

Thus we find that for a constantCd independent ofp there holds

‖Dj(ũ− π̃p
d ũ)‖2

L2(bI)
≤ C2

d ‖ũ(d+1) − πp−d−1(ũ(d+1))‖2
L2(bI)

≤ C2
d

(p− d− k)!

(p− d+ k)!
‖ũ(k+d+1)‖2

L2(bI)

(8.11)

for 0 ≤ k ≤ p− d, where we used (8.3) with̃u(d+1) in place ofu andp− d− 1 in place ofp.
Sinceu− πp

du = ũ− π̃p
d ũ, we then obtain ford < k ≤ p− d:

‖Dj(u− πp
du)‖2

L2(bI)
= ‖Dj

(
(u− idu) − π̃p

d(u− idu)
)
‖2

L2(bI)

≤ C2
d

(p− d− k)!

(p− d+ k)!
‖Dk+d+1(u− idu)‖2

L2(bI)

≤ C2
d

(p− d− k)!

(p− d+ k)!
‖u(k+d+1)‖2

L2(bI)

sincek ≥ d+ 1 andD2d+2 idu ≡ 0. We have shown
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Theorem 8.3 Let d ≥ 0. Then, for anyp such thatp ≥ 2d + 1 there exists an interpolantπp
d

from H
d+1(Î) into Pp such that

Dj(πp
du)(±1) = Dju(±1), j = 0, . . . , d (8.12)

and such that there hold the error estimates anyk such thatd < k ≤ p− d

‖u− πp
du‖2

Hd+1(bI)
≤ C2

d

(p− d− k)!

(p− d+ k)!
‖u(k+d+1)‖2

L2(bI)
. (8.13)

We finally record a stability bound for the interpolantπp
d .

Proposition 8.4 For p ≥ 2d+ 1 there isCd > 0 independent ofp such that

‖πp
du‖Hd+1(bI) ≤ Cd ‖u‖Hd+1(bI) . (8.14)

PROOF. Thanks to (8.9) we obtain

‖πp
du‖Hd+1(bI) ≤ 2‖π̃p

d(u− idu)‖Hd+1(bI). (8.15)

Moreover (8.8) gives us

‖u− idu‖Hd+1(bI) ≤ (1 + C1
d) ‖u‖Hd+1(bI) . (8.16)

Sinceπ̃p
d(u− idu) ∈ H

d+1
0 (Î), we get with the help of the Poincaré inequality

‖π̃p
d(u− idu)‖Hd+1(bI) ≤ C2

d ‖Dd+1 π̃p
d(u− idu)‖L2(bI)

= C2
d ‖πp−d−1

(
Dd+1(u− idu)

)
‖

L2(bI)

≤ C2
d‖Dd+1(u− idu)‖L2(bI) ≤ C2

d ‖u− idu‖Hd+1(bI) .

We conclude with inequalities (8.15) and (8.16).

8.b Polynomial approximation in two dimensions

Polynomial approximations in two dimensions will be obtained by tensor product construction:
Set K̂ = Î1 × Î2 in what follows and denote byπp

d,1 , πp
d,2 the interpolation operators in (8.9)

applied with respect tox1, x2 . Define also forp ≥ 0

Qp = span{xi
1 x

j
2; 0 ≤ i, j ≤ p} = Pp(Î1) ⊗ Pp(Î2)

and the Sobolev spacesH`(K̂) of functions with mixed highest derivative,` = (`1, `2),

H
`(K̂) = {u ∈ L

2(K̂) : Dαu ∈ L
2(K̂ 2), 0 ≤ αi ≤ `i} . (8.17)

equipped with the norm‖u‖2
H`( bK)

=
∑

0≤αi≤`i
‖Dαu‖2

L2( bK)
.

Obviously, for every integer̀ ≥ 0, we have the embeddingsH2`(K̂) ⊆ H
`,`(K̂) ⊆ H

`(K̂) ,

and for` ≥ 1 we have the continuity propertyH`,`(K̂) ⊂ C `−1(K̂).



§ 8. APPENDIX: POLYNOMIAL INTERPOLANTS AND TRACE LIFTINGS 43

We define foru ∈ H
d+1,d+1(K̂) andp ≥ 2d+ 1

Πp
du := (πp

d,1 ⊗ πp
d,2) u ∈ Qp . (8.18)

Then we have

Theorem 8.5 For any d ≥ 0, p ≥ 2d + 1, Πp
d is well defined and bounded fromHd+1,d+1(K̂)

into Qp . Moreover, for0 ≤ j1, j2 ≤ d holds

(D(j1,j2) Πp
du)(±1,±1) = (D(j1,j2)u)(±1,±1) , (8.19)

and we have for anyk1, k2 such thatd < k1, k2 ≤ p − d and for anyu ∈ H
k1+d+1,k2+d+1(K̂)

the following error estimates with a constantCd independent ofk1, k2 and ofp:

‖u− Πp
d u‖2

Hd+1,d+1( bK)
≤ Cd

{
(p− d− k1)!

(p− d+ k1)!
‖∂k1+d+1

1 u‖2
H0,d+1( bK)

+
(p− d− k2)!

(p− d+ k2)!
‖∂k2+d+1

2 u‖2
Hd+1,0( bK)

}
.

(8.20)

PROOF. By (8.18), we may write forj = (j1, j2) such thatj1, j2 ≤ d+ 1 (with ‖ ◦ ‖ denoting

the L
2(K̂) norm) and using the univariate bounds (8.13) and (8.14)

‖Dj(u− Πp
du)‖2 = ‖∂j1

1 ∂
j2
2 (u− id1 ⊗ πp

d,2 u+ id1 ⊗ πp
d,2u− πp

d,1 ⊗ πp
d,2u)‖2

≤ 2
{
‖∂j1

1 u− πp
d,2(∂

j1
1 u)‖2

H0,j2( bK)
+ ‖∂j2

2 πp
d,2

(
∂j1

1 u− ∂j1
1 (πp

d,1u)
)
‖2
}

≤ 2‖(id2 − πp
d,2)(∂

j1
1 u)‖2

H0,j2 ( bK)
+ 2Cd‖∂j1

1 (u− πp
d,1u)‖2

H0,d+1( bK)

≤ Cd

{
(p− d− k2)!

(p− d+ k2)!
‖∂j1

1 ∂k2+d+1
2 u‖2 +

(p− d− k1)!

(p− d+ k1)!
‖∂d+1

2 ∂k1+d+1
1 u‖2

}

which proves (8.20).

8.c Polynomial trace lifting in a square

We present polynomial trace liftings from [29]. The construction is based on the polynomials
χd,i ∈ P2d+1 introduced in (6.1).

Proposition 8.6 Let S = (0, 1)2 and a = {(x1, 0) : 0 < x1 < 1}. Let us fix an integerd ≥ 0
and fix i, 0 ≤ i ≤ d. Let for p ≥ 2d+ 1 a polynomialϕi(x1) be given inPp(a) such that

ϕ
(j)
i = 0 on ∂a = {0, 1}, 0 ≤ j ≤ d . (8.21)

Then there exists a polynomialΦi(x1, x2) of degreep in x1 and of degree2d + 1 in x2 such
that

∂i
n Φi

∣∣
a

= ϕi , ∂j
n Φi

∣∣
a

= 0, ∀j 6= i, and ∂j
n Φi

∣∣
∂S\a = 0, ∀j = 0, . . . , d. (8.22)

Moreover, there isCd > 0 independent ofp such that the following estimate holds

‖Φi‖Hd+1(S) ≤ Cd ‖ϕi‖Hd+1(a) . (8.23)
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PROOF. We setΦi = χd,i(x2)ϕi(x1). Then (8.22) holds and (8.23) follows from the equality
‖∂a Φi‖L2(S) = ‖∂α1

1 ϕi‖L2(I)‖∂α2

2 χi,d‖L2(I) .

8.d Polynomial Trace Lifting in a triangle

The lifting in a triangle is obtained as in [29].

Proposition 8.7 Let T = {(x1, x2) : 0 < x1 < 1, 0 < x2 < x1} and leta be its lower edge
{(x1, 0) : 0 < x1 < 1}. For a fixedi, 0 ≤ i ≤ d let ϕi ∈ Pp(a) be given,p ≥ 3d, such that

ϕ
(j)
i (0) = 0 for 0 ≤ j ≤ 2d− i (8.24)

ϕ
(j)
i (1) = 0 for 0 ≤ j ≤ d . (8.25)

Then there existΦi(x1, x2) of degreep in x1 and of degree2d+ 1 in x2 such that

∂i
n Φi

∣∣
a

= ϕi , ∂j
n Φi

∣∣
a

= 0, ∀j 6= i, and ∂j
n Φi

∣∣
∂T\a = 0, ∀j = 0, . . . , d, (8.26)

and there isCd > 0 independent ofp such that

‖Φi‖Hd+1(T ) ≤ Cd ‖ϕi‖Hd+1(a) . (8.27)

PROOF. Set Φi(x1, x2) = xi
1 χd,i(

x2

x1
)ϕi(x1). By (8.24),ϕi(xi) = x2d−i+1

1 ψi(x1) for some
ψi ∈ Pp−2d+i(a), and thereforeΦi(x1, x2) is a polynomial inx1 andx2 . The first part of (8.26)
is evident, and the second part follows from (6.1):

∂j
n Φi

∣∣
a

= ∂j
2 Φi(x1, x2)

∣∣
x2=0

= xi
1 ϕi(x1)x

−j
1 χ

(j)
d,i(0) = δij x

i−j
1 ϕi(x1) .

To show (8.27), note that for any0 ≤ j ≤ d+ 1

‖∂j
2 Φi(x1, x2)‖L2(T ) = ‖xi−j

1 χ
(j)
i

(x2

x1

)
ϕi(x1)‖L2(T ) .

and similar expressions for any derivative∂αΦi . By (8.24),ϕi ∈ H
d+1
0 (I), and (8.27) follows

from Hardy’s inequality inHd+1
0 (I).
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CH 8092 Zürich, SWITZERLAND.


