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Abstract.

The time-harmonic Maxwell equations do not have an elliptiture by themselves. Their regu-
larization by a divergence term is a standard tool to obtaguigalent elliptic problems. Nodal
finite element discretizations of Maxwell’'s equations ot&d from such a regularization con-
verge to wrong solutions in any non-convex polygon. Moditiosof the regularization term con-
sisting in the introduction of a weight restores the coneaice of nodal FEM, providing optimal
convergence rates for thie Version of Finite Element$21]. We prove exponential convergence
of hp FEM for the weighted regularization of Maxwell's equatidnsplane polygonal domains
provided thehp-FE spaces satisfy a series of axioms. We verify these af@meveral specific
families of hp finite element spaces.

Introduction

0.a FEM discretizations of Maxwell equations

When applied to the discretization of boundary value pnoisl@ssociated with standard el-
liptic equations such as Laplace’s equation or the systeeiasticity, the convergence of the
Finite Element Method (FEM) is well understood by now, intmadar for two-dimensional or
three-dimensional domains with corners and edges. Loweargewce rates caused by edge and
vertex singularities can be overcome by a variety of tealsgsuch as isotropic or anisotropic
algebraic mesh refinement (Version of FEM), increase of the polynomial degree (spéctra
methods orp Version of FEM), or a combination of both, more precisely,doymbiningge-
ometricmesh refinement with an increase of the polynomial degre&his latter method is
known as thehp Version of FEM and was introduced byaBUSKA et al. [4, 9, 10, 35]. We
know from [5, 6, 27, 28] and [34] that, when the boundary of tfsenain and the data are
piecewise analytic, thép Version of the FEM gives approximate solutions to elliptiolgems
with exponential convergence rateBhis means that the error is divided by an asymptotically
constant factor as the polynomial degyess increased byt , whereas the numbey of degrees
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of freedom is bounded by a power pf(namely,p? in 2D). In two dimensions, the error has
the ordere~t ~ ¢~*¥N with a positive constari.

Time-harmonic Maxwell equations form a system of ordeand, by themselves, do not
exhibit standard ellipticity. There are two main strategie discretize them by FEM, see the
survey papers [30, 22]. The first one enforces the divergéeeeconstraint with the help of
a Lagrange multiplier and requires the use of special coitripgbolynomial bases and inter-
polants, respecting the commuting diagram propertieedf\lEC and R\IART-THOMAS el-
ements, known as edge elements). The second strategyomassthe Maxwell system into
an elliptic system of Helmholtz equations by “regularieati, which consists of adding in
the variational formulation a divergence term,v) — (divu,divv) to the usual curl term
(u,v) — (curl u, curl v). The new bilinear form is coercive on the spate of electric fields
u with square integrable curl and divergence, satisfyingpidect conductor boundary con-
dition u x n = 0 on the boundary of the domain. Thus the discretization byitefalement
method based on nodal elements appears promising, and pliesiose and analysis than the
edge elements.

In practice, nodal discretizations of the Maxwell equasi@re suitable only for regular
domains or at best for convex polygons or polyhedra. Inddeithe domain has reentrant
corners or edges, the subspaceddffields in Xy is closed inXy, without being dense, see
[18, 24, 20]. Since any discrete conforming space based danalad nodal finite element
method is contained iH', nodal FEM converges in this situation in general to a wranigtion,
see [19].

Nevertheless, a slight modification of that method restidsefill efficiency and accuracy:
In [21], CosTABEL-DAUGE introduced a positive weight in the divergence term whicaiaot
alter the equivalence properties with the original Maxvpetiblem, but enlarges the associated
energy space. They proved that there exist weight funcgorthat the subspace of continuous
functions is now dense in the enlarged energy space regttirenpossibility of Galerkin dis-
cretizations in electromagnetics based on nodal finite etesn In [21] it was also demonstrated
that nodalh Version FEM converge with optimal rates in the weighted gnepace.

Numerical experiments [23] for the source problem as wefbashe eigenvalue problem
were first performed with the FE library 8INA [32], combining geometric mesh refinement
towards the corners with simultaneous increase of the pofyal degree of the approxima-
tion. These numerical experiments showed exponentialergence well-known fohp-FEM
applied to standard scalar second order elliptic equatibhs experiments [23] were corrobo-
rated by computations with thigp-FE library CONCEPTS[26] using conforminghp-FEM on
geometric meshes of quadrilaterals with hanging nodess fEtised hope that the exponential
convergence of nodalp-FEM for scalar problems could be transferred to Maxwellattpuns
via weighted regularization.

The main task of the present paper is to prove that this is faea wide range of contin-
uous, nodahyp finite element familieg,,, xp)p>1 based on geometric mesh®$, and local
polynomial approximation spaceg,, we prove exponential convergence rates of the Galerkin
approximationau,, to the solutionu in the weighted energy norms.

The reason why judicious combinations of polynomial degiaed geometric mesh refine-
ment give exponential convergence rates is the same asfetahdard elliptic operators inves-



tigated in [5, 6]: The asymptotics of the solution at a coiisex linear combination of terms of
the formr®(6). But, whereas for “standard” problems investigated in [3hé& exponentx

is always> 0, for Maxwell problems in non-convex domains,is < 0 (but still > —1) at any
reentrant corner. The weight which we use in the reguladmas thenr” with —a < v < 1.
The structure of the weight is thus similar to that of the siagties and combines perfectly
with the fundamental properties ap-FEM.

One of the main difficulties with nodal FEM for Maxwell’'s egiems is the strong singular-
ity of the solutions. It is known that the most singular p#ie(nonH! contribution correspond-
ing to negative exponents) can be written in the form of the gradient of a singular pt&n
For finite regularity, this is the BRMAN-SOLOMYAK decomposition ([12], see also [21, 17] in
weighted spaces). Our exponential convergence proof fallyao data relies on generalizing
the Birman-Solomyak decomposition to weighted analyteaces.

Our hp-FEM is based on a coercive formulation in spaces for whiehaimbedding into
L2 is compact. Therefore, thanks to standard tools (Céa Lemooa approximation results
and the analytic regularity yield exponential convergesfddaxwell solutions at any fixed fre-
quency. Moreover, as a direct consequence of the classitalages of [8], we can derive also
exponential convergence ap-FEM approximations to Maxwell eigenvalues and eigenvscto

This is in contrast to the situation with edge elements, wlag@proximation estimates have
to be combined with the proof of tlilscrete compactness propewich is not obvious for the
p Version [14, 13]. The price to pay for circumventing the déte compactness in our analysis
is the construction of &' hp-interpolant. We emphasize that is merely a technicalitpuof
proof for a discrete analog of the Birman-Solomyak decontjoos but has no influence on the
hp-FE discretization which only uses nodal, Lagrangi@hinterpolants.

The hp Version FEM for edge elements is now widely used in pracsee, [1, 33] for ex-
ample. It has not yet been thoroughly analyzed from a theaitgtoint of view for the Maxwell
equations, however. A step in that direction is [2] whereaggntial convergence is proved
for Raviart-Thomas elements when approximating a scalptaca equation in mixed form.
If combined with our result on an “analytic Birman-Solomyd&composition”, the approx-
imation result of [2] can provide exponential convergermgards Maxwell solutions in the
coercive case (e.g. in the presence of a non-zero condygtivi

0.b Plan and scope of the paper

We will concentrate on the following model situation: Thentin (2 is a not necessarily convex
polygon with corners: and openingss. < 27. The Maxwell source problem consists in find-
ing u € L%(Q)? with curlu € L%(Q), divu = 0 andu x n = 0 on 92 such thatcurl curlu = f
wheref is a divergence free field with analytic regularity. We pastp the analysis of thep
FEM in three dimensions — the basic functional results ofglvead regularization leading to
the convergence of thie Version are proved for three-dimensional polyhedra in [21]

In Section 1, we give a brief account of the weighted regaédion introduced in [21]. Next,
in Section 2, we study analytic regularity for our Maxwellimalary value problem on polygons.
The main result in Theorem 2.7 and Corollary 2.8 gives a dgomition of the solution into
a “regular” part and a gradient containing the main corneguiarity. The regularity of both
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the regular part and the potential of the gradient are cheniaed in terms of weighted analytic
spaces.

The subsequent part of the paper is devotedtdinite element convergence analysis. It
is divided into an abstract part comprising Sections 3, fhdbaspecific part with applications
in Section 6. The abstract part axiomatizes mesh and deglegtisn principles sufficient for
exponential convergence for the specific exampldgoFE spaces that we have in mind. These
examples include the main classes of finite elements magidraly used imp methods:

(a) Rectangles with hanging nodes, a@é polynomials,
(b) Conforming parallelograms and triangles, usip andP? polynomials respectively,
(c) Non-affineQ! quadrilaterals with mappe@” polynomials.

Verification of the abstract axioms for these specific exasd done in Section 6.

The unified treatment of these (and other) examples reqaiitegain degree of generality in
the hypotheses of the abstract part of our error analysigaweot stay within the framework of
“affine families of finite elements” where the polynomial spa on the elements are generated
from one polynomial space on the reference element. Fordheaffine quadrilaterals, approx-
imation spaces on an element are generated from polynopaaks on the reference element
that are proper subspaces@f and depend on the element. We do not, however, try to present
a framework that is more abstract and general than striettgssary.

In Section 3, we introduce the axioms to be satisfied by thalizsmof meshes, and in
Section 4, those relating to the elementwise spaces anghatétion operators. At each level,
global exponential estimates are derived from generid lstamates, if applied to functions in
suitable weighted analytic spaces. In Section 5, the axmmithe families of discrete spaces
for the weighted regularization are introduced and the roamvergence result (Theorem 5.2)
is immediately derived. In Section 6, we exhibit the differénterpolation operators corre-
sponding to concrete situatio(e), (b), and(c). The proofs of the local estimates rely on more
technical results (some of them “classical”), which we hgathered in the appendix Section 8.
We draw some conclusions in Section 7.

In this work, we assume for simplicity that the polynomiabdee p of the elements is
constant throughout the geometric meBt,. We point out, however, that all our proofs and
results carry over to the case of linearly increasing palyiabdegree vectors with positive slope
(see e.g. [34]). Our analysis simplifies even more in theltar around the corners, where
our interpolant vanishes identically, thereby avoiding #malysis of low order interpolants in
weighted spaces in these elements.

The abstractp convergence framework presented in this paper simplifegtbof of ex-
ponential convergence also in other situations becausesfilit into different estimates which
are proved independently, inside separate modules. Fandine interesting and difficult case
of three-dimensional polyhedra, it can serve as a strategtheé convergence analysis of the
hp-FEM. The main difficulty that will have to be overcome in thel 8ase is the precise descrip-
tion of the analytic regularity of solutions of “standardligic problems as well as Maxwell’s
equations on polyhedral domains. This analytic regulastgvailable for 2-d problems, but
has only partially been analyzed for 3-d problems [27, 2&other difficulty in the 3-d case
are anisotropic estimates (see [3, 16]) that are needed mieh refinements lead to strongly
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anisotropic meshes. In two dimensions, we can excludeganisotropy and stay in the frame-
work of shape-regular elements.

1 Weighted regularization

The domain( is a Lipschitz polygonal domain if®? and the Cartesian coordinates are=
(r1,12). Let Ho(curl; ) be the subspace df fields u = (u1,uz) in ©Q such that cunh €
L2(Q2) (with curlu = dyuy — Gyuy ) andu x n = 0 on 9Q (with n the unit outward normal field
to 002). The source problem reads: givere L*(Q2) := L%(Q2)? with divf = 0,

find u € Ho(curl; Q) with divu=0:
Vv € Ho(curl; ), / curlu curlv dz = / f-vde., (1.1)
Q Q

Let X (€2) be the subspace df,(curl; Q2):
Xn(Q) := {u € Ho(curl ;Q) | divu e L*(Q)}.
Thenu solves (1.1) if and only iis solves

Find u e Xy () :
Vv € Xy (Q), / curlu curlv +divu divv dz = / f-vde. (1.2)
Q Q

The variational formulation (1.2) allows to prove the egiste and uniqueness of solution and,
moreover, to determine the singularitiesitohear the corners d?, see [20].

Let € be the set of the cornersof (2 andr. the distance function te. Let w. denote the
interior opening angle of? at vertexc. Let v = (v.) .., be a multi-exponent and denote by
rY the weight function

Y — 3 Ye
r7 =minrg (x).

The regularization with weight consists in introducing in the definition of the variational
space and formulation: Let

X% (Q) == {u € Ho(curl ;Q) | r7divu € L*(Q)},

o B ) . 1/2
with its norm||u||x7v(m = (HUHLz(Q) + [ eurlulfy, o) + H”d'VUHLz(Q)) :

2
L2(Q
The corresponding variational formulation is

Find u € X} (Q) :

Y e X (Q), / curlu curlv + r"divu r?divv dz = / f-vdz. (1.3)
Q Q

From theX} (£2)-coercivity of the bilinear form, we get existence and ueigess of a solution
of (1.3), and there holds, [21]
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Theorem 1.1 (i) For any multi-exponent = (7.) ., With 7. € [0, 1], the fieldu solveg(1.1)
if and only if u solveq1.3).

(i) For any multi-exponenty = (.) .., such that
Vee?d, 0<v and 1—7/w.<7.<1, (1.4)
the spaceH},(Q2) of H! fields with tangential boundary conditiondgnsen X7,(€2).

The finite element method for the weighted regularizatiomsggts in Galerkin approxima-
tion based on finite dimensional subspa@&sof X7 ():

Find u, € X7 :

Vv, € XP, / curlu, curlv, + r7divu, r7divv, dz = / f-v,de. (1.5)
Q Q

By Céa’s lemma we have

Hu_up||x’]7v(g) S O||u_vp||x’]7v(g)7 vvp exp‘ (16)

We are going to construct a class of families of finite elenagpiroximation space(sxp)
so that

peN

e The dimension of¢” is O (p?®),

e We have an error estimatpn — u, ||, , @ < Ce~* with C, b > 0 independent op,
N,
provided the datd has certain analyticity properties.

2 Analytic regularity

The error analysis of our method is based on two principles:

1. The decomposition = w + grad ¢ of the solution into a regular part and a gradient, in
the style of BRMAN-SOLOMYAK [11]. Note that this is not a Hodge or Helmholtz type
decomposition whera is represented by means of a vector and a scalar potential. Th
latter would not provide the required additional reguiarit

2. The use of weighted analytic function spaces of the typBaifuSka-Guo’s “countably
normed spaces” [5].

In [21], the error analysis of the Version FEM was similarly based on the Birman-Solomyak
decomposition and regularity in weighted Sobolev spacé€arbitrarily high but) finite order.

As usual for Maxwell's equations, we will obtain our regutarresults as corollaries of

better known results for the Laplace operator.
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2.a Corners

We gather in this section the notations relating to the gennod the domain which will be
used all over the paper. We recall that we denot&bthe set of the corners of 2 and byw,.
the opening of? in ¢. By %, we will denote the set of non-convex cornerf (2 for which

we > m. The set%, can be empty in the case of a convex polygon. In this case,nélgss
will simplify, because we will not need the Birman-Solomyddcomposition. Geometric mesh
refinement is generally needed also towards convex comarieve exponential convergence.

We also introduce an open coverifi@, ©.) of {2 separating the corners:

Q=00ul O, : (O.),, mutuallydisjoint, Vee?, (cc®. andc¢6p). (2.1)

ce?

We will further need a “larger” covering®y, ©,) defined as follows: For any cornerlet ©,

be a neighborhood such th@, containsc and no other corner. We assume tk¥t is larger
than ©., which means that there exist two neighborhoddscc ¥/ of ¢ in R? such that
O. =7.NQand O, = 7/ N Q. In a similar way, there exist open setg CC 7, disjoint

from ¢ such thato, = 7, N Q and©) = 7 N 2.

Let I'. andT’y denote the respective parts of the boundarg2of
FczﬁQﬂ@c and FOZaQﬂ@O
and let us define similarly’, andI’, relating to®©;, and©;,.

2.b Spaces
We first recall some definitions of weighted spaag#g§31]. Let 3 = (3.) € RI?l be a multi-
exponent andn a non-negative integer and let., 6.) be polar coordinates centereddn

For anyv € 2'(€2) we define the semi-norm

= 2 Be+|a| Ha 2 1/2
g = ('“‘Hm@oﬁZ > o vHLg(@C)) . 2.2)

cEC |al=m

The weighted spac&7 (2) is the space ob € 2'(Q2) such that for allk, 0 < k < m, the
semi-norm|v\Km(Q) is finite.
B
Note that any derivative)* is continuous fromKj  (©2) into KZL_“"(Q). Moreover
K (€2) is contained ilH™(Q) if and only if 3 < —m (i.e. 3. < —m for any cornerc).
We also need the corresponding trace spaces. FovanyZ(R? \ &) (i.e. with support
outside the set of corners) we define the semi-norm

_ 2 Bet+m qm, |2 1/2
Whegion = (g + 22 1770 ) (2.3)

ceE?
and the spack7; (992) is the closure of7(R*\ %) for the norm( ", . ‘“ﬁgmm )1/2. Note
that for positive non-integes, K3(052) can be defined by interpolation and the trace operator

is continuous fromK?y_, ,(Q2) into K ~'/*(92).
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The analytic weighted spadegs(2) is the space of €
4C' >0, Vm >0,

men K (€2) such that

|U‘K}§‘(Q) < C™ ) (2.4)

and the trace spacks(0€?) is the space ob € ()
v < C™Himl.

K7 (092) such thatBC' > 0, ¥m > 0,

meN
K (09)
Thus the derivativé® is continuous fromAg_ |, (€2) into Ag(£2) and the trace is continuous
from Ag_1,2(€2) into Ag(052).

We will also use the localized version of these spaces in aaghborhoodo..: then we
only need one weight. and definek}; (©.), Ag, (6.) in the natural way.

The following result gives the analytic weighted regulanf corner singular functions:

Lemma 2.1 Let v € R and ¢ an analytic function on0,w.]. Then the function(6..)
belongs toA_;_4.(0.) forall 5. < v.

The spaced\s(Q2) are related to the space;(Q2) of BABUSKA-GuO [5]. If 0 < 3 < 1,
Ag(2) coincides withBj(€2), whereas for-1 < 3 < 0, Ag(2) coincides withBj,, ().
Finally, for =2 < # < —1, Ag(Q) is a closed subspace &f;,,(2) and differs from it by
constants at the corner points.

2.c Shift theorem

Let L be a properly ellipticN x N system of second order, homogeneous with constant co-
efficients. LetBy,..., By be homogeneous boundary operators of orders. .., my with
constant coefficients on each edge(bfsatisfying the Shapiro-Lopatinski covering condition
for L. Then, combining a dyadic partition &, and analytic type a priori estimates between
pairs of nested annular domains together with an homogeargjtimentcf [15], we can prove
(we use the notations @R.a)

Theorem 2.2 Letu € K?_(O,)" satisfyLu € Ay, 5(0,)" and Byu € Ag, 4, +1/2(T,). Then
uc Agc (@c)N.

Corollary 2.3 Letu € K3(Q)" satisfy Lu € Ag ()" and Byu € Ag i, +1/2(0Q). Then
uc A’@(Q)N

We could apply this result to the Maxwell solutianof problem (1.1) iff belonged to an
analytic space, sa¥(2)2. Indeed, from the equivalent formulation (1.2), we can be¢ud is
solution of the elliptic boundary value problem, withthe diagonal Laplace operator:

Lu=—f in Q, uxn=0, divu=0 on 99Q. (2.5)

Using the results of [20], we find that the strongest singtylaf u at the cornerc has the
exponentr = 7/w. — 1, and, hence, thai belongs to the weighted spad¢’ 5(12) for any
B = (Bc) with 0 < 5. < min{2, 7/w.}. As each component df belongs toA,(2) which is
contained inA_g,5(12), the shift theorem yields that belongs toA_5(£2)2.

But the space\_s(©2)? is not a subspace of the variational spa&g;((2) for any relevant
choice of~, because the curls of its elements do not belorigt{€)) in general. That is why we
have to take advantage of a splittingwin the form of a singular gradient part and a “regular”
part.
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2.d The Dirichlet problem for the Laplace operator

Consider a right hand sidg € K° ;(Q) for § € [0,1) (for § = 0 in particular f € L*(Q)) and
the solutionu of the Dirichlet problem

“Au=f in Q,  ueH(Q). (2.6)

T /we

Denote byS. ; the singularities'” sin(kmf./we), k € N, of problem (2.6) at the corner.
From KONDRAT' EV [31], we obtain a decomposition af at each cornee € ¢

(U - Z dc,kSc,k> o

k>1
k7 /we<140

€K’y 5..(0s) V>0 (2.7)

c

(here s can be omitted if no exponeritr /w. equalsl + ¢). The coefficientsd., depend
continuously onf € K°;(Q). In particular, for§ = 0, u|, belongs toK?,(6.) C H*(O.)

if ¢ is aconvex corner, ant — dc15¢1 belongs tok?,(0.) if ¢ is a non-convex corner,

o
i.e.c € %,.. Leton be defined as

. . T 2T
da = min {1 , cg;\r}ﬁ* (w—c — 1) , min (w—c — 1)} (2.8)
For anyd € [0,0A), if f € K°5(Q), “‘@c belongs toK?, (©.) if ¢ is convex, andu —
de1Sen) |, belongs tok?, 5(©,) if not.

We obtain a global decomposition af on the whole domairf2 by an extension of the
singular fgnctions: Lety. be a smooth function which is 1 in ©. and= 0 outside©’,. Let
us defineS,. by extendingy.S.1 by zero outside®’,. Then

V6 €[0,6a) and feK',(Q),  u— deiSc€ K2, 5(9). (2.9)

ce %*

We easily check tha$,. belongs toKz_l_B(Q) for any 8 with 0 < . < min{2, 7/w.}. But of
course,S,. is not analytic insidé?2. That is why we need a proof for

Lemma 2.4 For any ¢ € %,, there exists a functiors. € H}(Q2) which also belongs to
A_i_g(2) forany 8 = () with 0 < 8. < min{2, 7/w.}, such that for anyy € [0,04):

() AS. € A_s(Q),

(i) (Se = Sea) o, € K225(0c),

(iii) For any cornerc’ # ¢, Sc}@d € K2, 5(0y).

PROOF  The functionS. belongs toKil_ﬁ(Q), satisfieq(ii)-(iii) and the relaxed version of
(i) : AS, € L2(Q).
Let us embed? in a square?, extendA S, by zero and denote this extension fyy. Let <™

be the L?(Q) projection of f. on the spacé&)”(Q) of polynomials of partial degreg n and
let =" € H(2) be the solution of the Dirichlet problem ™ = <" \Q
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As wc'”} — AS, in L2(Q2) asn — oo, thenp®i™ — S, in the domain ofA. Therefore the
coefficientsd, | such that

ve' € 6., (p" —dg TS, e € H(O0)

O

satisfy asn — oo

dgi — 1 if c=c and d]—0 if #e¢

c,

Therefore forn large enough, the matrifd;, 1)
exists for eacte € %, alinear combination

it e, 1S non-singular. For such an, there

Se = Z AC inpein suchthat V' e %, Z )\C””dﬁ:/,f = 0c; e
/€y c/€Cx
Since AS, is a polynomial on(2, it belongs toA_(2) for any 6 < 1. We easily check the
other propertiegii)-(iii) . Finally, we can see thai.. belongs tok?, ;(Q) forany 8 = (5.)
with 0 < 8. < min{2, 7/w.} . SinceAS. belongs toA_;(€2) which is contained irA;_z(£2),
the shift theorem gives the analytic regulary;_s(2) for S.. [ |
As a corollary of Lemma 2.6 and of the shift theorem we obtain

Proposition 2.5 For all 6 € [0,64) and for all f € A_5(£2) there holds:

w— Y de1Se € Ap_s(9).

cECy

2.e Principal singularities of Maxwell solutions

Let f € L*(Q) with divf = 0, and letu be the solution of problem (1.1) (or, equivalently,
of problem (1.2)). In [20] the singularities at the cornefSbare described thoroughly: For
c € ¢ the associated Maxwell singular functions are the gradiehthe Laplace singularities

grad S, and other fieldsT,. ;. of the form /e gy (6.), — note thatgrad S., has the form
e p(00).
For u as above, there exist coefficients; and d.; such that (here and below, we use
boldface letters for spaces of vector functions)

(U— Z dckzgradsck_ Z d. chk>

k>1 k>1
k/we<2 kr/we<1

€K, (0, Ve>0. (2.10)

C

The singularitiesgrad S..;, belong toKQ_ﬁC(G)C) for 8. < km/w.. The singularitiesT.
belong toKz_l_ﬁc(G)c) for 8. < kr/w.. Thus we check that al§rad S.. for £ > 2 or for

k =1 whenc ¢ ¢, and allT., belong toK2_1_5(Q) foranyd, 0 < § < 0a. Thus we deduce
from (2.10) that

cK?, 5(0,) if cc%, (2.11)

c

Vo € (0,0a), (u —d. grad Sql) .
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andu|, €K?, ;(©.) otherwise.

Settingy := ... de1 Se (With S, the functions defined in Lemma 2.4) we have obtained
a global version of (2.11) on the whole domdin

Lemma 2.6 Let f € L?(Q) with divf = 0, and letu be the solution of probler(L.1). There
existsp € Hy(©2) which also belongs tA_, () for any 8 = (f.) with 0 < 3. <
min{2, 7 /w.} such that

Vo € (0,65), u—gradp € K*, ;(9Q).

2.f  Analytic regularity of Maxwell solutions

The main result of this section is the regularitywfwhen f belongs to the analytic weighted
spaceAy(1).

Theorem 2.7 Let f € Ay(Q2) with divf = 0. Then the solutiom of problem(1.1) splits as
u=grady +w with ¢ e HNA_; () and weA_; 4(Q) (2.12)
forany 8 = (5.) with 0 < . < min{2, 7/w.} and for anys € (0,04).

PROOFE The existence and regularity ¢f is known from Lemma 2.6. Lef be the diagonal
Laplace operator. Recall that solves problem (2.5). Thanks to prope(tyin Lemma 2.4,
Ap € A_5(Q). We obtain that_w = f — grad Ay belongs toA; _;(2). Moreover,w satisfies
the same essential boundary conditionsiase. w x n = 0 on 92 and, since diw = —A¢y,
divw }89 belongs toA%_g(aQ). Sincew already belongs t&?, ;(Q), the shift theorem yields
thatw € A_;_5(Q). [

Thus the main singularities are written as a gradient, heir tcurl is zero. This idea can
already be found in [11], but its application in the framekvof weighted analytic spaces is
new.

Let us fix a weighty convenient for the weighted regularization: — 7/w. < 7. and
7e € [0,1], cf (1.4). The main property of such an exponent is tHat= 1 — ~ satisfies the
conditions of Theorem 2.7, therefoye belongs toA,_»(2). Thus, for a Maxwell solutiom
satisfying the splitting (2.12), there holds

< HSOHK372(Q) + HWHHl(Q)
<

HS0HK2{72(Q) + HWHKl_l(Q) '
We have obtained

Corollary 2.8 Let~ be a weight satisfyinfl.4). Let 6., be the positive numbesf (2.8).

5, = min {5A . min (= 4 7o — 1)}. (2.13)

¢ “We
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Letf € Ay(Q2)? with divf = 0. Then the solutiom of problem(1.1) splits as
u=gradp +w  Wwith peH NA, » 5(Q) and weA_; Q) (2.14)
foranyé € (0,0,). Moreover we have the estimate of the energy norin of

Remark. If we takey = 1, we haved, = a.

3 Geometric meshes

We address in this section the principles which have to hisfeat by the geometric meshes
on which hp-FEM spaces are constructed. Our definitions are so geretalaver geometric
meshes arising in practice and, in particular, all earlgfinitions given e.g. in [29, 9, 10, 7]
and the references there. Geometric meshes based on atipf@srare realized in [25]. Not all
meshes satisfying the axioms of this section will be suité our hp approximation schemes,
however: implicit conditions on the mesh stemming from tR®@s on function spaces and
interpolation operators of Section 4 below may have to beosegd. In some cases, the algebraic
and analytic conditions on thiep-FE spaces can lead to conditions of purely geometric nature
on the mesh. An example for this is Lemma 6.2 below for biliyemapped, quadrilateral
elements.

We illustrate our definitions by three examples of geometrshes on a L-shaped domain,
in Figures 1, 2 and 3 corresponding to three categdeggb), and(c) of hp-FE spaces, re-
spectively, for which we eventually give complete proofs.

3.a Meshes and layers

From Theorem 2.7, we know that fdr € A,(f2) the solutionu is analytic inQ\%. More
precisely, for eachr € Q\%, the analytic Birman-Solomyak decomposition (2.12) ysetldat
the convergence radius of the Taylor seriesnofand ¢ at x can be bounded from below by
a constant times the distance framto 4. As a consequence, in any domain such that
K C Q\¥%, the functionsw and ¢ can be approximated by polynomials of deggeen K
with rate exp(—bp) whereb > 0 depends on theatio of inf,cx r.(z) versusdiam(K). The
principle underlyinghp-FEM is to keep this ratio uniformly bounded from above ankbwe

For this, we consider mesh famili@gt = (imp)peN indexed by the integep which corre-
sponds to the degree of the reference polynomial spacesuahdhat, ap increases tp + 1,
only the “layer” of elements close to the corners is subdidid

We adopt the following conventions.

A mesh9 on Q is a finite set of (open) disjoint elements such thal J ;. K = . Note
that, at this stage, we do not require the “usual” conformatynditions on the intersection of
the elementdy, considering “hanging nodes” as admissible, see belowtiSe®.a.

An elementK € 9 is either a convex quadrilateral with straight sides orangie, hence
K = Fi(I%), with Fie € (Q')*, or K = Fi(5?), with Fic € (P')’
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with Fj a diffeomorphism, and with the reference elemelits- /2 (unit square) ok = S?
(unit simplex).
Each family9)t consists of an infinite sequence of disjoint laygfs p > 0 and an infinite
sequence of nested terminal layé&rs, p > 1 such that for each > 1
e = gougtu...ugrtug?  (disjoint union) is a mesh ofl
(M) Vi>0, VKeg&, VK €& KnK =0,
Vee¥¢, IK €3, ceK

The hypothesis of separation between the lay¥rand £+ is not restrictive. It is introduced
mainly for later convenience.

1 1 g
£1
£2

B | 5

+ T

Figure 1: Mesh of squares with hanging nodes — ¢ake

3.b o-geometric meshes

Now we quantify the properties of the elemetifsrelating to their position with respect to the
corners. For doing this, we fix a coverin@,, ©.) of Q as in (2.1). We denote by the
center of K and byiy the following localization index

If xx belongs toO,, theniy :=0
If xx & Oy, Jc € € unique,rk € O; thenix = c.
Let di be the following distancparameter
If ix =0, thendg =1
If i = c,thendy :=re(zg).
Finally we denote by x the homothet with centerz, and ratiody , that is

Hi(z) =2k + dg(x — 2k)
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£0

£1

£2

£3

14

Figure 2: Mesh with triangle elements — cdbg

and by K the “semi-reference” elemerdt = H;.!(K') with the associated chart
FKI:H[;-IOFK (le FK:HKOFK)

Let ik ; be the coefficients of x and./x be its Jacobian determinadik = det D F.

Definition 3.1 Let 9t = (Dﬁp)peN be a family of meshes with the structuf®l,). Let o €

(0,1). The family 9t is geometriovith grading factoro (* o-family” for short), if there exists
a regularity constant > 1 such that the following condition&;)—(Ms) are satisfied:

(M;)  The family of scaled diffeomorphism@}{) Is a uniform x-family of map-

pings:

KeUp,mw

Jg| >k on K and g <k
(My)  Vp>1,VK €%P, rlo? <dg < ko?.

(M3)  There exists a larger coverin®y, ©.), cf §2.a, of2 such thatvK € U,
If ix =0,thenK C O,
If ix =c,thenK C ©), and
kg < re

< kdg if K e Uj/gj, < kdg if K e Ujgj.

‘K TC‘K

We have written the conditions on the mesh families in théesawvay for their application
to error estimates. It is also interesting to draw consece®nf these conditions on the layers
£/ to figure out the structure of the meshes.
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£0

£1

£2

£3

Figure 3: Mesh withQ! elements (trapezia) — cage.

Let 1 = (imp)peN be ac-family of meshes. Then there existssuch that for allj > j,

and for all K € £’ the intersectionk’ N O is empty. Thus, for alj > j, and for all K € £7,
the localization index of is a cornere and there holds

K207 <, ‘K < k207, (3.1

3.c Patches

The construction ofip-interpolants in Section 4 will be a two-step procedure.hiafirst step,
one constructs a basic interpolant defined elementwiselwhiit in general not satisfy inter-
element continuity conditions. The construction may euart rom a projection operator that
has no pointwise interpolation properties at all and whacthen corrected on the element level
in order to interpolate a certain number of derivatives atrtbdes.

In the second step, conformity, i.e. inter-element coritynis achieved by the construction
of interface correctors that are defined on patches of elenf2ror 3 elements, in general) that
share an interface.

We now define the hypotheses that the geometry of such patdhésave to satisfy.
Definition 3.2
(i) We call patcha subsetP of a meshd)t such that the interiot/» of UxcpK is connected.
(i) Let A be a subset of edges of elemenitsc 2Mi. We say that the patcR is associated with
A If Ugea ais contained inUp.

(iii) For each patchP, we choose a center point- € Up, and define its localization index
and the distance parametés as before for/l'. We also denote by » the homothety of center
xp and ratiodp. [ ]
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For a o-family (zmp)p, we denote byRI? the set of (open) edges of all elementsk €
£0U... U £P2 such thata N 092 = 0.

Definition 3.3 We call admissible famjl of patchesassociated with ther-family (9t) = a
family 3 = (‘Bp)p where for anyp > 2, we have the following properties:

(Py)  For eachp, eachP € ” is a patch of? \ 7, associated with a subset of edges
A = A(P) C 2 so that theA(P) are mutually disjoint an®? is the union of the
A(P).

(Py)  There exists an intege¥ such that for any > 2 and each point: € 2, = belongs
to at mostN different patches” € 3P.

(P;)  There exists a larger coverin®;,, ©..), cf§2.a, of Q2 such thatvP € U, 33?
If ip =0, thenUp C O},
If ip = ¢, thenUp C ©,, and

K ldp <.l < rkdp. -

v
In the situation of standard conforming interfaces betwaelements, for any edge there
exist at most two element& and K’ which sharez, and the patchP associated wittd = {a}
is KUK'. This is the situation for our concrete cagesand(c). In casga), any hanging node
corresponds to a set of three edges, corresponding to a patch of three elements.

4  hp-Interpolants

In this section, we describe the general structure of thetfon spaces and interpolation oper-
ators that will serve to construct the finite dimensionalspates of the energy space used as
test and trial spaces, and analyze their approximationgpti@s in weighted analytic spaces.

We want to construct conforming finite element approxintaiwith error estimates based
on the decomposition (2.14) of the solutiannto a regular partv and a gradiengrad . This
means that we need to consider globally continuous apptioms for bothw and grad ¢.
We shall have to approximatgrad ¢ by gradients, thus requiring’! approximations forp.

Thus we have to construct vector valugd elements and scalas’ elements with the
additional property that the gradients of the latter beltmthe same finite dimensional space
as the former. Note that in the implementatiomptFEM, only the¢”® elements will be used;
the ¢ elements are a purely theoretic tool required by our styadégroving error estimates.

These requirements are specific to our method of approamddr Maxwell's equations
and they demand a certain degree of flexibility and gengralithe hypotheses for the function
spaces and interpolants.

We are going to introduce our collection of axioms in the ontich could be the most
natural for the reader: I1f4.a elementwise interpolants are defined independenthaon & .
This produces a global interpolafi? on 2, but we have to modify it on the element interfaces
(84.b), at cornersgé.c), and, if essential boundary conditions have to be implged, along
the boundary of) (§4.e). The global operatdi” has to satisfy enough nodal interpolation
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properties to allow all the mentioned correctidosally. The first global interpolant has to
satisfy someanalytic type interpolation estimatéa/hich will be proved for our examples in
Section 8), and the various corrections have to sasitfility estimates

4.a Elementwise interpolants

For eachp € N and K € 9, we give ourselves a first approximation spacg of finite
dimension and assume the existence of a linear operator

I, : €°(K) — VE.

In the situation where the elementwise mdps are affine (e.g. our concrete cagasand(b))
we will take V2 as Q¥ on parallelepipedds — the polynomials of partial degrees less than
in the axes directions of{, or P? on triangles — the polynomials of global degree less than
p. In such a situation, it seems simpler and more usual to défmeliscrete spaces and the
interpolants on the reference elemeiitand to push them forward t&" using the element
mapsFy : K — K:

Frtuw— Fru=uo Fg.

But in more general situations than the affine mapped relgargour caséc), we adopt the
converse point of view: We start definifd’, and V. and transport them on the reference
elementK in order to introduce an axiom providing uniform estimatest

Vﬁ:VﬁoFK = F(Vy) and ﬁp}{:F;{HII){(FI?)_l’

L =uoFr and 1.4 = (Ihu) o Fy.

We assume the following approximation estimates in the Bebaorm H, where/ is fixed
(and will be chosen later, see Section 6):

(I,) Foralla € ¥~(K) and for all integett such that! < k < p

|6 — Tl < Uy kfla] (4.1)

HE(K) Hk (K)
where the convergence raig, ;, does not depend ofi .

As a consequence df,), if moreover(M;) holds, we have uniform interpolation error esti-
mates on theemi-reference elements = H;.'(K)

i — etl] e ) < C Wl (4.2)

Hk (K)
with a constantC' independent ori’, p, k£ and

t=uo Hg and 124 = (I5u) o Hg.
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Proposition 4.1 Let the family of meshe®t = (imp)peN satisfy assumption@,), (M;) and
(M3). Let foranyp > 1

or=guglu...ugrt  and =0\ |J K=int( |J K).
Ke%p Keor

We assume moreover that assumptin holds. Foru € €>(QP) let 1P« be defined on each
K € OF by IlPu|,. = I§(u|,). Thenforallg € R and all k with ¢ < k < p, we have the
estimate

[ — TPul|

< CWppffuf (4.3)

Kk or) *
)1/2

KG(OP) —

Here ||v|| is the“broken norm” (3" .o || \K ||K1Z ) the constantC' is indepen-
8

Kg (Or)
dentof K, p, k,and/ and ¥, , are asin(l,).

PROOF Let K belong to©O?. Thanks to assumptiofM), we can freeze the weight on each
element. Then by the homothefy, we transport the norm téx . Here we denote \K o Hg

by 1 . Let us prove first the following equivalence of norms, whitieequivalence constants
do not depend ok, m € N, u € ¥>*(K), 3 € R:

1
el iy = i Nl ) (4.4)
Indeed,
2 al o 12
lllipey = D2 110l
la|<m
2(6+|a a, |12
~ > d VM
lo|<m
a —lo I 2
~ 3T @D @alel g (wo Hi)ll oz,
lo|<m
_ 2(84+1) | qa v 2
lo|<m
~  J2(B+1) 02
~ dy Il i)
Now we use (4.2) and (4.4) twice and obtain
1 o
e = Tyl ey = A i = Tl
1
5 d€(+ P7k||u||Hk(f{)
= \I]p,kH'LLHKg(K)
Squaring this inequality and summing over &alle O?, we obtain (4.3). [ |

If the boundsV¥, ;, have the special form (4.5), the exponential convergenteefoa hp
methods follows immediately (Corollary 4.2). This spedain for the ¥,, ,, will be verified
for our examples ofhp-FE spaces in Section 8.
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Corollary 4.2 Under the assumptions of Propositiérl on the meshes and interpolation oper-
ators, we suppose moreover that the constanis in estimatg4.1) have the following bounds:
There exists a constant> 0 such that

(p — k)!
(p+ k)

Then for anyu in the analytic weighted spac®;(2) we have the exponential convergence of
the interpolation error

(W) < Vp, k>0, k<p. (4.5)

[l = TTPul|

ko) = Ce™™ with b>0 independentop. (4.6)

PROOF Combining (4.3), (4.5) with (2.4) we obtain foramy ¢ < k < p

(p—k)!
(p+ k)

2
Kf (or

= TPull%, o) < (R

By Stirling’s formulan! ~ n"e="v/27n there exist$ > 0 such that

—k)! — kY~ kR — —k/ Sk \2k
2k '2(p k)' < 2%k (p k)p k® k _ p k\p
HE) (p+ k)~ ’ (p+ k)ptk (p—l-k:) <p—|—k;) ‘

Choosingk = p/(d + 1), we obtain
2% (1.1)2 (p —k)! _ Ok Pk ok * 5 \p(+5ir)
CHE) (p+k)! <(6+2)k> (((5+2)k> <5+2> ‘

(+517)/

2
we have proved (4.6). [ |

With b := — log <5fr—2)

4.b Interface correctors on patches

With the elementwise defined spadés and operators$l;, we associate broken spaces of func-
tions (discontinuous in general) on patche®r on the whole domaif, and the corresponding
interpolation operators:

Let P = (i]:ip)peN be an admissible family of patches. Let> 2 and P € 3P. We define

¢>(P)= ] ¢*(K) and V*(P)= ][] VZ.
KeP KeP

These spaces are subspace&d{Up), where we recall thal/» is the interior ofUxcp K .

From our family of interpolantsI, : ¥>°(K) — V£ we define the interpolation operator
II7(P) := [];cp Iy which acts fromé>(P) into V?(P). The spaces>(Up) is a sub-
space ofg>°(P). Likewise, we define the interpolation operai®t(©”) on the setO” of non
terminal elements (we recall tharr = U gt u...u grt).

We denote by/? (P) and V? ,(9O?) the image of6>(Up) and €>°(Q) by II*(P) and
[1P(OP), respectively:

VE.(P)=1P(P)(¢*(Up)) and V!

nod nod

(D7) = P (D7) (€ (). 4.7)
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In the typical case where the basic interpola]ﬁ% interpolate some derivatives at the corners
of the reference domain, the elementd4f, will satisfy corresponding matching conditions at
the nodes of the mesh. They will, in general, still be distcardus across the edges, however.
We will achieve interelement continuity by constructinggiriace correctors.

Let A = A(P) be the set of (open) edgeswhich is associated with the patdh, and let
B be the remaining set of edgéof elementsik’ € P. Since for alla € A, a is contained in
Up, all the edges contained m/p belong toB. For a two-element patch in particulat is
exactly the set of edges containedltip .

Each “active” edge: € A runs between two elements of the pateh hence for any €
VP(P), thejump [v], of v acrossa is well-defined.

The application of interface correctors possibly incredbe degree of the local polynomial
spaces. To allow for such an increase, we admit a secondyfafrspacesV;. > V. together
with the following axioms on local interface correctors:

Definition 4.3 An interface correctoof orderd > 0 for the family of interpolantIT}.) on
the patchP € BP consists of

e discrete spacel/’;; OV} on eachK € P,

e anoperatoR}, : VP (P) — WP(P) =[] x.p W} for the correction of jump$v], on each
edgea € A, satisfying the algebraic conditigii,) and the stability conditiorls):

(I,)  Forallv e V! (P), the functionw := R}v satisfies

Va € A, Va, |a| <d, [0°w], = [0%]a
Vb e B, Va, |of <d, 8aw‘b = 0.

(Is)  With P = H;Y(P), v = vo Hp and kY, = H5R%(H3) ™", there hold the uniform
estimates
[rsl

o <Cinf {6 = 2 | 2 €H(UR)}

Hd+1

(P)

Here H!(P) is the broken norm and > d + 1 is a fixed integer.
[

Remark 4.4 The existence of the functiom in (I;) implies that the jump$)“v], vanish at the

common node ofi andb, for all functionsv in the range ofl1?. Therefore the mere existence

of an interface corrector implies that the basic “interp@idI}. has indeed some interpolation

properties at the nodes, although we did not need to impasedfore. In this way, hypothesis

(I) is not only an explicit condition imposed oR’,, but also an implicit condition oiI}, .

This will have to be taken into account in the constructionl§f in the examples of Section 6.
[

We obtain a similar statement to Proposition 4.1:

Proposition 4.5 We assume thef3 = (i]:ip)peN is an admissible family of patches satisfying
condition (P3) and that we have a family of interpolantH’,). If the interface corrector?’,
satisfies(I3) then for anys € R andv € V? (P), we have the estimate

z € H(Up)}. (4.8)

nod

| Bpollyarspy < © inf {fJo =]

(P) K5 (P) |
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Note that the norm on the right hand side of (4.8) is a norm efuimpsof v across the edges
a€ A.

4.c Interpolants in the corner regions

We do not use the interpolanis;,. when K belongs to¥?, but the trivial approximation by
zero Z%.u = 0. We need a transition fror@%. to IT5. . We denote byg?~2 := T7 U gr~1 U £r2
the extended terminal layer. We recall thatt—? is defined ast?—3 U ... U £° and that, in this
case,

Mmr = T2 U OP2,

Definition 4.6 The corner interpolang?. is defined for allk € €72 so that:

(I;) ForKegrugrt ZF =0andforkK e £72, Z% acts¢>(K) — VE.
For any functionv € ¥°°(Q?) and defined o2, the functionw =: JPv defined on
all elementsk € 9 by

VK €372 w|, =Zkv and VK € 9P 2 w|, =1

K

satisfiesw € V?*

nod (Dp) .
(Is)  For some integern > ¢ there hold the uniform stability estimates on the semi-
reference element }
16 = Zll o i) < C 191

whereC' is independent op and K . [ |

H™(K) °

Proposition 4.7 Let the family of meshe®t = (MP) satisfy assumption&\,), (M;), (Ms)
and (M3). Assume moreover thdi;) holds. Foru € ¢°°(Q?) defined on(2, let Z?u be
defined on eacti € T7-2 by Z7u|, = Z%(ul,.).

Then forall3, 3" € R with 3" < 3 and all u € K7;(©2), we have the estimate

lu — Zpu||Kg(§p,2) < O gPB-p )||u||Kg3(§P*2) 7 (4.9)
where the constant’ is independent op.
PROOF Let K belong toT* U £r~!. Here ZLu = 0.
_ - ~ Btlel ga
< B84’ B+l o
S supr(a) 7 3
o] <€

~ BB

- dK HUHK/[.;/(K)

~  gPBE) | (4.10)
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If K belongs to£r~2 we use(I;) together with the usual scaling i and we obtain the in-
equality [|u — Z%ul[ ., ) S Cllull,e ()" Then we obtain (4.9) by combining this with estimates
B B

like (4.10) above, since fok” € £°~2 the sizedy is bounded byCo?, cf (M3) and (3.1). =

4.d Aninterpolant of class ¢ with exponential estimates
We obtain such an interpolaf¥ = I{d) by chaining together the previous spaces and inter-
polants: First recall froml,) that J? is the extension ofI” by Z7:

VK € %72 Jrul|,. =Z%(ul,) and VK €92 Jhu| =IF(ul,) (4.11)

Recall thatTr—2 = 37U g1 U £r2 andOP2 = g3 U... U £°,
We define the global interface correct8f by adding the contributions of all patches. Let
RY, the extension by zero aR}, outsideP and set

RPy = Z Rbu, for uweV?,
P

We recall that, by virtue of P,), the patches” € B? do not contain any terminal element
K € %, ThereforeRru |, = 0 forall K € T7.

Finally we apply the correctoR? to obtainZ?: If (I;)-(I5) are satisfied for the integer
d > 0, then we set for any > 3 andu € () defined onQ:

IPu = JPu — RPJPu. (4.13)

Note that according tél,), J*u € V ,(O?), so that (4.13) is well defined. Since the discrete
spaces satisfy the inclusidrf, C W7}, the interpolaniZ? takes its values in the space

WP ={uel*Q)| VKeM, u|, eWi} (4.14)

(7). (4.12)

Lemma 4.8 If assumptiongI,)-(I5) hold with d, then the interpolanZ” takes its values in
the spacelV()) := W? N ¢ (Q).

PROOF. Let u belong to%>= () andv = ZPu. It suffices to prove that for all edgesof any
elementi € MP, the jumps[0*v], are zero for ally, |a] < d.

e If a isan edge ofX € %7, thenJPu = ZPu = 0 anda is outside the support ak?, therefore
v = 0 in a neighborhood of:, therefore its jumps are zero.

e If o is an edge ofK € £°~! which does not belong t&€?2, then, again,JPu = ZPu =

0. Moreover if a is contained in a patcl®, it does not belong to the set(P). Therefore
O*RrJPu| is zero for alla, |af < d.

e If o € AP (the set of the edges of th€ € DP~2), there exists a unique patdh € 7, such
thata € A(P). Then

[0°0], = [0°JPu], — [0°RPJPul, = 0, |a| < d.

since J”u |, belongs toV ,(P). n

The combination of all axioms yields exponential convergefor the interpolant family
IP:
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Theorem 4.9 Let the family of meshe®t = (9717) satisfy assumptiond,)- (M), the family
of patches)3 = (P*) assumptionsgP;)-(P3), the family of interpolants assumptiofis) - (I;)
for d > 0. Then for any3’ € R, if u € Az (Q), ZPu € €4(Q). If, moreover(4.5) holds, We
obtain for all 5 > (' the exponential convergence rate

lu —ZPul| a1 g S Ce™®,  with b>0. (4.15)
8

(

ProOOEF We have

Hu - IpuHKd+1(Q) < Hu - quHKd+1(Q) + Z HRIIL‘]puHKUHl(p) .
B B Pegr B

But

= TPullgn g < Nl = 27l ger ) + 1= TP

For |lu — ZPuHKgH@fQ), we use (4.9). Foiju — Hpu||Kg+1(Dp73) we use (4.6) (recall that
¢ > d+1). And we obtain
|lu — quHKZ“(Q) < Ce . (4.16)
By (4.8)
| By TPull gy < Coinf {70 =2l | 2 € H(UR)}
< ClJ"u—ull,  sinceu e HY(Up).
B

Thanks to assumptiofPs),

> 1 — tlls py < CllI"u =l g
Pegpr

Using again (4.16), we obtain (4.15). [ |

4.e Boundary correctors

We finally need (elementwise) boundary correctors to impletirichlet boundary conditions
in the discrete spaces. For our application to Maxwell, Wiy aeed to cancel the first trace
u \BQ. Thus, we do not address a more general theory.

We assume that we have constructed a family of interpol@fits according to (4.11) and
that, moreover(1,)-(I5) hold for ad > 0 and thatp > 2. Then, in particularJ? is zero on
¥ U £°~1 and takes values in the spagg ,(O?).

Let K € OP with at least one edge contained indS). Let B be the set of remaining edges
of K. Since in the terminal layers? U £°~! the interpolant is already zero, no correction
is needed there. Fok ¢ OF~', let V' (K) be the image undes} of the space{v €
€>*(K); v \a = 0}. The next definition is in the same spirit (but simpler) asdiénition of
the interface correctors.
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Definition 4.10 A boundary corrector for the interpoladf. is an operato3y; : V! (K) —
W?. satisfying the algebraic conditiofis) and the stability conditiorI;):
(Is)  Forallv e V7 (K),the functionw := Bjv satisfies
w‘a:v}a and Vbe B, Va, || <d, 0O‘w}b:0.
(I;)  With B?. = H; B2 (Hi )", there hold the uniform estimates
HB%UHHdH < Cinf {|v - Z“Hf(f{) | % e HYK) with ¥ =0}. -

Note that the conditions on the edges B ensure that the extension by zefb}'; of BY.
defines an operator which takes its valuegt((2). Note also that, since is contained ir(2,
so does not belong to any active s&tP), the interface corrector®%, never modify the traces
ona.

We obtain again a similar statement to Proposition 4.5:

Proposition 4.11 Under the above hypotheses for any R andv € X/Zjnod(K), we have the
estimate

||B§(UHKZ+1(K) < Cinf {|lv— z|| z € HY(K) with z‘a =0}. (4.17)

K& (K) |

5 Exponential convergence

We are going to list the properties required thesubspace&? so that the Galerkin solutiom,
to the discrete problem (1.5) converges exponentiallyéstiiutionu of the Maxwell problem
(1.3) (or equivalently (1.1)). Throughout, an admissiblEght~ (i.e. such that (1.4) holds) for
the weighted regularization is fixed.

In the next section, we give three classes of concrete aargins for such discrete spaces,
based on different chains of discrete elementary subsaxckesterpolants satisfying the con-
ditions (I;)- (I;) . All examples are such tha¥ := dim X? = O(p?).

Let for each integep > 2 the two chains of elementary subspaces and interpolants

{ Voo Toyee Woyxo 2oy Bloypr Bloyx satisfy(la)-(I) with (4.5) ford = 0

Vi W oo Wiy o Z0yier Blype By satisfy(li)-(I7) with (4.5) ford = 1
(5.1)
such that for alli’ € OP
grad W(IZLK C W(%),K X W(‘%)’K. (5.2)

Then we set

X={veX}| VKe% v| =0 VKeO v}KGW(’E)%KxW(%)’K}. (5.3)
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Remark 5.1 (i) X? is equivalently defined as the subspace ofwthe [, ., W(%)K X W(%),K
which are zero or®?, continuous o) and satisfyv x n = 0 on 9.

(ii) Let ®” be the set of the € Hy(Q) in [0 W, , Which are zero orE” and %™ on Q.
Then conditions (5.2) and (5.3) yield

grad ¢ C XP. (5.4)

[
Theorem 5.2 Let f € Ay(2) with divf = 0. Let the family of discrete spacé%”) be defined
according to(5.1)(5.3), where the underlying family of mesh#8 = (91*) satisfies conditions
(Mp)-(Ms). ThenN = dimX*? = O(p*) asp — oo and thehp-FE approximationa, defined

in (1.5) converge exponentially to the solutienof problem(1.3), i.e. there areb,t/,C > 0
independent op such that

Ju =ty g < Ce™ =Ce™¥V as p— oo, (5.5)

PROOF Corollary 2.8 gives the splitting = grad ¢ + w (with p € H}(2) andw € H(Q2),
— let us recall that},(Q2) is the subspace dfi'(2)? with zero tangential trace) together with
the weighted analytic regularity (2.14)

Ay 2 5(Q) and weA_;_5(2), with §>0.

We have the energy estimate (2.15)

Therefore for anyu,, € X? inthe formgrad ¢, + w,, with ¢, € ® andw, € X* we have
||U - upHX}Yv(Q) < HSO - SOPHK%_Q(Q) + HW - WP||K£1(Q) : (56)

Thus, we are going to choosg, € ¢? as an interpolant o andw, as an interpolant ofv.
Using (5.4), we have thairad ¢, + w,, belongs toX? and is an interpolant foa.

Defining the boundary corrector

Byy= ]I B

acdQnOr-1

with f?f’l)’K the extension by zero OBZ)K, we modify the interpolant (4.13)

T _ 7P _ pp qp _ pp gp
Thye = Jye — By Joyy — BoyJ(y e

Thanks to conditiongIs)-(I7) this interpolant acts fromA._»_s(©2) N H;(22) into ®? and
satisfies the same exponential estimates as in Theoremiegefdre we obtain foff = v — 2
and 3’ = v — 2 — § the exponential estimate (note that 1 = 2)

o — i?pmp”xg,m < Ce™ with b>0. (5.7)
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For any edge: € 9Q N OP~ 1, let T, be a tangential unit vector te. Then we can define the
tangential boundary corrector

Bow= ]| Blyxw-7a)
a€dNOP—1

and we modify the interpolant (4.13)

T _JP PP JP PP RP 7P
Lioyw = Jioyw — Eio Jioyw — gy By Joyw-
This interpolant acts fronA_;_;(Q)NH%(22) into X7. Again by a modification of Theorem 4.9,

we obtain for3 = —1 and 3’ = —1 — ¢ the exponential estimate (nod+ 1 = 1)

lw — Zf, w S Ce, with b >0. (5.8)

KL, (2

The inequalities (5.6)-(5.8) yield (5.5). [ |

6 Three concretehp-Element Families

Here we present the two chains of elementary subspaces t@npdlants according to require-
ments (5.1)-(5.2) for three different families bp-elements for which we verify the conditions
of the preceding convergence analysis. The element fasyubasidered consist ¢&) rectan-
gular elements on geometric meshes with hanging nodgb) tniangular elements on regular
geometric meshes, @c) bilinearly mapped quadrilaterals on geometric meshes.

In each case, &' conforminghp-interpolant will be be constructed on the geometric mesh
under consideration, implying exponential convergenctmnefcorresponding™® hp-FEM for
the weighted regularization of Maxwell’'s equations. Qurinterpolants may also be of interest
in approximation of plate and shell problems. Further, amnstruction of¢* -conforming hp
interpolants is flexible# conforming interpolants on other geometric mesh famikeg, on
combinations of affine quadrilaterals and triangles, wibanential convergence estimates are
readily constructed with the tools developed here.

Thus, in this section we are going to prove that the genemdliis of elements quoted above
satisfy conditions (5.1)-(5.2) with suitable choices aérakental polynomial spaces. All our
interpolants are based on the basic tensorial interpol&htsf the reference square constructed
and studied ir§8.b. We note in particular that approximation estimate2QBare compatible
with the exponential bound (4.5) of thi, ;..

For nodal and trace liftings we will use the following famdy polynomials on the standard
interval I = (0,1): Letd > 0 andi, 0 < i < d. There are (unique) functiong;; € P!
such that for allj, 0 < j < d there holds

X{)(0) =065 and x{)(1)=0. (6.1)

Generic trace lifting from one edge of a reference squaraangle are stated i§8.c and 8.d.
We do more specific constructions here for the interfacesctors.



§6. THREE CONCRETEhp-ELEMENT FAMILIES 27

= -

Figure 4. Composite mesh with hanging nodes

6.a Affine quadrilaterals (rectangles) with hanging nodes

Here we consider affine quadrilaterals in the followingnietve senseThere exists a global
affine mapping which transforms the whole mesh into a recti@mgnesh with hanging nodes.
Thus the directional derivative8, and 9, are the derivatives along the axes of this global
affine mapping, and, from now on, we work directly on the regtdar mesh. We consider
rectangular element&” with at most one hanging node per side. The reference elemér
squarek = (—1,1)2.

It is not hard to see that our analysis allows to combine sg¢weeshes of this type, plus
additional triangular and quadrilateral elements, unkdercondition that the matching between
different meshes is done in the unrefined regions, see Fgure geometric meshes investi-
gated in [2] are similar.

6.a.() Primary interpolants
The elemental spacés;, ;- for d = 0, 1 are transported from the same tensor sgaten the
reference squaré’.

The interpolantdI}, ;- are transported from the interpolart§ on K constructed in The-
orem 8.5. Since in that casﬁ,’}{ coincides withII¥,, Theorem 8.5 gives immediately property
(I;) combined with the estimate (4.5) of ths, ;..

6.a.(i) Interface correctors

We now verify Propertiesl,), (I3) in Definition 4.3, and construct the interface correctors of
orderd > 0 on the patches” € 7: the discrete spacéd’;, , = Vj, ;- here. We are going
to construct the liftingz(, 1.
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We note that, by construction 6f7, ,., we have for any subsét of the mestit

VP

nod

(P)={w| VKeP w|, eVE VKK eP VNeKnK,
Nobw|, (N) = dd5w|,, (N), 0<jk <d}. (6.2)

T2 €2
N2 N3
K
K
Kl K2 Nl el N(] a9 ’
a Le
x x
. N 4 N, o
(i) (i)

Figure 5: Two patches in geometric mesh with hanging noddsatation

It is sufficient to consider two types of patches shown in BigDenote byu, ;. the edges of
elementk;, k =1,2,3,4.
e Patch P = (K, K;) of two elements

The two elementss; and K, share an entire, active edgee A, say,a = a1; = ag;.
The inactive edges (i.e. where the lifting of the jumps asr@svill have no influence) are
be B={aj,:j=12k=23,4}. Denote byN;, N, the endpoints ofi, da = {N;, N>}.
ForanyV(© ¢ V? (P), the tangential derivatives’ of the normal jumpgo*1 ()], satisfy by

nod

(8.19) the nodal compatibility conditions at the nodés j = 1,2
OL[OEV O] (Nj) =0 Vk,(=0,....d. (6.3)

To remove the normal jumps d&f(*) acrossa, we make use directly of Proposition 8.6: there
exist polynomialsd; (1, z2) such that

0, |, = 0u[0,VV], and 9, @[, =0, 0</l<d.

The lifting R, , of V(© € V! (P) is then given by

d
v = 2 o 6

1=0 .
0 in Ky
and the corrected function

V=vO4R, VO VK, i=1,2 (6.5)
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satisfies fork, ¢ =0, ..., d:
aﬁ[aﬁV}GEO on azflﬂf2.
HenceV € ¥(K, U K,) and R} , satisfies(,), (I5) for P = (K, K,).

e PatchP = (K, K, K3) of three rectangles

The three rectangles have two edges in common: anedge K, N K, € A, i.e. a; =
a1 = az, and another edge, € A shared by all three elements, say

as =azs and a;o Cas, as C as,

cf Fig. 5 (ii). The nodes in Fig. 5 (ii) is hanging: Ny = @; N @12 N a22. By N1, Ny, N3, we
denote the ends of edges, a; € A as shown in Fig. 5 (ii).

Foru € C(P), defineV® e V! (P) by V|, = IIj , u whered > 0 is a fixed
degree of conformity. Their (©) satisfies in eacli(; € P the nodal exactness (8.19) of order
and the estimates

lu—v© S Upplullypy 0SE<k<p (6.6)

||HZ(P)
with ¥, ;. as in (4.5), where Sobolev norms overare broken. We construct the lifting of class
¢ for V(© on P in three steps and refer to Figure 1, (ii).

(a) Lifting on edgez;. The jumps[ofV (9], across edge, satisfy fork =0, ..., d the nodal
compatibility conditions (6.3) at the node§;, i = 0,1. For sufficiently largep, [0FV(©)],,
may be lifted as in case (i) t&; by a trace-liftingR{" V(© € Q¥(K;) such that

VO ROVO in K, K
v .= { d b (6.7)

V(O) in K3

is in ¥?(K, U K5), and such that the valugs' V@, 0 < a1, a3 < d, in the nodes ofP are
not changed.

(b) Compatibility atN,. It will be achieved by modifications o ") in K, K, as follows.
By step (a),[05VW],, =0, £ =0,...,d. Therefore the jumps, := 95[0F V], (Ny) of
V() across edge, in hanging nodeV, are well defined fok, ¢ = 0, ..., d. For the lifting of
Jie, we use the polynomialg; , € P?**! introduced in (6.1) and set

RP VO = Z Jke{ 1 Xna(—w)xealws) N K,

}t=0 — DM a(—21) xea(—22) In Ky
RP VW =0 in K.
Then by (6.1)

aia%(R(z M |K1 NO Z Jk( zk(sjé - _Jij
k,4=0
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and J;; is likewise attained by R? V| y,)(Ny). Moreover, forj =0, ... .d,

AESVO) o = - }jJu “xwal=a1) = BRSO VD) ,
k,0=0

[%R[(f)v(l)}al =0on a;,j=0,...,d.

ThereforeR? V(U ¢ ¢4(K, UK,) ando* R V() =0 for 0 < ay, oy < d in all nodes of
K1, Ky exceptN,. Define

(6.8)

e VO 4 RO VO inK UK,),
' V(l) in K.

ThenV® € €4(K, UK,), [V?)],, € PP(a;,) for i = 1,2 and for0 < k, ¢ < d it holds

0= [0} 05(u— V)4 (N;) = —[0F 95 V@], (), i =0,2,3. (6.9)

(c) Lifting on edgesi; ». Therefore[or V@], is a polynomial of degreg on the pieces: »,
ago Of ay with 95[0F V@], (N;) =0,i=0,2,3,for k, £ =0,1,...,d. We may therefore lift
[0F V)], , separately intaQ?(K;), i = 1,2, such thatV’® and its derivatives up to ordet
remain unchanged ofiK;\a; »: call the lifting Rff’) V@ and set

VO 4+ YV in K, UK,,
V=9 e o (6.10)
1748 in Ks.
ThenV® € Q°(K;),i=1,2,3, VB € €4Up) andV® is given by
v [ U+ BRI+ BT+ R VO in KUK, 6.10)
' VO in K -

and the interface correctat;, ,, given by

[ AR O R[(il) VO 4 RE?) v 4 R((i3) VO in K, UK,,
" | 0 in K3
satisfies(I,).

To verify (I3), we observe that for any edgein P, we have the trace inequality

elall sy < C e llrp - (6.12)
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Since R V(© depends only ofv®], , we haveR(" V(© = R{(V© _ ) for any z €
C>=(Up), and get for anyk > d + 1 with (6.12)

IR VO ey < C S0V O] i (o)

M~ 1M

, (6.13)
=C > 3V = 2llusiar)
=0
< CNVO = 2|y py -
Likewise,
IR VO lepy < CIVE = 2llya(p) - (6.14)
For Rff) , We observe that e.g. of; for any z € C=(Up)
d
IR VO ey < C Z | i1
< C ||V(l) - Z||H2d+2(p)
- C HV(O) + Rél) V(O) - ZHH2d+2(P)
S O {HZ - V(O)||H2d+2(p) + HR(I) V(O)||H2d+2(p)}
(6.13)
< Cllz = VOllparspy
hence, forany € C*(Up), 0 <k <d+1,
IR VO lepy < Cllz = VOllors(p) - (6.15)
With the definition ofV® , we get
IV = zllgersipy = VD + RE VO = 2]y
S IVO = 2wy + IR VOl oy + 1R VO sy
Combining this with (6.13) - (6.15), we get
IR, » VOlluaripy < C VO = 2| jearap) - (6.16)

A density argument and a scaling imp(i) .
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6.a.(iii) Corner correctors

We have to define the corner interpolafit , so to satisfy condition$l,) and (I5). By defini-
tion, Z%. is zero for anyK in the terminal layers? U £/~1. It remains to defingZ%. for any
K € £°72, so that the extension &f? by T17 in OP~2 takes its values iiV? ,(OF). According
to (6.2), this means that the nodal valug®sw(N), 0 < j, k < d, have to be uniquely defined
for any K containingNV .

Letu € €>°(QP) and letK € £°~2. If K does not intersect ank’ with K’ € £°3, we
set Zhu = 0. If not, let .+ be those verticeV which K shares with element&” € £/-2,
and let.# be the set of the remaining nodes@f. For anyp > 2d + 1, definew := Z%u as
unique Hermite interpolant i@??*!( K') such that

VN e A, #okw(N)=dloku(N) and VN € .4, #okw(N)=0, 0<j k <d.

The stability of 22 in H2+2(K) is obvious.

We then define/Pu according to(1,) by extendinglI? by Z? in £/=2 N £7~1 N TP, Since
condition (M,) gives the separation between laye¥s = and £/, the whole construction
above yields an element = J?u which belongs td/? ,(O?) as required.

6.a.(iv) Boundary correctors
Let o be an edge contained 2 and let X' be the element containing. We have to define
the lifting operatorB?%. satisfying(Is) and (I;). If K belongs to%? U £¢~!, nothing is to be
done, since the interpolant,. coincides withZ}. which vanishes there. Let noW belong to
Or~t andu € € () NHY(Q). We setw := Jiu andy := w| . Let Ny and N, be the
endpoints of edge.

If K belongs toD?—2, J% = TI%.. Therefore, by (8.19), foi = 1, 2:

PD(N) = Hu(N), j=0,....d (6.17)

Sinceu| = 0, we find thatp(N;) = 0, j = 0,...,d, which is condition (8.21). Thus,
Proposition 8.6 yield®, defining B}.w with suitable trace properties and stability-iﬁ“(f() :
If K belongs tog?~2, J% is now defined as in the section aboveNf belongs ta 4", then

(6.17) still holds, therefore) (V;) = 0. If N; belongs ta# , d’w(N;) is zero by construction
for j =0,...,d. Thus we can end the construction as before.

6.a.(v) Conclusion

With W@),K = QP(K) for d = 0, 1, we check immediately property (5.2), i.e. the embedding
of grad W, ;- into Wi, - x W, . This ends the verification of all our axioms in the case of
rectangles with hanging nodes.

6.b Conforming parallelograms and triangles

We consider meshe®t? formed with parallelograms and triangles, affine equiviaternthe
reference elements, and we assume that they are confortimatigs, that the intersection of two
distinct elements is either empty, one node, or an entire.etlgis case was already considered
in [29]. We show here how this case fits our axioms. Moreoverctndition we will introduce
on triangles is simpler as iloc. cit, and generically always satisfied. We assume that)
satisfies(My) — (M3).
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6.b.(i) Primary interpolants
e Parallelograms.Like in the rectangular case, the elemental spaq%,%( ford =0, 1 are
transported from the same tensor sp@?feon the squardA{ . Again we takeW(’;LT = V(’;)j

But now, whereas fotl = 0 the mterpolamﬂ(o) is still transported from the interpolant

15 on K, for d = 1 the mterpolanthl)K is transported from the interpolaft; on K,
ensuring in particular the nodal mterpoﬁatlon for all vees V of K

O (I} gu)(N) = 0*u(N), Va, |af <2. (6.18)
Theorem 8.5 gives immediately propeffly) combined with the estimate (4.5) of thig, ;..

e Triangles.All trianglesT' € 9? are affine images of the reference elemé&ht We assume
that for eachk > 0 and eachl’ € £* there is a parallelogrank’; sharing three common
corners withT" and such that
Kr C U T,
T e gky gh-1

Note that such an assumption is generically satisfied shecéntidth” of the layerg*—! is larger
that the width of€*, which is itself larger than the diameter ®f. In the above assumption, it
is of course understood thaf; does not itself belong tt?. Moreover, it is not assumed that
K7\ T belongs toM? (in other words, the fourth node df does not need to be a node of
mr).

We omit the subscripf” on K if its relation to triangleT is clear. Thenl' = Fr(5?),
K = Fg(I?). As a consequence of assumptidié; ) — (M3) there exists a fixed intege¥/
such that for alll” € ©P, the number of elementg’ € 9t having a non-empty intersection
with K7 is bounded byM .

We consider only the cases = 0 and 1, which is sufficient for our application. The
elemental spaceg), , = P?(T) are transported fror®*(S5?) and we takeiV(, . = V) ;..
We define the primary interpolants as

I pu = (I, (u|k o Fi)) o F;' d=0,1 (6.19)

transported from the interpolation operators (8.18)infor orders0 and 2, — Note that we
need approximation estimateslitf*! norm. Transporting}; ;. back to S? using F;., we find

for 4 € C°(1?%)

I 4 = IT5,1ls: € QP C P#(S?). (6.20)
As a consequence of the approximation estimate (8.20), wa@mlinstead (4.1)
H?AL HdTu||Hd+1( T) < \IIP k‘HuHHk(K (621)

with the ¥, ;, satisfying the exponential bound (4.5). The finite intetis@ccondition above
allows to draw the same consequences from (6.21) than frdh (4

Since the three nodes of 7" are nodes of the associated parallelogrgncondition (8.19)
yields in particular that

IE,u(N) =u(N) and Va, |af <2, 0TI} pu(N) = 0%u(N). (6.22)
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6.b.(i)) Interface correctors

From now on we equally denote by parallelogram or triangle elements. The patches consist
of element paird® = (K3, K5) which share an entire edge and where/l; and K, can be both
parallelograms, or both triangles, or one of each sort. Weeathat if K; is a parallelogram,

S0 is K. Thanks to (6.22) the imagey,  ,(P) of ¢>(Up) throughlIf, (P) is

‘/(Ic)l) (P):{'LU‘ w‘Kj E‘/(IZI),Kﬁ 7::1,2, VNEFlﬂFQ,

w| . (N)=0"w|, (N), la| <2d}. (6.23)

,nod

We are going to construct the Iiftin@fd)f. We set, foru € €= (Up),

14

_ TP C
=g u, i =1,2.

We detail the proof forl = 1 (for d = 0, it is easier). Denote by, the normal toa pointing
from K, into K,. Then forj = 0, 1 the normal jumps

0i(s) = [02 VW] (s) € P*(a), (€ PP(a)if K, parallelogram),

satisfy, by (6.23), .

gog»z)(s):() s€da, 1=0,1,2—7.
Applying Proposition 8.7 ink;, with d = 1, if K; is a triangle, and Proposition 8.6, is a
parallelogram, gives a lifting2® VM) in P?(K)) if K, is a triangle, and ifQr(K,) if K, is
a parallelogram, such that

VO 4+ RAOVO in K,
Ve .= (6.24)

V(l) in Ky

belongs to6 (Up).

Remark 6.1 We obtained here an interpolant with!' -conformity. It is straightforward, using
a higher order vertex correction and Proposition 8.7, taioldst’? conforming interpolants for
anyd > 1.

6.b.(iii) Conclusion

Like in the rectangular case, the corner corrector is canttd thanks to Lagrange and Hermite
interpolants on parallelogram&™ or trianglesT: For d = 0 we simply use the Lagrange
interpolantsiy ® iy : H*(K) — Q'(K) on the parallelogram ang. : H*(T') — P*(T") on the
triangle, whereas fod = 1 we make use of the Hermite interpolams2 i, : HY(K) — Q3*(K)

on the parallelogram and Argyrig. : H*(T') — P°(T), which are such that

O ((i2®1i2)z)(N) = 0“2(N), ze€H'K), N nodeofK, |a]<2,
0“(I32)(N) = 0%2(N), ze€HXT), N nodeofl, |a]<2.

As for the boundary correctors, they rely on Propositiobsa®d 8.7. Finally the inclusion (5.2)
is obvious.
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6.c Bilinearly mapped quadrilaterals

Here, the element& c M are images of2 = (0, 1)2 under a bilinear map, i.ek = Fy (I?),
Fr € (QY)?, or, in coordinatesK > x = Fx (7). The mappingk is bijective and its Jacobian
is given by

Oz Oy

R 0%, Oz
DFg(7) = &El a; . (6.25)

2 2

0T 0Ty

Its determinant,/ () = det DFk () is an affine function ofz.

In order to obtain &' continuoushp-interpolant, we need to impose a geometric condition
on the mapping$’ . To state it, consider a patdh = (K, K_) of two elements sharing edge
a as shown in Figure 6. 1/, J_ denote the Jacobians of the element mags, Fx_, we
assume that there is a constang 0 such that

Tela=pJ-la. (6.26)

This condition does not hold for arbitrary bilinear elemereps. We have

Lemma 6.2 Consider two element&, , K sharing a common edge as shown in Figure 6.
If the quantitiesa, b shown in Figure 6 satisfy /b, = a_/b_, then condition(6.26)holds.

Denoting byzx the center of K’ and by H (x) the homothety from Section 3.b, we have
for the semi-reference elemeht = H'(K) that Fx = Hy o Fx where Fx € Q'(K)? is
independent of the diameter of elemétit and it holds

Ji(Z) = det DFy (%) = det DHy det DF .
Moreover, there exists > 0 independent of’ € 9t and ofp such that
VZeI?: vt >det DFy(Z) >~ > 0. (6.27)
We assume below that we are in a semi-reference patch andhafiit from all quantities.

6.c.(i) Primary interpolants
The elemental approximation spaces at the lével 0 are

Vi o =Wh = {v="00F:0eQ ()}, (6.28)
and the corresponding interpolant is
HfO),K“ = (Hg (ulg o FK)) ° F§1 (6.29)

with IT5 as in Section 8.b below.
For the leveld = 1, we define moreover the spaces

Vi = (o= o Fg 10 = A D Q).
(6.30)
W(pl)’K =tv="oe FI}I U= Jé@ + J?(%; T, eQ? Bye @p—4}.

There holds
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Lemma 6.3 It holds
grad W) o C W e x Wi -

PROOF. It holds, withd; = L, 0 =2

) oz, '
0%, Oy R ~
9r Omn B 0 B
neoon = ) =or0 @ |
0z, 01, Oy Z 0,
8@ 81’2

Forv =70 Fy', we havew = grad v = w o F.' with

B 1
NG

W = (DF(2))™"7 grad © My (%) grad ©

where My € (PY)*. Foro = JJ 7;, 9; € Q~7, we find
grad 0 = J}, grad U, + j J} ' (grad Ji)T;
and hence forj > 2 that
W =JI"" My grad 0; + j J5% My (grad J) ;.
If v; € QP~7, this expression shows that € (Qr)?. ]

We define the elemental interpolalif,, ,- through a modification ofI;, ,.. We set first

Pl = J I (wl ), (6.31)

and we modifyP(”l),K S0 to satisfy nodal interpolation properties of orderNote thatP(”l),K
has the same approximation propertiesﬂ%ﬁK, i.e. (4.2) holdialso foP(”l)’K. We cocatenate
Py x With a Hermite interpolanf?. such that for any, € 6*(K),

Iiu hasthe formJv with v =70 Fic! and 7 € Q*(1?)
and there holds for all node¥ of K
(0°Ipu)(N) = (0°u)(N), Va, |a] <2.

Finally we set

My = Pl = Tk © Phyx (6.32)

Using the approximation properties Bﬁ),K and the stability of7 ., we see thafI,) holds.

6.c.(ii) Interface correctors

Let P = (K., K_) be a patch. We denote by, J_ the Jacobian determinants B, , Fix_.
We are in the situation shown in Fig. 6.
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The spaced/[;, | ,(P) are like in (6.23). Letz € C>*(Up). Since the casé = 0 is
standard, we fix] = 1 and construct in two steps@ -lifting of

v =117

(1)(P)z.

T2 T2

(i) (ii)

Figure 6: PatchP = (
reference patct = (

) of two bilinearly mapped quadrilaterals sharing an edgand

K. K_
K—i—a K—)

(a) Lifting of [V(] . Writing VY = v, , we have

Vo Fie, = VY, VW o e = 2V,

with XA/f) € Qr*. Noting thatFy, |a = Fx_|a, we construct the lifting?") of [z — VY], in
the reference patck, for convenience. We have

VL) VA, o Fig o = [ 70 — 2 D0

Under assumption (6.26) then

[V~ VO, 0 B o = 2P0 - p D)

a’

and, sincel’" belongs toV) woa (), the jump[VY — p VV]; vanishes to order two a¥,
and N, .
Let Y(z1) € P°(0, 1) satisfy Y)(0) = & ; andx¥(1) =0, j = 0, 1,2. Then we define

(T = pVI)(@1,0)R(@)) 0 il in K

. (6.33)
0 in K_

ROy — {

and set
V@ .= y® L gy, (6.34)
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By construction,V® e C°(Up), and we have still
DVO(N;) = (D%2)(N;) fori=0,1, |a| <2. (6.35)
(b) Lifting of [0, V@] . By (6.27), the mapd'x, are nondegenerate i. and the
directional derivative$),,, 0z, are nontangential to edge With
VP o Py, = 2 VY

we have

(9o V& 0 Fie, Mg = T3 (p41 05, VID 4 pip 05, V) + Ty py s VE (6.36)
and

Oy VP 0 Fie Vo= J2(p_1 05, VP 4 p_ 005, V) + T p_ sV (6.37)

In (6.36), (6.37),p 1 andp, - are linear ang.. 3 are quadratic polynomials i, .
We construct now the lifting?® V() such that
R® V@ ¢ Wf’(%z, RPV®@ =0inK_,
Ons(ROVO)|y = [0, V¥ = 0, VI,

ROV, _ o (6.38)
D¥RPV®), = 0 |ao|<1,bCIKi\a.
This lifting will be obtained withV/® € Q-2 such that
ROV® o = 2V® (6.39)
and such that
VO =0 (6.40)
DVOL =0 |a|<1,bcCdK,\a,
and (6.38) holds, i.e.
&_(ROV)|, = 6,0,V -0, VP, =01, (6.41)
SinceV®|; =0, 95, V®|; = 0 and it follows from (6.36) and (6.39) that
(azzR ) o Fr la=Jyps205 Ve (6.42)
Sincep, 5 = g—g 20 € P!(a) is independent of;, p, > = const # 0 ona. Using assump-
tion (6.26), we find from (6.36) and from (6.42) the followiaguation fora@f/(?) :
Jy py20s, ve = g2 2 (4105, ‘A/f) + p+ 2 Oz, ‘A/f)) +Jipys ‘A/f) (6.43)

— 22105, VO 4 p 50, VO — pdip s VP
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SinceV? € Qr+4, (6.43) reads

Jipr20s, VP = 1,5(@), g € PP(a), (6.44)
and we have R
(0°9)(N;)=0,i=0,1, |a| < 1. (6.45)
We set

_1/\ ~ AN AN .
7o) _ { (P4,2) "1 9(71) X(T2) In K, (6.46)

1o in K_
wherex(¢) € P°(a) satisfiesy?)(0) = 6, ; andx¥) (1) =0, j =0, 1, 2.

Then R® vV defined in (6.39), (6.46) satisfies (6.40), (6.41) and c 0K, ,0K_, and,
since also?’, (J, §)(N;) = 0 for i,j = 0,1, we have(d §)(N;) = 0 for i,j = 0,1. Then it
follows that

D*V@(N)=0 |a|] <2 forall nodes ofK,, K_ |

and R® V® in (6.39), (6.46) satisfies all conditions (6.38) and al&t* R V)(N) = 0
for |a| <2, N node of K, . O

6.c.(iii) Conclusion
The corner and boundary correctors are constructed witkahmee technique as indi) for the
primary interpolants. All our axioms are then satisfied.

7 Concluding Remarks

In the present paper, we have proved exponential convesgeinmonforminghp-FE approxi-
mations for the weighted regularization of the time-harrmdiaxwell equations in polygons.
Let us conclude by emphasizing some points from the techdisaussion of the preceding
sections.

We assumed that the exact bilinear form of the weighted esgaition (1.3) for Maxwell’s
equations can be computed in dyr-FEM — a rather strong assumption since the element stiff-
ness matrices contain the possibly non-polynomial weigiht¢tionr”. Constraining théyp-FE
approximations to vanish in the terminal layer, using mesbra (M3) and the coercivity of
the bilinear form in (1.3), a Strang-type perturbation angat together with classical error es-
timates for Gaussian quadrature of analytic functions shihvat the exponential convergence
rates are preserved even in the presence of numericalatimyby product Gaussian rules with
a (fixed) amount of overintegration.

Our ‘hp-axiomatic approach’ contains a simple constructiorpfinterpolation operators
in the terminal mesh layers which vanish identically thefdis eliminates the necessity for
error bounds of low order interpolants in the terminal laygHardy-type inequalities.

The hp mesh and element classes admissible in the present congergealysis are — even
when considered for standard elliptic boundary problem®o+ergeneral than those previously
given (e.g in [27, 28]). In particular, thep-convergence results in [27, 28] are special cases
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of our Axioms on meshes and local polynomial spaces. #heconforminghp-interpolant on
bilinearly mapped quadrilateral meshes which is needelddrapproximation of the potentials
implies also exponential convergence of thye-FEM for the biharmonic problem on mapped
quadrilaterals in 2-d. The construction &f -conforming hp-interpolants on nonaffine, bilin-
early mapped geometric meshes of quadrilaterals is, to mawledge, new and implies expo-
nential convergence dfip-FEM for Kirchhoff type plate models. This generalizes whas
been known for triangular meshes [29].

Moreover, the results areot limited to geometric meshes of type a), b) and c) — in fact, our
proof technique gives exponential rates of convergenaeaiggeometric mesh families with a
mixture of any of the above element types, as e.g. triangidddinearly mapped quadrilater-
als, of triangles and affine quadrilaterals with hangingasodOur concept of ‘semi-reference
elements’ allows also to treatirved boundariefor domains which are parametrized by a fixed
number of analytic patch maps stemming, for example, fronRBB-type CAD models of the
computational domain. This is confirmed by numerical experits in [23].

8 Appendix: polynomial interpolants and trace liftings

We gather in this section the technical material relatingrtjection operators and trace liftings
in polynomial spaces necessary for the proof of the previesiglts. This material mainly comes
from [29, 34].

8.a Polynomial approximation results in one dimension

Let ] = (—1,1) andp > 0 be a polynomial degree ari®¥ the set of all polynomials of degree
at mostp in 1. We have the following basic approximation result [34], ®feam 3.3.

o~

Lemma 8.1 i) Everyu € L%(I) can be written as Legendre series

o'} ) 1 1
u(x) = nz:% Un L (), w, = n2+ /_1 u(zx) Ly (x)dz, (8.1)
which gives sense to the operatdt defined as the truncated Legendre series
p
(7Pu) () =) tn Ln(x) € PP, (8.2)
n=0

i) If w e H¥(1), k > 1 integer, then there holds the estimate

9 (p+1—k)!

P - ~ 7

e sz 0k <p+1. (83)

Let d > 0 be an integer. We need a projection operatbwhich is stable inH™' norm
(and satisfies error estimates for this norm too) and whiep&einchanged the tracesdin up
to the orderd. We start by defining the restrictiaff, of 7 to Hi*'(I). We recall that

Yu € HEY(T) : (D7u)(£1) =0, j=0,....d. (8.4)
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Sinceu(@) e L2(T) we can defineru as

T 1 Tq
— / / . / ppd-1 u(d+1)($d+1) drgy dag. .. dxy . (8.5)
1 J1 ~1

It is obvious that(D'7hu)(—1) = 0 for j = 0,...,d. Integrating by parts od and using
(8.4) we find that(“t1) is orthogonal taP?, therefore, ifp —d — 1 > d, 7*~ %1 x4+ is also
orthogonal toP?. Integrating by parts in (8.5) with = 1, we can deduce that? «)(1) = 0.

We prove similarly that the other derivativesirare zero:

vueHd-H(f): (Dj%pu)(:lzl)ZO, 7=0,...,d. (8.6)

We reduceu € H(T) to a functionHZ*' (1) by means of the Hermite type interpolapt

Lemma 8.2 Letd > 0 be an integer. For every € H+1(I) there exists a uniqugu € P+
such that ' '
(D¥igu)(£1) = (Diu)(£1), j =0,....d. (8.7)

The operatori, is stable inH*! norm:

HZd“HHd+1 < Cq ||“||Hd+1(1 (8.8)

This follows directly from the unisolvency of the condit®(8.7) for interpolation irP2¢+1!
Let u € H1(T). We set forp > 2d + 1:

mhu = du+T7 (u —iqu). (8.9)

Let us denote: — iqu by u for short. Sinceu belongs tng“(f), u — 7 u also belongs to
HZ+1(T) and the Poincaré inequality yields

| D7 (i — 7 )2y < Call@™D — @ D)V o, G=0,...,d+1.  (8.10)
Thus we find that for a constant; independent of there holds
1D? (@ — T ) IEs 7y < CF ) — 7= @ D)2, o

o (P—d—k) _hia (8.11)
m” ||L2(1

for 0 < k < p — d, where we used (8.3) with(“*1 in place ofu andp — d — 1 in place ofp.
Sinceu — mhu = u — 75w, we then obtain forl < k < p — d:

< Cj

109 () 2, 5y = 107 () — 78— i) [
(p—d—k)!
< Ca (p—d+Fk) D (= daw) oy
—d—k)!
<2 (p (k+d+1))2

sincek > d + 1 and D?¥*+2j,u = 0. We have shown
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Theorem 8.3 Letd > 0. Then, for anyp such thatp > 2d + 1 there exists an interpolant,
from H4FL(T) into PP such that

DY (rhu)(£1) = D'u(£1), j=0,...,d (8.12)

and such that there hold the error estimates @nguch thatd < k <p —d

(p—d—k)
lu = 7ull sy < Ca —d+h) lu® D2, 5 - (8.13)

We finally record a stability bound for the interpolarj}.
Proposition 8.4 For p > 2d + 1 there isC; > 0 independent op such that

||7rdu||Hd+1 < Cd HUHHd+1([ (814)

PROOFE Thanks to (8.9) we obtain
Imgullpan 3y < 20175 (w — daw)|[yass - (8.15)
Moreover (8.8) gives us
Ju— Z.duHHUHl(IA) <(1+CY) HUHHd+1(f) : (8.16)
Since(u —iqu) € Hg“(f), we get with the help of the Poincaré inequality
172w — iqt) | as 7y < C3 D 7w — iqu) | a7,
= Cj |7~ (D™ (u — iqu)) lL2(7)
< CIID* (u — iqu) | 2y < CF 1w — ]| yya 7y -
We conclude with inequalities (8.15) and (8.16). [ |

8.b Polynomial approximation in two dimensions

Polynomial approximations in two dimensions will be obtairby tensor product construction:
SetK = I, x I, in what follows and denote b’yd 1 7rd2 the interpolation operators in (8.9)
applied with respect ta, z». Define also forp > 0

Q= span{z} }; 0 <i,j < p} =P(I)) @ P"(]y)
and the Sobolev spacéﬁﬁ(f() of functions with mixed highest derivativé,= (¢, (),
H(K) = {ue L)(K): D*ue L’ (K?), 0< a; < {;}. (8.17)

equipped with the nornfju||?

HZ(K ZOSO@_ i uHLQ(K
Obviously, for every integef > 0, we have the embedding#’(K) C H*(K) C H/(K) ,

and for¢ > 1 we have the continuity property’‘(K) c Cﬂ‘l(E).
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We define foru € HHL41(K) andp > 2d + 1
M = (7, @ ,) u € QF. (8.18)
Then we have

Theorem 8.5 Foranyd > 0, p > 2d + 1, I} is well defined and bounded froHV“vd“(f{)
into QP. Moreover, for0 < 71, j» < d holds

(DY) TPy (£1, £1) = (DU92)y) (£1, £1) (8.19)

and we have for any,, k, such thatd < ki, ks < p — d and for anyu € Hk1+d+1vk2+d+1(f()
the following error estimates with a constaff independent ok, k, and ofp:

(p—d—Fkp)!
o= Tl sy < Ca [

(p—d+Fk) HO4+1(K)
8.20
(p—d—ky)! ka+d+1, 112 ( :
Y ||a2 u||Hd+1,0 K
(p—d+ ky)! (K)

PROOF. By (8.18), we may write foj = (j1, j2) such thatj;, j, < d+1 (with | o || denoting
the L2([A() norm) and using the univariate bounds (8.13) and (8.14)

1D — ) |2 = (1005 (u — idy © mhp u+ idy @ mhyu — 7y @ 7 yu) |

< 2{”6{1“ - W§,2(3{1U)!|ﬁo,j2(g) + H@%Q Ws; (6{11‘ - 6{1 (Wﬁ,ﬂ)) HQ}
< 2| — ) (D80) Py + 2CallO (0 = 7 0) i i

(p—d—k)' | iy cporart g2, 0= d =k i ka1 2
< A v 1 ko Pp—a—k) .
< {1t e

which proves (8.20). |

8.c Polynomial trace lifting in a square

We present polynomial trace liftings from [29]. The constron is based on the polynomials
Xa.i € P21 introduced in (6.1).

Proposition 8.6 Let S = (0,1)? anda = {(x1,0) : 0 < z; < 1}. Let us fix an integed > 0
and fixi, 0 <i < d. Letforp > 2d + 1 a polynomialy;(x;) be given inP?(a) such that

e =0 on da={0,1}, 0<j<d. (8.21)

Then there exists a polynomid;(z, z5) of degreep in z; and of degre€d + 1 in z, such
that

0, @i, =i, O, =0,Vj#i, and 0] ®if,, =0,Vj=0,...d (822
Moreover, there i, > 0 independent op such that the following estimate holds

[Dillna+1(sy < Callillnet(a) - (8.23)
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PROOF We setd; = xq.:(z2) vi(x1). Then (8.22) holds and (8.23) follows from the equality
10% @il[2(s) = 1101 @illL2(n 105 Xiallizry - u

8.d Polynomial Trace Lifting in a triangle
The lifting in a triangle is obtained as in [29].

Proposition 8.7 Let 7" = {(x1,22) : 0 < 3 < 1,0 < 29 < 21} and leta be its lower edge
{(21,0) : 0 < xy < 1}. Forafixedi, 0 <i < d let ¢; € PP(a) be given,p > 3d, such that

G0)=0 for 0<j<2d—i (8.24)
e (1) =0 for 0<j<d. (8.25)

Then there exis®; (1, x2) of degreep in z; and of degre€d + 1 in =, such that

O 0| =i, 0] =0, Vj#i, and & @i\aT\a =0,Vj=0,....,d, (8.26)
and there isC; > 0 independent op such that
H(IDZ'HH"Hl(T) S Cd ||(,02‘HHd+1(a) . (827)

PROOF  Set®;(z1,z9) = f Xai(32) pi(x1). By (8.24), pi(w;) = 23y () for some
Y; € PP=24+i(g), and thereforeb;(x,, z5) is a polynomial inz; andz,. The first part of (8.26)
is evident, and the second part follows from (6.1):

o (I)z"a = 0 ®;(1, $2)‘m2:0 = 2} pi(z1)z]? Xf(ijz)(o) = 6277 i) .
To show (8.27), note that forany< j < d+1
105 uCer, ) ey = Nl xt” (32) o) e
and similar expressions for any derivati9e®;. By (8.24),p; € HI™ (1), and (8.27) follows
from Hardy’s inequality inHZ ™ (7). n
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