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In this paper we consider a continuous-time method of approximating a given distribution � using the

Langevin di�usion dLt�dWt�
1

2
r log �(Lt)dt. We ®nd conditions under this di�usion converges

exponentially quickly to � or does not: in one dimension, these are essentially that for distributions

with exponential tails of the form �(x)/ exp (ÿ|x|
�

, 0<�<1, exponential convergence occurs if

and only if �� 1.

We then consider conditions under which the discrete approximations to the di�usion converge.

We ®rst show that even when the di�usion itself converges, naive discretizations need not do so. We

then consider a `Metropolis-adjusted' version of the algorithm, and ®nd conditions under which this

also converges at an exponential rate: perhaps surprisingly, even the Metropolized version need not

converge exponentially fast even if the di�usion does. We brie¯y discuss a truncated form of the

algorithm which, in practice, should avoid the di�culties of the other forms.
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1. The Langevin method for Markov chain Monte Carlo methods

1.1. GEOMETRIC CONVERGENCE OF MARKOV CHAIN MONTE CARLO METHODS

There has recently been a real explosion in the use of the Hastings and Metropolis

algorithms, which allow simulation of a probability density ��x� which is known only up

to a factor: that is, when only ��x�=��y� is known. This is especially relevant when � is the

posterior distribution in a Bayesian context: see Besag and Green (1993), Besag et al.

(1995), Mengersen and Tweedie (1996), Roberts and Tweedie (1996), Smith and Roberts

(1993) and Tierney (1994) for a variety of approaches and properties of such methods, and

their applications in statistical modelling.
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The class of Hastings±Metropolis algorithms is very broad. As a consequence, the user is

often faced with a choice between a `plain vanilla' algorithm such as the random walk

Metropolis algorithm, where the candidate dynamics are chosen to be those of a random

walk, independently of the target distribution, and a more `shaped' candidate distribution,

designed for the particular � in the problem. The former is easy to implement, and it can be

demonstrated that the random walk algorithm has rather robust theoretical properties. A

more problem-speci®c algorithm may converge more rapidly.

We will be concerned here with one such class of algorithms. Langevin algorithms, which

are derived from di�usion approximations, use information about the target density (in the

form of the gradient of log �) to construct such a problem-speci®c proposal distribution.

We study the convergence properties of these algorithms; and as a precursor to this, we

consider the convergence properties of the di�usions themselves, which have recently been

suggested as a continuous-time method of approach to this simulation problem (see

Grenander and Miller 1994).

In this paper, our main aim will be to study geometric convergence properties of these

algorithms. For a discussion of some of the stability properties enjoyed by geometrically

ergodic chains in simulation, which motivate our evaluations, we refer the reader to

Roberts and Tweedie (1996). We note, for example that such chains have central limit

theorems and the like available, which makes it much easier to assess the algorithms.

One particularly important consequence of our work is that, whereas the genuinely

continuous-time processes often perform well on large classes of target densities, the

situation is much more delicate for the approximations which would be used in practice. In

particular, naive discretizations of the continuous-time models may lose not only the

geometric rates of convergence but also all convergence properties, even for quite standard

densities �. We indicate a truncated and `Metropolized' form of the discretization which, in

practical circumstances, will avoid such rather surprising pathologies.

We do not consider here the problem of how to choose the scaling of such discrete

approximations to di�usions. This problem is considered in Roberts and Rosenthal

(1995a).

In order to describe the approach, it is useful to outline the standard construction of the

Hastings and Metropolis algorithms (see Metropolis et al. 1953; Hastings 1970). These ®rst

consider a candidate transition kernel with densities q�x; y�; x; y 2 X, which generates

potential transitions for a discrete-timeMarkov chain evolving on X. Here we will generally

think of X as a subset ofR
k
equipped with the Borel s-®eldb, and both ��y� and q�x; y�will

be densities with respect to Lebesgue measure �
Leb

, although more general formulations are

possible.

A `candidate transition' to y generated according to the density q�x; �� is then accepted

with probability ��x; y�, given by

��x; y� �
min

��y�

��x�

q�y; x�

q�x; y�
; 1

� �

��x�q�x; y� > 0

1 ��x�q�x; y� � 0:

8

<

:

�1�

Thus actual transitions of the Hastings chain, which we denote by �n, take place according
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to a law P with transition probability densities

p�x; y� � q�x; y���x; y�; y 6� x; �2�

and with probability of remaining at the same point given by

r�x� � P�x; fxg� �

�

q�x; y��1ÿ ��x; y��dy: �3�

With this choice of � we have that � is invariant: that is, satis®es ��A� �
�

��x�P�x;A�dx; x 2 X;A 2 b. Provided the chain is suitably irreducible and aperiodic, it

is then standard (Meyn and Tweedie 1993a, Chapter 13; Roberts and Smith 1994) that the

n-step transition probabilities, de®ned for each n � 1 by P
n
�x;A� � P��n 2 Aj�0 � x�;

x 2 X;A 2 b, converge to � in the total variation norm: that is, for �-almost all x

kP
n
�x; �� ÿ �k :�

1

2
sup
A2b

jP
n
�x;A� ÿ ��A�j ! 0: �4�

In this paper we consider special forms of the density q based on the Langevin di�usion

model below, and ®nd conditions leading to geometric convergence in (4): in the cases

where q�x; y� � q�jxÿ yj� (theMetropolis algorithm) this has been addressed inMengersen

and Tweedie (1996) and Roberts and Tweedie (1996) and our results for the Langevin-

based models can be compared with those.

Other recently proposed algorithms such as hybrid-Monte Carlo algorithms (see, for

example, Neal 1994), are related to the class of Langevin algorithms, although in this paper

we will content ourselves with a detailed study of the simplest kind of Langevin algorithm,

constructed from the natural reversible di�usion process. Methods induced by non-

reversible di�usion can certainly be analysed similarly to those considered in this paper,

and will su�er similar problems caused by sensitivity to the tails of the target density.

However, it is worth remarking that often methods induced by non-reversible methods can

be shown to converge more quickly than their reversible counterparts (see, for example,

Sheu 1992).

1.2. THE LANGEVIN DIFFUSION

The form of the candidate density which we study is derived from the Langevin di�usion,

which is itself constructed so that in continuous time it converges to � under suitable

regularity conditions. In principle this should be a good choice of q, since even before being

`Metropolized' using (1), the candidate chain approximates one with stationary distribution

�. The improvement in using this algorithm rather than a simple random walk candidate is

also considered in Roberts and Rosenthal (1995b), from di�erent perspectives.

We assume that � is everywhere non-zero and di�erentiable so that r log��x� is well

de®ned. Then the Langevin di�usion Lt is de®ned by the k-dimensional stochastic

di�erential equation

dLt � dWt �
1

2
r log ��Lt�dt;

whereWt is k-dimensional standard Brownian motion. When � is suitably smooth, it can be
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shown that Lt has � as a stationary measure, and also that

kP
t

L�x; �� ÿ �k ! 0 �5�

for all x, where here P
t

L�x;A� � P�Lt 2 AjL0 � x�; t � 0: we give details in Section 2.1.

We will be interested in when the convergence in (5) is exponentially fast, and also in

when such exponential convergence occurs for higher moments of the process: this last can

be seen as a useful byproduct of our approach.

1.3. EXPONENTIAL EXAMPLES

Our results are probably most easily demonstrated by considering the following examples,

which we use repeatedly.

1.3.1. The one-dimensional class e��; �

Suppose � is one-dimensional. We will say that � 2 e��; � if for some x0, and some

constants  > 0 and 0 < � <1, � takes the form

��x� / e
ÿjxj

�

; jxj � x0; �6�

so that for jxj > x0

r log ��x� � ÿ� sgn �x�jxj
�ÿ1

�7�

We will also assume that � is smooth enough for jxj � x0 so that any assumptions on

di�erentiability are satis®ed, although in practice we expect that these can be avoided in

speci®c examples.

Then we shall see in Section 2.3 that the di�usion Lt converges to � exponentially quickly

when � 2 e��; � if and only if � � 1: that is, if and only if the tails of � are no heavier than

exponential. This is exactly similar behaviour to the symmetric or random walk algorithm

as shown in Theorem 3.5 of Mengersen and Tweedie (1996).

1.3.2. The multidimensional exponential class pm

For higher-dimensional models we consider the exponential family pm introduced and

studied in the context of the random walk Metropolis algorithm in Roberts and Tweedie

(1996), and consisting of su�ciently smooth densities with the form (at least for large jxj)

��x� / e
ÿp�x�

; �8�

where p is a polynomial of degree m of the following type. Decompose p as

p � pm � qmÿ1; �9�

where qmÿ1 is a polynomial of degree� mÿ 1, so that pm consists of the full-degree terms in

p. Then we say that � 2 pm if pm�x� ! 1 as jxj ! 1: this is a positive de®niteness

condition, and we note that this condition requires that m � 2.
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We will see that there is exponential convergence of the multidimensional di�usion if

� 2 pm. This behaviour is identical to that exhibited by the multidimensional random walk

algorithm, as shown in Roberts and Tweedie (1996).

1.4. DISCRETE APPROXIMATIONS TO Lt

In practice, of course, one implements a discrete approximation to the di�usion Lt, and we

will also consider when such discrete approximations converge to �, and when they do so

geometrically fast. Two di�erent `h-approximations' are de®ned below for ®xed h > 0: we

shall see in Section 3 that the more naive approximation (ULA) may not even converge for

light-tailed � (that is, when � > 2 in e��; �), and certainly need not always converge

geometrically; and the Metropolized algorithm (MALA), although it must converge, can

fail to do so geometrically quickly even when the di�usion itself converges at an exponential

rate.

1.4.1. The unadjusted Langevin algorithm

The unadjusted Langevin algorithm (ULA) is a discrete-timeMarkov chainUn which is the

natural discretization of the ordinary Langevin di�usion Lt. Any naive algorithm using (11)

below might be constructed in this way, as in Parisi (1981) or Grenander and Miller (1994).

We shall see that the algorithm may have some undesirable convergence properties,

although since its implementation may involve less computational expense than some of

its more robust alternatives, it may still have practical merit.

To form this chain, given Unÿ1, we simply construct Un according to

N�Unÿ1 �
1

2
r log ��Unÿ1�; hIk�:

As noted by Besag (1994), this chain only approximately maintains the invariance of � : as a

graphic example, if � is itself N�0; 1� on R, then when h � 2, we have each Un � N�0; 2� so

that clearly if the discretization step h is this coarse then we get immediate `convergence',

but to a quite unintended distribution.

We show below in Section 3 that the ULA chain may in fact behave quite badly: for

example, it may converge but not geometrically quickly even when the original di�usion is

exponentially ergodic, or quite startlingly it may actually be a transient chain even though

Lt has a very well-behaved invariant distribution.

1.4.2. The Metropolis-adjusted Langevin algorithm

Following Besag (1994), we therefore introduce a further modi®cation, and follow the

structure in (1) and (2) to construct a Metropolis-based Langevin algorithm (MALA). This

is a Hastings±Metropolis chainMn which uses ULA to construct the candidate chain. Thus

Un given Mnÿ1 is ®rst taken as a variable distributed as

N�Mnÿ1 �
1

2
hr log��Mnÿ1�; hIk�
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Call this proposal density q�Mnÿ1;Un�. Now carry out an accept/reject step, accepting Un

with probability

��Mnÿ1;Un� � 1 ^
��Un�q�Un;Mnÿ1�

��Mnÿ1�q�Mnÿ1;Un�

: �10�

If Un is accepted then set Mn � Un, otherwise, let Mn �Mnÿ1.

By the Hastings construction as in (2) and (3), the MALA chain converges to �, in the

sense that

kP
n

M�x; �� ÿ �k ! 0 �11�

for �-almost all x where we write P
n

M�x;A� � P�Mn 2 AjM0 � x�: this follows since the

chain is clearly �
Leb

-irreducible and aperiodic from Roberts and Tweedie (1996). As a

minor but useful by-product of our results we show that in the geometrically ergodic case

the convergence also holds from all starting points.

Our interest is again in ®nding conditions under which convergence in (11) occurs

geometrically quickly and from every starting point. We will prove that (roughly speaking)

when ULA is transient MALA is not exponentially ergodic; but that it is geometrically

ergodic otherwise unless the tails of the target density are heavier than exponential.

1.4.3. The Metropolis-adjusted Langevin truncated algorithm

Finally, we mention brie¯y a simple adjustment to the algorithm which is designed to try to

capture the best properties of both the random walk Metropolis algorithm, and the

`targeted' Langevin candidate ULA. We call this MALTA (the Metropolis-adjusted

Langevin truncated algorithm). This revised algorithm involves replacing the ®rst ULA

approximation by choosing the truncated candidate distribution

Tn � N�Mnÿ1 � R�Mnÿ1�; hIk�; �12�

where the drift term is now

R�Mn� �

Dr log��x�

2�D _ jr log��x�j�
�13�

for some constant D > 0. The candidate jump Tn is then adjusted to ensure the correct

stationary distribution holds, as in (10).

With MALTA, the chain has much more robust geometric ergodicity properties. We do

not pursue a detailed analysis of MALTA, merely pointing out that the methods employed

in this paper and in Roberts and Tweedie (1996) are readily transportable to the analysis of

this algorithm.

2. Exponential convergence of the Langevin di�usion algorithm

2.1. GENERAL CONVERGENCE RESULTS

In this section we apply convergence properties of general di�usions to the Langevin
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di�usion. For the concepts of �
Leb

-irreducibility, aperiodicity and small sets, the reader

should see Meyn and Tweedie (1993b).

Theorem 2.1. Suppose that rlog��x� is continuously di�erentiable and that, for some

N; a; b <1,

r log��x��x � ajxj
2
� b; jxj > N: �14�

Then the Langevin di�usion Lt satis®es the following:

(a) The di�usion is non-explosive, �
Leb

-irreducible, aperiodic, strong Feller and all compact

sets are small.

(b) The measure � is invariant for L and, moreover, for all x,

kP
t

L�x; �� ÿ �k ! 0: �15�

Proof. Under (14) a simple comparison argument, comparing jLtj with an appropriate

Ornstein±Uhlenbeck process, demonstrates that the radial component of Lt is non-

explosive. It follows that Lt is also non-explosive. From the conditions on � and the

constant di�usion coe�cient we then have that the di�usion drift is locally bounded.

Therefore the chain is �
Leb

-irreducible and strong Feller, by a straightforward extension

(which is possible by non-explosivity) of Theorem 2.1 of Bhattacharya (1978), which is due

to Stroock and Varadhan. The strong Feller result plus the irreducibility gives that all

compact sets are small (see Tweedie 1994, Theorem 5.1). The aperiodicity is then obvious

since all skeleton chains are also �
Leb

-irreducible.

Under these conditions it follows that � is invariant for Lt from Section 5.4 of Ikeda and

Watanabe (1989), that is, � is invariant for Pt since by construction it is invariant for the

generator of the Langevin di�usion given by

aL f �x� � �

1

2
r log ��x��rf �x� �

1

2
r

2
f �x� �16�

for any twice continuously di�erentiable function f . (These functions form a distribution-

determining class for a non-explosive di�usion.)

Since the process has a stationary distribution it is at least recurrent, from Tweedie (1994,

Theorem 2.3), and the continuity of the sample paths ensures that this extends to Harris

recurrence. The total variation norm convergence in (15) then follows from Meyn and

Tweedie (1993b, Theorem 6.1) for all x, and we have the result. h

The operator aL, over a domain that contains at least all functions satisfying (16), is

easily checked to be the extended generator of Lt as described in Davis (1993). For our

purposes we do not need the exact form of the domain, but merely the form (16) of aL.

Note that (14) is certainly not necessary for non-explosivity. However, it should be

appropriate for virtually all commonly encountered target densities.

The limiting result (15) is basically the result that justi®es the use of the Langevin di�usion

model: the drift on this di�usion is speci®cally designed to ensure convergence to �. We

now turn to new results in this area that ensure that the limit is exponentially fast.
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2.2. EXPONENTIAL ERGODICITY OF Lt

We will use the following approach for exponential ergodicity (see Meyn and Tweedie

1993b; Down et al. 1995). When V � 1 is a measurable function on X, we de®ne V-uniform

ergodicity by requiring that for all x

kP
t

L�x; �� ÿ �kV � V�x�R�
t
; t � 0; �17�

for some R < 1, � < 1, where

kAkV � sup
f f ;j f j �Vg

�

f �x�A�dx�

for any signed measure A. As is shown in Meyn and Tweedie (1993b), this strong form of

exponential ergodicity is in fact implied (for some V � 1) by the seemingly simpler

requirement that

kP
t

L�x; �� ÿ �k � Rx�
t
; t � 0; �18�

for some Rx < 1; � < 1 and all x.

We will use relationships between geometric ergodicity, `exponential recurrence' and the

existence of an exponential form of `drift function' equation involving the generator of the

process. Many more of these are given in Meyn and Tweedie (1993b), Down et al. (1995),

and the full force of (17) is described there in detail. These results, in this speci®c case, give

us the following theorem.

Theorem 2.2. Suppose that Lt satis®es the conditions of Theorem 2.1.

(a) The Langevin di�usion Lt is V-uniformly ergodic for any twice continuously di�erenti-

able V � 1, such that

aLV � ÿcV � b1C �19�

for some constants b; c > 0, and some compact non-empty setC, where the functional operator

aL is de®ned as in (16).

(b) If the Langevin di�usion is exponentially ergodic in the sense that (18) holds, then for

some compact non-empty set C there exist constants � > 1; � > 0, such that

sup
x2C

E��
�
�

C
� < 1 �20�

where

�
�

C � infft � � : Lt 2 Cg �21�

for any x 2 X.

Proof. Recall that a set C is small if there exists a positive constant ", an integer n0 and a

probability measure � such that

P
n0
�x; �� � "����:

348 G.O. Roberts and R.L. Tweedie



Since C is small, (a) follows from Theorem 5.2 of Down et al. (1995) or Theorem 6.1 of

Meyn and Tweedie (1993b): note that since the chain is non-explosive from Theorem 2.1(a)

above, we do not need V to be `normlike' as in that theorem.

To see (b), note that if (18) holds, then any �-skeleton is also geometrically ergodic. The

hitting time on C for the �-skeleton is at least as large as �
�

C and since any compact non-

empty C is small for the skeleton because Lt is strong Feller, we have that (20) follows from

Theorem 15.0.1 of Meyn and Tweedie (1993a). h

We now use these results to classify the behaviour of Lt in much more concrete terms.

Theorem 2.3. Suppose there exists S > 0 such that j��x�j is bounded for jxj � S. Then a

su�cient condition for the Langevin di�usion Lt to be exponentially ergodic is that there exists

0 < d < 1 such that

lim inf
jxj!1

�1ÿ d �jr log��x�j
2
�r

2
log��x� > 0: �22�

Proof. To use Theorem 2.2(a), we try the test function V � �
ÿd

for some ®xed 0 < d < 1.

Then

2aLV � V�jr log �j
2
�d

2
ÿ d � ÿ dr

2
log ��: �23�

Since V is bounded away from zero for large jxj by hypothesis, it is su�cient for (19) that

(22) holds for the chosen d. h

In the other direction we can show the following:

Theorem 2.4. If jr log ��x�j ! 0, then Lt is not exponentially ergodic.

Proof. Suppose that Lt is exponentially ergodic. Then from Theorem 2.2(b) there exists a

compact set C such that (20) holds. Choose R large enough so that jr log��x�j � 2�log��
1=2

for jxj � R, and ®x

S � sup
x2C

jxj _ R:

Now consider �C � �
0

C for starting points jyj � 2S. Also de®ne the radial process for

Lt;Zt � jLtj which satis®es the stochastic di�erential equation

dZt � dWt � a�Lt�dt

for some standard Brownian motion W , and a drift coe�cient a��� satisfying

a�Lt > ÿ�log ��
1=2

for jLtj > S. So if Bt denotes Wt ÿ �log ��
1=2
t, and ��X� denotes the

®rst hitting time of S by any process X , then ��Z� � ��B� almost surely. Therefore,

Py��C > t� � Py���Z� > t�

� Py���B� > t�

� �
ÿS � t�log ��

1=2

��

t
p

 !

ÿ e
2S�log��

1=2

�
ÿS ÿ t�log��

1=2

��

t
p

 !

;

�24�
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where � denotes the standard normal distribution function, and the ®nal inequality follows

from the Bachelier±LeÂ vy formula (see, for example, Lerche 1986). Denoting the density of

��B� by f , it is therefore easy to check that

log f �t�

t
! ÿ

log�

2

which contradicts (20). Therefore the process is not exponentially ergodic. h

2.3. EXPONENTIAL EXAMPLES

For distributions � with essentially exponentially decreasing `tails' the results above give a

fairly thorough classi®cation of the behaviour of the Langevin algorithm.

2.3.1. The one-dimensional class e��; �

Let us apply these results to the class of densities e��; � given by (6). As in (7), we have that

�1ÿ d �jr log��x�j
2
�r

2
log��x� � �1ÿ d ��

2
�
2
x
2�ÿ2

ÿ ���� ÿ 1�x
�ÿ2

:

Therefore:

(a) for 1 � � <1, the di�usion is exponentially ergodic by Theorem 2.3;

(b) for 0 < � < 1, jr log��x�j ! 0 so that, by Theorem 2.4, the di�usion is not

exponentially ergodic.

This mimics exactly the behaviour found in Section 3 of Mengersen and Tweedie (1996) for

Metropolis algorithms in one dimension: the exponential convergence is governed by the

tails of the target density, and occurs if and only if those tails decrease at least exponentially

quickly. We remark that there are a number of ways in which the Langevin di�usion can be

considered to be the weak limit of an appropriate sequence of Metropolis algorithms (see,

for example, Roberts et al. 1994).

2.3.2. The multidimensional class pm

For higher-dimensional models our results are not as complete. We consider the exponen-

tial class pm introduced in (8).

Now, it is easy to show that, by the positive de®niteness condition,

lim inf
jxj!1

jr log��x�j
2

jr

2 log��x�j
� 1 �25�

and

lim inf
jxj!1

�1ÿ d �jr log��x�j
2
> 0 �26�

for all 0 < d < 1. Exponential convergence of the Langevin di�usion for all � 2 pm

therefore follows from Theorem 2.3.
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Continuing to follow the type of example contained in Roberts and Tweedie (1996), we

examine the situation where � has the exponential form (8), but where the positive

de®niteness condition does not hold. Speci®cally, consider such a two-dimensional density

where

p�z; y� � �z
2
� z

2
y
2
� y

2
:

Note that here the dominant term is z
2
y
2
, which does not go to 1 along either of the

rays �z; 0� or �0; y�. Now, jrpj
2
� 4z

2
��� y

2
�

2
� 4y

2
�1� z

2
�

2
, and r

2
p �

2��� 1� z
2
� y

2
�. Hence jrpj

2
will dominate r

2
�ÿp� except along the coordinate axes.

Setting y � 0, therefore, we ®nd that if 2�1ÿ d ��
2
> 1 for some 0 < d < 1, then we can

ensure exponential convergence by Theorem 2.3: hence � > 1=
���

2
p

is su�cient for expon-

ential ergodicity.

In contrast, other polynomials failing to satisfy the positive de®niteness condition of pm

above will never satisfy the hypothesis of Theorem 2.3: consider, for instance,

p�x; y� � x
2
� x

2
y
4
� y

2
; �27�

which can never achieve (22) along the ray y � 0. Hence, if we are to show that such models

are exponentially ergodic, some other method of proof needs to be found.

3. The unadjusted Langevin algorithm

3.1. CONVERGENCE OF ULA

The naive way to implement the di�usion algorithms in practice is to use the unadjusted

Langevin algorithm (ULA): that is, use a ®rst-order Gaussian approximation to the

di�usion distributions on a grid of size h and construct

UnjUnÿ1 � N�Unÿ1 �
1

2
hr log��Unÿ1�; hIk� �28�

as in Parisi (1981).

This is easily seen to be �
Leb

-irreducible and weak Feller, provided r log ��x� is

continuous, and hence, as in Chapter 6 of Meyn and Tweedie (1993a), all compact sets

are small, and it su�ces for geometric ergodicity from Theorem 15.0.1 of Meyn and

Tweedie (1993a) to ®nd a function V � 1 such that for some compact set C and some

� < 1; b <1,

�

P�x; dy�V�y� � �V�x� � b1C�x�: �29�

Note that this is the discrete version of (19).

Under some circumstances the discrete approximation is well behaved and under others

it is not. We will only describe the range of behaviour when the chain is on R rather than in

higher dimensions: since the ULA is only an approximation, and since it can be shown to

converge in general to a stationary distribution which is not �, there is a limit to the extent of
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our interest in the rate of such convergence. However, it is the simple and natural

discretization and thus its behaviour warrants careful analysis.

Conditions under which the chain can be evaluated are mostly easily described when, for

some ®xed d, the limits

lim
x!1

1

2
hr log��x�x

ÿd
� S

�

d
�30�

and

lim
x!ÿ1

1

2
hr log��x�jxj

ÿd
� S

ÿ

d �31�

exist. Clearly the results below can easily be extended to other situations where S
�

d
;S

ÿ

d are

replaced by lim sup or lim inf in appropriate combinations, and where the exponent d varies

for positive and negative x.

Theorem 3.1. The ULA chain Un or R is geometrically ergodic if one of the following holds:

(a) for some d 2 �0; 1�, both S
�

d
< 0 and S

ÿ

d > 0 exist;

(b) for d � 1, both S
�

d
< 0 and S

ÿ

d > 0 exist and

�1� S
�

d
��1ÿ S

ÿ

d � < 1: �32�

Proof. In the ®rst instance for (a), consider d � 0. We compare the ULA model with a

random walk �0;1� for positive x: the result follows by symmetry for negative x.

We have that, if W1 is an N�0; h� variable, then, for all large enough positive U0 � x,

U1 � U0 � Sx �W1;

where Sx 2 �S
�

d
ÿ ";S

�

d
� "� and " is small enough that 0 > S

�

d
� ". We can then show,

exactly as in the argument in Meyn and Tweedie (1993a, pp. 318±319), that for some

su�ciently small s the function V�y� � e
sjyj

satis®es (29), and geometric ergodicity follows.

For d 2 �0; 1� the argument is virtually identical. The mean increment at x is now even

more negative, with the new mean position being approximately x� S
�

d
x
d
; nevertheless,

since d 2 �0; 1�, for large enough x this will still be su�ciently positive that the truncation

approximations needed to emulate the proof above still go through, and we omit details.

For (b), note again that, for large U0 > x0 > 0, we can write

U1 � U0�1� Sx� �W1;

while for U0 < ÿx0 < 0 we have

U1 � U0�1ÿ Bx� �W1

where now Sx 2 �S
�

d
ÿ ";S

�

d
� "� < 0;Bx 2 �S

ÿ

d ÿ ";S
ÿ

d � "� < 0 and this time we choose

" such that �1� Sx��1ÿ Bx� < 1, which is possible from (32).

Now, rather than the random walk, the analogue we use in this case is the SETAR (self-

exciting threshold autoregression) model in nonlinear time series. Following the proof of

Proposition 11.4.5 of Meyn and Tweedie (1993a) (see also Meyn and Tweedie, 1993a, p.

505), let us choose V�x� � ax; x > x0 and V�x� � bjxj; x � ÿx0. Then we have that (29)

again holds because of (32), and so the chain is again geometrically ergodic. h
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The interesting case in (b) is perhaps not when S
�

d
2 �ÿ2; 0�;S

ÿ

d 2 �0; 2�, for then both

negative and positive sides of the algorithm behave like simple autoregressions; rather, it is

when one of the values (say, S
�

d
) is strictly less than ÿ2, so that from the positive side one

makes a long negative jump; but then the next value satis®es (32) and so compensates either

by drifting back towards zero like a positive-coe�cient simple autoregression or by making

a jump back over the origin while being centred around a smaller absolute value than the

initial point, after these two steps.

Thus we have that geometric ergodicity is possible in a range of cases of ULA.

Conversely, we can show that in selected cases the ULA chain is not geometrically

ergodic, and, of rather more concern, may not even be ergodic at all. We illustrate this with

two di�erent results.

Theorem 3.2. (a) The ULA chain on R is ergodic but not geometrically ergodic if, for some

d 2 �ÿ1; 0�, both S
�

d
< 0 and S

ÿ

d > 0 exist.

(b) The ULA chain on R is not ergodic, and is indeed transient, if, for some d > 1, both

S
�

d
< 0 and S

ÿ

d > 0 exist, or if, for d � 1, both S
�

d
< ÿ2 and S

ÿ

d > 2 exist.

Proof. The second, transient, case (b) is rather obvious, although disturbing. When d � 1,

from a large positive value of x the next position is approximately �1� S
�

d
�x < ÿx, and

then the next oscillation is to a positive but still more extreme value, and so on; while for

d > 1 and x su�ciently large the same pattern repeats but more strongly. Again the formal

veri®cation follows the proof of transience for the SETAR model: see Meyn and Tweedie

(1993a, p. 222).

The other case (a) requires rather more subtlety.

To see the chain cannot be geometrically ergodic, we use Theorem 15.0.1 of Meyn and

Tweedie (1993a). Note ®rst that, for large x, from U0 � x the expected increment is

approximately S
�

d
x
d
! 0, x!1. Thus for any " > 0, there is a large enough x0 that the

mean next step is to the right of xÿ " when we start above x0. From x � x0 the ULA chain

is therefore always stochastically larger than a random walk with increments N�ÿ"; h�, at

least until the ®rst time to hit the set C0 � �ÿ1; x0�. The time taken by the random walk to

hit C0 is also correspondingly longer than that of a Brownian motion with constant drift

ÿ"=h, since the random walk can be viewed as the embedded h-skeleton of the Brownian

motion. Finally, since " is arbitrary we can use the Bachelier±LeÂ vy formula as in (24) to

show that these hitting times do not have exponential tails. So none of the chains above are

geometrically ergodic.

And yet, in this case the ULA model is indeed ergodic. We take V�x� � x
2
in the Foster

drift criterion (see, for example, Meyn and Tweedie 1993a, p. 262) to show this: following

the argument in Lamperti (1963), and being careful with truncations, we see that ergodicity

will follow if, writing �k�x� � E��Un�1 ÿUn�
k
jUn � x�, we can show

2x�1�x� � �2�x� � ÿ"; �33�

for large enough x > 0 and some " > 0 (with a symmetric drift for negative x). But now

we have that for d 2 �ÿ1; 0�; 2x�1�x� � 2S
�

d
x
1�d

, which is increasingly large and negative,
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while �2�x� � h� �S
�

d
x
d
�

2
! h, for large x. Thus ergodicity is indeed maintained in this

model. h

Note that if, for d � 0, we have S
�

d
� 0 or S

ÿ

d � 0, then by the same proof there can be no

geometric ergodicity. Depending on ®ner structure, one may ®nd that the chain is ergodic

from a condition such as (33); or conversely, is not ergodic if the mean drift becomes very

quickly close to zero, so the chain behaves too closely like a zero-drift random walk.

Clearly other behaviour is possible for su�ciently pathologically constructed tail

behaviour of �: as in the SETAR examples in Meyn and Tweedie (1993a), various

combinations of null recurrence and positive recurrence may occur. We do not pursue

this here: our goal was to show that the ULA model is not guaranteed to behave well, more

or less independently in most cases of the choice of h.

We conclude from this analysis that the ULA model is not to be recommended without

considerable care and knowledge of the behaviour of �.

3.2. ULA FOR THE ONE-DIMENSIONAL CLASS e��; �

Again for a one-dimensional distribution � 2 e��; �, as in (6), we have a rather complete

evaluation of the categories above. We ®nd, since r log��x� � ÿ�x
�ÿ1

for positive x:

(a) For 0 < � < 1, when the tails are heavy, it follows from Theorem 3.2 that the ULA

chain is ergodic but not exponentially ergodic; thus the ULA approximation mimics the

behaviour of the di�usion.

(b) For 1 � � < 2, the ULA is geometrically ergodic, again as for the di�usion; the

exponential case � � 1 follows from Theorem 3.1(a) with d � 0, and the cases between

exponential and Gaussian tails follow from Theorem 3.1(a) with d 2 �0; 1�.

(c) For � � 2, when the tails are like those of a symmetric Gaussian, the behaviour is

surprisingly mixed. From Theorem 3.1(b) we have that if h < 2 then the chain is

exponentially ergodic; but from Theorem 3.2, if h > 2 then the chain is transient. Thus

the choice of h is crucial here, as it is not in most models. We have not classi®ed the chain at

h � 2, though we would expect that this might be null recurrent.

(d) For � > 2, when the tails are light, it follows from Theorem 3.2 that (perhaps

surprisingly at ®rst sight) the ULA chain is transient: this is in contrast to the case with the

random walk Metropolis algorithm in Mengersen and Tweedie (1996), where such chains

are shown to be geometrically ergodic. In this situation the ULA over-corrects for the light

tails by throwing the chain in increasing oscillations. The underlying di�usion, since it has

continuous sample paths, cannot of course have such aberrant behaviour even though it

does `drift' very quickly from the tail regions, but is then forced to `slow down' in the centre

of the space and is exponentially ergodic, as shown in Section 2.

4. The Metropolis-adjusted Langevin algorithm

4.1. CONDITIONS FOR EXPONENTIAL CONVERGENCE OF MALA

The need for some form of correction of the simple ULA models is now quite apparent
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since even the ®nest discrete approximation of the Langevin di�usion can lead to the

approximating Markov chain behaving radically di�erently from the di�usion process it is

trying to approximate.

One way of preserving the stationarity of � in any discrete approximation is to introduce

a Hastings±Metropolis accept±reject step, and, for any ®xed h > 0, this algorithm is

described in Section 1.4.

In order to develop a positive result on geometric convergence of MALA algorithms,

especially in higher dimensions, we need some constraints on the way in which proposed

moves are accepted. The following covers many standard examples, although in other

situations variations on the approach will be needed: we do not strive for total generality

here.

We write A�x� for the acceptance region of MALA from the point x: that is, A�x� is the

region in which proposed moves are always accepted. Thus

A�x� � fy : ��x�q�x; y� � ��y�q�y; x�g; �34�

where q is the ULA density for a candidate move, given by (28). We also write R�x� for

A�x�
c
, the `potential rejection' region.

Denote by I�x� the points interior to x: that is,

I�x� � fy; jyj � jxjg:

We say that A��� converges inwards in q if

lim
jxj!1

�

A�x��I�x�

q�x; y�dy � 0; �35�

where we denote the symmetric di�erence �A [ B�n�A \ B� by A�B. For densities � that

have this property we have a simple and intuitively plausible condition that guarantees

geometric ergodicity.

Theorem 4.1. Suppose that c�x� � x�
1

2
hr log ��x� is the mean `next candidate position' and

that

� � lim inf
jxj!1

�jxj ÿ jc�x�j� > 0: �36�

Assume A��� converges inwards in q. If Vs�x� � e
sjxj

, then the MALA chain is Vs-uniformly

ergodic for s < 2h�.

Proof.Wewill check (29) for the functionVs. Splitting the integral over obvious regions, we

®nd:

PVs�x�=Vs�x� � �2�h�
ÿk=2

�

A�x�

exp ÿ

1

2h
jyÿ c�x�j

2
� s�jyj ÿ jxj�

� �

dy

� �2�h�
ÿk=2

�

R�x�

exp ÿ

1

2h
jyÿ c�x�j

2
� s�jyj ÿ jxj�

� �

��x; y�dy
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� �2�h�
ÿk=2

�

R�x�

exp ÿ

1

2h
jyÿ c�x�j

2

� �

�1ÿ ��x; y��dy;

� �2�h�
ÿk=2

�

R
k

exp ÿ

1

2h
jyÿ c�x�j

2
� s�jyj ÿ jxj�

� �

dy

� �2�h�
ÿk=2

�

R�x�\I�x�

exp ÿ

1

2h
jyÿ c�x�j

2

� �

dy: �37�

Now exp�s�jxj ÿ jc�x�j�� times the ®rst term on the right-hand side asymptotes to

exp�s
2
=2h�, so that lim sup of the ®rst term is less than 1. Moreover, the second term

asymptotically converges to zero since A��� converges inwards in q. Hence

lim sup
jxj!1

PVs�x�

Vs�x�
< 1;

so that, noting that compact sets are small from Roberts and Tweedie (1996), geo-

metric convergence in Vs-norm is guaranteed by Theorem 15.0.1 of Meyn and Tweedie

(1993a). h

We note from the steps of the proof that condition (35) is far from necessary. In fact it is

quite easy to relax (35) to ®nd that the following condition is su�cient for geometric

convergence in Vs-norm for su�ciently small s: there exists " > 0 such that

I�x� � fy : ��x; y� � "g

asymptotically has q-measure zero. We omit the details of this.

Condition (36) is implied by some obvious conditions on r log��x�. For example, the

following two conditions together imply (36):

lim sup
jxj!1

nx�r log��x� < 0; �38�

and

lim
jxj!1

nx�r log��x� ÿ jxj � 0; �39�

where nx � x=jxj denotes the outward normal vector at x. Other conditions are clearly

available, although they are more usefully pursued when speci®c models are being

considered.

The `inward converging' property is also often easy to evaluate. It is possible to rewrite

A�x� as

A�x� � y :

�

x

y

r log��z�dz � 1

2
�xÿ y���r log��x� � r log��y��

�

�

h

8
�jr log��x�j

2
ÿ jr log��y�j

2
�

�

:

�40�

Here the line integral can be interpreted along any curve between x and y, but most

conveniently along the straight line, where this expression for A��� o�ers interpretation in

terms of notions of convexity.
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We will illustrate this interpretation in Section 4.3 below. Before doing so, we consider

conditions under which MALA does not converge geometrically quickly.

4.2. CONDITIONS FOR NON-EXPONENTIAL CONVERGENCE OF MALA

The following theorem implies (essentially) that when ULA is transient (for example, when

the tails of � are lighter than Gaussian), MALA is not exponentially ergodic.

Theorem 4.2. If � is bounded, and

lim inf
jxj!1

jr log��x�j

jxj
>

4

h
�41�

then the MALA chain is not exponentially ergodic.

Proof. Let r�x� to be the rejection probability from each point as in (3): we know from

Roberts and Tweedie (1996) that if ess sup r�x� � 1 then the algorithm is not geometrically

ergodic.

Assume, then, for contradiction that the algorithm is exponentially ergodic, so that by

the continuity of � and q, there exists " > 0 such that

r�x� � 1ÿ ";

for all x 2 R
k
. Now choose T such that

P�jN�0; hIk�j � T � �

"

2
;

and S large enough such that there exists M > 4=h such that

inf
jxj �S

jr log��x�j

jxj
�M

and �M ÿ 4=h�S > T . De®ne

B�x� � fy; jyÿ xÿ
1

2
hr log��x�j � T g :

we will show that

lim
jxj!1

sup
y2B�x�

q�y; x�

q�x; y�
� 0: �42�

To see this, ®rst note that the denominator in (42) is uniformly bounded away from zero.

Therefore it is su�cient to consider the numerator. Now for jxj > S,

q�y; x� � �2�h�
ÿk=2

exp ÿ

1

2h
jxÿ yÿ

1

2
hr log ��y�j

2

� �

� �2�h�
ÿk=2

exp ÿ

1

2h
�j

1

2
hr log��y�j

2
ÿ jxÿ yj

2
�

� �

� �2�h�
ÿk=2

exp ÿ

1

2h
��

1

2
hMjyj�

2
ÿ 4jyj

2
�

� �
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since jyj > jxj for y 2 B�x�. Therefore since � 1
2
hM�

2
ÿ 4 > 0,

sup
y2B�x�

q�y; x� � sup
y2B�x�

�2�h�
ÿk=2

exp ÿ

1

2h
��

1

2
hM �

2
ÿ 4�jyj

2

� �

� �2�h�
ÿk=2

exp ÿ

1

2h
��

1

2
hM �

2
ÿ 4�jxj

2

� �

! 0;

as jxj ! 1, as required.

Now de®ne a sequence of points recursively in the following way. Let jx0j > S be such

that ��x0� > 0, and let

xn � arg supf��y�; y 2 B�xnÿ1�g:

It is easy to check that fxng ! 1 so that

lim
jxj!1

sup
y2B�xn�

q�y; xn�

q�xn; y�
� 0:

Now

1ÿ r�xn� �
"

2
�

�

B�xn�

1 ^
q�y; xn�

q�xn; y�

��y�

��xn�

� �

q�xn; y�dy;

so choose N large enough so that

sup
y2B�x�

q�y; xn�

q�xn; y�
<

"

4
;

for n � N. Then we have

1

2
" �

�

B�xn�

1 ^
"

4

��y�

��xn�

� �

q�xn; y�dy

�

�

B�xn�

1 ^
"

4

��xn�1�

��xn�

� �

q�xn; y�dy

� 1 ^
"

4

��xn�1�

��xn�

�

"��xn�1�

4��xn�
;

so that ��xn�1� � 2��xn�, demonstrating that � is unbounded: and thus we have our

contradiction. h
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This result covers light-tailed densities. In the other direction, if � has heavy tails, MALA

looks too much like a random walk on R
k
to be geometrically ergodic. Speci®cally, we will

be able to use the following theorem.

Theorem 4.3. If r log ��x� ! 0, then MALA is not geometrically ergodic.

Proof. This follows by a similar argument to that used in the proof of Theorem 2.4. We only

sketch the ideas here. SupposeMALA is geometrically ergodic. Then, for some bounded set

of positive measure under �;C say, there exists � > 1 such that for all x 2 R
k
,

Ex��
�C
� <1:

However if r log��x� ! 0, then it is easy to check that r�x� ! 0 as jxj ! 1, so that the

process behaves like a random walk with normally distributed increments. More speci®-

cally, we can ®nd N large enough such that e
�jMj

is a submartingale for jMj � N, and such

that � is small enough so that, when �N denotes inffn; jMnj � Ng, the collection of random

variables fe
�Xn^ �N ; n � 1g are uniformly integrable, so that optional stopping applies for a

contradiction. h

4.3. EXPONENTIAL MODELS

We conclude by applying the results above to the exponential models that we have analysed

for our previous algorithms.

4.3.1. The one-dimensional class e��; �

In order to use Theorem 4.1, we need to consider the orientation of A�x�, and whether it

`converges inwards': this depends on the convexity properties of ��x�, as shown in (40). In

order to give some intuition about convergence inwards, we will indicate how this

behaviour occurs in one dimension, even for those chains for which Theorem 4.1 fails.

Let � 2 e��; � and recall that � is bounded over compacta when assessing A�x� for large

jxj. Note also that because the ULA candidate is a normal distribution with ®xed variance,

to check if (35) will be satis®ed we need to evaluate whether the ULA step is centred near

values in A�x��I�x� or not.

We then have the following description:

(a) For 0 < � < 1, we have limn!1
jr log��x�j � 0 and we get non-geometric conver-

gence by Theorem 4.3, as we did with ULA. In this case, using (40), we have that the set

fjyj > jxjg approximates A�x� for jxj large: since the candidate density q�x; y� is concen-

trated near x for jxj large, we see that the set A�x� does not converge inwards in q.

(b) At � � 1, for x > 0, we see that q�x; y� is concentrated around xÿ h=2 for x positive.

Using (40), we have that, for large jxj, we accept jumps in A�x� � fy > ÿxg, so that in this

situation A�x��I�x� � fy > xg and so (35) fails since the integral is constant and positive

for all x; thus the model does not converge inward in q, and we cannot use Theorem 4.1.

However, since we accept essentially all proposals in this case, the MALA chain from
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positive x is in e�ect just a random walk with negative drift on the positive half-line and

with (more than) exponentially decreasing right tails; and this can be shown to be

geometrically ergodic using the argument in Meyn and Tweedie (1993a, Section 16.1.3).

(c) For 1 < � < 2 and for x > 0, the candidate density q�x; y� is concentrated near

xÿ �h�=2�x
�ÿ1

, and this is a value between 0 and x for x large. Sincer log��x� is convex

for x positive, and concave for x negative, A��� converges inwards as jxj ! 1. From

Theorem 4.1 we have geometric ergodicity for this case.

(d) The Gaussian case � � 2 is again a threshold case, as it was for ULA. From (40) we

have that, for jxj large,A�x� � fjyj � jxjg so that A�x� always converges inwards in q. Now

if h < 2 Theorem 4.1 shows that we have geometric ergodicity. If h > 2, however, (36) is

violated; but we can now use Theorem 4.2, since (41) holds in exactly this case, to see that

the chain is not geometrically ergodic.

(e) Finally, in the light-tailed case, � > 2, the term involving h dominates (40) and A���

converges inwards as jxj ! 1. But again (36) is violated, and indeed in this case

lim infn!1
jr log ��x�j=jxj � 1, so that the Markov chain is not geometrically ergodic

by Theorem 4.2.

4.3.2. The multidimensional class pm

Next consider the multidimensional case with ��x� 2 pm, m > 2. Then

lim inf
n!1

jr log��x�j

jxj
� 1;

so that MALA is not geometrically ergodic, no matter how small h is chosen to be. Note

that in contrast, the randomwalkMetropolis algorithm is always geometric for � 2 pm (see

Roberts and Tweedie 1996).

4.3.3. A slowly converging Bayesian algorithm

The examples we have used so far are all simple, although they do indicate the range of

good and bad behaviours we might expect. We conclude with an example of a density � that

occurs naturally as a Bayesian posterior density and where the arguments above show lack

of geometric convergence of the MALA chainMn.

Let Y0;Y1; . . . be conditionally i.i.d. N��; �
ÿ1
� variables and let �; � have the conditional

conjugate priors

� � N��0; �
ÿ1

0 �; � � ÿ��0; �0�:

Then the posterior density � is given by

���; �� / exp ÿ

�

2

X

n

i� 1

�yi ÿ ��
2
ÿ

�0

2
��ÿ �0�

2

(

� �0 �

n

2
ÿ 1

� �

log � ÿ �o�

)

; � 2 R; � 2 R
�

;
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so that

r log���; �� � ÿ�

X

n

i� 1

��ÿ yi� ÿ �0��ÿ �0�

( )

e
�

� �0 �

n

2
ÿ 1

� �

=� ÿ �0 ÿ
1

2

X

n

i� 1

�yi ÿ ��
2

( )

e
�
:

This is typical of the structure in hierarchical models.

By the same arguments used above, the MALA chain would perform badly here. This

example is not quite covered explicitly above but it is easy to show that geometric

convergence will not hold: to see this, merely choose � and � large enough that the

algorithm proposes steps further into the tail, by setting �h and h
P

�yi ÿ ��
2
large, say. The

detailed justi®cation that we can make the rejection probabilities r��; �� as close to unity as

we wish in this case then follows as in the proof of Theorem 4.2, and we leave the details to

the reader.

5. Concluding remarks

Although using the Langevin candidate ULA seems like a good strategy for generating a

`targeted' initial dynamic, and although Metropolizing to get the MALA chain guarantees

convergence, we have shown that in many cases this gives an algorithm which is not

guaranteed to converge geometrically fast even in situations when the simpler random walk

candidate is known to do so. This is not very appealing, but we do note that it is a product

of bad behaviour in the far reaches of the space.

We therefore conclude by recalling the MALTA algorithm with drift de®ned by (12).

Like MALA and the random walk Metropolis algorithm, MALTA is �
Leb

-irreducible and

Feller, and therefore converges in total variation to the target density. But since the

MALTA drift is truncated, the problems with MALA are not encountered, and MALTA

enjoys more stable geometrically ergodic properties, central limit theorems and the like, just

as the random walk-based algorithms do, for target densities that are not heavy-tailed.

Moreover, since the algorithm behaves like MALA except in extreme situations, it will

inherit most of the other desirable rapid convergence properties of MALA, and, for

example, the complexity result of Roberts and Rosenthal (1995a) for high-dimensional

MALA algorithms will also hold for MALTA.

For practical purposes, this truncated algorithm thus seems the most desirable version of

this class of algorithms.
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