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§1. Introduction. In this paper we consider the decay of solutions to hyper-
bolic equations in bounded domains. In contrast to equations in exterior domains
where local decay takes place because signals radiate to infinity, in the bounded
case there must be some direct dissipative mechanism. We discuss two types.
In one kind the energy of a wave will decrease when it passes through some
fixed subregion of the domain. The second sort of decay occurs at the boundary;
energy is lost when a wave is reflected from a fixed subset of the boundary.

Iwasaki [4, §2.2] has shown under broad hypotheses that either sort of decay
mechanism forces the energy of solutions to decrease to zero as ¢ — + «. Here,
we investigate conditions which imply that the decay is exponential.

For all problems the basic hypothesis is that there is a time 7' > 0 such that
a bicharacteristic ray starting at any point and suitably reflected at the bound-
ary reaches the region where decay takes place in time less than T. The idea
behind this assumption is that the energy of a solution to a hyperbolic equation
Lu = 0 is largely carried along bicharacteristic rays of L, so such a hypothesis
says that all such rays spend plenty of time in the region where energy loss
oceurs.

We treat problems on manifolds without boundary in section 2 and 3. In

section 4 we study problems with boundary, but we can only treat the case
of one space variable.

§2. First order systems on a manifold without boundary. ILet L = 9/3t —
G(x, D,), where G is a first order system of differential operators with smooth
coefficients on M. We assume M is a smooth compact manifold without boundary
endowed with a volume element. Assume ( satisfies the dissipative condition

G + G* = —F(x) where F is a non-negative self-adjoint matrix function.
L is called a dissipative symmetric hyperbolic system.
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It follows that the initial value problem
Lu =0
u(0, 2) = ¢

has a unique solution, and if ¢ ¢ L*(M), then |[u(®)||zs0n’ = [|¢|]lz2an” for
allt = 0.

We give here conditions which yield an exponential rate of decay |[u(®)||® <
ce *' |[u(0)[|?, ¢ = 0, where ¢ and a are independent of u. Let g(z, £) be the
principal symbol of G. The first condition is as follows.

(A) F(x) = oI > 0 on an open set U C M with the property that there is a
number T, such that any null bicharacteristic strip of det (r — 7 g(x, £)) in T*(R X
M) \O passes through T*((0, Ty) X U)\O.

In order to prove our exponential decay result, we shall need the following

result on propagation of singularities, which is a simple extension of proposition
3.3.1 of Hormander [3].

Proposition 1. Let p(x, D) be a k X k system of (pseudo) differential operators,
of order m, on a manifold Q, and assume that q(z, £) = det p(z, £) has real principal
part qy , of order M = km. Let p(x, D)u = f and let v: I — T*(@2)\O be a null
bicharacteristic strip for qy ; I = [to , t;]. If f € H* on y(I) and if w e H**" ™ at
v(to), then w e H**™* on v(I).

Proof. If cop(z, £) is the cofactor matrix of p(z, £), then ®p(z, D)p(z, D) =
qu(x, D) + r(x, D) where r has order M — 1. Then (g (x, D) + r(z, D))u =
wp(x, D)f e H**™** on v(I). Since the principal part of ¢, + r is scalar, Hor-
mander’s theorem yields v ¢ H**™™! on v(I), as desired. (In [3] the result is

only stated for operators acting on scalar valued functions, but the proof applies
without change to this case.)

Let w =0, T) X U, Q= (0, T) X M,andlet E = {ue H'(Q): ue L ()
and Lu e L*(Q)}. Then E is a Banach space with norm ||||z-:c + ||[%||z:c0) +
||ILu||zocqy . If T > T, then assumption 4 and proposition 1 yield the inclusion
E C L*(9).

To prove this we first extend u to R X M. Since u ¢ E it follows that u
C((0, T): H*(M)). Define Fe L*(R X M) by F = Luin @ and F = 0 otherwise
and let @ be the unique solution of L# = F, 4(T/2) = u(T/2). Uniqueness
for the Cauchy problem implies that ¥ = @ on @ so it suffices to show that
e L* atevery I' = (t, , 7, £) ¢ T*@Q)\O. If det (r — 4g(z, £)) > O then @ e H'
at T since L% is square integrable. On the other hand if det (r — dg(z, £)) = 0
then the null bicharacteristic through I' passes through a point (¢, , o , 70 , &) €
T*(w)\0. Proposition 1 implies that @ ¢ L* at T'. It is easily verified that E < L*(Q)
has closed graph, so it is continuous. This yields the inequality.
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1 Julls@® = ¢ [|[Lullps@® + ¢ [Jul| o + ¢ [Ju]lz-r @

This estimate is not good enough; we must get rid of the nuisance term ||u||x-:(q) -
To do this we will have to make an additional assumption. Indeed, so far it is
possible that there exist solutions to Lu = 0 which vanish on U for all ¢ > 0,
and such solutions would not decay. To prevent this possibility, we make the
following assumption.

(B) If T is taken large enough, then Lu = 0 on Q, u = 0 on w implies u = 0
on Q.

If M is an analytic manifold and L has analytic coefficients, then assumption

(B) is satisfied, by Holmgren’s uniqueness theorem. We have the following
additional result.

Proposition 2. If (A) holds and if G — p has the unique continuation property
for every p € C with Re p = 0, then hypothesis (B) is satisfied.

Proof. Suppose assumption (A4) is satisfied for all T = To. If V, =
{ue L*((0, T) X M): Lu = 0;u = O on (0, T) X U} then inequality (1) implies
that V; is finite dimensional. As T — o, the V; form a decreasing family of
finite dimensional spaces; hence they stabilize; V,, = V. . We must show that
Vo=1{0}.IfueV,,then Lu = 0on (0, ®) X M andu = 0on (0, ) X U.
If 4(9/0t) + G had the unique continuation property the results of [7, §3] would
imply that v = 0. Since we are considering a weaker hypothesis here, we argue
as follows.

We may norm V. by v — [[o' ([[v@)]|zs))® dt]'®. Define a semigroup Q°
on V., by Q'f(s, ) = f(s + ¢, x). Clearly Q° is a continuous semigroup of con-
tractions on V. . It follows that Q° = e'* where A is a linear transformation
on V., with spectrum in the left half plane. Let v ¢ V., be an eigenvector of A
with eigenvalue p. Then v(t) = ¢’'v(0), and Lu = 0 implies (@ — p)v(0) = 0.
Since v ¢ V,, we have v(0) = 0 on w and the unique continuation principle for
G — pimplies »(0) = 0, so v = 0, and we are done.

We now proceed to improve inequality (1). First, let £ be the closed linear
operator from L*(Q) to L*(Q) @ L*(w) given by Lu = (Lu, u|,) with domain
D(L) = {ue L*(Q): Lu e L*(Q)}. If K is the imbedding of L*(Q) into H™*(Q)
then K is compact and for T' = T, inequality (1) asserts that

[ullze@® = ¢ [|ulls@orsw)® + ¢ [|Kulla-@®, ueD(L).
The next lemma shows that the range of £ is closed.

Lemma. Let E, X, Y be Banach spaces and let £: D(£) C E — X be a closed
linear operator and K: E — Y be compact. If ||u|lz = ¢ ||Lullx + ¢ |[Kully
for all w e D(L), then £ has closed range.

This is a standard Fredholm type result and is proved in Lions and Magenes
[5], p. 171,
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Now if assumption (B) is satisfied, £ is one-to-one, so £7': R(£) — L*(Q)
is well defined and, by the closed graph theorem, continuous. This yields the
inequality

() ||u||L=<n>2 =c HLu”L’(m2 +c ||u||L,(,,,)2,

which is the desired improvement of inequality (1). We now have all the tools
we need.

Theorem 1. Let the dissipative symmetric operator L = 98/t — G(zx, D,)
satisfy (A) and (B). Then if Lu = 0 on (0, ©) X M and u(0) ¢ L*(M), we have

”u(t)”mumz < ce ”u(O)HL’<M>2

for constants ¢, o > 0 independent of u.

Proof.

@/d1) |[ul)|zecn? = 2 Re (Gu, ) = —2 f F@)u-u dz

= =29 [[u®]]zs 0’
SN eran® £ @] = 29 [l
= [O)[* = ¢ [fullzs@®

by inequality (2). Since |[u(T)||zsary =< |[w®)||Lsary for 0 < ¢t < T, we have
T
el ]2 = j; @ lzen® dt = T [Ju()|]22 00
Therefore |[w(T)||pocry = (1 + ¢T)™* ||u(0)||z2ary . From this inequality,

exponential decay follows easily.

We should point out that the methods of Ralston [6] show that if L is strictly
hyperbolic then (4) is a necessary condition for exponential decay. Most
operators which satisfy this hypothesis are strictly hyperbolic.

§3. Second order operators. An analogous result can be obtained for
solutions to second order hyperbolic equations of the form

L 9’ d
¢=5F¢—A¢+b(x)5z¢=0~

We suppose that A = a(z, D.) in a second order elliptic operator an M and that
—A is strictly positive self-adjoint. We also suppose Re b = 0 on M. Physically,
the term b(9/dt)u represents a resistance or friction.

Let H be the Hilbert space D((—A)"*) @ L*(M) with norm

[|(u, uz)HH2 = ||(“A)1/2u1”L=<M)2 + ||u2”L’<M>2~
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Define a closed linear operator G on H by

¢= D, b@=bwe -4,

It follows that ¢ is a bounded perturbation of the skew-adjoint operator

=i o).

so G generates a one parameter group P‘ on H.

Note that if we set u; = ¢, u, = (9¢/0t), u = (w1, us), the initial value prob-
lem Lo = 0, ¢(0) = ¢, (3¢/3t)(0) = ¢ is equivalent to ou/dt = Gu, u(0) =
(\01 ) '1/2)

The basic identity expressing dissipation of energy is
®) Sl = 2 Re Guy iy = =2 [ (Reb) fusf* do.

In particular P* is a semigroup of contractions on H. We make the following
assumption which is analogous to (4).

(A’)  The principal symbol of a(x, D,) is a scalar symbol a(x, £)I, and Re b =
nl > 0 on a subset U of M with the property that there is a number T, such that
every null bicharacteristic strip of 8°/9f — a(x, D,) in T*(R X M)\O passes
through T*((0, T,) X U)\O.

The appropriate analogue of (B) will then automatically hold, since second
order elliptic operators with real (scalar) symbols always have the unique
continuation property. (See [1] or [2].)

To show that there is a substantial amount of energy dissipation we must
get a lower bound for ||us|s () Where w = (0, T) X U as in §2. Since u, = d¢p/at
and L¢ = 0, we have Lu, = 0 and assumption (A’) shows that if T = T, and
uy € L’ (w), then u, ¢ L*(Q), and

[[tel 2o @” = € [Jttal]zscay” + € |[uallar-+ 0.

Using the unique continuation property we may reason as in §2 to show that
if T is taken sufficiently large, then

(4) o] zs @ = ¢ [Jtta]] o cay™
Combining inequalities (3) and (4) yields
(5) [[u(D)]|z* = [u©)|la" — ¢ [Jua|ls .

This inequality does not lead directly to energy decay. Fortunately, we can
estimate ||[u(t)||x in terms of |[us()||zsa) as follows. Suppose T > 2 and let
geCy"(0, T) be a fixed positive function, equal to 1 on (1, T — 1). Then, with
norms and inner products those of L*(M), we have
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T-1 T L .
[ =70l s [ 1o a0l a

= [ 4004600, 6 at.

Since A¢ = 9°¢/ot> + b(d4/dt), we can insert this identity into the integral
above and integrate by parts with respect to ¢, obtaining

[ 0@, o+ gl = g0, 00} a.

Estimating this crudely we have, for all ¢ > 0,

[ i=ar it a s o+ 10 [

It follows that for e small

a 2 T .
5® dt+cef; llol|* de.

T-1 T
lallirco?® = cie [ 1@l dt — e’ [ (]l de
1 0

= (T — 2) |[w(D)||s* — T |[w(O)]|x,

where we have used the fact that ||u(f)[|x is & decreasing function of ¢. This
estimate together with (5) yields

® DI £ gy IOl

We now choose e so small that the factor in (6) is less than 1, and we have the
desired estimate. To sum up, we have proved:

Theorem 2. If assumption (A’) is satisfied, then if

L¢ = 0) U, = d’y Uy = 6¢/6t, u = (u1> )

Uz

we have
[lu@|x” < ce™* [|u(0)]?

for constants ¢; o > 0 independent of ¢, t.

§4. One space variable. We consider the system
@ 0=90u— A@)du — Blx)u = (0, — Q)u

where A(x) is a smooth k X k Hermitian symmetric matrix valued function
on I = [a, b]. We suppose that G is dissipative, that is, B + B* — 39,4 < 0.
In this case 0 = Re (G¢, ¢) 12y for all ¢ & C,"(I). In addition, we suppose that
A(x) is nonsingular for all z in I. It follows that the number, ¢, of positive
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eigenvalues (counting multiplicity) of A is independent of x. The differential
equation is supplemented by homogeneous boundary conditions

(8) ueN,whenz = aandueN, whenz = b where N, and N, are subspace
of C*. These boundary spaces are assumed maximal dissipative, that is
dimN,=4¢dmN, =k — £and

(A(@)y,v) =20 for veN,, (A, v) =0 for veN,

where ( , ) is the scalar product in C*.

With these hypotheses it follows that for any f ¢ L*(I) there is a unique
ue C(R, : L*(I)) which is a weak solution of (7), (8) in R, X I with u(0) = f.
In addition, [|u(t)|| is a decreasing function of .

To ensure exponential decay we must consider the rays. For convenience
we assume that 0 < £ < k, since if all the eigenvalues of A have the same sign
a similar argument can be given. For x & I let A\ni, () (resp. Amax (x)) be the
smallest (resp. largest) eigenvalue of A (x). A\nax and A\p;n are Lipshitz continuous
on I. An integral curve of the vector field 9, — Apux (©)9. (resp. Amin) is called
a slow characteristic moving to the left (resp. right). These curves represent
paths of signals traveling as slowly as possible. Let T,.¢, be the time it takes
as slow left characteristic starting at the right hand endpoint of I to reach
x = @. Similarly T, is the time required for a slow right characteristic to
cross I. Let T = Ty + Tiigns - Intuitively a signal starting at any point in I
will have reached every other point, after suitable reflection at the boundary,
in time T'.

We say that N, ¢s strictly dissipative if (A(a)v, v) = c(v, v) for all ve N, .
A similar definition applies to N, . We say that G is strictly dissipative at x e 1
if B(x) + B*(x) — 9.4(x) < 0.

Theorem 3. Suppose N, or N, is strictly dissipative or G 1s strictly dissipative
at some x ¢ I. Then if u is a solution of (7), (8), with w(0) € L*(I) then |[u(t)|| <
ce”*" ||u(0)|| with ¢ and o positive constants independent of u. In fact for any
t> T, |lu®)|] < K ||u(0)|| for some K < 1 which depends only on t.

Proof. We treat the case where N, is strictly dissipative. The other pos-
sibilities are handled in a similar fashion. The basic identity reflecting energy
decay is

d
di w@®|lz2ny® = /;((B + B* — 3, 4)u, u) dx

+ (Ad)u(d), u(d) — (A(@)u(a), u(a)).
This implies that

@]z ry® £ [u(©)|]z:n* — ¢ fot |luts, a)||” ds
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where ¢ is the constant from the dissipativity of N, . To prove Theorem 3 we
show that if ¢ > T then

© [ s, 1" s 2 const 0l

Let T',(u for upper) be the integral curve of 3, — Am. ()3, which passes
through (¢, a) and T', the integral curve of 9, — Amin ()9, through (0, a). These
curves intersect the boundary x = b at times ¢, and ¢, with ¢, — ¢, = ¢t — T > 0.
The equation d,u = A '9,u — A™'Bu is viewed as a symmetric hyperbolic
equation with the direction of increasing = as time-like. The curves T, and T,
were chosen so that the domain of dependence of the slab [, , ¢,] X I is con-
tained in the initial segment [0, {] X {a}. Standard energy methods imply that

(10) f @) ||z ds < constf |lu(s, a)||® ds
tu 0

using the fact that ||u(s)||z.(n is a decreasing function of s we see that the left
hand side of (10) dominates (t, — t,) ||u(f)||* which completes the proof of (9).
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