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Abstract Bathymetric laser scanning is a powerful
tool to obtain information about the morphology of

coastal, river, and inland waters. Laser scanning in
general is a method to sense the shape of remote ob-
jects by sweeping a laser beam across the objects while

measuring the distance to every surface point. In ba-
thymetric applications the electromagnetic light wave
also needs to penetrate the water column resulting in

a spread reflection from below the surface of the water
body complicating the interpretation of the received
wave. As the signal seen by the sensor’s receiver is the
result of a convolution of the system waveform with

the differential backscatter cross-section, one approach
is to use a deconvolution method to recover the object
shape. An alternative approach is to fit a parametrised

model to the measured receiver signal. While decon-
volution methods are not capable to directly deliver
object parameters such as distance to water surface or
bottom, modelling methods suffer from neglecting the

system waveform. We present a new waveform decom-
position method that avoids current shortcomings. The
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proposed method uses a model composed of segments
of exponential functions, which is motivated by the

physics of the backscatter process in the water column,
and a record of the system waveform which is stored
as part of the sensor’s calibration data. The method

further consists of an algorithm which evaluates the
parameters of the exponential model while at the same
time performing a deconvolution from the system wave-

form in an implicit manner. The effectiveness of the
method is exemplified using real data from a near-shore
airborne LIDAR data acquisition.

Keywords Laser radar, Sea surface, Bathymetry,
Transient response, Deconvolution

Zusammenfassung Zerlegung von rückgestreuten
Lasersignalen mittels Exponentialfunktionen mit im-
pliziter Dekonvolution. Bathymetrisches Laserscanning

dient zur Erfassung der Morphologie küstennaher
Gewässer, von Binnengewässern und von Flüssen.
Laser Scanning im Allgemeinen ist eine Methode

zur Erfassung von Objekten mit Hilfe eines abta-
stenden Laserstrahls bei gleichzeitiger Distanzmes-
sung zu den Oberflächenpunkten. In der Bathymetrie
wird die Auswertung erschwert, da die elektroma-

gnetische Lichtwelle auch (obzwar erwünscht) in den
Wasserkörper eindringt und dadurch eine auseinan-
derlaufende Rückstreuung von Bereichen unter der

Wasseroberfläche verursacht. Da das vom Sensor ge-
messene Signal der Faltung der System-Wellenform mit
dem differentiellen Rückstreuquerschnitt entspricht,

kann die Objektform mittels Entfaltung (Dekonvolu-
tion) erhalten werden. Eine alternative Methode ist
es, ein parametrisches Modell an die Empfängerdaten
anzupassen. Während die Entfaltungsmethode nicht

direkt Parameter wie die Distanz zur Wasseroberfläche
oder zum Grund liefert, vernachlässigen parametri-
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sche Modelle den Einfluss der System-Wellenform.
Wir präsentieren eine verbesserte Methode zur Zerle-
gung für Wellenformen, die diese Nachteile vermeidet.
Motiviert durch die Physik der Rückstreuung in der

Wassersäule kommt ein Modell aus Segmenten von
Exponentialfunktionen ebenso zur Anwendung, wie die
System-Wellenform, die aus einer Kalibrierung bekannt

ist. Weiters beschreiben wir einen Algorithmus, der die
Parameter des Exponentialmodells ermittelt sowie zu-
gleich eine implizite Entfaltung der System-Wellenform

bewirkt. Die Wirksamkeit der Methode wird exempla-
risch anhand von Daten veranschaulicht, die aus einer
luftgestützten LIDAR Aufnahme stammen.

1 Introduction

Airborne remote sensing of the ocean has been a well es-

tablished technology for several decades. In particular,
LIDAR (Light Detection and Ranging) systems with
green lasers for shallow water bathymetry in coastal
areas have been in use since 1980 (Gordon 1980; Guen-

ther 1985). Bathymetric laser scanning is also applied
over inland waters, e.g. rivers, to improve the under-
standing of hydraulic processes comprising sediment

transport, river morphology, and ecology (Steinbacher
and Aufleger 2013).

Laser scanning in general is an application of

RADAR (Radio Detection and Ranging) techniques
at the frequencies of light, commonly termed LIDAR.
A laser beam composed of a sequence of pulse shaped
waveforms is emitted from an airborne platform and

swept across a remote surface. The time a single pulse
requires to travel from the platform to the surface (tar-
get) and back is a measure of the distance by virtue

of the known speed of light. Current measurement sys-
tems do not only deliver the distances but also store a
recording of the sampled full waveform (FW) as seen by

the sensor’s receiver. Storing and giving access to the
FW allows for more control by the end user (Hug et al.
2004) and enhances the possibilities for the interpreta-
tion of the physical measurement process (Mallet and

Bretar 2008). Together with the exterior orientation
of the measurement platform, determined by satellite
and inertial navigation systems (Skaloud et al. 2010),

a geo-referenced point cloud with additional attributes
is computed (Otepka et al. 2013).

At a wavelength range of 400 nm to 500 nm, corres-

ponding to green visible light, lasers are able to pen-
etrate water (Mobley 1994), which can be used for the
remote ranging of submerged objects. A green laser im-

pulse shaped waveform, emitted from an airborne plat-
form, will be partly reflected at the air-water boundary,

whereas another part will be transmitted into the wa-

ter volume. Depending on the surface roughness and
the angle of incidence, the back-scatter from the air-
water boundary can be observed as a sharp peak in the

received waveform. The part of the impulse that penet-
rates the water surface is exponentially damped during
propagation within the water body. If enough signal en-
ergy reaches the bottom of the water column, some of

the energy is reflected back towards the sensor, causing
a second sharp peak. If the impulse is too weak when
reaching the bottom, no reflection from the ground will

be received. Within the water column, small fluctu-
ations in density, particles and turbulence cause volume
scattering, observable as an exponentially decreasing

slope of the received waveform (Petzold 1972; Guen-
ther 1985; Mobley 1994). Although there is a body of
literature in photogrammetry and remote sensing on
LIDAR signal processing, we identified a lack of phys-

ically interpretable and effective methods for analysis of
bathymetric LIDAR signals, which we address in this
paper.

In general, the shape of any received waveform is
determined by the dBCS, i.e. the differential back-

scatter cross-section of the target, the properties of the
laser source, and the receiver electronics (Wagner et al.
2006). Under the condition that the mean distance to
the scatterers is much larger than their spatial spread,

the received signal can be approximated as the con-
volution between the system waveform and the dBCS.
The system waveform is a property of the measure-

ment system alone and the dBCS resembles the target
shape that is independent of the sensor. Interpreting
the dBCS as an input signal to a linear time invariant

(LTI) system, defined by the system waveform, the
signal after the receiver can be understood as a filtered
version of the dBCS. From the theory of linear systems
it is known (see e.g. Papoulis 1962) that the effect of

such a filter is a smoothing and widening of the signal,
an introduction of advanced and retarded echoes, and a
delay of the signal. These properties explain the delay,

the broadening, and the change of relative peak pos-
itions with respect to the dBCS observed in received
laser waveforms.

The expected outcome of waveform processing is
the extraction of certain features, such as range, re-
flectance, surface roughness, turbidity, and object clas-

sification. One of the expected benefits from processing
the FW is to improve target discrimination (Jutzi and
Stilla 2006), which is of particular interest for shallow

water bathymetry. FW algorithms can be categorized
into deconvolution and modelling methods. Deconvolu-
tion is the method to invert the effects of filtering i.e.

the interaction between laser pulse, dBCS, and receiver
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characteristics. Modelling, on the other hand, aims to
approximate the received waveform using a paramet-
rized function by finding the optimum parameters that
typically minimize a least squares error criterion. De-

composition can be understood as a special form of
modelling where the parts of the model are modelled by
prototype functions. Exponential Decomposition makes

use of segments of exponential functions.

Since deconvolution generally tends to suffer from

noise amplification, special precautions need to be
taken to make the method usable. The result of decon-
volution is a waveform that is only dependent on the
dBCS, within the bandwidth constraints of the system

waveform, meaning the result cannot be arbitrarily
sharp. While the outcome of modelling methods is a
discrete set of values, such as range, deconvolution

methods need a subsequent step to convert the decon-
volved waveform to a discrete set of ranges. Examples
of explicit deconvolution methods using a Wiener filter

or B-Splines can be found in (Jutzi and Stilla 2006)
and (Roncat et al. 2011), respectively. It shall be noted
that decomposition based on Gaussian decomposition
(Wagner et al. 2006) can be interpreted in a deconvolu-

tion context as well, but requires that the assumption
of a Gaussian shaped system waveform is valid (Wagner
et al. 2006; Roncat 2014).

The prototypic shape of a water body consists of
three main contributions: the air-water boundary, the

water
column, and the bottom, also called the benthic-layer.
The dBCS of a homogeneous water column alone fol-
lows an exponential law where the factor governing de-

cay is related to the effective attenuation coefficient
(Guenther 1985; Phillips and Koerber 1984). It may be
obvious that only the air-water and the bottom layers

can successfully be described by using a Dirac shaped
model for the dBCS, while the water column cannot.
Indeed, already the first airborne bathymetric system

LARSEN 500 (Wong and Antoniou 1991) used a con-
volution of a Gaussian with an exponential function to
model the returned waveform.

Other modelling functions, taking care of asym-
metric behaviour, have been used with a stochastic
algorithm by Mallet et al. (2009). Their finite-mixture

model is able to obtain very good results in the topo-
graphic case using a range of model functions, but it
is not appropriate for bathymetric waveforms because

it has no provision for the exponential decay of the
dBCS that can be observed in the water column. They
conclude that the set of models should be extended
with an exponential decaying function when used for

bathymetry.

A comparison of range discrimination performance

for three FW algorithms, Gaussian decomposition
(GD), EM deconvolution, and a hybrid deconvolu-
tion GD approach has been done by Parrish et al.

(2011). Their results indicate that “there is no single
best waveform strategy”, but they found that an
expectation-maximization (EM) based deconvolution
algorithm provides the best target separation if the

system and noise parameters are known and stable.
The authors did not explicitly perform their study with
bathymetry signals, but the assumed target model, a

sequence of Dirac spikes, is likely to be insufficient for
modelling bathymetric waveforms.

Pan et al. (2015) conducted a comprehensive per-

formance assessment of three algorithms for shallow
river bathymetry and contributed an algorithm based
on the continuous wavelet transform (CWT). The au-

thors conclude that the CWT performed better than
Gaussian decomposition or a method using the empir-
ical system response (ESR) described by Hartzell et al.
(2015). However, they found it is difficult to obtain good

results with any method. The authors attribute a part
of these problems to not having modelled the influence
of the water column scattering and suggest focussing

on this problem in future work. They found a bias of
water surface determination with respect to Real-Time
Kinematic (RTK) GPS observations in the range from

0.63 m to 0.82 m. A closer investigation of the wave-
forms indicated that the actual position of the water
surface could be assigned to the leading edge of the
observed waveforms.

The work of Abady et al. (2014) explicitly assesses
the contribution of the water column using a six-

parametric quadrilateral model function leading to a
significant reduction of estimation bias on a simulated
data set.

The influence of the water bottom geometry has
been studied by Bouhdaoui et al. (2014). Using a sim-
ulated data set, they demonstrate a systematic under-

estimation of depth for a water bottom which exhib-
its roughness which is comparable in scale to the laser
beam footprint. They conclude that in that case the
range measurement of the bottom target should not be

based on the peak of the corresponding waveform.

Current methods to process laser waveforms either
are based on a deconvolution method followed by a dis-

crete point scatter model, or they are based on a mod-
elling approach, but neglect the influence of the system
waveform. Both approaches are insufficient to properly

describe waveforms resulting from the backscatter of
the water body. We present a new method that uses a
model of the dBCS that is motivated by physics while

performing an implicit deconvolution from the system
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waveform simultaneously. We do so by introducing a
continuous model for the received waveform which con-
siders the effect of the system waveform, and we use
an exponentially damped function to model the dBCS

of the water column. Furthermore, we present an effi-
cient method to find the optimum model parameters
based on a hierarchical recursive decomposition with a

constrained non-linear least-square optimization in the
basic step.

2 Modeling the Received Waveform

The received waveform p(t) at the receiver can be writ-

ten as a convolution integral

p(t) =

∫ +∞

−∞
h(t− τ)σ(τ) dτ = h(t) ∗ σ(t) (1)

where σ(t) is the dBCS and h(t) is the system wave-
form. For simplification the dBCS is dependent on a

virtual time equivalent of range instead of true range,
see (Wagner et al. 2006). The system waveform h(t)
(the blurring function) is the convolution of the out-

going laser pulse shape with the impulse response of
the receiver electronics. Both h(t) and σ(τ) are causal
functions of time i.e. h(t) = 0 and σ(t) = 0 for t < 0.

2.1 System Waveform

The system waveform (system response) often is mod-

elled as a function of Gaussian shape. When the dBCS
also can be modelled by Gaussian shapes, the calcu-
lation of the convolution becomes trivial, because the

convolution of two Gaussians again is a Gaussian. On
the other hand, if the instrument’s system waveform is
asymmetrical and the dBCS is not properly modelled
by a Gaussian, as is the case for bathymetric waveforms

where exponential function segments are needed, a dif-
ferent approach is required.

Although it is possible to derive a differentiable ex-
pression for the convolution of an exponential function

with a Gaussian function, at least approximately (Wong
and Antoniou 1991), we use a different approach that
allows the system waveform to be of unsymmetrical

shape, leads to a simple calculation of the convolution
with an exponential function, and allows for storing the
shape as a part of the calibration data of a particular

instrument. We model the system waveform h(t) by a
sum of damped exponentials

h(t) = t0+

I∑

i=1

αie
βit . (2)

where αi and βi are the complex valued model paramet-

ers, I is the model order (the number of components)
and t0+ is the Heaviside step function which is 0 for t < 0
and 1 elsewhere. This is essentially equivalent to mod-

elling the system (transmitter and receiver) by a linear
differential equation with constant coefficients. Based
on the modified Prony algorithm (Osborne and Smyth
1995) it is possible to determine a low order model of

order I for the system waveform by analysing the re-
ceiver output when pointing the sensor towards a flat
extended target with a surface normal parallel to the

laser beam axis.
Since the system waveform h(t) is a real valued func-

tion the coefficients αi and βi necessarily appear in con-

jugate pairs, which means that Eq.(2) alternatively can
be expressed as a sum of damped harmonic functions

h(t) = t0+

K∑

k=1

Akeγkt cos(ωkt+ ϕk) (3)

with the real valued model parameters Ak, γk, ωk, ϕk
and K, which is the number of components1. It shall
be noted that in order to have the system response ap-

proach zero for large t, the values of γk or the real parts
of βk, respectively, have to be negative.

In Fig. 1 the result of modeling the system waveform

of a RIEGL VQ-880-G with a two-component exponen-
tial sum is shown. The dashed lines are the exponential
components and the solid line is the resulting system
waveform. The total number of parameters for this par-

ticular example with K = 2 is 2× 4 = 8.

2.2 Backscatter Cross-Section

Since back-scattering from the water column exhibits
exponential decay behavior (see e.g. Guenther 1985 or

Phillips and Koerber 1984), a simple and physically mo-
tivated model for the dBCS is the exponential segment

σ̃(t, ϕ̃) =

{
Ee−γ(t−τ) τ < t < τ + T

0 otherwise
(4)

where the vector2

ϕ̃ = (τ, E, γ, T ) (5)

is used to group the parameters, namely the position τ ,

the peak of the dBCS E (i.e. its maximum), the decay
γ and the width of the segment T . The same expression

1 K can be expected to equal I/2, but may be smaller if
some αi,βi are real valued.
2 The tilde is used to indicate an individual component,

whereas the composite of multiple individual components
uses the same symbol, but without the tilde.
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Figure 1 Exponential-components (dashed) and sum of components of the sensor’s system waveform (solid) as a function of
time t.
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Figure 2 A model of the differential backscatter cross-section σ(t) consisting of 2 exponential segments. The particular
example has a total of 3 × 2 + 1 = 7 parameters: τ0, E0, T0, γ0, E1, T1, γ1.

can be used to describe the water surface at the water-
air boundary, the bottom echo return, and also pulse

spreading as a consequence of oblique angles of incid-
ence of the laser beam. By proper selection of the para-
meters, the expression is able to model boxcar shaped,
exponentially decaying, and almost3 Dirac-shaped func-

tions. To make up for more complex situations such as
inhomogeneities in the water column we use a concat-
enation of such exponential segments. The parameter

vector of the n-th sub segment

ϕ̃n = (τn, En, γn, Tn) (6)

is indexed by n. For a set of N concatenated segments

σ̃(t, ϕ̃n) the number of independent parameters is
3N + 1, because the starting and the lengths of the
segments cannot be chosen independently. With the

3 Almost Dirac shaped: E very large and either γ also very
large or T very small.

four-component parameter vectors ϕ̃n we construct
the 3N + 1 parameter vector

ϕ = (τ0, E0, γ0, T0, E1, γ1, T1, ...) (7)

from which the parameters that are constrained due to
concatenation,

τn = τ0 +

n−1∑

j=0

Tj , n = 1...N − 1 (8)

have been removed. The composite dBCS σ(t,ϕ) finally
is given by

σ(t,ϕ) =
N−1∑

n=0

σ̃(t, ϕ̃n) . (9)

Fig. 2 depicts a model of the back scatter cross-section
consisting of two exponential segments.
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2.3 Received Waveform

The simplicity of the dBCS model according to Eq.(4)
allows for an explicit evaluation of the convolution with

the system waveform Eq.(2):

p̃(t, ϕ̃) = h(t) ∗ σ̃(t, ϕ̃)

= Es(t− τ, γ)

− Ee−γT s(t− τ − T, γ)

(10)

s(t, γ) = t0+
∑

i

αi
βi + γ

(eβit − e−γt)

Using the segment p̃(t, ϕ̃), the convolution of the
concatenation of multiple exponential segments with

the system waveform is simply given by the sum

p(t,ϕ) =
N−1∑

n=0

p̃n(t, ϕ̃n) = h(t) ∗ σ(t,ϕ) (11)

which is the received waveform for more complex target

scenes. The components

p̃n(t, ϕ̃n) = h(t) ∗ σ̃(t, ϕ̃n) (12)

are given by Eq.(10), substituting ϕ̃n for ϕ̃.

Fig. 3 depicts an example of a synthetic target scen-
ario σ(t,ϕ) with narrow echo contributions from the
water surface and the bottom and an exponential de-

cay from the water column, shown as a solid line. The
trace of the modelled receive signal p(t,ϕ) after convo-
lution with the system response is shown as a dashed
line. The overall time lag of the received signal w.r.t.

the cross-section model is a consequence of the convo-
lution with the system waveform. It can be seen that
the delay ∆T1 of the peak position of the surface is lar-

ger than the delay ∆T2 of the bottom peak. The reason
for this behaviour is the influence of the exponential
part caused by the water column which biases the peak
towards the bottom.

3 Determination of Model Parameters and
Echo Waveform Fitting

The objective is to find the optimum parameter vector
ϕ = ϕopt that minimizes the target function

χ2(ϕ) =
M−1∑

m=0

(ym − p(tm,ϕ))2 (13)

under a non-negativity constraint (ϕopt)i > 0 for all
components ϕi of the optimum vector. The ym are the
sample values of the received waveform at sampling

time instances tm and M is the number of samples.
In case the number of parameters is known - which is

usually not the case - this is a classical non-linear non-

negative least squares problem that can be solved with
a Levenberg-Marquardt (LM) algorithm. Non negativ-
ity of the parameters is satisfied by a simple parameter

mapping ϕ(u)

ϕi =
√
u2i + 1− 1 (14)

and solving for optimum u instead. We note that it is
possible to derive explicit expressions for the gradient
and second derivatives of the model p(t,ϕ), defined by

Eq. (11), with respect to the parameters. This property
is key to an efficient implementation of the algorithm.

As the number of parameters is not known before-

hand, they are determined in an iterative manner by
following the approach of Zhu et al. (2012). The au-
thors of the paper find the number of models by success-

ively removing fitted models from the waveform data.
They use a peak detector to find the position, amplitude
and inflection points of the global maximum peak and
use them to seed the parameters which are fit with a

non-linear least-squares (NLS) algorithm. We evaluate
the first three sample moments of the global maximum
peak and use them to calculate the initial parameters in

each iteration. One advantage of using moments is that
simple relations are available linking the moments of a
signal at the input of a filter (the convolution with the
system waveform) to the moments of the output signal.

Another advantage is that moments are the result of an
integrating process which reduces noise in contrast to
peak finding, which being based on differentiation, is a

noise amplifying process.
The algorithm starts with the minimum parameter

count of four i.e. τ0, E0, γ0, T0, by fitting the first model

to the most prominent peak in the data. The resulting
model is sampled at time instances tm and subtracted
from the data samples, giving a new sample set.

The reduced sample set again is scanned for the

global maximum peak and the set of parameters is ex-
tended by three, i.e. E1, γ1, T1. The new parameters
are initialized from the samples surrounding the newly

found peak. A new fitting process with the full set
of parameters, i.e. a model defined by all components
found so far, is performed with respect to the original
data values.

The algorithm proceeds by repeatedly subtracting
the refined model from the original data, identifying
the most prominent peak still remaining, and fitting of

an expanded model. For each iteration, initial values of
(additional) model parameters have to be found. Since

5 Note that the dBCS is converted from space to virtual
time, to show both, received waveform and dBCS on one axis.
The rise of the received waveform coincides with the start of
the dBCS (τ0).
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Figure 3 Solid: synthetic cross-section5 consisting of one narrow echo for surface, one exponential for water coulumn and
one narrow echo for bottom; dashed: convolution of the cross-section with the system waveform shown in Fig. 1. Note that
∆T1 > ∆T2 due to influence of the water column.

in every iteration we consider only the most promin-
ent peak, we can estimate these parameters from a few
samples surrounding the peak by calculating the first

three sample moments.

The algorithm stops if at least one of several con-
ditions is met: the remaining error is comparable to

measurement noise, the improvement of the target χ2

is below a threshold, the number of parameters exceeds
a predefinded value, or the LM does not converge after

a maximum number of iterations.

4 Results and Discussion

Several Full-waveform data sets of a coastal area ac-

quired with the bathymetric airborne laser scanner
RIEGL VQ-880-G (Riegl 2016) from a height above
ground of about 600 m have been processed. The data
used for this article are by courtesy of the US National

Oceanic and Atmospheric Administration (NOAA).
Due to the lack of reference data or water turbidity
information and because the focus of this study was

on the theoretical and algorithmic parts of the new
decomposition algorithm, we have not carried out a
full statistical analysis on the data set, but use only a

few selected samples to explain certain features of the
algorithm.

The nominal incidence angle of the laser beam was

20◦. The system waveform was provided by Riegl as a
separate data set. As can be seen in Fig. 1, the waveform
shape was not a Gaussian. The waveform including a

small trailing second peak could be modelled by a two
component exponential sum with a maximum deviation
of 1%.

Fig. 4 shows an almost ”text book” example of a
received waveform, obtained from the sample data, ex-

hibiting two peaks and an exponentially decaying slope.
The dotted line follows the measured samples ym of the
waveform, and the dash-dotted horizontal line marks
the 3-sigma noise level as read from the measurement

meta data. The thick solid line, labelled σ(t), repres-
ents the estimated model of the backscatter cross sec-
tion and the reconstructed waveform is shown as solid

line p(t), the latter being the convolution of σ(t) with
the system waveform. The dashed line corresponds to
the residual between the measured data and the model.

The RMS value of the residuals for this example is 9.47
and the one sigma noise level from the meta data is 5.63
digitizer units.

Since the incident angle of the laser beam was about
20◦, no direct reflection from the surface entered the
receiver optics, thereby having avoided the non-linear
effects that such a strong reflection would have intro-

duced into the receiving electronics. For this reason the
first peak is mainly caused by the volume back-scatter
alone. The rising edge of the peak can be seen to have a

small additional tilt to the right. The algorithm chose
two exponential segments and one Dirac for the first
part of the reconstructed dBCS. It can be seen that the

start of the front of the dBCS coincides with the start of
the leading edge of the received waveform. The Dirac is
most likely caused by some small submerged point scat-
tering object, but without additional data this cannot

be determined with certainty. The second Dirac, related
to the second peak, can reasonably be attributed to the
echo from the ground. It remains an interesting ques-

tion why the second Dirac is followed by an exponen-
tial decay, a behaviour which is observable with quite a
number of waveforms. A likely explanation is that the
decay is caused by a mixture of volume scattering and

the beam hitting the ground at an oblique angle.
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Figure 4 Decomposed exponential segments, blurred version thereof, and measured data. Residual between data and model.

The particular example was chosen to highlight two

important properties of the exponential decomposition
algorithm, namely to provide a good low-dimesional fit
to the measured data and be able to explain the data.

The good low dimensional fit and the explanation of the
data is similar to the approach of Gaussian decomposi-
tion of Wagner et al. (2006). They investigated LIDAR
data with Gaussian system response over land surfaces,

where the dBCS does not show exponential decay, but
can be described well by Gaussians. In this case the
Gaussian decomposition implicitly deconvolves the re-

corded waveform, providing position, peak and width of
each scatterer. In our contribution, the system response
and the dBCS are modelled by sums of (complex) expo-

nential functions. Their convolution is likewise a sum of
exponentials. Through implicit deconvolution the para-
meters position, peak, decay, and width are provided
for each scattering element. However the exponential

decomposition, having the additional decay parameter,
is able to model spread scatterers such as the water
column. Specifically it is possible to attribute the lead-

ing edge of the dBCS to the water surface and the decay
to the effective attenuation coefficient (Phillips and Ko-
erber 1984).

We note that the statement of Pan et al. (2015)
that “a simple leading edge detection method would be
able to accurately estimate the actual water surface”

seems to have some kind of resemblance to our findings
above, considering that the “leading edge” or onset of
the backscatter cross section of the water column ac-

curately defines the position of the water surface, since
the front positions of the exponential segments of our
model coincide with the start of the leading edge of

the received waveform reflected from the water sur-
face (compare Fig. 3). This time instant refers to the

well-known signal-front delay (Papoulis 1962; Ye et al.

2015). However, we want to emphasize that there is a
fundamental difference as dBCS describes the target it-
self whereas the received signal – being the convolution
of dBCS and the system response – does not describe

the target’s dBCS accurately. The detected time of ar-
rival of the “leading edge” of the received signal relies
strongly on the threshold value used. The lower the

threshold, the better the time of arrival will resemble
the position of the water surface, but at the cost of
a poor noise rejection, as only a small fraction of the
signal energy is utilized. We expect the implicit decon-

volution of our method to be much less susceptible to
noise and the front of the recovered dBCS σ(t) to be
an unbiased estimate of the water surface. As no ref-

erence data was available, in particular of the water
surface, which would be essential for a rigorous proof,
we tried to assert plausibility of the method by com-

paring the exponential decomposition result against the
on-line measurements of the laser sensor.

The findings were rather encouraging as can be seen
in Fig. 5, which shows a single scan line, part of a point
cloud of a canal profile, located near the shore. The
canal extends from the waterfront into open sea and

is entirely submerged i.e. also the banks of the canal
are flooded. Although the water surface extends bey-
ond the left and right side of the canal, no points from

the water-air boundary are visible with either method.
The reason for the lack of surface points is that the
laser echoes from the ground become indiscernible from

the echoes from the surface when they are spaced too
closely. Although the total amount of reflected light
is substantially higher for very shallow water than for
deeper regions, only the online method is able to re-

solve target points from the ground. The exponential
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Figure 5 Near shore canal profile comparison of online method with exponential decomposition. Top: online method only -
lot of flying points within the water column; middle: overlay of both methods - water surface points of decomposition method
above online method; bottom: exponential decomposition only - almost no flying points.

decomposition, requiring linear behaviour, will not re-

solve points in these regions because the signals are
simply too strong, causing the sensor’s receiver elec-
tronics to operate in the non-linear regime. The three

intensity-coded images, darker points meaning higher
amplitude, compare the points provided by the instru-
ment’s online waveform processing unit with the points
that were derived from the waveforms by the proposed

algorithm. The uppermost image contains only points
that were acquired with the online processing method
of the scanner. The image exhibits a behaviour that is

typical for any method relying on threshold detection,
namely that on a slowly falling edge of a pulse the like-
lihood of triggering false targets by noise is increased

substantially. The points obtained from the decompos-
ition approach, visible in the lowest part of Fig. 5, do
not suffer from such a problem because the exponential
tail, the slowly falling edge, is part of a single target i.e.

the water volume. The lowest part of Fig. 5 also shows
a dense point cloud near the bottom. The sparse point
density in the bottom region of the online method, vis-

ible in the uppermost image, however is not a funda-
mental limitation of the method but can be attributed
to a configuration problem of the sensor which was lim-

iting the amount of targets per laser shot, so no storage

was left for the points near the bottom. Another ob-

servation is that the water surface appears sharper in
the decomposition case, which we explain by the fact
that the surface is defined by the volume model which
is supported by a larger number of points and suffers

less from noise for that reason. Compared to the on-
line method, the bottom appears to be not as sharp
in the decomposition case. Whether this is caused by

bottom roughness or a higher sensitivity to noise is an
interesting question which unfortunately has to remain
open due to lack of reference data. The middle image

of Fig. 5 is an overlay of the top and bottom images.
The images have been aligned along the ground-points
that are common in both. One of the expectations of
the exponential decomposition method is to deliver an

unbiased estimate of the water surface, a result which
can be seen from the composite image since the points
from the exponential decomposition are offset above the

points from the online method.

We found that the ability of the algorithm to ob-

tain a good fit in the LM step critically depends on the
quality of the initial estimates of the model paramet-
ers, which is in accordance with Wagner et al. (2006)
and Pan et al. (2015). The use of the sample moments

for computing the initial values proved to be a valid



48 Roland Schwarz et al.

choice, given the amount of successfully decomposed
waveforms, although no quantitative assessment has
been attempted yet. We have to mention that no pre-
filtering step of the data was necessary as is common for

methods relying on peak finding and thresholds, a fact
that we attribute to the integrating behaviour of the
moments calculation which has an implicit de-noising

effect.

Finally it must be noted that the exponential de-
composition algorithm provides two additional attrib-
utes per point: a decay and a width of the target object.

We did not make use of these attributes for this article
but we expect them to be a very useful input for clas-
sification algorithms.

5 Conclusion

In this article the feasibility and effectiveness of mod-
elling the water column, surface, and bottom returns
deduced from bathymetric LIDAR waveform data by

means of a chain of exponential segments has been in-
vestigated and demonstrated.

In contrast to prior work our method is not only able
to undo the blurring of the target dBCS that is caused

by the laser sensor, but it also delivers a stable estima-
tion of the water surface which is essential for a correc-
tion of the refraction below the water surface to calcu-

late geometrically accurate target locations. The expo-
nential decomposition in particular makes green-laser-
only measurements practical, because it has the prop-
erty to determine the water surface from the volume

echo alone. This would be impossible with a peak de-
tecting method because such a method suffers from a
systematic bias. Another beneficial property of our al-

gorithm is that substantially less false echoes from the
water column will be triggered. This is a big saving be-
cause every detected point must be transformed into

the project coordinate system, which is not a compu-
tationally cheap operation. Finally the exponential de-
composition also delivers a decay parameter which may
be physically interpreted and an object width that is

likely to be useful as an additional input for classifica-
tion algorithms.
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