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tribution of a second type, which is a generalization of the geometric distribution. The new introduced model
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1. Introduction

The lifetime of a series (parallel) system with N components is defined by Y = min1≤i≤N Xi

(Y = max1≤i≤N Xi) in which Xi denotes the life length of i-th (i = 1,2, ...,N) component. In prac-

tice, the number of components itself may be a discrete random variable. In recent years, many

researchers have obtained new models to illustrate the characteristics and properties of the life-

time of series and parallel systems. These new models have been appeared in the literature by

compounding the known continuous lifetime distributions such as exponential, generalized expo-

nential, gamma and Weibull with classic discrete distributions such as geometric and zero-truncated

Poisson, which belong to the family of power series distributions. Indeed, compounding a continu-

ous lifetime distribution with a classic discrete distribution has been widely used by many statisti-

cians to introduce new lifetime models. For example, Adamidis and Loukas (1998) and Kus (2007)

introduced the exponential-geometric (EG) and exponential-Poisson distributions, respectively, with
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decreasing failure rates. Tahmasbi and Rezaei (2008) studied the exponential logarithmic distribu-

tion. Chahkandi and Ganjali (2009) introduced the family of exponential-power series distributions.

As alternative studies in this connection, we can address the Weibull-Poisson distribution proposed

by Hemmati et al. (2011) and Lu and Shi (2012), the extended exponential geometric (EEG) dis-

tribution of Adamidis et al. (2005) and generalized exponential-power series class of distributions

given by Mahmoudi and Jafari (2012). Barreto-Souza et al. (2011) introduced the Weibull-geometric

(WG) distribution with decreasing, increasing and upside-down bathtub failure rates. Morais and

Barreto-Souza (2011) introduced a compound class of Weibull and power series distributions. The

last authors investigated that the failure rate function of the new distributions, similar to WG distri-

bution, is decreasing, increasing and upside-down bathtub.

In this paper, the researchers attempt to introduce another generalization of the exponential

distribution. This new model is obtained by compounding the exponential distribution with the

discrete generalized exponential (DGE) distribution of a second type introduced by Nekoukhou et

al. (2013) with cumulative distribution function (cdf)

F(y;γ, p) = P(Y ≤ y) =
{

0 y < 0

(1− p[y]+1)γ y ≥ 0.

A DGE distribution is a generalization of the geometric distribution and depends on two param-

eters γ > 0 and 0 < p < 1. It is interesting to note that a DGE distribution can be viewed as an

exponentiated geometric distribution. The probability mass function (pmf) of a DGE distribution,

for a non-negative integer y, is of the form:

f (y;γ, p) = py = P(Y = y) = (1− py+1)γ − (1− py)γ

=
∞

∑
j=1

(−1) j+1
(

γ
j

)
p jy(1− p j), (1.1)

where
(γ

j

)
= Γ(γ+1)

Γ(γ+1− j) j! . For an integer value of γ > 0, the sum in Eq. (1.1) stops at γ . The pmf of

the related zero-truncated DGE(γ, p) random variable N is also given by

pn = P(N = n) =
(1− pn+1)γ − (1− pn)γ

1− (1− p)γ , n = 1,2,3, ... . (1.2)

If γ = 1, then the DGE distribution and its zero-truncated analog reduce to the known geometric

distributions

pn = (1− p)pn n = 0,1,2, ...

and

pn = (1− p)pn−1 n = 1,2,3, ...,

respectively.

In this paper, a new three-parameter lifetime distribution in order to analyze a series system is

introduced. Indeed, by considering a series system in which the number of components, N, and X i’s

follow the DGE and exponential distributions, respectively, we introduce a new generalization of the

exponential distribution. This new distribution also contains the EG distribution as a special case.

In addition, these new distributions are appropriate models in a supplementary risk problem base
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in presence of latent risks which arise in several areas such as industrial reliability and biomed-

ical studies. Moreover, in the application section of the present paper, we will see that this new

generalization of the exponential distribution can give a satisfactory fit in real data analyzing.

The paper is organized as follows: Section 2 introduces a new three-parameter distribution and

discusses related sub-models. Section 3 studies some important features and properties of the new

model such as the cumulative and failure rate functions, moments, moment generating function and

order statistics. In Section 4 the researchers will consider the maximum likelihood estimation of

unknown parameters. Section 5 describes the fitting of the proposed model to a well-known real

data set. Finally, in Section 6, some concluding remarks are given.

2. The new distribution

Since the zero-truncated DGE distribution generalizes the geometric distribution, it is evident to

extend the EG distribution by replacing the zero-truncated DGE distribution instead of the geometric

distribution in the compounding mechanism.

Suppose that {Xi}N
i=1 are independent and identically distributed (iid) random variables follow-

ing an exponential distribution with scale parameter β > 0 and probability density function (pdf)

f (x;β ) = βe−βx, x > 0, (2.1)

and N, which is independent of X ,
i s, is distributed as a zero-truncated DGE(γ, p) distribution with

pmf (1.2). The marginal density function of Y = min1≤i≤N Xi is

f (y;γ, p,β ) =
β

1− (1− p)γ

∞

∑
n=1

ne−nβy[(1− pn+1)γ − (1− pn)γ ], (2.2)

where γ > 0, 0 < p < 1 and β > 0 are the model parameters. We can find an alternative structure

for the pdf of the random variable Y , by using Eq. (1.1), as follows:

f (y;γ, p,β ) =
∞

∑
j=1

w j fEG(y; p j,β ), (2.3)

where

w j =
(−1) j+1

(γ
j

)
p j

1− (1− p)γ , j = 1,2, ... ,

and

fEG(y; p,β ) = β (1− p)e−βy{1− pe−βy}−2, y > 0,

denotes the pdf of the EG distribution of Adamidis and Loukas (1998) with parameters β > 0 and

p< 1. Nekoukhou et al. (2013) investigated that ∑∞
j=1 w j = 1 and if 0< γ < 1, then w j’s are positive.

Therefore, in this case, the new distribution is an infinite mixture of EG distributions. For integer

γ > 0, the sum in Eq. (2.3) stops at γ .

Some special sub-models of the exponential-discrete generalized exponential (EDGE) distribu-

tion, which is defined via Eq. (2.3), are the EG (when γ = 1) and the exponential (when γ = 1 and

p → 0+) distributions. When p → 1−, the EG distribution tends to a distribution degenerate in zero.

Hence, an EDGE distribution also contains this special case.
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Remark 2.1 For |t|< 1 and k > 0, using the series representation

(1− t)−k =
∞

∑
i=0

Γ(k+ i)
Γ(k)i!

t i,

we can expand {1− p je−βy}−2 and rewrite the pdf in Eq. (2.3) as

f (y;γ, p,β ) =
∞

∑
j=1

∞

∑
i=0

w j(1− p j)pi j fE(y;(1+ i)β ), (2.4)

where fE denotes an exponential pdf given by Eq. (2.1).

3. Basic properties

3.1. The distribution and failure rate functions

The pdf of an EDGE distribution is a linear combination of the EG and exponential distributions via

Eq.’s (2.3) and (2.4). Hence, various mathematical properties such as the cdf, moment generating

function (mgf) and moments of the EDGE distribution can be obtained from these Eq.’s and the

corresponding properties of the EG and exponential distributions.

Let EDGE(γ, p,β ) denote an EDGE distribution with parameters γ , p and β in the sequel. The

cdf of a random variable Y following an EDGE(γ, p,β ) distribution is given by

F(y;γ, p,β ) =
∞

∑
j=1

w jFEG(y; p j,β ), y > 0, (3.1)

where FEG denotes the cdf of an exponential-geometric distribution. Hence, the cdf of the EDGE

distribution is given by

F(y;γ, p,β ) =
∞

∑
j=1

w j
1− e−βy

1− p je−βy , y > 0.

The survival and failure rate functions of Y are given, respectively, by

S(y;γ, p,β ) = 1−
∞

∑
j=1

w j
1− e−βy

1− p je−βy , y > 0

and

h(y) =
∑∞

j=1 w j fEG(y; p j,β )

1−∑∞
j=1 w j

1−e−βy

1−p je−βy

, y > 0.

Clearly, for integer values of γ > 0, the above infinite sums stop at γ .

Figure 1 illustrates the shapes of the failure rate function of the EDGE distribution for selected

values of its parameters. These plots show that the failure rate function of the EDGE distribution is

decreasing.
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Fig. 1. Failure rate function plots of EDGE distribution for selected parameters values.

3.2. Moments and moment generating functions

The r-th moment of a random variable Y ∼ EDGE(γ, p,β ), by using Eq. (2.3), is given by

E(Y r) =
∞

∑
j=1

w jEEG(X r
j ), r = 1,2, ..., (3.2)

where EEG(X r
j ) denotes the r-th moment of a random variable X j which follows an EG(p j,β )

distribution, i.e.,

EEG(X r
j ) = (1− p j)β−rΓ(r+1)Φ(p j,r,1), j = 1,2, ...

in which

Φ(z,s,a) = {Γ(s)}−1
∫ ∞

0
ts−1e−at(1− ze−t)−1 dt, z < 1; a,s > 0,

is the Lerch’s transcendent function (see Erdelyi et al., 1953, pp. 27) and available on MAPLE and

MATHEMATICA. One can easily show that E(Y r) reduces to

E(Y r) =
Γ(r+1)

β r

∞

∑
j=1

w j
(1− p j)

p j L(p j;r),

where L(p;a) = ∑∞
t=1 ptt−a is Euler’s polylogarithm function (see Erdelyi et al., 1953, pp. 31).

Remark 3.1 Bidram et al. (2013) derived an alternative expression for the moments of the EG(p,β )
distribution as

EEG(X r) =
(1− p)Γ(r+1)

β r

∞

∑
i=0

pi

(i+1)r , r = 1,2, ... . (3.3)

Substituting the above relation into Eq. (3.2) yields another relation for the moments of the EDGE

distribution which is given by

E(Y r) =
Γ(r+1)

β r

∞

∑
j=1

∞

∑
i=0

w j
pi j(1− p j)

(i+1)r , r = 1,2, ... .
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Moreover, the last authors, for the first time, obtained the mgf of the EG(p,β ) distribution as

MEG(t) = (1− p)
∞

∑
i=0

∞

∑
k=0

pi
{

t
(i+1)β

}k

. (3.4)

Hence, by using Eq.’s (2.3) and (3.4), the mgf of the EDGE distribution is obtained as

MY (t) =
∞

∑
j=1

∞

∑
i=0

∞

∑
k=0

w j(1− p j)pi j
{

t
(i+1)β

}k

.

Remark 3.2 Eq. (2.4) is useful for calculating some characteristics of the EDGE distribution from

the exponential distribution. For example, the factorial moments generating function of a random

variable Y ∼ EDGE(γ, p,β ) is given by

ΨY (z) =
∞

∑
j=1

∞

∑
t=0

w j(1− p j)p jt Γ(1+ z)
β z(1+ t)z .

Remark 3.3 It is evident that for an integer γ > 0, ∑∞
j=1 should be replaced by ∑γ

j=1 in the above

relations.

3.3. Order statistics

Order statistics play a key role in both practical and theoretical aspects of Statistics. Specially the

importance of the order statistics is shown in non-parametric statistics and statistical inference.

The aim of the present section is to establish the relations regarding the order statistics of the

EDGE distribution. More precisely, let Fi(y;γ, p,β ) denote the cdf of the i-th order statistic of a

random sample Y1,Y2, ...,Yn drawn from an EDGE(γ, p,β ) distribution.

Theorem 3.1. The cdf of the i-th order statistic of a random sample of size n drawn from an
EDGE(γ, p,β ) distribution is given by

Fi(y;γ, p,β ) =
n

∑
k=i

n−k

∑
j=0

∞

∑
m1=1

...
∞

∑
mk+ j=1

k+ j

∏
z=1

δk, jFEG(y; pmz ,β ), (3.5)

where

δk, j =

(n
k

)(n−k
j

)( γ
mz

)
(−1)∑k+ j

z=1 mz+k p∑k+ j
z=1 mz

[1− (1− p)γ ]k+ j ,

and the sums in Eq. (3.5) extend over all (k + j + 1)-tuples (k,m1,m2, ...,mk+ j) of non-negative
integers.

Proof. Using the binomial expansion for [1−F(y;γ, p,β )]n−k , one can easily obtain the following

representation for the cdf of the i-th order statistic,

Fi(y;γ, p,β ) =
n

∑
k=i

n−k

∑
j=0

(
n
k

)(
n− k

j

)
(−1) j[F(y;γ, p,β )]k+ j .

Replacing F(y;γ, p,β ) by Eq. (3.1) yields that

Fi(y;γ, p,β ) =
n

∑
k=i

n−k

∑
j=0

(
n
k

)(
n− k

j

)
(−1) j[

∞

∑
t=1

wtFEG(y; pt ,β )]k+ j. (3.6)
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In this stage, by using the expansion

(
∞

∑
i=1

ai)
k =

∞

∑
m1=1

∞

∑
m2=1

...
∞

∑
mk=1

k

∏
j=1

am j , k = 1,2, ..., (3.7)

Eq. (3.6) can be rewritten as

Fi(y;γ, p,β ) =
n

∑
k=i

n−k

∑
j=0

∞

∑
m1=1

...
∞

∑
mk+ j=1

k+ j

∏
z=1

δk, jFEG(y; pmz ,β ).

Corollary 3.1. The pdf of the i-th order statistic is given by

fi(y;γ, p,β ) =
n

∑
k=i

n−k

∑
j=0

∞

∑
m1=1

...
∞

∑
mk+ j=1

k+ j

∏
z=1

δk, j fEG(y; pmz ,β ), (3.8)

where fEG denotes an EG pdf. Hence, some mathematical properties of the EDGE order statistics
can be immediately obtained from Eq. (3.8) and those properties of the EG order statistics.

Remark 3.4 For integer values of γ , the infinite sums in Eq.’s (3.7) and (3.8) stop at γ .

Corollary 3.2. The mgf of the i-th order statistic of the EDGE distribution, say Mi:n(t), can be
easily obtained by combining Eq.’s (3.4) and (3.8) as follows:

Mi:n(t) =
n

∑
k=i

n−k

∑
j=0

∞

∑
m1=1

...
∞

∑
mk+ j=1

k+ j

∏
z=1

∞

∑
l=0

δk, j(1− pmz)plmz
∞

∑
r=0

{
t

(l+1)β

}r

.

Corollary 3.3. The moments of the i-th order statistic are derived by combining Eq.’s (3.3) and
(3.8) which are given by

E(Y r
i:n) =

n

∑
k=i

n−k

∑
j=0

∞

∑
m1=1

...
∞

∑
mk+ j=1

k+ j

∏
z=1

∞

∑
i=0

δk, j
(1− pmz)Γ(r+1)

β r
pimz

(i+1)r , r = 1,2, ... . (3.9)

Remark 3.5 We can show that when γ = 1, Eq. (3.9) reduces to

E(Y r
i:n) =

Γ(r+1)(1− p)
B(i,n− i+1)β r

n−i

∑
k=0

∞

∑
h=0

k+i−1

∑
j=0

(n−i
k

)(k+i+h
h

)(k+i−1
j

)
(−1)k+ j ph

(1+h+ j)r+1 ,

which is the r-th moment of the i-th order statistic of an EG(p,β ) distribution derived by Bidram

et al. (2013).

3.4. Rényi entropy

The entropy of a random variable Y is a measure of uncertainty variation. The Rényi entropy is

important in Ecology, Statistics as indices of diversity, Reliability and also important in quantum
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information, which it can be used as a measure of entanglement. Rényi entropy is defined by

IR(ρ) =
1

1−ρ
log{

∫
R

f ρ(y) dy},

where ρ > 0 and ρ �= 1; see Rényi (1961). For the EDGE pdf given by (2.3), we see that

∫ ∞

0
f ρ(y;γ, p,β ) dy =

∫ ∞

0
[

∞

∑
j=1

w j fEG(y; p j,β )]ρ dy.

Using the series representation (3.7), it is easy to show that

IR(ρ) =
1

1−ρ
log

1

[1− (1− p)γ ]ρ

∞

∑
m1=1

∞

∑
m2=1

...
∞

∑
mρ=1

ρ

∏
j=1

(−1)m j+1
(

γ
m j

)
pm

j .

As mentioned before, the above infinite sums stop at γ for integer values of γ .

4. Estimation

To apply the method of maximum likelihood for estimating the unknown parameters vector θ =

(γ, p,β )T of an EDGE distribution, assume that y = (y1,y2, ...,ym)
T is a random sample of size m

from the distribution. The log-likelihood function, using Eq. (2.2), becomes

�= m logβ −m log[1− (1− p)γ ]+
m

∑
i=1

log(
∞

∑
n=1

ne−nβyi [(1− pn+1)γ − (1− pn)γ ]).

Hence, the likelihood equations are

∂�
∂γ

=
m

∑
i=1

∑∞
n=1 ne−nβyi [(1− pn+1)γ log(1− pn+1)− (1− pn)γ log(1− pn)]

∑∞
n=1 ne−nβyi [(1− pn+1)γ − (1− pn)γ ]

+
m(1− p)γ log(1− p)

1− (1− p)γ ,

∂�
∂ p

=
m

∑
i=1

∑∞
n=1 ne−nβyi [nγ pn−1(1− pn)γ−1 − (n+1)γ pn(1− pn+1)γ−1]

∑∞
n=1 ne−nβyi [(1− pn+1)γ − (1− pn)γ ]

− m
γ(1− p)γ−1

1− (1− p)γ

and

∂�
∂β

=
m

∑
i=1

∑∞
n=1−n2e−nβyi βyi[(1− pn+1)γ − (1− pn)γ ]

β ∑∞
n=1 ne−nβyi [(1− pn+1)γ − (1− pn)γ ]

.

The maximum likelihood estimate (MLE) of θ , say θ̂ , can be obtained by solving the nonlinear

equation (∂�/∂γ,∂�/∂ p,∂�/∂β )T = 0 using a numerical method such as the Newton-Raphson

algorithm. Under the regular conditions, stated in Cox and Hinkley (1974), that are fulfilled for the

parameter θ in the interior of the parameter space but not on the boundary, the MLE vector θ̂ is

consistent and the asymptotic distribution of I
1
2

y (θ)(θ̂ −θ) is a multivariate normal with the (vector)

mean zero and the identity covariance matrix in which Iy(θ) is the information matrix.
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The observed information matrix, which is used for interval estimation and hypotheses testing

on the model parameters, is given by

Iy(θ̂) =

⎡
⎢⎢⎣

− ∂ 2�
∂γ2 − ∂ 2�

∂γ∂ p − ∂ 2�
∂γ∂β

− ∂ 2�
∂ p∂γ − ∂ 2�

∂ p2 − ∂ 2�
∂ p∂β

− ∂ 2�
∂β∂γ − ∂ 2�

∂β∂ p − ∂ 2�
∂β 2

⎤
⎥⎥⎦
|θ=θ̂

.

One can use the normal distribution of θ̂ to construct approximate confidence regions for some

parameters and for the failure and survival functions. Indeed, an asymptotic 100(1−ξ ) confidence

interval for each parameter θi, is given by

(θ̂i − zξ/2

√
Ĵii, θ̂i + zξ/2

√
Ĵii), i = 1,2,3,

where Ĵii denotes the (i, i) diagonal element of I−1
y (θ̂) and zξ/2 is the (1− ξ/2)-th quantile of the

standard normal distribution.

5. Application

In order to illustrate the capacity of EDGE distributions in data modeling, the Boing data which have

been used widely in the literature are considered. This data set consists of the number of successive

failures of the air conditioning system of each number of a fleet of 13 Boeing 720 jet airplanes.

The pooled data with 213 observations, first analyzed by Proschan (1963) and discussed further by

Adamidis and Loukas (1998) and also Bidram et al. (2013).

In order to identify the shape of the hazard rate function of these data, we considered a graphical

method based on the Total Time on Test (TTT) plot. As we know, the empirical TTT plot is given

by

G(r/n) = (
r

∑
i=1

Yi:n +(n− r)Yr:n)/
n

∑
i=1

Yi:n, r = 1,2, . . . ,n,

where Yi:n denotes the i-th order statistic of the sample. If the empirical TTT transform is convex,

concave, convex then concave and concave then convex, the shape of the corresponding hazard rate

function is, respectively, decreasing, increasing, bathtub-shaped and upside-down bathtub; see, e.g.,

Aarset (1987). Figure 2 shows the TTT plot of this data set. As we see from the figure, the hazard

rate of the data set is decreasing.

Here, the three-parameter exponentiated Weibull (EW) distribution of Mudholkar and Srivas-

tava (1993) and Weibull-geometric distribution of Barreto-Souza et al. (2011), whose hazard rate

functions can be decreasing, are compared with the EDGE distribution. Also, the EG distribution

as a sub-model of the EDGE distribution is fitted. Table 1 indicates the related fitting computations

which consists of the MLEs, Akaike information criterions (AICs) and values of Kolmogorov-

Smirnov (K-S) test statistics with the corresponding p-values.

Table 1. MLEs, AICs and K-S test statistics (p-values) for the data set.
Model MLEs of parameters AIC K-S (p-value)
EDGE (γ̂ , β̂ , p̂) = (11.0921,0.0023,0.5606) 2304.1 0.0361 (0.9116)
WG (α̂, β̂ , p̂)=(1.2246, 0.0048, 0.7841) 2354.3 0.0395 (0.8812)
EW (γ̂ , β̂ , α̂)=(2.5923, 0.0344, 0.5778) 2355.2 0.0379 (0.9084)
EG (β̂ , p̂)=(0.0081, 0.4276) 2355.9 0.0508 (0.6228)
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Fig. 2. Empirical TTT plot of Boing data.

According to the AIC values of fitted models, given in Table 1, we find that the EDGE distri-

bution gives a better fit than other rival models. In addition, the p-values of the K-S test statistics

confirm this claim. According to the results given in Table 1 and Figures 3 and 4, it seems that the

EDGE distribution provides a satisfactory fit to this real data set.

One can construct approximate confidence intervals for the parameters of the EDGE model.

Indeed, such confidence intervals are attained by means of the asymptotic covariance matrix of the

MLEs of EDGE parameters when the Newton-Raphson procedure converges in, e.g., MATLAB

software. For instance, 95% asymptotic confidence intervals for the parameters are calculated as

γ ∈ (11.0921∓0.0368), β ∈ (0.0023∓0.0005) and p ∈ (0.5606∓0.1012).
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Fig. 3. Densities plot of the fitted models
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Fig. 4. Empirical cdf plots of the fitted models

6. Concluding remarks

In this paper, a new three-parameter generalization of the exponential and exponential-geometric

distributions is proposed, so-called exponential-discrete generalized exponential (EDGE) distribu-

tion. The failure rate function of the new model is decreasing. Some important probabilistic proper-

ties and the problem of estimation of its parameters are studied. Additionally, EDGE distributions

can provide a satisfactory parametric fit to some real data sets.
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