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Preface

These notes are a translation of notes in Portuguese (Jørgensen and Labouriau, 1992). We
are grateful to Sonia Mazzi, Victor Espinoza-Balderas, Xue-Kun Song, Norman Phillips and
David Peterson for their help with the translation and editing of the manuscript. Also, thanks
to Bertrand Clarke for some useful comments on Chapter 4.

The initial thrust of the translation of parts of the manuscript was done using our favourite
spellchecker, which was a unique experience! There are probably still traces of this approach
left in the text. As mentioned in the preface to the Portuguese edition, most of the material
in Chapters 1 to 3 originate in Danish lecture notes from Aarhus University. Readers who,
besides English, know these two “secret” languages (Danish and Portuguese) might have fun
comparing the English and Portuguese versions of the notes with the original lecture notes
from Aarhus.

Vancouver and Foulum, June 1995

Bent Jørgensen Rodrigo Labouriau
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Preface to the Portuguese edition

Much recent statistical research has been dedicated to the study of specific models and
techniques, leaving aside the development of general theory. We believe, however, that general
theory, besides its interest in itself, is extremely useful, both for critical analysis of existing
techniques, and for the development of new procedures. Thus, we attempt to bring to the
fore, in these notes, the discussion of some general principles.

In the times of Pearson and Fisher, the debates around the philosophy and fundamental
principles of statistics were quite fierce. With time the discussions became more technical,
but still accentuated. The disputes continue today, even if the divergences are not always
out in the open. We shall here expound an essentially Fisherian line of statistical thinking,
whose origin we attempt to clear up in the following, without, however, pretending to give
an account of the diverse exiting currents.

Sir Ronald Fisher is the precursor of many fundamental statistical concepts. (“Hvad
Fader gør er altid det Rigtige”, Andersen, 1866) The basic notions of likelihood, sufficiency,
consistency and efficiency, were first defined by him. On the other hand, the notion of fiducial
probability, one of the ideas that he defended vigorously, is today considered with doubt by
many statisticians (“Kejserens nye Klæder”, Andersen, 1866). Furthermore, the imprecise
manner with which he often presented his ideas caused, in a certain way, some difficulty
in the development of the Fisherian theory. Among the various books of Fisher, the only
one that treats theoretical statistics as such (Fisher, l956) is more dedicated to attacking his
predecessors and adversaries, than to explaining his ideas. The exposition there is incomplete,
and often the arguments are based on examples. All these aspects left Fisher very exposed
to critique, leaving to his successors the task of developing and extending his ideas.

Among the followers of the Fisherian thinking, the names of D.R. Cox and O.E. Barndorff-
Nielsen are perhaps most prominent. A good exposition of the ideas of Cox can be encoun-
tered in the book Cox and Hinkley (1974). This book contains also a presentation of diverse
other currents of statistical thinking as, for example, the Bayesian theory and the frequentist
theory of Neyman and Pearson, even if the emphasis is essentially Fisherian. The book of
Barndorff-Nielsen (1978) is probably the one that explains the more advanced development of
the Fisherian ideas, principally with respect to the notions of sufficiency and ancillarity and
the technique of inference in the presence of nuisance parameters (“inferential separation”).

We treat in this book of some aspects of the theory of statistical inference, that are
essentially derived from the Fisherian ideas developed by Cox and Barndorff-Nielsen. In
Chapter 1, we expound the classical theory of exponential families of distributions, that is
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one of the richer sources of statistical models, and which will serve as basis for constructing
many examples in the following chapters. In Chapter 2 we present the classical theory of
sufficiency and ancillarity, and also some relations of this theory with that of exponential
families. Chapter 3 is dedicated to the theory of inferential separation, that is, we develop
notions of sufficiency and ancillarity for models with nuisance parameters. Finally, in Chapter
4, we study the theory of inference functions (or estimating equations), including both the
classical theory of optimality, and some notions of sufficiency and ancillarity adopted to this
context.

A major part of this book was written during a curse of theoretical statistical inference, at
the PhD level, given at IMPA in 1990. The two first chapters are based on notes written in the
Department of Statistics of the University of Aarhus, where Professor Ole Barndorff-Nielsen
works, except for Section 2.3, which was inspired by a paper of Lehmann (1981). Thus,
Chapter 1 relies on notes written by Jørgen Granfeldt Pedersen, Preben Blæsild and Geert
Schou, and Chapter 2 on notes of Preben Blæsild, Geert Schou and Eva Bjørn Jensen. We
should emphasize that these notes of the University of Aarhus suffered various modifications
by various authors during their use. Furthermore, they are in turn based on older notes
written by Professor Ole Barndorff-Nielsen. In this way, it is difficult to allocate with precision
the authorship of this material. Chapter 3 was written by Bent Jørgensen, inspired by notes
of Preben Blæsild, Geert Schou, Eva Bjørn Jensen and Jens Ledet Jensen, including, however,
some original formulations, such as the concept of I-nonformation. Chapter 4 was written
by Rodrigo Labouriau, the basic reference being a sequence of papers by Godambe and the
works of McLeish and Small, among others. We include some extensions of this work, making
a reformulation of the theory of sufficiency and ancillarity of McLeish and Small.

The mathematical prerequisites for the reader of this book are a knowledge of probability
theory and basic measure theory. It is also necessary to have some familiarity with elements
of functional analysis for the last parts of Chapter 4.

We would like to thank Michael Sørensen and Jørgen Hoffmann-Jørgensen, for discussions
regarding a preliminary version of Chapter 4, to Renée Xavier de Menezes for helping in the
work of editing and revising and the Rogério Dias Trindade for the excellent typing of the
manuscript.

Rio de Janeiro, June 1992

Bent Jørgensen Rodrigo S. Labouriau



Chapter 1

EXPONENTIAL FAMILIES

Exponential families are without any doubt among the most important statistical models,
and include many classical examples. This concept, as well as many other basic notions of
statistics, was introduced by Fisher. In honour of him and of some other precursors of the
theory, exponential families of distributions are sometimes referred to as families of Fisher-
Darmois-Koopman-Pitman type. As we will see, there already exists a well developed theory
about these families, which we will study in this chapter. Moreover, we will see in Chapter 2
that there is a close relation between the fundamental concepts of sufficiency and the notion
of exponential families.

1.1 Definitions

In this chapter, (X ,A) will be a measurable space, and vectors will always be column vectors.

Definition 1.1 A family P of probability measures in (X ,A) is called an exponential family
if there exists a σ-finite measure ν in (X ,A), a positive integer k, functions α : P → IRk,
a : P → IR+, t : X → IRk and b : X → IR+ ∪ {0}, where b and t are measurable, such that
the density function of P ∈ P with respect to ν has the form

dP

dν
(x) = a(P )b(x)eα(P )·t(x). (1.1)

The notation “·” represents the usual inner product in IRk, that is,

α(P ) · t(x) =
k
∑

i=1

αi(P )ti(x),

with t1, . . . , tk and α1, . . . , αk as the coordinate functions of t and α, respectively.

Note that if µ is the measure whose density function with respect to ν is the function b
(i.e., (dµ/dν)(x) = b(x)) then the measures in P have density functions with respect to µ of

1



2 CHAPTER 1. EXPONENTIAL FAMILIES

the form
dP

dµ
(x) = a(P )eα(P )·t(x), (1.2)

i.e., we can absorb the function b in the dominating measure and obtain representation (1.2)
from (1.1).

In the rest of this chapter, X will be a random variable on X , whose distribution has
density function with respect to µ given by (1.2). Under these conditions, T = t(X) will be
called the canonical statistic and α(P ) the canonical parameter .

We will use the notation

X ∼ EM(t(X), α(P )) and P ∼ EM(t(X), α(P )),

if the distributions of X have exponential representation with canonical statistic t(X) and
canonical parameter α(P ). If it is necessary to specify that the exponential representation
is with respect to the measure µ, we will write P ∼ EM(t(X), α(P ), µ). Note that t, α
and µ determine the density function (1.2), since

∫

dP/dµ(x)dµ(x) = 1, so that a(P ) =
[
∫

exp{α(P ) · t(x)}dµ(x)]−1.
The smallest value of k for which P has a representation on the form (1.2) is called the

order of the family, and is denoted ord(P). Note that the order does not depend on the
choice of the measure µ.

Definition 1.2 The representations (1.1) or (1.2) are called minimal if the following condi-
tions hold:

i) The functions 1, t1, . . . , tk are linearly independent with respect to µ;

ii) The functions 1, α1, . . . , αk are linearly independent, where 1 is the constant function
1.

That is,
k
∑

i=1

aiti = a0 [µ] ⇒ ai = 0, for i = 0, 1, . . . , k (1.3)

and
k
∑

i=1

biαi(P ) = b0, ∀P ∈ P ⇒ bi = 0, for i = 0, 1, . . . , k. (1.4)

If the representations (1.1) or (1.2) are minimal, the statistic t(X) will be called a minimal
canonical statistic, and the parameter α(P ) will be called a minimal canonical parameter .
If the minimal canonical statistic is the identity function on X then P is called a linear
exponential family .

Note that condition (1.4) is equivalent to saying that the set Ω = {α(P ) : P ∈ P} is not
contained in any affine subspace of dimension less than k. The same interpretation is valid
for condition (1.3).
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If representation (1.2) satisfies (1.3), then

P1 = P2 ⇐⇒ α(P1) = α(P2),

and, in this case P can be parametrized by Ω and by the function α−1 : Ω → P (see Problem
1.2).

The following theorem states a relation between an arbitrary representation of the family
and the minimal representation. Moreover, it shows that the minimal canonical statistic and
the minimal canonical parameter are unique except for a non-singular affine transformation.

Theorem 1.3 Let P be a family with representation (1.2) and with minimal representation

dP

dµ
(x) = b(P )eβ(P )·u(x) (1.5)

of order m ≤ k. Then for each P0 ∈ P and x0 ∈ X there exist matrices A and A each with
dimension m× k, such that:

β(P )− β(P0) = A{α(P )− α(P0)}, ∀P ∈ P

and
u(x)− u(x0) = A{t(x)− t(x0)} [µ],

where AA
⊤
= AA⊤ = Im (Im is the identity matrix of order m).

Proof: From (1.2) and (1.5) it follows that for all P, P0 ∈ P and x, x0 ∈ X

{β(P )− β(P0)} · {u(x)− u(x0)} = {α(P )− α(P0)} · {t(x)− t(x0)}, [µ]. (1.6)

Since (1.5) is a minimal representation, there exist P1, . . . , Pm ∈ P and x1, . . . , xm ∈ X such
that the m vectors

β(P1)− β(P0), . . . , β(Pm)− β(P0)

are linearly independent, as well as the vectors

u(x1)− u(x0), . . . , u(xm)− u(x0).

Then the m×m matrices

B0 = {βj(Pi)− βj(P0)}i,j=1,...,m

and
U0 = {uj(xi)− uj(x0)}i,j=1,...,m

are invertible. Analogously, we define the following m× k matrices :

A0 = {αj(Pi)− αj(P0)}i=1,...,m

j=1,...,k
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and
T0 = {tj(xi)− tj(x0)}i=1,...,m

j=1,...,k
.

Using (1.6) for P = Pi, i = 1, . . . ,m we obtain

B0{u(x)− u(x0)} = A0{t(x)− t(x0)} [µ]

and A = B−1
0 A0.

Using (1.6) for x = xi, i = 1, . . . ,m we have

U0{β(P )− β(P0)} = T0{α(P )− α(P0)},

which gives A = U−1
0 T0.

Finally, using (1.6) for P = Pi, i = 1, . . . ,m and x = xi′ , i
′ = 1, . . . ,m, we have

U0B
T
0 = T0A

T
0 , which proves the last part of the theorem. �

Note that if the representation (1.1) is minimal, then the order of the family is k (see
Problem 1.3).

We say that P has kernel if, for a minimal representation 1.1, intα(P) is not empty.
In the following, we will define two fundamental concepts, namely, that of an exponential

family generated by a canonical statistic t(X) and a measure µ, and that of a full family. As
we shall see, we almost always deal with full families generated by a canonical statistic t(X)
and a measure µ.

Definition 1.4 Given a canonical statistic t(X) and a measure µ, we define the family
generated by t(X) and µ, P(t, µ), as the family of measures whose density function with
respect to µ is of the form:

a(θ)eθ·t(x), θ ∈ Θ, (1.7)

where

1/a(θ) = c(θ) =

∫

X
eθ·t(x)µ(dx)

and
Θ = {θ ∈ IRk : c(θ) <∞}.

The parameter θ is called the canonical parameter and Θ the domain of the canonical
parameter . Note that the domain of the canonical parameter is the largest possible, given
the statistic t(X) and the measure µ.

In the following, the probability measure with density function (1.7) will be represented
by Pθ. The mean and the variance under Pθ will be represented by Eθ and Varθ, respectively.

If P is the family with minimal canonical statistic t(X) and P ∈ P , then the family
generated by t(X) and P , P(t, P ), does not depend on the choice of P or T . Moreover, we
have that P ⊆ P(t, P ). In this way, we will refer to the family P(t, P ) as the exponential
family generated by P , and we will write P̃ instead of P(t, P ). Note that ord P = ord P̃ . If
P = P̃ , we say that P is full .
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Let P = {Pθ : θ ∈ Θ} be a minimal canonical parametrization of P . Then there exists a
set Θ̃ ⊇ Θ such that P̃ = {Pθ : θ ∈ Θ̃} is a minimal canonical parametrization of P̃ . In this
case, P is full if and only if Θ = Θ̃. A family P is called regular if it is full and Θ is open.

It follows immediately that if P = {Pθ : θ ∈ Θ} has representation (1.7), not necessarily
minimal, and Θ = {θ ∈ IRk : c(θ) < ∞}, then P is full. The reciprocal implication is also
valid, if the representation is minimal.

The following concepts will be useful. A subset A ⊆ IRk is called relatively open if A is
open as a subset of the smallest affine subspace in which it is contained. In this case, the
relative interior of A, represented by ri A, is the interior of A when seen as a subset of the
smallest affine space in which it is contained. The relative boundary of A is the set A\ ri A.

The concept of a regular family can be generalized without mentioning the minimal
representation in the following way: A full family, P , is regular if {θ : c(θ) <∞} is relatively
open. In order to avoid unnecessary complications, from now on we will always assume that
Θ is open. In the rest of Section 1.1, we will assume that 1, t1, . . . , tk are linearly independent
with respect to µ, that is they satisfy (1.3).

The closure of the convex support of the measure t(µ) (i.e., the measure µ transformed
by the function t) plays an important role in exponential families. Let us remember that the
closed the convex support of the measure t(µ), represented by Ct(µ), is the smallest closed
convex set whose complement has null measure t(µ), that is,

Ct(µ) =
⋂

K∈ψ
K,

where ψ = {K ⊆ IRk : K is closed, convex and µ(t−1(Kc)) = 0}. We represent Ct(µ) by
C, eliminating T and µ from the notation, since Ct(µ) is the same for any choice of µ. The
following theorem shows that C contains the mean of t(X).

Theorem 1.5 Eθ{t(X)} ∈ int C, ∀ θ ∈ int Θ.

In the following section we will show that the expectation Eθ{t(X)} exists, for any θ
in int Θ, so that the theorem above makes sense. To prove Theorem 1.5, we will need the
following results:

Theorem 1.6 (Separation Theorem) Let K be a closed convex set in IRk and t0 /∈ K. Then
there exists a closed half-space (i.e., a subset bounded by a hyperplane of dimension k − 1),
H1, such that K ⊆ H1 and t0 /∈ H1.

Let O be a relatively open convex set and t0 /∈ O. Then there exists an open half-space
H2, such that O ⊆ H2 and t0 /∈ H2.

Proof: See Rockafellar (1970, Section 11). Figure 1.1 illustrates the theorem. �

Lemma 1.7 The closed convex support of t(µ) can be expressed in the following way:

C =
⋂

H∈ψ
H, (1.8)

where Ψ = {H : H is a closed half-space, with µ(t−1(Hc)) = 0}.
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Figure 1.1: Proof of the Separation Theorem

Proof: Let C1 be the set defined by the right hand side of (1.8). then, C1 is closed
and convex, since it is the intersection of closed and convex sets (half-spaces). Moreover,
µ(t−1(Cc

1)) = 0 holds. Thus, C1 ⊇ C.
We will show, by contradiction, that C1 ⊆ C. Let t0 ∈ C1, t0 /∈ C. By the Separation

Theorem there exists a closed half-space H, such that C ⊆ H and t0 /∈ H. But C ⊆ H
implies µ(t−1(Hc)) = 0, hence C1 ⊆ H, which contradicts the fact that t0 /∈ H. �

Proof: (of Theorem 1.5) We define τ(θ) = Eθ(t(X)), ∀θ ∈ int Θ. Given an arbitrary
vector w we have that:

w · t(X) ≤ d [µ] ⇒ w · Eθ[t(X)] ≤ d.

In this way, any closed half-space that contains t(X) [µ] will also contain τ(θ) = Eθ[t(X)].
Therefore, by Lemma 1.7 τ(θ) ∈ C.

We will show that τ(θ) /∈ bd C = C \ int C, and the theorem will follow. Suppose that
τ(θ) ∈ bd C. By the Separation Theorem, there exists a closed half-space H such that
int C ⊆ H and τ(θ) ∈ bd H (note that int C is convex). The half-space H can be described
in the following way:

H = {s : w · {s− τ(θ)} ≥ 0} .
Then

Z = w · (t(X)− τ(θ)) ≥ 0 [µ].

Note that Eθ(Z) = 0, which implies that

w · (t(X)− τ(θ)) = 0 [µ],

which contradicts the fact that H “separates” int C from τ(θ). To be precise, if Z = 0
almost surely, 1, t1, . . . , tk cannot be linearly independent, contrary to what is assumed. We
conclude that τ(θ) ∈ int C. �
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In the case that the statistic T does not satisfy (1.3), it can be shown that C is contained
in an affine subspace of dimension less than k and, in this case, Theorem 1.5 can be modified
in the following way:

Eθ(t(X)) ∈ ri C, ∀θ ∈ int Θ.

Example 1.8 (The Binomial Distribution) Let X = {0, 1, . . . , n}, with n ∈ IN fixed. The
probability of each point x in X is given by

(

n
x

)

px(1− p)n−x = (1− p)n exp

{

x log
p

1− p

}(

n
x

)

, 0 < p < 1.

Putting t(x) = x, α(p) = log p
1−p , a(p) = (1 − p)n, b(x) =

(

n
x

)

and ν as the counting

measure, we see that the probability function above is of the form given by (1.1).

Let us consider now the full exponential family generated by µ({x}) =
(

n
x

)

and t(x) =

x. We have that

c(θ) =
n
∑

x=0

eθx
(

n
x

)

= (1 + eθ)n

and that
Θ = {θ ∈ IR : c(θ) <∞} = IR.

Writing θ = log p
1−p , we obtain

eθx

(1 + eθ)n
=

ex log p/(1−p)

(1 + p/(1− p))n
= px(1− p)n−x.

If p takes on values in the interval (0, 1), θ will take on values in IR, which shows that a
family of binomial distributions with fixed number of trials n and probability parameter p in
(0, 1), is a full exponential family. Since Θ = IR is open, the family is regular. The family is
of order 1 and the closed convex support is C = [0, n].

Example 1.9 (The Gamma Distribution ) Let X = IR+ and P be the class of distributions
with density function with respect to Lebesgue measure ν given by

1

Γ(λ)βλ
xλ−1e−x/β =

1

Γ(λ)βλ
eλ log x−

x
β
1

x
,

where λ > 0 and β > 0. Define t(x) = (x, log x)⊤, α(λ, β) = (−1/β, λ)⊤, a(λ, β) =
{Γ(λ)βλ}−1. Defining the measure µ as the one having density function 1/x with respect to
ν, we see that P is an exponential family of the form (1.2).

Let us consider now the full family generated by µ and t(x) = (x, log x)⊤. We have that

c(θ) =
∫∞
0
eθ1x+θ2 log x(1/x)dx =

∫∞
0
xθ2−1eθ1xdx

=

{

Γ(θ2)

|θ1|θ2 , if θ1 < 0 and θ2 > 0

∞, otherwise .
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Then Θ = {(θ1, θ2)⊤ ∈ IR2 : θ1 < 0 and θ2 > 0}. Since Θ is open, the full family generated
by µ and T is regular.

Writing θ = (−1/β, λ), we see that P is an exponential family generated by µ and
t(x) = (x, log x)⊤. The order of the family is 2 and the closed convex support is

C = {(t1, t2)⊤ ∈ IR2 : t1 > 0 and t2 ≤ log t1}.

Example 1.10 (The Multinomial Distribution) Let us consider the family P of multinomial
distributions with number of trials parameter n and parameter of probability contained in
the set

Π = {(p1, . . . , pk)T : pj > 0, j = 1, . . . , k, p1 + . . .+ pk = 1}.
Here, X is the subset of INk

0 = [IN ∪ {0}]k defined by

X = {(x1, . . . , xk)T : xj ≥ 0, j = 1, . . . , k, x1 + . . .+ xk = n}.

Again, we can write the probabilities in the exponential form

(

n
x1 . . . xk

)

px11 . . . pxkk =

(

n
x1 . . . xk

)

exp {x1 log p1 + . . .+ xk log pk} . (1.9)

We conclude that P is an exponential family by writing t(x) = (x1, . . . , xk)
⊤, α(p) =

(log p1, . . . , log pk)
⊤ and

µ({x}) =
(

n
x1 . . . xk

)

.

The representation (1.8) is not minimal, since

x1 + · · ·+ xk = n.

If we write xk = n− x1 − · · · − xk−1 in (1.9), we obtain

(

n
x1 · · · xk

)

exp {x1 log p1 + · · ·+ xk−1 log pk−1 + (n− x1 − · · · − xk−1) log pk}

=

(

n
x1 . . . xk

)

pnk exp
{

∑k−1
i=1 xi log

pi
pk

}

.

Thus, we found a new representation of the exponential family (1.9) with

t′(x1, . . . , xk) = (x1, . . . , xk−1)
⊤

as canonical statistic and canonical parameter

α′(p1, . . . , pk) =

(

log
p1
pk
, . . . , log

pk−1

pk

)⊤
.
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We also have a(p1, . . . , pk) = pnk = (1 − p1 − · · · − pk−1)
n. It is easy to verify that this

representation is minimal.
Considering the family generated by t′ and µ we obtain in the same way as in the previous

examples that

c(θ) =
∑

x1+...+xk=n

eθ·t
′(x)

(

n
x1 . . . xk

)

= (1 + eθ1 + · · ·+ eθk−1)n,

showing that
Θ = {θ ∈ IRk−1 : c(θ) <∞} = IRk−1.

Writing θi = log pi/(1− p1 − · · · − pk−1), i = 1, . . . , k − 1, we see that

1

c(θ)
eθ·t

′(x) = px11 . . . p
xk−1

k−1 (1− p1 − . . .− pk−1)
n−x1−···−xk−1 .

Since θ takes all values in IRk−1 when (p1, . . . , pk) varies in Π, P is the full family generated by
t′ and µ. P is regular, and has order k−1. The closed convex support is C = {(t1, . . . , tk−1)

T :
t1 ≥ 0, . . . , tk−1 ≥ 0, n− t1 − · · · − tk−1 ≥ 0}.
Example 1.11 Let X = Sk−1 be the unit sphere of IRk, and let P = {P(µ,λ) | (µ, λ) ∈
Sk−1 × [0,∞)} be the family of distributions of von Mises-Fisher in Sk−1, given by

dP(µ,λ)

dP0

(x) = a(λ)eλµ·x,

where P0 is the surface measure of Sk−1 (Lebesgue measure). µ and λ are parameters that
vary independently, µ ∈ Sk−1 and λ ≥ 0. These parameters are called the mean direction,
and the concentration respectively.

The normalizing function a(λ) depends on λ only, and can be expressed in the following
way

a(λ) =
λ
k
2
−1

(2π)
k
2 I k

2
−1(λ)

,

where Iν is the modified Bessel function of first kind and order ν.
For k = 2, we have that

a(λ) =
1

2πI0(λ)
,

which gives the so-called distribution of von Mises on the circle. For k = 3, we have that

a(λ) =
λ

sinhλ
,

which gives the so-called Fisher distribution on the sphere.
The family P is exponential of order k, with minimal canonical parameter given by

θ = λµ ∈ Θ = IRk. Note that the mapping (µ, λ) → P(µ,λ) is not a parametrization since
P(µ,0) = a(0)P0, ∀µ ∈ Sk−1.
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Let P be a full exponential family with minimal representation given by (1.7). The
function K = log c is said to be steep if for each θ ∈ int Θ and each θ̃ ∈ Θ \ int Θ = bd Θ we
have

(θ̃ − θ) ·DK [αθ + (1− α)θ̃ ]
α→0−→ ∞

where DK(·) = ∂K
∂θ
(·). Evidently, either K is steep for any minimal representation of the

family or K is not steep for any of them. That is, the property of being steep is intrinsic to
the family P , and hence we simply say that P is steep if K is steep.

Using results of the theory of convex functions one can show the following result.

Theorem 1.12 If P is regular then P is steep.

Proof: See Barndorff-Nielsen(1978, p. 117).

The converse of this theorem is not always valid, as the following example shows.

Example 1.13 (The Inverse Gaussian Family) Let N−(µ, λ) be a family of continuous dis-
tributions with density function of the form

f(x;µ, λ) =

(

λ

2π

)1/2

x−3/2 exp

[

−λ(x− µ)2

2µ2x

]

, x > 0,

where (µ, λ) ∈ IR2
+. This family is called the Inverse Gaussian Family and will be represented

in this example by P .

We can reparametrize P defining ψ = λ/µ2 and writing the density function f(x;µ, λ) in
the form

1√
2π
x−3/2

√
λe

√
ψλe−ψx/2−λ/(2x).

We see that P is not full. The full family generated by P includes also the case where ψ = 0,
where we have the density function

(
λ

2π
)1/2x−3/2e−λ/(2x)

which is the density function of the stable distribution with stability index 1/2 and scale
parameter 1/λ. We represent the full family by P̃ . The cumulant generating function,
K = log c, is given by

K(ψ, λ) = −1/2 log λ−
√

ψλ.

It is easy to show that P̃ is steep but not regular. Note that the mean of these distributions
is µ and λ is a kind of concentration parameter.
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1.2 Analytical properties of the Laplace transform

In this section we will study some important properties of the function

c(θ) =

∫

X
eθ·t(x)µ(dx) =

∫

IRk
eθ·zt(µ)(dz), (1.10)

where t(µ) is the measure µ transformed by the measurable function t : X → IRk and
Θ = {θ ∈ IRk : c(θ) < ∞} (here we use the notation of Section 1.1). The last term
of equation (1.10) shows that c(θ) is the Laplace Transform of the measure t(µ). Some
elementary results for moment generating functions and characteristic functions, useful for
the present section, may be found in Appendix A.

We define the cumulant generating function by

K(θ) = log c(θ).

Some properties of c(·) will be expressed in terms of K(·). We recall the notation introduced
in Section 1.1, where Pθ is a probability measure given by the density function with respect
to µ

dPθ
dµ

(x) =
1

c(θ)
eθ·t(x) = eθ·t(x)−K(θ), ∀θ ∈ Θ. (1.11)

In this section we will not assume that the functions 1, t1, . . . , tk are linearly independent
with respect to µ, i.e., we will not assume that the canonical statistic T is minimal. Mean-
while, we will point out the cases where the results here obtained can be improved on such
an assumption.

Theorem 1.14 The set Θ = {θ ∈ IRk : c(θ) < ∞} is convex and the function K is strictly
convex in Θ, i.e.,

K(αθ1 + (1− α)θ2) ≤ αK(θ1) + (1− α)K(θ2), (1.12)

for all θ1, θ2 ∈ Θ and α ∈ [0, 1]. In the case of equality in (1.12), for some α ∈ (0, 1), then
Pθ1 = Pθ2.

Proof: Consider θ1, θ2 ∈ Θ and θ = αθ1 + (1 − α)θ2 for some α ∈ (0, 1). By Hölder’s
inequality it follows that

c(θ) =

∫

X
{eθ1·t(x)}α{eθ2·t(x)}(1−α)µ(dx)

≤
{∫

X
eθ1·t(x)µ(dx)

}α{∫

X
eθ2·t(x)µ(dx)

}(1−α)

= c(θ1)
αc(θ2)

1−α <∞. (1.13)

Then θ ∈ Θ for all θ1, θ2 ∈ Θ and α ∈ [0, 1] and hence Θ is convex.
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Taking logarithms on both sides of inequality (1.13) we see that K = log c is convex. Note
that equality in Hölder’s inequality holds if and only if

eθ1·t(x) = k0e
θ2·t(x), [µ] (1.14)

for some constant k0, which implies that Pθ1 = Pθ2 . �

Note that if 1, t1, . . . , tk are linearly dependent with respect to µ, the family P = {Pθ :
θ ∈ Θ} is not parametrized by θ ∈ Θ. More precisely, P is overparametrized by θ ∈ Θ and θ
is not identifiable. This is why Theorem 1.14 was formulated in such a careful way. On the
other hand, when 1, t1, . . . , tk are linearly independent we will obviously have that Pθ1 = Pθ2
implies that θ1 = θ2.

Theorem 1.15 The function c has Taylor series expansion for any θ ∈ Θ with θPmh ∈ Θ,

Eθ[h · t(X)]n <∞, ∀n ∈ IN (1.15)

and

c(θ + h) = c(θ)
∞
∑

n=0

1

n!
Eθ[h · t(X)]n. (1.16)

Proof: Using the Taylor series expansion of the exponential function we have that

c(θ + h) =

∫

X

∞
∑

n=0

[h · t(x)]n
n!

eθ·t(x)µ(dx). (1.17)

Note that we can interchange the integral and the summation in (1.17) since

∞
∑

n=0

|h · t(x)|n
n!

= e|h·t(x)| ≤ eh·t(x) + e−h·t(x),

and eh·t(x) as well as e−h·t(x) are by hypothesis integrable with respect to eθ·t(x)µ(dx), since
θ + h and θ − h ∈ Θ. Then (1.15) follows. Interchanging the integral and the summation
signs in (1.17) we obtain (1.16). �

In the rest of this section we will assume that Θ has non-empty interior, and in this way,
we will be able to define the partial derivatives of K. Let θ ∈ int Θ. Define

τ(θ) =
∂ log c

∂θ
(θ) =

∂K
∂θ

(θ)

and

V (θ) =
∂2 log c

∂θ2
(θ) =

∂2K
∂θ2

(θ).

Note that τ(θ) is the vector of dimension k, whose coordinates are τi(θ) =
∂K
∂θi

(θ), i = 1, . . . , k
and V (θ) is the matrix k × k with entries

Vij(θ) =
∂2K
∂θi∂θj

(θ), i = 1, . . . , k, j = 1, . . . , k.
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Theorem 1.16 For θ ∈ int Θ we have

∂nc(θ1, . . . , θk)

∂θa11 · . . . · ∂θakk
= c(θ)Eθ[t1(X)a1 · . . . · tk(X)ak ], (1.18)

where a1 + . . .+ ak = n. Moreover,

τ(θ) = Eθ{t(X)} (1.19)

and
V (θ) = Varθ{t(X)}. (1.20)

Proof: Using the multinomial expansion we obtain

Eθ[h · t(X)]n =
∑

a1+...+ak=n

(

n
a1 . . . ak

)

Eθ

k
∏

i=1

haii ti(X)ai .

Substituting the expression above in (1.16) it can be seen that (1.18) holds. From (1.18),
(1.19) and (1.20) the theorem follows. �

Theorem 1.17 The mapping τ : int Θ → IRk has the following properties:

(i) τ is strictly increasing, in the sense that for θ1 and θ2 ∈ int Θ

(θ1 − θ2) · {τ(θ1)− τ(θ2)} ≥ 0

holds, with equality if and only if Pθ1 = Pθ2;

(ii) τ is injective in the sense that τ(θ1) = τ(θ2) ⇒ Pθ1 = Pθ2;

(iii) τ is differentiable and ∂τ
∂θ
(θ) = V (θ);

(iv) The matrix V (θ) is symmetric and positive definite, in the sense that h⊤V (θ)h = 0 ⇒
Pθ = Pθ+h.

Proof: Let θ1 6= θ2 ∈ int Θ be fixed and f(z) = K(θ2 + z(θ1 − θ2)). Then f(0) = K(θ2),
f(1) = K(θ1), and since f is convex ∂f

∂z
(0) ≤ ∂f

∂z
(1), we obtain

(θ1 − θ2) · τ(θ2) ≤ (θ1 − θ2) · τ(θ1)

with equality if f is linear in [0, 1], which implies by Theorem 1.14 that Pθ1 = Pθ2 . This
proves (i).

Item (ii) follows immediately from (i), since τ(θ1) = τ(θ2) implies that (θ1 − θ2) · [τ(θ1)−
τ(θ2)] = 0.

The differentiability of τ follows from Theorem 1.16, which shows (iii).
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Item (iv) can be shown in the following way. If h⊤V (θ)h = 0, then Varθ[t(X) · h] = 0.
Therefore h · t(x) = Eθ h · t(X) = hEθ t(X) = h · τ(θ) [Pθ]. Then

c(θ + h) =

∫

X
e(θ+h)·t(x)µ(dx) = c(θ)eh·τ(θ),

and
dPθ+h
dµ

(x) =
1

c(θ + h)
e(θ+h)·t(x) =

1

c(θ)
eθ·t(x) =

dPθ
dµ

(x) [µ]

implying that Pθ+h = Pθ. �

If 1, t1, . . . , tk are linearly independent with respect to µ, then we can improve items (i),
(ii) and (iv) in the previous theorem since, in this case, (θ1− θ2) · {τ(θ1)− τ(θ2)} = 0 implies
that θ1 = θ2, τ is injective and V (θ) is positive definite, in the usual sense.

1.3 Estimation in regular exponential families

Consider a regular exponential family generated by the statistic T , with linearly independent
functions 1, t1, . . . , tk with respect to µ. Since the family is regular, we have that Θ is open.

Let X be the random variable that represents an observation from a distribution of the
family and let x be the observed value of X. The likelihood function of θ is given by

L(θ) =
eθ·t(x)

c(θ)
, θ ∈ Θ, (1.21)

and the log-likelihood function is

ℓ(θ) = logL(θ) = − log c(θ) + θ · t(x) = −K(θ) + θ · t(x). (1.22)

Since K is a strictly convex function in Θ then ℓ is strictly concave and hence ℓ cannot have
more than one maximum in Θ.

If ℓ has a maximum, it can be found by differentiating ℓ. We then obtain the equation

−τ(θ) + t(x) = 0.

That is,

Eθ[t(X)] = t(x). (1.23)

Equation (1.23) is the standard form of the equation of maximum likelihood for exponential
families. In order to simplify the notation we will write T instead of t(x).

By the discussion above, we conclude that there exists a maximum of ℓ if and only if
Equation (1.23) has a solution, that is if t ∈ Ω = τ{Θ}. The following theorem tells us that
Ω = int C for a regular family.
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Theorem 1.18 (Barndorff-Nielsen) If P is a regular exponential family with minimal repre-
sentation, the maximum likelihood estimator exists if and only if t ∈ int C. If the maximum
likelihood estimator exists, it is given by

θ̂ = τ−1(t).

The same conclusion of the theorem above is valid for θ ∈ int Θ if the family is steep.
The proof of this fact uses arguments based on the theory of convex functions and can be
found in Barndorff-Nielsen (1978).
Proof: (of Theorem 1.18) Let t ∈ int C. We will show that for any θ0 ∈ Θ and any
half-line

{θα = θ0 + α(θ − θ0) : α ≥ 0},
we have that ℓ(θα)

α→∞−→ −∞. Since the set {θ : ℓ(θ) ≥ ℓ(θ0)} is convex and a convex set
that does not contain any unbounded rays is compact, the global maximum of ℓ belongs to
{θ : ℓ(θ) ≥ ℓ(θ0)}. The strict convexity of ℓ(θ) shows that the maximum is unique. The
reciprocal of the likelihood function on the half-line is

e−ℓ(θα) =

∫

X
eα(θ−θ0)·(t(x)−t)eθ0·(t(x)−t)µ(dx).

We will divide the domain of integration X of the integral above in three disjoint subsets

A+ = {x : (θ − θ0) · (t(x)− t) > 0}
A0 = {x : (θ − θ0) · (t(x)− t) = 0}
A− = {x : (θ − θ0) · (t(x)− t) < 0}.

Note that the integrand eα(θ−θ0)·(t(x)−t) as a function of α is increasing in A+, constant
in A0 and decreasing in A−. Since the integrand is positive, the integral on A− is bounded
as a function of α, and hence, by the monotone convergence theorem, ℓ(θα) → ℓ(θα0) when
α ր α0. We will divide the proof in two cases

• Θ is bounded in the direction given by θ − θ0 and

• Θ is not bounded in this direction.

Let us consider the first case, i.e., Θ is bounded in the direction given by θ − θ0. Let θα0

be a point in the boundary. In this point we have c(θα0) = ∞, and therefore ℓ(θα) → −∞
when α ր α0.

In the case that Θ is not bounded in the direction determined by θ− θ0 we will need the
condition t ∈ int C.

If t is an interior point of C, the hyperplane {u : (θ− θ0) · (u− t) = 0} divides C through
t in two parts, both with positive measure. Specifically

µ(A+) = µ({x : (θ − θ0) · (t(x)− t) > 0}) > 0,
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and, hence,

e−ℓ(θα)
α→∞−→

∫

A0

eθ0·(t(x)−t)µ(dx) +

∫

A+

lim
α→∞

eα(θ−θ0)·(t(x)−t)eθ0·(t(x)−t)µ(dx) = ∞,

showing that ℓ(θα) → −∞ when α → ∞. Here, we use the fact that the integrand converges
monotonically to zero in A−, implying that the integral on A− converges to zero. In this way,
we have shown that θ̂ exists if t ∈ int C.

In the case that t /∈ int C, there exists a hyperplane {u : w · (u− t) = 0} through t, such
that

µ({x : w · (t(x)− t) > 0}) = 0.

Considering ℓ(θ0 + αw), we see that ℓ is increasing in α. Since θ0 is arbitrary, it is evident
that the likelihood function does not assume its maximum value in Θ. �

The proof was given by Johansen (1979).
If we have a regular family such that 1, t1, . . . , tk are not linearly independent, we can

modify Theorem 1.18 in the following way.

Theorem 1.19 In a regular exponential family the maximum likelihood estimator θ̂ exists if
and only if t ∈ riC. The estimator can be found by obtaining a solution of the maximum
likelihood equation (1.23). The solution is unique, in the sense that all the solutions represent
the same probability measure.

In the following we present a theorem on maximum likelihood estimation in a full family,
but not necessarily steep. The theorem was proved by Ole Barndorff-Nielsen, using the theory
of convex functions.

Theorem 1.20 Let P be a full exponential family with minimal representation (1.7). In this
case, θ̂ exists if and only if t(x) ∈ int C. If t(x) ∈ Ω = τ(int Θ), then θ̂ is a unique solution
of the maximum likelihood equation

τ(θ) = t(x), θ ∈ int Θ.

If t(x) /∈ int C, the likelihood function does not attain its maximum.

Note that if t(x) ∈ int C \ Ω, the theorem does not show how to find θ̂, but obviously
θ̂ ∈ bd Θ.

We conclude this section with some considerations on estimation based on a sample
from an exponential family P . Let X1, . . . , Xn independent and identically distributed with
distribution in P , where P has a minimal representation (1.7). The joint density function of
X1, . . . , Xn is

dP⊗n
θ

dµ⊗n (x) = a(θ)n exp

{

θ ·
n
∑

i=1

t(xi)

}

.
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Then (X1, . . . , Xn) ∼ EM(
∑n

i=1 t(Xi), θ). We represent the family of distributions of
X1, . . . , Xn by Pn. Since 1, t1(X), . . . , tk(X) are linearly independent, the same is valid for
1,
∑n

i=1 t1(Xi), . . . ,
∑n

i=1 tk(Xi). It is also clear that, if P is full, with minimal canonical
domain Θ, then Pn is also full, with the same minimal canonical domain.

If P is steep then Pn is also steep. Let Kn and τn be the cumulant generating functions
with respect to µ⊗n. Then

Kn(θ) = nK(θ) (1.24)

τn(θ) = nτ(θ). (1.25)

The maximum likelihood equation is

τn(θ) =
n
∑

i=1

t(xi),

or τ(θ) = t, where

t(x1, . . . , xn) =
1

n

n
∑

i=1

t(xi).

That is, the likelihood equation has the same form in Pn as for P . Note that the equation
has a unique solution in int Θ if and only if t ∈ int C.

1.4 Marginal and conditional distributions

Let us consider the full exponential family given by the density function

dPθ
dµ

(x) = a(θ)eθ·t(x) [µ],

where θ and t are k-dimensional. Let V = At(X) be a linear function of the canonical
statistic. We will show that the family of conditional distributions of V is an exponential
family and that, under certain restrictions on the canonical parametric space, the family of
marginal distributions of the statistic V is also an exponential family.

Let A be an m× k matrix of full rank m (m < k). We choose a (k−m)× k matrix B of
rank k −m such that AB⊤ = 0. Then the rows of A generate the null space of B, and then
Bθ = Bθ0 ⇔ ∃η ∈ IRm such that θ = θ0 + A⊤η. In particular,

{θ ∈ IRk : Bθ = Bθ0} = {θ0 + A⊤η : η ∈ IRm}.

Let Θ0 = {θ0 + A⊤η : η ∈ IRm} ∩Θ and P0 = {Pθ : θ ∈ Θ0}.
The hypothesis P0 is called an affine hypothesis for the canonical parameter. The family

of marginal distributions of V under P is represented by

V (P) = {V (Pθ) : Pθ ∈ P}
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and under P0 by
V (P0) = {V (Pθ0) : Pθ0 ∈ P0}.

In order to find the distribution of V , we write the density function of Pθ with respect to Pθ0 ,

dPθ
dPθ0

(x) =
a(θ)

a(θ0)
e(θ−θ0)·t(x)

=
a(θ)

a(θ0)
e
(θ−θ0)⊤





A
B





−1



A
B



t(x)

=
a(θ)

a(θ0)
e
{(A⊤:B⊤)−1(θ−θ0)}⊤





A
B



t(x)

=
a(θ)

a(θ0)
e(φ

⊤

1 ,φ
⊤

2 )⊤·(v(x)⊤,u(x)⊤)⊤ ,

where v(x) = At(x), u(x) = Bt(x) and (φ⊤
1 , φ

⊤
2 ) = (A⊤ : B⊤)−1(θ−θ0), and φ1 has dimension

m. Therefore, the marginal distribution of V = At(X) has density function

dV (Pθ)

dV (Pθ0)
(v) = Eθ0

{

a(θ)

a(θ0)
e(φ

⊤

1 ,φ
⊤

2 )⊤·(v(x)⊤,u(x)⊤)⊤ | V = v

}

=
a(θ)

a(θ0)
eφ1·vEθ0

{

eφ2·u(x) | V = v
}

.

V (P) is an exponential family only if φ2 is a constant as a function of θ − θ0. If θ is of the
form θ = θ0 + A⊤η, we have

(

φ1

φ2

)⊤
= (A⊤ : B⊤)−1(θ − θ0) = (A⊤ : B⊤)−1A⊤η =

(

η
0

)⊤
.

For θ ∈ Θ0, we have
dV (Pθ)

dV (Pθ0)
(v) =

a(θ)

a(θ0)
eη·v,

showing that V (P0) is an exponential family.
If P is full then V (P0) is also full, since

H =

{

η :

∫

IRm
eη·vV (Pθ0)(dv) <∞

}

=

{

η :

∫

X
eη·v(x)Pθ0(dx) <∞

}

=

{

η :

∫

X
e(θ0+A

⊤η)·t(x)µ(dx) <∞
}

= {η : c(θ0 + A⊤η) <∞}
= {η : θ0 + A⊤η ∈ Θ}.



1.4. MARGINAL AND CONDITIONAL DISTRIBUTIONS 19

We also have that H is open if Θ is open, since H is the inverse image of Θ by a continuous
transformation. In this way, we have just proved the following result.

Theorem 1.21 The family of marginal distributions V (P0) of V = At(X) is a full and
linear family, with canonical parametric space H = {η : θ0 +A⊤η ∈ Θ}. If P is regular, then
V (P0) is regular.

This was the treatment for the case of the marginal distribution of V . Sometimes the
interest is concentrated in the affine hypothesis P0 of P . The proof of Theorem 1.21 shows
that if P is regular, then P0 is a regular exponential family with canonical statistic V , which
is minimal if t(X) is minimal. In Problem 1.13 the likelihood ratio test of P0 under P is
derived.

Theorem 1.22 The conditional distribution of X given V = At(X) = v is an exponential
family, whose parameter depends on θ only through Bθ.

Proof: The conditional distribution ofX given V = v with respect to Pθ will be represented
by Pθ( · |V = v). The density function of Pθ( · |V = v) with respect to Pθ0( · |V = v) is

dPθ( · |V = v)

dPθ0( · |V = v)
(x) =

dPθ
dPθ0

(x)

Eθ0{ dPθ
dPθ0

| V = v}

=
e(θ−θ0)·t(x)

Eθ0 {e(θ−θ0)·t(x) | V = v}

=
e(θ−θ0) · t(x)

∫

X e
(θ−θ0) · t(x)Pθ0(dx|V = v)

, (1.26)

which is an exponential representation.
We will now show that, if Bθ1 = Bθ2, then Pθ1( · |V = v) = Pθ2( · |V = v). If Bθ1 = Bθ2,

then θ1 − θ2 = A⊤η for some η ∈ IRm. Using (1.26) with θ = θ1 and θ0 = θ2, we have

dPθ1( · |V = v)

dPθ2( · |V = v)
(x) =

eη · At(x)

Eθ2{eη · At(x)|V = v} = 1

[Pθ2( · |V = v)], since At(x) = v [Pθ2( · |V = v)]. �

In the proof of the first part of Theorem 1.22 we did not use the fact that V is a linear
function of t(X), and hence we have that the conditional distribution of any function of a
canonical statistic is an exponential family .

Generally, the exponential family of conditional distributions given a function V of t(X)
of the full exponential family is not necessarily full, since the integral

Eθ0 [e
(θ−θ0)·t(x)|V = v]

can be finite in a larger set than Θ.
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Let θ = (θ(1), θ(2)) and t = (t(1), t(2)) be a partition of θ and t, such that θ(1) and t(1)

are m-dimensional. Considering V = t(1)(X), A and B are determined by t(1) = At and
θ(2) = Bθ. According to Theorem 1.21, the family of marginal distributions of t(1)(X) for

θ(2) = θ
(2)
0 fixed, is a full exponential family with canonical parameter θ(1). According to

Theorem 1.22 the conditional distributions of X given t(1)(X) = t
(1)
0 are exponential families,

whose parameter only depends on θ(2).

1.5 Parametrizations

Let P be a regular exponential family. In Section 1.1 we introduced the canonical parameter
θ whose domain is Θ. It happens that the correspondence θ 7→ Pθ is not one-to-one, except
if the functions 1, t1, . . . , tk are linearly independent with respect to µ. In the following, we
will discuss two other parametrizations P , which will be introduced as functions on Θ, but
which as functions of P are one-to-one .

When P is regular and the representation is minimal, the family P can be parametrized
by the mean τ(θ), since, by Theorem 1.17, τ is injective. This parametrization will be called
the parametrization by the mean. By Theorem 1.18 the domain of τ is int C, if 1, t1, . . . , tk
are linearly independent with respect to µ. If this is not the case one can show that the
domain of τ is riC.

In the following we will introduce a third concept, that of a mixed parametrization. As
in Section 1.4, let A be an m×k matrix of rank m and B a (k−m)×k matrix of rank k−m
satisfying AB⊤ = 0, and let V = v(X) = At(X). We define

ψ(θ) = EθV = Eθ{At(X)} = Aτ(θ)

σ(θ) = Bθ.

Theorem 1.23 The function (ψ, σ) is injective, in the sense that (ψ, σ)(θ1) = (ψ, σ)(θ2) ⇒
Pθ1 = Pθ2.

Proof: Let θ1 and θ2 be such that ψ(θ1) = ψ(θ2) and σ(θ1) = σ(θ2). From ψ(θ1) = ψ(θ2) it
follows that A{τ(θ1)− τ(θ2)} = 0. Since AB⊤ = 0, and B has maximum rank, the rows of B
generate the null space of A. Therefore there exists δ ∈ IRk−m, such that τ(θ1)−τ(θ2) = B⊤δ.
Now,

(θ1 − θ2) · {τ(θ1)− τ(θ2)} = (θ1 − θ2) · B⊤δ

= {σ(θ1)− σ(θ2)}δ = 0,

using the fact that σ(θ1) = σ(θ2). From Theorem 1.17 we obtain that Pθ1 = Pθ2 . �

The parameter (ψ, σ) is called the mixed parameter .

Theorem 1.24 In a regular exponential family, the parameters ψ and σ are variation inde-
pendent, that is, the domain of (ψ, σ) is the product set ψ(Θ)× σ(Θ).
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Proof: Let θ0 ∈ Θ be arbitrary. We consider Θ0 = {θ : σ(θ) = σ(θ0) = σ0}. We will
show that ψ(Θ0) does not depend on σ0. The hypothesis Θ0 = {θ : Bθ = Bθ0} ∩ Θ is an
affine hypothesis. By Theorem 1.21, V = A t(X) follows a regular exponential family with
canonical parametric domain Θ0. The mean of V is ψ(θ) = Aτ(θ), and the image of τ is the
relative interior of the convex support of V (P0). Since all the measures of P are equivalent,
the support does not depend on θ0, and hence ψ(Θ0) does not depend on σ0. �

Example 1.25 (The Gamma Distribution) We will illustrate the various given concepts
using the gamma distribution, which has density function

dPθ,λ
dµ

(x) =
θλ

Γ(λ)
x−1eλ log x−θx, x > 0.

We have c(θ, λ) = Γ(λ)θ−λ, log c(θ, λ) = log Γ(λ)− λ log θ, and hence, for t(x) = (−x, log x),

E(−X) = τ (1)(θ, λ) = −λ
θ

E logX = ψ(λ)− log θ = τ (2)(θ, λ),

where ψ is the digamma function . Then a mixed parametrization is

(−λ
θ
, λ).

The interior of C is {(x1, x2)T : x1 < 0 and log(−x1) > x2}. Letting −nX̄+ and nX̄∼ be the
canonical statistics for a sample X1, . . . , Xn, we have the maximum likelihood equations

X+ =
λ

θ

X∼ = ψ(λ)− log θ,

which can be written

X∼ − logX+ = ψ(λ)− log λ

and

θ =
λ

X+

.

Finding the solution of the first equation, the second can be solved. We have (−X+, X∼) ∈
int C with probability 1 in the case n ≥ 2.
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1.6 The multivariate normal distribution

Let X be the random vector with regular multivariate normal distribution,

X ∼ Np(µ,Σ),

where µ ∈ IRp, Σ ∈ Sp, and Sp is the set of p(p + 1)/2 vectors representing the set of p × p
symmetric and positive definite matrices. The density function of X with respect to Lebesgue
measure is

(2π)−p/2|Σ|−1/2 exp
{

−1/2(x− µ)⊤Σ−1(x− µ)
}

.

In order to find an exponential representation, we will write the exponent in the form θ · t:

−1

2
(x− µ)⊤Σ−1(x− µ) = −1

2
x⊤Σ−1x+ x⊤Σ−1µ− 1

2
µ⊤Σ−1µ

= tr(−1

2
Σ−1xx⊤) + (Σ−1µ) · x− 1

2
µ⊤Σ−1µ

= tr{θ(2)t(2)(x)}+ θ(1) · t(1)(x) + 1

4
θ(1)

⊤

θ(2)
−1

θ(1),

where θ⊤ = (θ(1)
⊤

, θ(2)
⊤

) = (Σ−1µ,−1
2
Σ−1) and

t⊤(x) = (t(1)
⊤

(x), t(2)
⊤

(x)) = (x, xx⊤).

Here, we adopt the convention that t(2) and θ(2) are symmetric matrices, i.e., it is a vector
of dimension p(p+1)/2 and tr(θ(2)t(2)) denotes the inner product between two matrices, with

tr(AB) =

p
∑

i=1

p
∑

j=1

AijBji =

p
∑

i=1

p
∑

j=1

AijBij

being essentially the inner product between A and B as vectors in IRp(p+1)/2.
Let Mp be the space of p× p symmetric matrices . Note that Sp ⊆Mp. We have

c(θ) = (2π)p/2|Σ|1/2e−1/4θ(1)
⊤

θ(2)
−1
θ(1)

= (2π)p/2| − 1

2
θ(2)

−1 | 12 e−1/4θ(1)
⊤

θ(2)
−1
θ(1)

= πp/2| − θ(2)|− 1
2 e−1/4θ(1)

⊤

θ(2)
−1
θ(1) .

Therefore,
Θ = {(θ(1), θ(2)) : θ(1) ∈ IRp,−θ(2) ∈ Sp}.

Sp is an open set in Mp, hence, Θ is open. We also have that if

tr{θ(2)xx⊤}+ θ(1) · x = K [µ],



1.7. ASYMPTOTIC THEORY 23

then θ(2) = 0, θ(1) = 0 and K = 0. Hence, the family of normal distributions is a regular
family of order p+ p(p+ 1)/2.

The parametrization by the mean is

τ (1) = Eθt
(1)(X) = EθX = µ

τ (2) = Eθt
(2)(X) = Eθ

(

XX⊤) = Σ+ µµ⊤.

Since the image of τ is int C, we have

int C = {(t(1), t(2)) : t(1) ∈ IRp, t(2) − t(1)t(1)
⊤ ∈ Sp}

and hence
C = {(t(1), t(2)) : t(1) ∈ IRp, t(2) − t(1)t(1)

⊤ ∈ S0
p},

where S0
p is the set of positive semi-definite, symmetric, p× p matrices.

The maximum likelihood equations for the independent observations X1, . . . , Xn from
Np(µ,Σ) are

µ =
1

n

n
∑

i=1

Xi

Σ + µµ⊤ =
1

n

n
∑

i=1

XiX
⊤
i ,

whose solution is

µ̂ = X+

Σ̂ =
1

n

n
∑

i=1

XiX
⊤
i −X+X

⊤
+.

This solution is the maximum likelihood estimator if and only if (X+,
1
n

∑n
i=1XiX

⊤
i ) ∈

int C, that is, if and only if 1
n

∑n
i=1XiX

⊤
i −X+X

⊤
+ = 1

n

∑n
i=1(Xi−X+)(Xi−X+)

⊤ is positive
definite. This happens with probability 1 if n > p.

A mixed parametrization is

Eθt
(1)(X) = µ, θ(2) = −1

2
Σ−1,

which is essentially the parametrization using the mean and the precision.

1.7 Asymptotic theory

We will consider the regular exponential family, with minimal representation

dPθ
dµ

(x) =
1

c(θ)
eθ·t(x), x ∈ X , (1.27)
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where θ ∈ Θ ⊆ IRk. Therefore, Θ is open and 1, t1, . . . , tk are linearly independent with
respect to µ.

We will study models of the form

dPβ
dµ

(x) =
1

c(θ(β))
eθ(β)·t(x), (1.28)

where β ∈ B ⊆ IRm, B is open and convex, and 1 ≤ m ≤ k. Here, θ is a function
θ : B −→ Θ. We can think of (1.28) as a sub-family of a regular exponential family, Almost
all the conclusions can be generalized for the case where θ ∈ int Θ, if (1.28) is steep.

We will study the asymptotic theory of estimation and tests for n independent and iden-
tically distributed observations, when n → ∞. It will be necessary to impose regularity
conditions on the family, which will be conditions exclusively on the function θ. We will
assume that θ : B → Θ satisfies the following regularity conditions:

(G1) θ is a homeomorphism (i.e., it is a continuous bijection with continuous inverse);

(G2) θ is twice differentiable and the second derivative is continuous (i.e., it is of class C2);

(G3) ∂θ⊤

∂β
has rank m.

In fact, our conclusions demand only that θ be differentiable with continuous derivative,
but the proofs are simpler if θ is twice differentiable. Condition (G3) prevents us from finding
singularities in the surface θ(B), that is “holes”, where the true dimension of θ(B) is smaller
than m.

A model as the one given by (1.28) that satisfies (G1), (G2) and (G3) is called a smooth
model, or a smooth hypothesis, and m is called order of the model or of the hypothesis.
Every affine hypothesis in the regular exponential family is a smooth model. Examples of
affine hypothesis are the log-linear models for contingency tables.

We will show the asymptotic results for estimation and hypothesis testing for n indepen-
dent observations from the same smooth family. Hence, it would be easy to generalize the
results to a situation where we have independent observations Xij, j = 1, . . . , ni, i = 1, . . . , k,
the density function of Xij having the form

1

ci(θi(β))
eθi(β)·t(x), β ∈ B ⊆ IRm,

where the functions θi : B → Θi satisfy (G1), (G2), (G3). The asymptotic results could be
obtained if ni → ∞, i = 1, . . . , k, in such a way that ni/(n1 + . . .+ nk) would not be close to
0 or 1.
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1.7.1 Estimation

The likelihood function for n independent and identically distributed observations is

L(β) =
1

c{θ(β)}n exp
{

θ(β) ·
n
∑

i=1

t(xi)

}

, β ∈ B, (1.29)

and the log-likelihood function is

ℓ(β) = logL(β) = n{θ(β) · tn − log c[θ(β)]}, (1.30)

where tn = 1
n

∑n
i=1 t(xi). Therefore, the maximum likelihood equation is

∂ℓ

∂β
(β) = 0 or

∂θ⊤

∂β
{tn − τ [θ(β)]} = 0. (1.31)

Using that
∂τ⊤

∂β
(β) =

∂θ⊤

∂β

∂τ⊤

∂θ
=
∂θ⊤

∂β
V {θ(β)} ,

the equations have the alternative form

∂τ⊤

∂β
V {θ(β)}−1{tn − τ [θ(β)]} = 0. (1.32)

We have that the columns of the k × m matrix, ∂θ⊤/∂β generate the tangent plane to
the set θ(B) at the point θ(β), and the columns of the k ×m matrix ∂τ⊤/∂β generate the
tangent plane to the set τ(θ(B)) at the point τ(θ(β)). Therefore, the solutions of (1.31) and
(1.32) have geometric interpretations. In (1.31) the solution is given by the β such that the
vector tn − τ(θ(β)) is orthogonal to the tangent plane to the set θ(B) at the point θ(β). In
(1.32) the solution is given by the β such that the vector tn − τ(θ(β)) is orthogonal to the
tangent plane to the set τ(θ(B)) at the point τ(θ(β)), being the orthogonality with respect
to the inner product defined by V (θ(β))−1. See Figure 1.2.

In general, the likelihood function does not necessarily have a unique maximum, and in
some specific models it is necessary to verify that this happens. We will assume here that,
for all t ∈ int C, there exists a unique maximum:

(G4) There exists a measurable Borel function g : int C → B, such that for all t ∈ int C,
the function

f(β, t) = θ(β) · t− log c(θ(β)), β ∈ B

has a unique maximum at β = g(t).

With this condition we can show the theorem on the existence of the maximum likelihood
estimator.
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Theorem 1.26 With probability 1, there exists, for large enough n, a unique maximum
likelihood estimator of β, β̂ = g(tn). This estimator is Fisher consistent i.e., g{τ [θ(β̂)]} = β̂,
β ∈ B.

Proof: From the strong law of large numbers it follows that with probability 1

T n =
1

n

n
∑

i=1

t(Xi) → EθT = τ{θ(β)}.

Since τ{θ(β)} ∈ int C, tn ∈ int C, for n large enough. By condition (G4) we have then that
g(tn) maximizes the likelihood function.

From the discussion of maximum likelihood estimation of regular exponential families
(1.3), we know that for t ∈ int C

θ · t− log c(θ) ≤ θ̂ · t− log c(θ̂), ∀θ ∈ Θ, (1.33)

with equality if and only if, θ = θ̂ = τ−1(t).
If t = τ0 = τ(θ(β0)) and θ has the form θ = θ(β), (1.33) turns into

θ(β) · τ0 − log c(θ(β)) ≤ θ(β0) · τ0 − log c(θ(β0)), β ∈ B.

Therefore, the maximum of the left hand side is β = β0. According to the definition of g we
have g(τ0) = β0, that is,

g{τ [θ(β0)]} = β0,

showing that g(tn) is Fisher consistent. �

The conclusion on the existence of the maximum likelihood estimator β in Theorem 1.26
is not very strong. It says that [P∞

θ(β)], for almost all sequences {xi}∞i=1 ∈ X∞ we have

1

n

n
∑

i=1

t(xi) ∈ int C ,

for n > n0, but n0 depends on the sequence {xi}i=1. For all the examples of continuous
exponential families that we found until now, it is valid that 1

n

∑n
i=1 t(xi) ∈ int C with

probability 1 if and only if n is larger than a fixed n0, being n0 = 2 for the gamma, normal,
and inverse normal distributions, and p for the multivariate normal.

About consistency, recall that a sequence of estimators {Tn}∞n=1 for the parameter β is
called consistent if

Tn → β [P∞
β ] .

Here, Tn is defined for a sample of size n. This definition does not necessarily imply that Tn
is a reasonable estimator for a sample of fixed size. If {Tn}∞n=1 is consistent, then {T̃n}∞n=1,
where

T̃n =

{

β0, n < 106

Tn, n ≥ 106,
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Figure 1.2: Geometrical interpretation of maximum likelihood estimation in a smooth expo-
nential family

is also consistent. Fisher consistency, is however a reasonable property for any sample size.
Essentially, this property says that, if the observations fit a given member of the family
perfectly, then the estimator must point to this distribution.

We will compute the derivative of g at τ{θ(β)}, β ∈ B.

Lemma 1.27 The function g is continuously differentiable, and the derivative at the point
τ{θ(β)} is given by

∂g⊤

∂t

∣

∣

∣

∣

t=τ(θ(β))

=
∂θ

∂β⊤ i(β)
−1,

where

i(β) =
∂θ⊤

∂β
V {θ(β)} ∂θ

∂β⊤

is Fisher’s information matrix for β.

Proof: Since g maximizes the likelihood function, for t ∈ int C, g(t) is a solution of the
maximum likelihood equation (1.31), and hence

h(β, t) =
∂θ⊤

∂β
(β){t− τ(θ(β))} = 0, β = g(t).
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Since g is given implicitly by the equation h{g(t), t} = 0, we have by the implicit function

theorem, that g is continuously differentiable, and that ∂g⊤

∂t
is determined by the equation

∂g⊤

∂t

∂h

∂β⊤ +
∂h⊤

∂t
= 0 , β = g(t), (1.34)

if the matrix ∂h
∂β⊤ is invertible. The derivative of h is determined by

∂h

∂β⊤ =
k
∑

i=1

∂2θi
∂β1∂β⊤{ti − τi(θ(β))} −

∂θ⊤

∂β
V (θ(β))

∂θ

∂β⊤

= −∂θ
⊤

∂β
V (θ(β))

∂θ

∂β⊤ for t = τ(θ(β))

and
∂h⊤

∂t
=

∂θ

∂β⊤ .

We have ∂h
∂β⊤ |t=τ(θ(β))= −i(β), which is invertible, where V {θ(β)} invertible, and ∂θ

∂β⊤ has

rank m. Inserting in (1.34) we obtain the conclusion. �

Lemma 1.28 Let Xn be a sequence of random vectors of dimension k, such that

Xn
P−→ c,

where c is a constant, and

bn(Xn − c)
D−→ Y,

where Y is non-degenerate, and bn → ∞. Let g : IRk → IRm be differentiable in c. Then

bn{g(Xn)− g(c)} − bn
dg

dt⊤
(Xn − c)

P−→ 0

and

bn{g(Xn)− g(c)} D−→ dg

dt⊤
(c)Y.

Proof: See Problem 1.15.

Theorem 1.29 The maximum likelihood estimator is asymptotically normal with

√
n(β̂ − β)

D−→ N(0, i(β)−1).
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Proof: By the central limit theorem we have that

√
n{T n − τ(θ(β))} D−→ N(0, V (θ(β))).

Using Lemma 1.28, we have

√
n{g(T n)− g{τ [θ(β)]}} =

√
n(β̂ − β)

D−→ N

(

0,
dg

dτ⊤V
{θ(β)}dg

⊤

dt

)

.

According to Lemma 1.27 we have

∂g

∂τ⊤
V {θ(β)}∂g

⊤

∂τ
= i(β)−1∂θ

⊤

∂β
V (θ(β))

∂θ

∂β⊤ i(β)
−1 = i(β)−1.

�

Theorem 1.30 Let h : int C → B be differentiable and Fisher consistent. Then

√
n{h(T n)− β} D−→ N(0, Vh),

and Vh−i(β)−1 is positive semi-definite, that is, β̂ is efficient in the class of the differentiable
estimators and Fisher consistent.

Proof: We consider the vector Y ⊤
n = (h(T n)

⊤, g(T n)
⊤). According to Lemma 1.28,√

n(Yn − (β, β)⊤)
D−→ N(0,Σ), where

Σ =

[

∂h
∂t⊤
∂g
∂t⊤

]

V {θ(β)}
{

∂h⊤

∂t

∂g⊤

∂t

}

=

[

Vh Σ12

Σ21 i(β)−1

]

.

Hence

Σ12 =
∂h

∂t⊤
V {θ(β)}∂g

⊤

∂t
=

∂h

∂t⊤
V {θ(β)} ∂θ

∂β⊤ i(β)
−1,

and using that h is Fisher consistent, we have h{τ [θ(β)]} = β, and hence

Im =
∂h

∂β⊤ =
∂h

∂t⊤
∂τ

∂θ⊤
∂θ

∂β⊤ t = τ(θ(β)).

Since ∂τ
∂θ⊤

= V (θ), we have that Σ12 = i(β)−1, and then

Σ =

[

Vh i(β)−1

i(β)−1 i(β)−1

]

.

Therefore, the asymptotic distribution of {h(T n)⊤ − g(T n), g(T n)
⊤} is

√
n{h(T n)⊤ − g(T n)

⊤, g(T n)
⊤}⊤ d−→ N(0,Γ),
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where

Γ =

[

Im −Im
0 Im

]

Σ

[

Im 0
−Im Im

]

=

[

Vh − i(β)−1 0
0 i(β)−1

]

.

Since Vh − i(β)−1 is a matrix of variances and covariances, we have that it is positive
semi-definite. �

Note that if h(T n)− g(T n) and g(T n) had been normally distributed with covariance 1
n
Γ,

then these random variables would be independent. Therefore, h(T n)− g(T n) and g(T n) are
called asymptotically independent .

1.7.2 Hypothesis testing

In this section we will find the asymptotic distribution of likelihood ratio tests for smooth
hypothesis. Also, we will give some approximations for the likelihood ratio test.

Frequently, we will test several hypothesis successively. In order to better describe the re-
lations among the hypothesis tests and the hypothesis estimators, we consider simultaneously
the following three hypothesis:

H0: θ = θ(β) β ∈ B ⊆ IRm, m < k
H1: β = β(α) α ∈ A ⊆ IRr, 0 ≤ r < m
H2: α = α0.
Both H0 and H2 are special cases of H1. We will assume that the function β : A → B

satisfies conditions (G1), (G2), (G3) and (G4) of a smooth family.
Let α0 ∈ A and let β0 = β(α0), θ0 = θ(β0), τ0 = τ(θ0), V0 = V (θ0) and i0 = i(θ0). Let

also S be the tangent space to Θ of the curve θ(B) at the point θ0, and S1 be the tangent
space to Θ of θ(β(A)) at the point θ0. Evidently,

S1 ⊆ S ⊆ IRk.

See Figure 1.3.
Finally, α̂ represents the maximum likelihood estimator of α under H1, and β̂ represents

the maximum likelihood estimator of β under H0, and θ̂ represents the maximum likelihood
estimator under the full family. See Figure 1.4.

We will need the orthogonal projections onto S and S1.

Lemma 1.31 The tangent plane S is generated by the columns of dθ
dβ⊤

0
= dθ

dβ⊤ (β0), and the

orthogonal projection on S with respect to the inner product V0 has matrix

P =
∂θ

∂β⊤
0

i−1
0

∂θ⊤

∂β0
V0.

In the same way, the orthogonal projection on S1 with respect to V0 has matrix

P1 =
∂θ

∂α⊤
0

i−1
1

∂θ⊤

∂α0

V0,

where i1 = i1(α0) represents the information under H1.
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Figure 1.3: Parameter domains and tangent spaces

Proof: For a weighted regression with design matrix ∂θ
∂β⊤ and weights V0, we have the

projection

P =
∂θ

∂β⊤
0

(

∂θ⊤

∂β0
V0

∂θ

∂β⊤
0

)−1
∂θ⊤

∂β0
V0.

�

Theorem 1.32 For α = α0, that is under P∞
θ0
, we have

√
n





θ̂ − θ(β̂)

θ(β̂)− θ(β(α̂))
θ(β(α̂))− θ0





D−→





I − P
P − P1

P1



Y, (1.35)

where Y ∼ Nk(0, V
−1
0 ).
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Figure 1.4: Maximum likelihood estimators under the different hypotheses

Proof: Since
√
n(T n − τ0)

D−→ W , where W ∼ Nk(0, V0), we obtain

√
n(θ̂ − θ0) =

√
n(τ−1(T n)− τ−1(τ0))

D−→ V −1
0 W = Y.

The functions θ(β̂) and θ(β(α̂)) are differentiable functions of θ̂, hence the conclusion follows
finding the derivatives and using Lemma 1.28. In this way,

∂θ(β̂)

∂θ̂⊤
= ∂

∂θ̂⊤
θ(g(τ(θ̂)))

= ∂θ(β̂)
∂β1⊤

∂g(τ(θ̂))
∂τ⊤

∂τ(θ̂)

∂θ̂⊤
.

For θ̂ = θ0 and β̂ = g(τ(θ̂)) = β0 we obtain by Lemmas 1.27 and 1.31, that

∂θ(β̂)

∂θ̂⊤

∣

∣

∣

θ̂=θ0
=

∂θ

∂β⊤
0

i−1
0

∂θ⊤

∂β0
V0 = P.

Therefore, we have by Lemma 1.28, that

√
n{θ(β̂)− θ0} D−→ PY.

In the same way it follows that
dθ(β(α̂))

dθ̂⊤

∣

∣

∣

θ̂=θ0
= P1,

and hence √
n{θ(β(α̂))− θ0} D−→ P1Y.

This completes the proof. �
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Since S ⊇ S1, and P and P1 are V0-orthogonal on T and T1, respectively, we have that
I −P , P −P1 and P1 are V0-orthogonal projections on the spaces that are V0-orthogonal. In
terms of matrices we have

PP1 = P1, (1.36)

(I − P )2 = I − P, (P − P1)
2 = P − P1, P 2

1 = P1, (1.37)

and
V0(I − P ) = (I − P )⊤V0, V0(P − P1) = (P − P1)

⊤V0, V0P1 = P⊤
1 V0. (1.38)

Formula (1.272) shows that we have V0-orthogonal projections.
These conclusions can be used to show that the three components on the right hand side

of (1.33) are independent . We have




(I − P )Y
(P − P1)Y

P1Y





D−→ N3k(0,Σ),

where Σ is given by




(I − P )V −1
0 (I − P )⊤ (I − P )V −1

0 (P − P1)
⊤ (I − P )V −1

0 P⊤
1

(P − P1)V
−1
0 (I − P )⊤ (P − P1)V

−1
0 (P − P1)

⊤ (P − P1)V
−1
0 P⊤

1

P1V
−1
0 (I − P )⊤ P1V

−1
0 (P − P1)

⊤ P1V
−1
0 P⊤

1





=





(I − P )V −1
0 (I − P )⊤ 0 0

0 (P − P1)V
−1
0 (P − P1)

⊤ 0
0 0 P1V

−1
0 P⊤

1



 ,

because it follows from (1.36) and (1.38) that the elements outside the diagonal are zero. It
also follows that

Y ⊤(I − P )⊤V0(I − P )Y, Y ⊤(P − P1)
⊤V0(P − P1)Y and Y ⊤P⊤

1 V0P1Y

have χ2 distribution with k −m, m− r and r degrees of freedom, respectively. Therefore, it
has been proved that

Theorem 1.33 For α = α0, that is under P∞
θ0
, we have that

√
n{θ̂ − θ(β̂)}, √

n{θ(β̂)− θ[β(α̂)]} and
√
n{θ(β(α̂))− θ0}

are asymptotically independent and normal. The quadratic forms

K0 = n{θ̂ − θ(β̂)}⊤V0{θ̂ − θ(β̂)}
K1 = n{θ(β̂)− θ(β(α̂))}⊤V0{θ(β̂)− θ(β(α̂))}
K3 = n{θ(β(α̂))− θ0}⊤V0{θ(β(α̂))− θ0}

are asymptotically independent with χ2-distributions with k − m, m − r and r degrees of
freedom, respectively.



34 CHAPTER 1. EXPONENTIAL FAMILIES

Let us consider now the likelihood ratio test, Q, of the hypothesis H1 : β = β(α), α ∈ A
on H0 : θ = θ(β), β ∈ B.

Theorem 1.34 The statistic 2 logQ has asymptotic distribution χ2(m − r), and is asymp-
totically independent of the maximum likelihood estimator α̂ of α.

Proof: We have

logQ = n{θ(β̂)− θ(β(α̂))} · T n − n{log c(θ(β̂))− log c(θ(β(α̂)))}
= n{θ(β̂)− θ(β(α̂))} · τ(θ̂)− n{log c(θ(β̂))− log c(θ(β(α̂)))},

since T n = τ(θ̂) for T n ∈ int C. Using the Taylor series expansion of log c we have

log c(θ1)− log c(θ2) = (θ1 − θ2) · τ(θ2) +
1

2
(θ1 − θ2)

⊤V (θ̃)(θ1 − θ2),

for some θ̃ ∈ [θ1, θ2]. Writing θ2 = θ(β̂), θ1 = θ(β(α̂)) we have

logQ = n{θ(β̂)− θ(β(α̂))} · {τ(θ̂)− τ(θ(β̂))}
+
1

2
n{θ(β̂)− θ(β(α̂))}⊤V (θ̃){θ(β̂)− θ(β(α̂))},

where θ̃ ∈ [θ(β(α̃)), θ(β̃), ].

Since θ(β̂)
P−→ θ0 and θ(β(α̂))

P−→ θ0; hence θ̃
P−→ θ0 and V (θ̃)

P−→ V0, we have by
Theorem 1.32, that

2 logQ
d−→ 2Y ⊤(P − P1)

⊤V0(I − P )Y + Y ⊤(P − P1)
⊤V0(P − P1)Y

= Y ⊤(P − P1)
⊤V0(P − P1)Y,

which, according to the comment after Theorem 1.32, follows a χ2(m− r) distribution, and
is independent of P1Y , which determines the asymptotic distribution of θ(β(α̂)) and hence
that of α̂. �

Note that in the proof above we obtained that

2 logQ−K1
P−→ 0,

and hence both statistics, which have the same asymptotic distribution, will take on values
that are very close with high probability.

Since both H0 and H2 are special cases of H1, we know now how to test successively
H0 under the regular exponential family, H1 under H0 and H2 under H1. First, we test
H0 under the regular exponential family and, in accordance with Theorem 1.34, the test
is asymptotically a χ2(k − m) test, and the test is, under the hypothesis, asymptotically
independent of the maximum likelihood estimator of β. Next, we test H1 under H0 with a
test that is asymptotically χ2(m − r), and again the maximum likelihood estimator of α is
asymptotically independent of the test. Finally, we can test a simple hypothesis on α.
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Table 1.1: Table of likelihood ratio tests
Hypothesis Test Degrees of Freedom

H0 G(θ̃)−G(θ(β̂)) k −m

H1 | H0 G(θ(β̂))−G(θ(β(α̂))) m− r

H2 | H1 G(θ(β(α̂)))−G(θ0) r

Total G(θ̃)−G(θ0) k

The similarity with successive tests in the classical analysis of variance is clear. Thus, we
can show the results in a table similar to an ANOVA table. Putting G(θ) = 2 logL(θ), we
have the results in Table 1.1.

It is possible to put the conclusions of Theorem 1.32 and 1.33 in terms of the mean τ
instead of the canonical parameter θ. Let τ̂ be the maximum likelihood estimator of τ on
H1 and ˆ̂τ be the maximum likelihood estimator under H2, i.e., T n = τ(θ̂), τ̂ = τ(θ(β̂)) and
ˆ̂τ = τ(θ(β(α̂))). The quadratic forms in question are

K ′
0 = n{T n − τ̂}⊤V −1

0 (T n − τ̂)

K ′
1 = n(τ̂ − ˆ̂τ)⊤V −1

0 (τ̂ − ˆ̂τ)

K ′
2 = n(ˆ̂τ − τ0)

⊤V −1
0 (ˆ̂τ − τ0).

Theorem 1.35 For α = α0, that is under P∞
θ0
, we have

√
n{T n − τ̂ , τ̂ − τ̂ , (τ̂ − τ0)} D−→ (I − P, P − P1, P1)W, (1.39)

where W ∼ N(0, V0). The three components on the right hand side of (1.39) are asymptot-
ically independent and asymptotically normal. Moreover, K ′

0, K
′
1 and K ′

2 are asymptotically
independent, and have asymptotic distributions χ2 with k−m, m−r and r degrees of freedom
respectively.

Proof: We know that
√
n(T n − τ0)

D−→ W and dτ
dθ

= V0, and hence we have that

√
n(τ̂ − τ0) =

√
n{τ(θ(β̂))− τ(θ0)} D−→ V −1

0 P TV0W = PW,

and √
n(ˆ̂τ − τ0) =

√
n{τ(θ(β(α̂)))− τ(θ0)} D−→ V −1

0 P⊤
1 V0W = P⊤

1 W,

according to the proof of Theorem 1.32 and the definitions of P and P1 in Lemma 1.31.

The other conclusions follow as in Theorem 1.33, using that P⊤ and P⊤
1 are V −1

0 orthog-
onal, which is the case because P and P1 are V0-orthogonal. P

⊤ and P⊤
1 are V −1

0 orthogonal
in the tangent spaces V0S and V0S1 with respect to respectively τ(θ(B)) and τ{θ[β(A)]} in
τ0. �
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1.8 Problems

Problem 1.1 Let P be the family with representation (1.2) with respect to the σ-finite
measure µ.

(i) Show that, for all P ∈ P , we have

P (A) = 0 ⇔ µ(A) = 0 , ∀A ∈ A.

This means that all measures in P have the same null sets, since these are the same
null sets of µ. We can then write [P ] instead of [µ]. Then as measures in P they
are equivalent. Hence, by Radon-Nikodym’s Theorem, they have density function with
relation to any other element P0 ∈ P . Consider the representation with respect to µ

dP

dµ
(x) = a(P )eα(P )·t(x) [µ] .

(ii) Show that

dP

dP0

(x) =
dP

dµ
(x)

dµ

dP0

(x)

=
a(P )

a(P0)
e{α(P )−α(P0)}·t(x) [P0]

Problem 1.2 Let P ∼ EM(t(X), α(P )). Suppose that the components of T are affinely
independent. Show that

P1 = P2 ⇔ α(P1) = α(P2).

Problem 1.3 Let P ∼ EM(t(X), α(P )), where t(X) and α(P ) have dimension k. Show
that the representation is minimal if and only if the order of P is k.

Problem 1.4 This problem shows that a family P of equivalent probability measures is an
exponential family if and only if the corresponding family of log density functions is contained
in a finite-dimensional space.
Let X1 and X2 be measurable real functions in X . Then X1 and X2 are said to be equivalent
if

X1 = X2 [P ] (1.40)

(i) Show that (1.40) is an equivalence relation.

(ii) Let V be the family of equivalence classes of (1.40), and let 〈X〉 be the equivalence
class that contains X. Show that V is a real vector space, with the obvious definitions.
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(iii) Let D be the subset of log density functions for P , that is

D =

{〈

log
dP

dP0

〉

: P ∈ P
}

,

where P0 ∈ P . Let
D = span[< 1 > ∪D].

Show that P is an exponential family if and only if D is finite-dimensional.

(iv) Let P be an exponential family. Show that

ord P = dimD − 1.

Problem 1.5 Let P be an exponential family of order k, with minimal canonical domain Θ.
Show that if the closed convex support C is bounded, then Θ = IRk, and hence P is regular.

Problem 1.6 The Poisson distribution Poµ has density function

dPoµ
dν

(x) =
µx

x!
e−µ, x = 0, 1, 2, . . . ,

with respect to the counting measure on N0. Let

P = {Poµ : µ ∈ (0,∞)}.

(i) Show that P is a regular exponential family of order 1.

(ii) Let X ∼ Poµ. Find EX and Var X.

Problem 1.7 The negative binomial distribution Pλ,p is given by the density function

dPλ,p
dm

(x) =

(

λ+ x− 1
x

)

px(1− p)λ, x = 0, 1, . . .

with respect to the counting measure on N0. Let Pλ = {Pλ,p : p ∈ (0, 1)} be the family of
negative binomial distributions with fixed index parameter λ.

(i) Show that Pλ is a regular exponential family of order 1.

(ii) Let X ∼ Pλ,p. Find EX and Var X.

Problem 1.8 The logarithmic distribution Pp has density function

dPp
dm

(x) = − 1

log(1− p)

px

x
x = 1, 2, . . . ,

with respect to the counting measure on N. Let P = {Pp : p ∈ (0, 1)}.
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(i) Show that P is a regular exponential family of order 1.

(ii) Let X ∼ Pp. Find EX and VarX.

Problem 1.9 Let

P = {N(µ, σ2) : µ ∈ IR, σ2 > 0}
be the family of normal distributions in IR.

(i) Show that P is a regular exponential family of order 2, with canonical statistic t(x) =
(x, x2).

(ii) Determine Θ and C.

Problem 1.10 Compute EX, VarX, EX−1 and VarX−1, for X ∼ IG(µ, λ) (the inverse
Gaussian distribution). Show that (µ, λ) provides a mixed parameter for this family.

Problem 1.11 Let X = IR and ν be a measure with density function e−
1
2
x2 with respect

to Lebesgue measure on IR. We consider the full exponential family P , generated by ν and
t(x) = (x+ x3, x− x3)⊤.

(i) Show that Θ = {θ : c(θ) <∞} = {(θ1, θ2)⊤ : θ1 = θ2} and that P is regular.

(ii) Show that ordP = 1, and find a minimal canonical statistic.

(iii) Show that P = {N(µ, 1) : µ ∈ IR}, i.e., the family of normal distributions with variance
1.

(iv) Show that Eθt(X) exists.

Now define

f(x) =







ex
2 − 1, (x > 0)

0, (x = 0)

−(ex
2 − 1), (x < 0).

(v) Show that P is also generated by ν and t̃(x) = (x+ f(x), x− f(x))⊤.

(vi) Show that t̃(X) does not have a mean with respect to Pθ, and that the unique functionals
w · t̃(X), w ∈ IR2, that have mean, are the ones with w ∈ Θ.

Comment: The problem shows that, in the case where the canonical parameter domain
is relatively open, but not open, one should be careful when considering the mean of the
canonical statistic. This explains why we demand that Θ is open in a regular exponential
family, even if the representation is not minimal.
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Problem 1.12 Let µ be a measure on X , and t be a measurable function from X to IRk,
such that 1, t1, . . . , tk are linearly independent . Show that the point t0 in IR

k belongs to the
interior of the convex support Ct(µ) if and only if any hyperplane through t0 partitions IR

k in
two sets with t(µ)-positive measures.

Problem 1.13 Let P be a regular exponential family with minimal representation

dPθ
dµ

(x) = a(θ)eθ·t(x),

and consider the notation of Section 1.4. In particular, let P0 be an affine hypothesis

P0 = {Pθ : θ ∈ Θ ∩ {θ0 + A⊤η : η ∈ IRm}},

where the m × k matrix A has full rank m. Let t0 be an observed value of the minimal
canonical statistic T .

(i) Show that, if t0 ∈ int Ct(µ), then At0 ∈ int Cv(µ), hence, if the maximum likelihood

estimator θ̂ of θ exists in the model P , then the estimator of maximum likelihood θ̂ of
θ in the model P0 also exists.

(ii) Find the likelihood ratio test of P0 under P .

Problem 1.14 Let X1 and X2 independent, with binomial distributions X1 ∼ Bi(n1, p1)
and X2 ∼ Bi(n2, p2).

(i) Show that the family of joint distributions of (X1, X2) is an exponential family of order
2, with canonical statistic (X1, X2)

⊤, and canonical parameter

(θ1, θ2)
⊤ = (log

p1
1− p1

, log
p2

1− p2
)⊤.

(ii) Let us use the terminology of Section 1.4, and let us consider the distribution of V =
X1 + X2 = (1, 1)(X1, X2)

⊤. Let A = (1, 1) and B = (1,−1). Show that the affine
hypothesis Θ0 = {θ0 + A⊤η : η ∈ IR} can be written as

p1
1− p1

1− p2
p2

= constant

in terms of the original parameters.

(iii) Find the marginal distributions of X1 +X2 under the affine hypothesis Θ0.

(iv) Find the marginal distributions of X1 +X2 under the hypothesis Θ̃0 = {A⊤η : η ∈ IR},
or

p1
1− p1

1− p2
p2

= 1 (that is, p1 = p2).
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(v) Find the conditional distribution of (X1, X2)
⊤ given

X1 +X2 = v.

Problem 1.15 Show Lemma 1.28.

Problem 1.16 This problem shows some important results on the information functions i
and j, relative to a reparametrization and smooth hypothesis.

(i) Let a = a(x) and b = b(x) be k-dimensional vectors and M =M(x) a k× k matrix, all
differentiable with respect to x, where x is d-dimensional. Suppose that

a(x) =M(x)b(x) ∀x ∈ Ω ⊆ IRd,

where Ω is an open set. Show that

∂a

∂x⊤
=M

∂b

∂x⊤
+
∂M

∂x⊤
× b,

where the product × is defined by

∂M

∂x⊤
× b =







∂M
∂x1
b

...
∂M
∂xd

b







(ii) Let (X ,A,P) be the statistical model, with P = {Pθ : θ ∈ Θ}, Θ ⊂ IRk. Suppose that
P ≪ µ, where µ is a σ-finite measure. Assume the following hypotheses regarding the
density function

p(x; θ) =
dPθ
dµ

(x).

(a) p(x; θ) > 0 ∀x ∈ X , ∀θ ∈ Θ.

(b) p(x; ·) is twice continuously differentiable ∀x ∈ X .

(c) ∂
∂θ

∫

p(x; θ)µ(dx) =
∫

∂
∂θ
p(x; θ)µ(dx) = 0.

(d) The Fisher information function

i(θ) = −
∫

(
∂

∂θ
)2 log p(x; θ)Pθ(dx)

exists ∀θ ∈ Θ.
Let j be the observed information function

j(θ) = − ∂2

∂θ∂θ⊤
ℓ(θ) = − ∂2

∂θ∂θ⊤
log p(x; θ).
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Let Ω be an open set in IRd, d ≤ k, and suppose that θ(w) is an injective func-
tion, two times continuously differentiable from Ω into Θ. Consider the model
(X ,A,P0) where P0 = {Pθ(w) : w ∈ Ω}. The information functions of the model
P0 will be called iw and jw and the ones for the model P , iθ and jθ. Show that

jw(w) =
∂θ⊤

dw
(w)jθ(θ(w))

∂θ

∂w⊤ − ∂

∂w
(
∂θ

∂w⊤ (w))×
∂ℓ

∂θ
(θ(w))

and

iw(w) =
∂θ⊤

∂w
(w)iθ(θ(w))

∂θ

∂w⊤ (w).

Also show that if d = k and | ∂θ
∂w⊤ (w)| 6= 0 for all w ∈ Ω, then

jw(ŵ) =
∂θ⊤

∂w
(ŵ)jθ(θ̂)

∂θ

∂w⊤ (ŵ),

where θ̂ is the maximum likelihood estimator of θ in the model P , and ŵ is the
estimator of w under P0.

(iii) Let now P be a full exponential family, that is

p(x; θ) = a(θ)b(x)eθ·t(x), θ ∈ Θ,

and suppose that θ(Ω) ⊆ int Θ. Show that

iw(w) =
∂θ⊤

∂w
V (θ)

∂θ

∂w⊤

and

jw(w) = iw(w)−
∂

∂w
(
∂θ

∂w⊤ )× (t− EθT ),

where T = T (x), and conclude that, in the case k = d,

jw(ŵ) = iw(ŵ).

Problem 1.17 Let P be the family of bivariate normal distributions defined by

P =

{

Pα : Pα = N2

((

0
0

)

,

[

1 α
α 1 + α2

])

, α ∈ IR

}

.

(i) Show that P is an exponential family of order 2.

(ii) Show that P is not regular.
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(iii) Consider from now on (X1, Y1)
⊤, . . . , (Xn, Yn)

⊤ independent and identically distributed
random vectors, with distribution in P . Show that the maximum likelihood estimator
α̂ of α is given by

dom α̂ = {(x, y)⊤ = (x1, . . . , xn, y1, . . . , yn)
⊤ ∈ IR2n :

n
∑

j=1

x2i > 0}

and that

α̂(x, y) =

∑n
i=1 xiyi
∑n

i=1 x
2
i

for (x, y)⊤ ∈ dom α̂.

(iv) The family satisfies the regularity conditions (G1)–(G4) in Section 1.7 (you do not need
to show this). Show that, under Pα0 ,

√
n(α̂− α0)

D−→ N(0, 1) as n→ ∞. (1.41)

(v) Suppose that (Xi, Yi)
⊤ ∼ Pα0 , i = 1, . . . , n. Show that

(Y1, . . . , Yn)
⊤|(X1, . . . , Xn)

⊤ = (x1, . . . , xn)
⊤

∼ Nn((α0x1, . . . , α0xn)
⊤, In),

where In is the n× n identity matrix . Show that

n
∑

i=1

XiYi|(X1, . . . , Xn)
⊤ = (x1, . . . , xn)

⊤

∼ N(α0

∑n
i=1 x

2
i ,
∑n

i=1 x
2
i ).

Show that this implies that

∑n
i=1XiYi − α0

∑n
i=1X

2
i

√
∑n

i=1X
2
i

∣

∣

∣

∣

∣

X = x ∼ N(0, 1)

and that hence
∑n

i=1XiYi − α0

∑n
i=1X

2
i

√
∑n

i=1X
2
i

∼ N(0, 1). (1.42)

(vi) Consider the hypothesis H : α = α0. Show that the test of H based on (1.42) is
identical to the asymptotic test of H, obtained using the observed information instead
of Fisher’s information.
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Problem 1.18 The two-dimensional exponential distribution may be defined as follows. Let
β > 0 and δ > 0, and let Z1(t; β), Z2(t; β) and Z12(t; δ) be independent Poisson processes
with parameters as indicated. Consider a system consisting of two components. An event
in the process Z1(t; β) causes component no 1 to fail. Similarly, an event in the process
Z2(t; β) causes component no 2 to fail, while an event in the process Z12(t; δ) causes both
components to fail. This two-component system is assumed to continue functioning as long
as at least one component is functioning. If X and Y denote the time elapsed until failure
for respectively component no 1 and component no 2, we say that (X, Y )⊤ follows a two-
dimensional exponential distribution with parameters β and δ, and we write (X, Y )⊤ ∼
E2(β, δ).

1. Show that

F̄ (x, y) = P(β,δ)(X > x, Y > y)

= e−β(x+y)−δmax(x,y).

2. If (X, Y )⊤ ∼ E2(β, δ), the probability of the event {X = Y } is positive, and is given
by

P(β,δ)(X = Y ) =
δ

2β + δ
.

(You do not need to show this result.) Let B denote the Borel σ-algebra in R2
+ and

let µ2 denote the Lebesgue measure on (R2
+, B). From the results above, we find that

the probability measure P(β,δ) is not absolutely continuous with respect to µ2. Let
∆ =

{

(x, y)⊤ : x = y, 0 < x <∞
}

and υ (B) = µ1(B ∩ ∆), B ∈ B, where µ1 denotes
the Lebesgue measure on R. Let µ = µ2 + υ. Show that P(β,δ) has the following
probability density function with respect to µ,

dP(β,δ)

dµ
(x, y) =

{

β(β + δ)F̄ (x, y) if (x, y) /∈ ∆
δF̄ (x, x) if (x, y) ∈ ∆.

3. Let P denote the set of two-dimensional exponential distributions,

P =
{

P(β,δ) : β > 0, δ > 0
}

.

Show that P is an exponential family of order 3, with minimal representation of the
form

dP(β,δ)

dµ
(x, y) = β(β + δ)e−β(x+y)−δmax(x,y)+(log δ

β(β+δ))1∆(x,y),

where 1∆ denotes the indicator function for the set ∆.

4. Let P0 be the probability measure corresponding to β = 1 and δ = 1, and let

T (x, y) = {x+ y,max(x, y), 1∆(x, y)}⊤ .
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Let Q denote the full exponential family generated by [P0, T ]. Write Q on exponen-
tial form, and find the corresponding canonical parameter domain. Show that P is
contained in Q and that P does not have open kernel. Find also the expectation and
variance for the two failure times X and Y of the two-component system above.

5. Let (X1, Y1)
⊤, . . . , (Xn, Yn)

⊤ denote n independent and identically distributed observa-
tions from the distribution E2(β, δ). Find the support and the convex support for the
minimal canonical statistic

Tn =

{

n
∑

i=1

(Xi + Yi) ,
n
∑

i=1

max (Xi, Yi) ,
n
∑

i=1

1∆ (Xi, Yi)

}⊤

.

Finally, describe the set of observations for which the maximum likelihood estimator
for the parameters of Q(n) exists.

Problem 1.19 Let P = {Pθ : θ ∈ Θ} be an exponential family of order 2 with minimal rep-
resentation

dPθ
dµ

(x) = a (θ) b (x) eθ1x+θ2T (x), θ = (θ1, θ2)
⊤ ∈ Θ ⊆ R2,

where x ∈ R and µ is a dominating σ-finite measure on (R,B).

1. Let X1, . . . , Xn be independent random variables, such that Xi ∼ Pθ, and let X+ =
∑n

i=1Xi. Assume that the distribution for X+ has probability density function of the
form

dPθX+

dµ
(y) = a1 (θ) b1 (y) e

θ1y+θ2S(y), θ = (θ1, θ2)
⊤ ∈ Θ.

Show that for θ = (θ1, θ2)
⊤ ∈ Θ and α = (α1, α2)

⊤ ∈ Θ, we have the following
conditional probability density function

dP n
θ (
∑n

i=1 T (Xi)|X+)

dP n
α (
∑n

i=1 T (Xi)|X+)
(v|u) = an (θ) a1 (α)

an (α) a1 (θ)
e(θ2−α2)(v−S(u)).

2. Show that, if
{

θ2|∃θ1 : (θ1, θ2)⊤ ∈ Θ
}

contains an open set, then X+ and
∑n

i=1 T (Xi)−
S(X+) are independent.

Problem 1.20 Let (µ, λ)⊤ ∈ (0,∞)2, and consider the inverse Gaussian distribution
N−(µ, λ), defined by the probability density function with respect to Lebesgue measure on
R

f(x;µ, λ) =

(

λ

2π

)1/2

x−3/2 exp

[

−λ(x− µ)2

2µ2x

]

, x > 0.
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1. Show that the family P (n) =
{

N−(µ, λ)(n) : (µ, λ)⊤ ∈ (0,∞)2
}

, corresponding to n in-
dependent and identically distributed observations X1, . . . , Xn, is an exponential family
of order 2 with canonical statistic

(X+, S)
⊤ =

(

n
∑

i=1

Xi,

n
∑

i=1

X−1
i

)⊤

.

2. Discuss maximum likelihood estimation of the mixed parameter (µ, λ)⊤ based on
X1, . . . , Xn. Show that if the maximum likelihood estimator (µ̂, λ̂)⊤ exists, it is given
by

(µ̂, λ̂)⊤ =

(

X̄+,
n

S − nX̄−1
+

)⊤
,

where X̄+ = X+/n.

3. Show that the Laplace transform of X ∼ N−(µ, λ) is

d(t) = e
√
ψλ−

√
(ψ−2t)λ, t ≤ ψ

2
,

where we have ψ = λ/µ2. Use this result to show that µ̂ ∼ N−(µ, nλ).

4. Show, possibly by using the result of Exercise 1.19, that µ̂ and λ̂ are independent, and
that

λ̂−1 ∼ (nλ)−1χ2(n− 1).

Hint: It may be useful to remember that the Laplace transform for a χ2(n− 1) distri-
bution is

l(ζ) = (1− 2ζ)−
n−1
2 , (ζ <

1

2
).



46 CHAPTER 1. EXPONENTIAL FAMILIES



Chapter 2

SUFFICIENCY AND

ANCILLARITY

In the following we will describe in a detailed way the classical concepts of sufficiency, com-
pleteness and ancillarity. Such concepts will be used and extended in the next chapter,
on inferential separation, where we will also discuss the statistical interpretation of these
concepts in a more detailed way.

In Section 2.1 we will present the classical concepts of sufficiency and completeness. We
will use several results on σ-algebras which will be reviewed throughout the section. In
Section 2.2 we deal with the concept of ancillarity and we prove Basu’s Theorem, which will
give us ways to characterize ancillary statistics, as well as a first application of the concept.
Section 2.3 deals with the extension of the classical concepts of sufficiency and ancillarity,
which will allow us to interpret more clearly the concept of completeness. It will be especially
useful to relate the concepts of sufficiency and ancillarity for inference functions defined in
Chapter 4 with the classical concepts developed below.

2.1 Sufficiency

Let (X ,A,P) be a statistical model. Suppose that we wish to make inference on P , based on
the observation x. In many cases we use a statistic, i.e., a measurable function t : (X ,A) →
(Y ,B) (where B is a σ-algebra of Y). Roughly, we say that the statistic T = t(X) is sufficient
if it contains “all the information” that x gives about P . In this section we will give a precise,
theoretical formulation of this concept.

The concept of sufficiency, in the sense stated above, was introduced by Fisher in the
beginning of the 20s. But only at the end of the 40s and the beginning of the 50s did
Halmos, Savage and Bahadur make the general formulation and mathematical analysis of
this concept. (Halmos and Savage, 1949 ; Bahadur, 1954).

In this chapter we will impose some restrictions compared with the general theory of
sufficiency. We will assume that the fundamental σ-algebra, A, is separable, and that the
class P of probability measures is dominated by a σ-finite measure. Such restrictions are not

47
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severe, since they naturally occur in many applications. For the case without a dominating
measure see Halmos and Savage (1949) and Bahadur (1954, 1955).

Recall that a σ-algebra is called separable if it has a countable generator (i.e., it is
generated by a class of countable sets). We will later show that any separable σ-algebra is
generated by a random variable, i.e., a real measurable function. For this, see Theorem 2.16,
which we will leave for the end of the section since it is a technical result.

We will assume in the following that for all P ∈ P there exists a regular conditional
probability of P given T . Since we are dealing with more than one probability measure,
we will use an index to determine which probability is being used to define the conditional
expectation, for example, EP (X|T ).

2.1.1 Three lemmas

First we will show some lemmas, that will be useful to develop the theory of sufficiency. In
order to fix the notation, let (X ,A) be a given measurable space, where A is a separable σ-
algebra. Let P be a probability measure on (X ,A). We define N (P ) = {A ∈ A : P (A) = 0}
and C∨N (P ) as the smallest σ-algebra that contains C and N (P ), where C is a sub-σ-algebra
of A.

Lemma 2.1 C ∨ N (P ) = {A ∈ A : IA = EP (IA|C) [P ]}.

Proof: Let D = {A ∈ A : IA = EP (IA|C) [P ]}. Note that D is a σ-algebra. D contains C
and N (P ). Hence C ∨ N (P ) ⊆ D.

We will show that C ∨ N (P ) ⊇ D. Let A ∈ D. Define φ = EP (IA|C). Hence A =
[{φ = 1} ∪ {A \ {φ = 1}}] \ [{φ = 1} \ A]. Then A ∈ C ∨ N (P ), because {φ = 1} ∈ C,
A \ {φ = 1} ∈ N (P ) and {φ = 1} \ A ∈ N (P ). �

Lemma 2.2 Let X : X → IR be a P -integrable random variable. Suppose that σ(X) ⊆
C ∨ N (P ). Then X = EP (X|C), [P ].

Proof: Suppose that EP (X|C) is a version of EP (X|C ∨ N (P )). Hence X = EP (X|C)
[P ], because X is C ∨ N (P )-measurable by hypothesis. So, it will be enough to show that
EP (X|C) is a version of EP (X|C ∨ N (P )), that is we have to show that:

(i) EP (X|C) is C ∨ N (P )-measurable;

(ii)
∫

A
EP (X|C)dP =

∫

A
XdP , ∀A ∈ C ∨ N (P ).

Part (i) is trivial. Now, the proof of (ii). Let A ∈ C ∨ N (P ). We have that

∫

A

EP (X|C)dP =

∫

IAEP (X|C)dP

=

∫

EP (IAEP (X|C)|C)dP
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=

∫

EP (X|C)EP (IA|C)dP

=

∫

EP (EP (IA|C)X|C)dP

=

∫

EP (IA|C)XdP =

∫

IAXdP =

∫

A

XdP,

since EP (IA|C) = IA [P ], ∀A ∈ C ∨ N (P ) (by Lemma 2.1). �

Lemma 2.3 Let C be a sub-σ-algebra of A. Then there exists a separable σ-algebra C0 such
that C0 ⊆ C ⊆ C0 ∨N (P ).

Proof: Since A is separable there exists a sequence A0 = {An}∞n=1 such that σ(A0) = A.
Let

C0 = σ{EP (IAn |C) : n = 1, 2, . . . }.
We claim C0 ⊆ C, since for each n we have that EP (IAn |C) is C-measurable. Evidently C0 is
separable because it is generated by a countable set of random variables. We only have to
show that C ⊆ C0 ∨N (P ).

Let A1 = {A ∈ A : ∃ a C0-measurable version of EP (IA|C)}. Hence A0 ⊂ A1 ⊂ A. Note
that A1 is a σ-algebra, hence we have A = σ(A0) ⊆ A1 and therefore A = A1. To show that
C ⊆ C0 ∨N (P ), let us take A ∈ C, since A1 = A we have that

IA = EP (IA|C) = EP (IA|C0), [P ].

Using Lemma 2.1 we have that A ∈ C0 ∨N (P ). �

2.1.2 Definitions

We now return to the situation where we have a statistical model (X ,A,P), withA separable,
and where the class of probability measures P is dominated by a σ-finite measure µ. In the
case that the conditional probability of P given T is the same for all the members of the
class P , it is reasonable to say that T contains all the information about P . We have then
the following definition.

Definition 2.4 A statistic T : (X ,A) → (Y ,B) is called a sufficient statistic if there exists
a Markov kernel π(A|t) from A×Y into [0, 1], such that π is a regular conditional probability
of P given T for any P ∈ P, that is, π satisfies the following conditions:

(i) π(·|t) is a probability measure, ∀t ∈ Y;

(ii) π(A|·) is B-measurable, ∀A ∈ A;

(iii)
∫

B
π(A|t)PT (dt) = P (A ∩ T−1(B)), ∀A ∈ A, B ∈ B and P ∈ P.
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If T is sufficient, all the information about P is contained in the distribution PT of T , in
the sense that P can be determined using PT , according to (iii). Note that if T is sufficient,
EP (X|T ) does not depend on P .

At this stage the question of the existence of a minimal sufficient statistic arises, in the
sense that a sufficient statistic is minimal if it is a simpler than any other sufficient statistic.
In the following we will formalize this concept. To do this we will use the notation

N (P) = {A ∈ A : P (A) = 0, ∀P ∈ P} and

A1 ⊆ A2[P ],

if A1 and A2 are two sub-σ-algebras of A such that A1 ⊆ A2 ∨N (P).

Definition 2.5 A statistic T0 is called a minimal sufficient statistic if:

(i) T0 is sufficient and

(ii) σ(T0) ⊆ σ(T )[P ], for all sufficient T s.

The following result will give us the motivation for the definition above. Let T : (X ,A) →
(Y ,B) and T0 : (X ,A) → (Y0,B0). Hence σ(T0) ⊆ σ(T )[P ] if and only if, there exists a
measurable function f : (Y ,B) → (Y0,B0) such that T0 = f(T )[P ], ∀P ∈ P . This result can
be proved using Lemma 2.2.

2.1.3 The case of equivalent measures

In the following we will assume that the measures of P are equivalent, in the sense that
N (P ) = N (P ′), ∀P and P ′ ∈ P , that is, the sets with null measure are the same for any
member of the family P . Later on, we will consider a more general situation where we only
assume that the members of P are dominated by a σ-finite measure µ in (X ,A) (recall that
such a hypothesis is also valid here).

Let P0 ∈ P . We have that all measures P ∈ P are P0-absolutely continuous. We can
then refer to dP/dP0, as a version of the density of P with respect to P0.

Theorem 2.6 A statistic T is sufficient if and only if, for all P ∈ P, there exists a T -
measurable version of dP/dP0.

Proof: Let T be sufficient and let π be a Markov kernel such that π is a regular conditional
probability of P given T , ∀P ∈ P (according to the definition). Define U : X → IR by

U(x) =

∫

X
dP/dP0(y)π(dy|T (x)) = E0[dP/dP0|T ](x),

where E0 = EP0 .
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We will show that U is a T -measurable version of dP/dP0. The fact that U is T -measurable
follows from the “usual proof” of measure theory. We will show that

∫

A
UdP0 = P (A),

∀A ∈ A.
For each A ∈ A we have that

∫

A

UdP0 =

∫

X
IAE0(dP/dP0|T )dP0

=

∫

X
E0(IAE0(dP/dP0|T )|T )dP0

=

∫

X
E0(dP/dP0|T )E0(IA|T )dP0

=

∫

X
E0[E0(IA|T )

dP

dP0

|T ]dP0

=

∫

X
E0(IA|T )

dP

dP0

dP0 =

∫

X
E0(IA|T )dP = P (A).

In the last step we used that E0(IA|T ) is also a conditional expectation of P given T .
We will assume now that there exists a T -measurable version of dP/dP0. Let

π(A|t) = P0(A|T = t), ∀A ∈ A, t ∈ Y .
Hence, π is a Markov kernel, and if

∫

B

π(A|t)PT (dt) = P (A ∩ T−1(B)), ∀A ∈ A, ∀B ∈ B and ∀P ∈ P ,

the theorem will be proved.
Now, as dP

dP0
is T -measurable, we have that
∫

B

π(A|t)PT (dt) =

∫

Y
IB(t)π(A|t)PT (dt)

=

∫

X
IT−1(B)(x)P0(A|T = T (x))P (dx)

=

∫

IT−1(B)E0(IA|T )
dP

dP0

dP0

=

∫

E0[IT−1(B)IA
dP

dP0

|T ]dP0

=

∫

IA∩T−1(B)

dP

dP0

dP0

= P (A ∩ T−1(B)).

�

Note that if fP and g
P
are versions of dP/dP0 and C = σ(fP : P ∈ P) and D = σ(g

P
:

P ∈ P), then it is easy to prove that C = D[P ]. This is especially interesting in view of the
following theorem which gives a characterization of a minimal sufficient statistic.
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Theorem 2.7 (Bahadur) A statistic T0 is minimal sufficient if and only if, σ(T0) = σ( dP
dP0

:
P ∈ P) [P ].

Proof: Let C0 = σ(T0) and C = σ(fP : P ∈ P), where fP is any version of dP/dP0, P ∈ P
(fP fixed).

We will first assume that T0 minimal sufficient. Since in this case T0 is sufficient, by
Theorem 2.6 there exists a T0-measurable version of dP/dP0, ∀P ∈ P . Therefore, C ⊆ C0[P ].

To prove that C0 ⊆ C[P ] we use that, by Lemma 2.3, there exists a separable σ-algebra
C1, such that

C1 ⊆ C ⊆ C1 ∨N (P).

Let T1 be a statistic such that σ(T1) = C1 (such a statistic exists, by Theorem 2.16, whose
proof uses none of the results of this section). By Lemma 2.2 we have that

fP = E0(fP |T1), [P0] ∀P ∈ P .

Therefore, E0(fP |T1) is a version of dP/dP0. Since E0(fP |T1) is T1-measurable, we have by
Theorem 2.6 that T1 is sufficient. T0 is minimal sufficient, and therefore

σ(T0) ⊆ σ(T1)[P ],

so that

C0 ⊆ C[P ].

Hence, C0 = C[P ], as we wanted to show.

We will now assume that C0 = C[P ]. By Lemma 2.2 we have that E0(fP |T0) is a version
of dP/dP0, ∀P ∈ P . Then T0 is sufficient, by Theorem 2.6. We only have to show that

C0 ⊆ σ(T )[P ],

for any T sufficient. Now, since T is sufficient, we can choose dP/dP0 T -measurable. Then
C ⊆ σ(T )[P ], but since C0 ⊆ C[P ], we obtain that C0 ⊆ σ(T )[P ]. �

Corollary 2.8 Under the previous assumptions, there exists a minimal sufficient statistic.

Proof: Let C = σ(fP : P ∈ P), where fP is any version of dP/dP0, P ∈ P . By Lemma
2.3, there exists a separable σ-algebra C1 such that

C1 ⊆ C ⊆ C1 ∨N (P).

Let T1 be such that σ(T1) = C1. Hence σ(T1) = C[P ], and by Theorem 2.7, we have that T1
is minimal sufficient. �
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2.1.4 The general case

Let us consider now the case where we only assume that the measures of P are dominated
by a σ-finite measure µ (i.e., we do not suppose any more, as in Theorem 2.7 and Corollary
2.8, that N (P ) = N (P ′), ∀P, P ′ ∈ P). Using Theorem 2.9 we will show some theorems that
characterize minimal sufficient statistics in this more general context.

Theorem 2.9 (Halmos-Savage’s Theorem) Let P be a class of probability measures domi-
nated by a σ-finite measure. Then P has a countable equivalent subclass.

Proof: We will assume that P ≪ µ. We will show that there exists a countable subclass
{Pm}∞m=1 of P such that for all A ∈ A we have

Pm(A) = 0 ∀m⇒ P (A) = 0, ∀P ∈ P .

We can assume without loss of generality that µ is a probability measure. Define

AP = {dP/dµ > 0},
B = {B ∈ A : ∃P such that B ⊆ AP and µ(B) > 0} and

C = {C : C =
∞
⋃

n=1

Bn, Bn ∈ B}.

Let s = sup{µ(C) : C ∈ C}. Since s ≤ 1 (since µ is a probability) there exists a sequence
{Cn}∞n=1 such that µ(Cn) ր s. Writing C = ∪∞

n=1Cn, we have µ(C) = s and C ∈ C.
Hence, there exists a sequence {Bm}∞m=1, of elements of B such that C =

⋃∞
m=1Bm. Since

Bm ∈ B, there exists Pm such that Bm ⊆ APm and µ(Bm) > 0.
Now, let A ∈ A be such that Pm(A) = 0 ∀m, and suppose that there exists P ∈ P

such that P (A) > 0. We will show that this will lead to a contradiction. We will assume
that A ⊆ AP , since otherwise A could be substituted by A ∩ AP . Since P ≪ µ, we have
µ(A) > 0. We also have that A ∈ B, and therefore C ∪A ∈ C. And since 0 = Pm(A∩Bm) =
∫

A∩Bm(dPm/dµ) dµ, we have that µ(A ∩ Bm) = 0, with dPm/dµ > 0 in Bm. Therefore,

µ(A ∩ C) ≤
∞
∑

m=1

µ(A ∩ Bm) = 0.

Hence, µ(A ∩ Cc) = µ(A) > 0. Now, using that C ∪ A ∈ C we obtain

s = µ(A ∪ C) = µ(C) + µ(A ∩ Cc) > µ(C) = s,

which gives the contradiction. �

Let {Pm}∞m=1 be the countable equivalent subset of P , whose existence is given by Theorem
2.9. Let P0 =

∑∞
m=1 cmPm, where {cm}∞m=1 is a sequence of positive real numbers such that

∑∞
m=1 cm = 1. Hence we have that N (P0) = N (P), and therefore P ≪ P0. Using this

definition of P0, we obtain the following generalization of Theorems 2.6, 2.7 and Corollary
2.8, for a situation where we only assume that P is dominated.
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Theorem 2.10 If P ≪ µ and P0 is defined as above, then:

(i) A statistic T is sufficient if and only if for each P ∈ P there exists a T -measurable
version of dP/dP0;

(ii) A statistic T0 is minimal sufficient if and only if σ(T0) = σ(dP/dP0 : P ∈ P)[P ];

(iii) A minimal sufficient statistic exists.

Proof: We will consider P ′ = {P ′ : P ′ = P0 or P ′ = 1
2
(P0 + P ) where P ∈ P}. The

measures in P ′ are equivalent, which is easy to see, using that P ≪ P0.
Therefore, we can use Theorem 2.6, 2.7 and Corollary 2.8 on P ′. We then have that

d

dP0

[

1

2
(P0 + P )

]

=
1

2

(

1 +
dP

dP0

)

.

Therefore, there exists a T -measurable version of dP/dP0, ∀P ∈ P if and only if there exists
a T -measurable version of dP ′/dP0, ∀P ′ ∈ P ′, and

σ

(

dP

dP0

: P ∈ P
)

= σ

(

dP ′

dP0

: P ′ ∈ P ′
)

.

To prove the first part of the theorem, it is enough to show that T is sufficient for P if and
only if T is sufficient for P ′. Hence, suppose first that T is sufficient for P . Let π(A|t)
be a regular conditional probability of P given T , ∀P ∈ P . Hence π(A|t) is also a regular
conditional probability for P0 given T , since for A ∈ A and B ∈ B we have

∫

B

π(A|t)P0T (dt) =

∫

B

π(A|t)(
∞
∑

m=1

cmPmT )(dt)

=
∞
∑

m=1

cm

∫

B

π(A|t)PmT (dt) =
∞
∑

m=1

cmPm(A ∩ t−1(B))

= P0(A ∩ t−1(B)).

In a similar way we can show that π(A|t) is a regular conditional probability of P ′ given T
∀P ′ ∈ P ′. Therefore T is sufficient for P ′.

Conversely, if T is sufficient for P ′, then there exists a Markov kernel π(A|t) which is a
regular conditional probability of P ′ given T , ∀P ′ ∈ P ′. Hence we have that π(A|t) is a regular
conditional probability of P given T , ∀P ∈ P , since if P ′ = 1

2
(P0 + P ) then P = 2P ′ − P0.

For A ∈ A and B ∈ B we have that
∫

B

π(A|t)PT (dt) =

∫

B

π(A|t)(2P ′
T − P0T )(dt)

= 2

∫

B

π(A|t)P ′
T (dt)−

∫

B

π(A|t)P0T (dt)

= 2P ′(A ∩ t−1(B))− P0(A ∩ t−1(B))

= P (A ∩ t−1(B)).
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Therefore, T is sufficient for P . We conclude then that

T is sufficient for P ⇐⇒ T is sufficient for P ′

⇐⇒ ∃ a T -measurable version of
dP ′

dP0

, ∀P ′ ∈ P ′

⇐⇒ ∃ a T -measurable version of
dP

dP0

, ∀P ∈ P

where the second equivalence follows from Theorem 2.6. In this way, we have proved part (i)
of the theorem.

We will show part (ii): Let T0 be minimal sufficient for P . Hence T0 is sufficient for P ,
and therefore for P ′. Let T be sufficient for P ′. Hence T is sufficient for P and, as T0 is
minimal sufficient for P , we obtain that σ(T0) ⊆ σ(T )[P ]. Since N (P) = N (P ′), we have
that σ(T0) ⊆ σ(T )[P ′].

Therefore, we have proved that T0 is minimal sufficient for P ′. In a similar way we can
prove that T0 is minimal sufficient for P if T0 is minimal sufficient for P ′.

Item (ii) follows from the implications:

T0 is minimal sufficient for P ⇐⇒
T0 is minimal sufficient for P ′ ⇐⇒

σ(dP ′/dP0 : P
′ ∈ P ′) = σ(T0)[P ′] ⇐⇒

σ(dP/dP0 : P ∈ P) = σ(T0)[P ],

where the second implication follows from Theorem 2.7.
Item (iii) of the theorem can be proved exactly as in Corollary 2.8. �

The theorem that follows gives a simple method to verify from the density dP/dµ, if a
given statistic T is or is not sufficient. This result is known as Fisher-Neyman’s factorization
criterion.

Theorem 2.11 (Fisher-Neyman Criterion) Let P be dominated by a σ-finite measure µ.
Then T = t(X) is sufficient if and only if there exists a version of dP/dµ of the form

dP

dµ
(x) = hP [t(x)]k(x).

Proof: Let P0 be as in Theorem 2.10. We will assume that T is sufficient. Let us consider
a T -measurable version of dP/dP0, i.e.,

dP
dP0

(x) = hP (t(x)). Hence,

dP

dµ
(x) =

dP

dP0

(x)
dP0

dµ
(x) = hP (t(x))k(x).

Conversely, we will assume that (dP/dµ)(x) is in the form given by the theorem. Hence

dP0

dµ
(x) =

∞
∑

m=1

cmhPm(t(x))k(x)
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and
dP

dP0

(x) =
(dP/dµ)(x)

(dP0/dµ)(x)
=

hP (t(x))
∑∞

m=1 cmhPm(t(x))
, [P0]

since
∑∞

m=1 cmhPm(t(x))k(x) > 0 [P0], which shows that dP/dP0 is T -measurable. �

2.1.5 Completeness

We now discuss the important concept of completeness.

Definition 2.12 Let (X ,A,P) be a statistical model and let T : (X ,A) → (Y ,B) be a
statistic.

(i) T is called complete with respect to P if for any measurable function f : Y → IR
satisfying

EP (f(T )) =

∫

Y

f(t)PT (dt) = 0, ∀P ∈ P , (2.1)

we have f ◦ T = 0 [P ], i.e., P (f ◦ T = 0) = PT (f = 0) = 1 for any P ∈ P;

(ii) T is called boundedly complete if for any bounded and measurable function f : Y → IR
satisfying (2.1), we have f ◦ T = 0 [P ].

Note that in the definition we implicitly assume that f is PT -integrable, ∀P ∈ P , i.e.,
∫

f+dPT <∞ and

∫

f−dPT <∞, ∀P ∈ P .

Minimal canonical statistics of exponential families are complete under weak regularity
conditions, as the following lemma shows.

Lemma 2.13 Let P be an exponential family and T a minimal canonical statistic of P. If
P has open kernel, then T is complete with respect to P.

Proof: Let
dPθ
dµ

(x) = a(θ)b(x)eθ·t(x), x ∈ X , θ ∈ Θ ⊆ IRk

be a minimal representation. Since P has an open kernel, then int Θ 6= ∅. Without loss of
generality, we can assume that 0 ∈ Θ. Let f be such that

∫

Y
f(z)PθT (dz) = 0, ∀θ ∈ Θ.

We have,
∫

Y
f(z)PθT (dz) =

∫

X
f(t(x))a(θ)b(x)eθ·t(x)µ(dx)

=
a(θ)

a(0)

∫

X
eθ·t(x)f(t(x))P0(dx),
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and then
∫

X
eθ·t(x)f+(t(x))P0(dx) =

∫

X
eθ·t(x)f−(t(x))P0(dx).

Define the measures v− and v+ by

v±(B) =

∫

t−1(B)

f±(t(x))P0(dx), ∀B ∈ B(IRk).

Hence, v+ and v− are finite measures on (IRk,B(IRk)) that satisfy

∫

IRk
eθ·zv+(dz) =

∫

IRk
eθ·zv−(dz), ∀θ ∈ Θ.

That is, the Laplace transforms of v+ and v− are identical on Θ, which contains a k-
dimensional open ball. Hence, by the inversion theorem for the Laplace transform we conclude
that v+ = v−. Since the measures in P are equivalent, we conclude that

f+ ◦ t = f− ◦ t [Pθ0 ], ∀θ ∈ Θ,

or
f ◦ t = 0 [Pθ], ∀θ ∈ Θ,

as we wanted to show. �

The proof of the lemma above uses the theorem on the uniqueness of the Laplace trans-
form. In other cases, when P is not an exponential family, it is sometimes possible to show
that a given statistic T is complete with respect to P , using a theorem on uniqueness of
another transformation, say, the distribution function.

In the theorem that follows we will show that if a statistic is complete, then, under
quite general conditions, sufficiency implies minimal sufficiency. Note that the concept of a
complete statistic is widely used. Besides the use in connection with sufficiency, this concept
is widely used together with ancillarity, in the theory of estimators with minimal variance,
as well as in the theory of tests.

Theorem 2.14 Let P be dominated by a σ-finite measure µ, and let T be sufficient and
complete with respect to P. Then T is minimal sufficient.

Proof: Let P0 be defined as in Theorem 2.10 and C = σ(dP/dP0 : P ∈ P). By Theorem
2.10, it is enough to show that σ(T ) = C[P ]. Since T is sufficient we have C ⊆ σ(T )[P ],
therefore we only have to show that σ(T ) ⊆ C[P ]. Since N (P) = N (P0), it is sufficient to
show that σ(T ) ⊆ C ∨ N (P0), and according to Lemma 2.1 we have that

C ∨ N (P0) = {A ∈ A : IA = E0[IA|C], [P0]}.

Let A ∈ σ(T ) and φA = E0[IA|C]. We will show that:



58 CHAPTER 2. SUFFICIENCY AND ANCILLARITY

(a) IA = E0[φA|T ] [P0]

(b) E0[φA|T ] = φA [P0].

The theorem now follows from (a) and (b).
To show (a), let g(x) = IA(x)−E0[φA|T ](x). The function g is T -measurable, i.e., g is of

the form f ◦ T . Moreover we have that

EPf(T ) =

∫

(IA − E0[φA|T ])dP = P (A)−
∫

E0[φA|T ]dP

= P (A)−
∫

EP [φA|T ]dP = P (A)−
∫

φAdP

= P (A)−
∫

E0[IA|C]dP

= P (A)−
∫

EP [IA|C]dP = P (A)−
∫

IAdP = 0,

where the second equality holds because T is sufficient and the last equality is easily obtained
if we substitute IA by any measurable function X : X → IR (see Problem 2.6).

To show (b), note that,

σ(φA) ⊆ C ⊆ σ(T ) ∨N (P) = σ(T ) ∨N (P0).

Then (b) follows from Lemma 2.2. �

Theorem 2.15 Let P be an exponential family of order k, and let

dP

dµ
(x) = a(P )b(x)eα(P )·t(x)

be a representation of P. Then the canonical statistic T is sufficient, and if the representation
is minimal then T is minimal sufficient.

Proof: The sufficiency is a consequence of Theorem 2.11. We will assume that the
representation is minimal. Let P0 ∈ P be arbitrary. Then

dP

dP0

(x) =
a(P )

a(P0)
e{α(P )−α(P0)}·t(x) = ã(P )eα̃(P )·t(x),

say. By minimality, there exist P1, . . . , Pk such that α̃(P1), . . . , α̃(Pk) are linearly independent
vectors in IRk. Since







log dP1

dP0
(x)

...

log dPk
dP0

(x)






=







log ã(P1)
...

log ã(Pk)






+







α̃(P1)
⊤

...
α̃(Pk)

⊤






t(x),
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and the matrix (ã(P1) . . . α̃(Pk)) is non-singular. We have that T is a one-to-one function of

{log dPj/dP0 : j = 1, . . . , k}, and therefore of { dPj
dP0

: j = 1, . . . , k}. Then

σ

(

dPj
dP0

: j = 1, . . . , k

)

= σ(T ),

and since σ( dP
dP0

: P ∈ P) ⊆ σ(T )[P ] we have

σ

(

dP

dP0

: P ∈ P
)

= σ(T )[P ],

from which we can conclude that T is minimal sufficient by Theorem 2.7. �

2.1.6 A result on separable σ-algebras

We now show a technical result on separable σ-algebras, that has been used throughout the
section. Note that the proof of this result is independent of the rest of the section.

Theorem 2.16 Any separable σ-algebra is generated by a random variable, i.e., a real mea-
surable function X : X → IR.

Proof: Let A be a separable σ-algebra generated by the sets A1, A2, . . .. Given (X ,A) and
(IR,B(IR)) we define

X(w) =
∞
∑

n=1

N−nIAn(w),

where w ∈ X and N is an even positive integer larger than 2. Evidently, σ(X) ⊆ A. We
have to prove that A ⊂ σ(X). To see this, it is sufficient to show that {An}∞n=1 ⊆ σ(X),
since this implies that σ({An}∞n=1) ⊆ σ(X).

Let us consider the random variables

Xn(w) =
n
∑

m=1

N−mIAm(w) and Yn(w) =
∞
∑

m=n

N−mIAm(w),

n = 1, 2, . . .. It is clear that X(w) = Xn−1(w) + Yn(w), for n ∈ N, (letting X0(w) = 0).
We have that

NnX(w) =
n−1
∑

m=1

N−m+nIAm(w) + IAn(w) +
∞
∑

m=n+1

N−m+nIAm(w)

= NnXn−1(w) + IAn(w) +NnYn+1(w).

Since we have that NnYn+1(w) ≤
∑∞

k=0N
−k = 1

N−1
≤ 1/3, N ≥ 4 and NnXn−1(w) = 0

or NnXn−1(w) ≥ N , (N ≥ 4), and as NnXn−1(w) is always even we have, with f(x) = [x],
that w ∈ An ⇔ [NnX(w)] is odd, that is, An = g−1

n (f−1(U)), where gn = NnX and U is
the set of odd numbers in N. The function f is B/2Z measurable, f : IR → Z, g is A/B-
measurable, g : X → IR, that is, An ∈ σ(X) since U ∈ 2Z . f is B/2Z-measurable because
f−1(n) = {x ∈ IR : [x] = n} = [n, n+ 1) ∈ B. �
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2.1.7 On the minimal sufficiency of the likelihood function

Consider the case where P is parametrized, P = {Pω : ω ∈ Ω}, let

q(x;ω) =
dPω
dP0

(x)

and let r be the mapping which maps a point x ∈ X to the likelihood function

r(x) = q(x; ·).

Endowing the range space RP of r with the product σ-algebra BP , where B is the Borel
σ-algebra in R, one obtains that r becomes measurable and that

σ{r} = σ{q(·;ω) : ω ∈ Ω}. (2.2)

Here, and everywhere until the end of Example 2.22, equalities, inclusions, etc. are strict,
i.e. not modulo null sets. This proposition represents one precise interpretation of the
common phrase “the likelihood function is minimal sufficient”. However, rather than this
interpretation, the phrase reflects the useful fact that if T is a statistic generating the same
partition of X as the mapping r , i.e.

T (x) = T (x̃) ⇔ q(x;ω) = q(x̃;ω)for every ω ∈ Ω, (2.3)

then, as a rule, T is minimal sufficient. That some regularity conditions are needed to ensure
the minimal sufficiency of such a statistic T is illustrated by the next example.

Example 2.17 Let X1 and X2 be independent and normally distributed, X1 ∼
N(0, 1), X2 ∼ N(ω, 1) with ω ∈ Ω = IR. Then X2 is minimal sufficient with respect to
the family P = {Pω : ω ∈ Ω} of joint distributions of X = (X1, X2). Taking X = IR2, X as
the identity mapping on X , a version of dPω/dP0 is given by

q(x : ω) = (1− δ(x1 − ω))eωx2−
ω2

2

where δ is the function of IR which is 1 at the origin and 0 otherwise. Clearly,

q(x; ·) = q(x′; ·) ⇔ x = x′

which means that X generates the same partition of X as does r : x → q(x; ·), although X
is not minimal sufficient.

Theorem 2.18 Suppose that T is a statistic which generates the same partition of X as the
mapping r : x→ q(x; ·). If either

1) P is discrete
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or

2) Ω is a subset of a Euclidean space and q(x;ω) is continuous in ω for each fixed x

then T is minimal sufficient.

Remark: The discrete case is straightforward to verify. If, in a given case, the conditions
of the theorem are not fulfilled it may well be that minimal sufficiency can be established
by the below method of proof which, as should be apparent, offers scope for considerable
generalization.
Proof: For any mapping f on an arbitrary measure space (E, C), let δ(f) denote the
partition σ-algebra determined by f , i.e. the σ-algebra of those sets C ∈ C which are unions
of elements of the partition of E generated by f . Clearly, δ(f) = {C ∈ C : C = f−1(f(C))}
and, in case f is a measurable mapping,

σ(f) ⊂ δ(f). (2.4)

Under mild regularity conditions one has, in fact, that σ(f) = δ(f). This will be seen from
the following proposition which is a special case of Theorem 3, p.145, in Hoffmann-Jørgensen
(1990). �

Lemma 2.19 Let E,F and G be Borel subsets of complete separable metric spaces, endowed
with the Borel σ-algebras. Let f and g be measurable mappings from E into F and G,
respectively, and suppose that the partition of E generated by f is finer than the partition
generated by g. Then there exists a measurable mapping h from F into G such that g = h◦g.

Taking g to be the indicator function of an element of δ(f) one finds that this element
belongs to σ(f). Hence one has the following result.

Corollary 2.20 Suppose f is a measurable mapping from a Borel subset of a complete,
separable metric space into a complete, separable metric space. Then σ(f) = δ(f).

It follows that, always,
σ(T ) = δ(T ) = δ(r) (2.5)

and hence, in view of (2.2) and (2.4), that T is sufficient.
Now, suppose Ω is a subset of a Euclidean space and that q(x : ·) is continuous on Ω for

every x ∈ X . Let Ω0 be a dense subset of Ω and let r0 be the mapping on X such that r0(x)
is the restriction of q(x; ·) to Ω·. Then by continuity, σ(r) = σ(r0) and r0 determines the
same partition of X as r (and T ). Therefore, on account of (2.5) and the Corollary,

σ(T ) = δ(r0) = σ(r0) = σ(r)

and since σ(r) is minimal sufficient, so is T .
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Corollary 2.21 Suppose that T is a statistic which generates the same partition of X as the
likelihood function p(x : ·), i.e.

T (x) = T (x̃) ⇔ cp(x : ω) = c̃p(x̃;ω) for every ω ∈ Ω

for some positive c and c̃ which do not depend on ω but may depend on x and x̃, respectively.
If either

1) P is discrete

or

2) Ω is a subset of a Euclidean space and p(x;ω) is positive and continuous in ω for each
fixed x then T is minimal sufficient.

Proof: Note that P0 is of the form ΣcnPωn (by Halmos-Savage’s Theorem). Taking the
version of dP0/dµ given by

p0(x) =
∑

cnp(x;ωn)

and setting q(x;ω) = p(x;ω)/p0(x) one obtains that Theorem 2.18 applies. �

Example 2.22 The model function for a sample x1, . . . , xn from the Cauchy distribution
with mode point ω is

p(x;ω) = π−n
n
∏

j=1

1

1 + (xj − ω)2
.

If x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n) satisfy cp(x; ·) = c̃p(x̃; ·) then

c

n
∏

j=1

(1 + (x̃j − ω)2) = c̃

n
∏

j=1

(1 + (xj − ω)2).

Both sides of this equation are polynomials in ω and hence the equality holds for all ω ∈ R
precisely when these two polynomials have the same roots. Since the roots are x̃j ± i, j =
1, . . . , n, respectively xj ± i, j = 1, . . . , n one sees that the order statistic (x(1), . . . , x(n)) is
minimal sufficient.

2.1.8 Sufficiency and exponential families

There is a sense in which “only” exponential families permit a genuine reduction of data
without loss of information. We will now make this claim precise.

Let (X ,A,P) be a statistical model, such that X is a region (an open and connected set)
in Rr, and A is the Borel σ-algebra of subsets of X . Assume that P is dominated by the
Lebesgue measure λ on (X ,A). Let fP denote the density of P ∈ P with respect to λ, and
assume that fP is positive on X .
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By Theorem 2.18, we find that a statistic T is sufficient for the model (X (n),A(n),P (n))
(corresponding to observing a random sample of size n from the model (X ,A,P)), if and
only if for all P ∈ P there exists a function hP such that

dP (n)

dP
(n)
0

(x) =
fP (x1) . . . fP (xn)

fp0(x1) . . . fp0(xn)
= hP (T (x)) [P

(n)
0 ].

If this condition holds for all x ∈ X (n), without any restrictions regarding null sets, we say
that T is φ-sufficient. We then have the following result.

Theorem 2.23 Assume that the densities fP are continuous on X . Let k < n be positive
integers and let T be a continuous k-dimensional statistic, such that T is φ-sufficient for the
model (X (n),A(n),P (n)). Then

(i) If k = 1,P is an exponential family of order 1.
(ii) If the densities fP have continuous partial derivatives on X , then P is an exponential

family of order less than or equal to k.

Proof: See Barndorff-Nielsen and Pedersen (1968).

2.2 Ancillarity

Let us consider the statistical model (X ,A,P). In some cases, we can find a statistic V ,
whose marginal distribution PV does not depend on the choice of P ∈ P . That is, PV =
{PV : P ∈ P} has a single element and, therefore the marginal distribution PV does not
contain any information on P ∈ P . In this case, we say that the statistic V is ancillary .

The term ancillary—which means “auxiliary”—apparently does not have anything to
do with the definition above. Its use will be justified with more details in the chapter on
inferential separation. Roughly speaking, we can say that the observed value of the ancillary
statistic works as “auxiliary”, in the sense that it shows the contents of “information” of the
sample.

The concept of ancillarity was introduced by Fisher in the mid-20s. At the end of the 50s,
Basu (1955, 1958 and 1959) made a more detailed analysis of the concept. In the following,
we will show Basu’s most important results, as well as some examples of ancillary statistics.

2.2.1 Definitions

We will assume, as in the section on sufficiency, that the σ-algebra A is separable, and that
the class of probability measures P is dominated by a σ-finite measure.

Definition 2.24 A statistic U is ancillary if the class of marginal distributions of U , PU =
{PU : P ∈ P}, consists of a single element.
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By analogy with the definition of minimal sufficiency, it would be obvious to call a statistic
U0 maximal ancillary, if σ(U) ⊆ σ(U0) ∨N (P ) for any ancillary statistic U . Note that there
rarely exists a maximum ancillary statistic because in many situations it happens that U1

and U2 are ancillary but (U1, U2) is not ancillary. The following example illustrates this.

Example 2.25 Let (Xi, Yi), i = 1, . . . , n be independent random vectors with a two-
dimensional normal distribution, E(Xi) = E(Yi) = 0, Var(Xi) = Var(Yi) = 1 and
Cov(Xi, Yi) = ρ, with ρ ∈ (−1, 1), for i = 1, . . . , n. Note that we have a model that is
parametrized only by ρ. The statistics X = (X1, . . . , Xn)

⊤ and Y = (Y1, . . . , Yn)
⊤ are ancil-

lary whereas the joint distribution of (X,Y) depends on ρ and therefore is not ancillary.

Definition 2.26 A statistic U0 is maximal ancillary if

(i) U0 is ancillary;

(ii) If U is ancillary and σ(U0) ⊆ σ(U) ∨N (P), then σ(U) ⊆ σ(U0) ∨N (P).

Note that Definition 2.26 does not exclude the possibility that there exist more than one
maximum ancillary statistic for a given model, as can be seen in the example that follows.

Example 2.27 (The Multinomial Distribution.) Let us consider the 2×2 contingency table





X11 X12 X1+

X21 X22 X2+

X+1 X+2 n





with the total n fixed, where Xi+ = Xi1 + Xi2 and X+i = X1i + X2i, i = 1, 2. We assume
that the table above is a realization of n independent multinomial trials with probabilities

(1 + θ)/6 (2− θ)/6

(1− θ)/6 (2 + θ)/6

corresponding to the cells related with X11, X12, X21 and X22, respectively. The parameter
θ varies in the interval (−1, 1). It is easy to see that (X11, X1+, X+1)

⊤ is minimal sufficient
and that X+1 and X1+ are both maximal ancillary (see Problem 2.19). But,

Pθ(X1+ = n;X+1 = n) = Pθ(X11 = n) = {(1 + θ)/6}n,

and therefore (X1+, X+1)
⊤ is not ancillary.
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2.2.2 Basu’s Theorem

We now consider a theorem due to Basu which is useful for proving independence.

Theorem 2.28 (Basu’s theorem) Let T : (X ,A) → (Y ,B) and U : (X ,A) → (Z, C) be two
statistics. We will assume that T is sufficient. Then:

(i) If T and U are independent under any measure in P, and if no pair of measures in P
are mutually singular, then U is ancillary;

(ii) If T and U are independent under one measure in P, and if the measures in P are
equivalent, then U is ancillary;

(iii) If U is ancillary and if T is boundedly complete with respect to P, then T and U are
independent for any P ∈ P.

Proof:

(i) Let P1, P2 ∈ P . We need to show that P1(U ∈ C) = P2(U ∈ C) for any C ∈ C. Since
T is sufficient, there exists a Markov kernel π, that is a regular conditional probability
of P given T for any P ∈ P . In particular, we have that

Pi(T ∈ B,U ∈ C) =

∫

B

π(U ∈ C|t)PiT (dt), ∀B ∈ B, ∀C ∈ C,

for i = 1, 2. Since T and U are independent we have that for B ∈ B and C ∈ C that,

Pi(T ∈ B,U ∈ C) = Pi(T ∈ B)Pi(U ∈ C) =

∫

B

Pi(U ∈ C)PiT (dt),

for i = 1, 2. Comparing the two equations we obtain that there exists a PiT -null set,
Ni, such that

Pi(U ∈ C) = π(U ∈ C|t), t /∈ Ni, i = 1, 2.

Since P1 and P2 are not mutually singular, N1 ∪N2 6= Y , and for t ∈ Y \ (N1 ∪N2) we
obtain,

P1(U ∈ C) = π(U ∈ C|t) = P2(U ∈ C),

that is, P1(U ∈ C) = P2(U ∈ C), which is valid for each C ∈ C, as we wanted to show.

(ii) We will assume that T and U are independent on P0 ∈ P . Hence, for each C ∈ C,
P0(U ∈ C) = π(U ∈ C|t), t /∈ N0,

where N0 is a P0T -null set. Since N0 is a PT -null set, for any P ∈ P , we have,

P (U ∈ C) =

∫

Y
π(U ∈ C|t)PT (dt)

=

∫

Y
P0(U ∈ C)PT (dt) = P0(U ∈ C),

which is valid for each C ∈ C and this shows that U is ancillary.
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(iii) Let B ∈ B and C ∈ C be arbitrary. We need to show that

P (T ∈ B,U ∈ C) = P (T ∈ B)P (U ∈ C), ∀P ∈ P .

Let f : Y → IR be defined by

f(t) = P (U ∈ C)− π(U ∈ C|t).

The function f does not depend on P (because U is ancillary) and f is measurable and
bounded. Since,

∫

Y
f(t)PT (dt) = 0, ∀P ∈ P ,

using that T is sufficient and boundedly complete, we obtain that PT (f = 0) = 1, for
any P ∈ P . From this fact,

P (T ∈ B,U ∈ C) =

∫

B

π(U ∈ C|t)PT (dt)

=

∫

B

P (U ∈ C)PT (dt)

= P (U ∈ C)P (T ∈ B),

which is valid for any C ∈ C and B ∈ B, implying that U and T are independent.

�

Item (iii) of Basu’s theorem is often useful to show independence, as the following example
illustrates.

Example 2.29 LetX1, . . . , Xn be independent random variables with distributionN(µ, σ2).
For σ2 fixed (known), X+ = 1

n

∑n
i=1Xi is minimal sufficient and complete. Moreover, the

distribution of SSD =
∑n

i=1(Xi−X+)
2 does not depend on µ and, therefore, SSD is ancillary.

By Basu’s theorem, it follows that X+ and SSD are independent, for any µ ∈ IR and fixed
σ2 and, therefore, for any (µ, σ2) ∈ IR× IR+.

In a more general way, g(X1, . . . , Xn) is independent of X+ if, and only if, for any a ∈ IR
we have that g(a+X1, . . . , a+Xn) has the same distribution that g(X1, . . . , Xn).

If µ and σ2 are unknown then, the statistic (X+, s
2) (where s2 = 1

n−1

∑n
i=1(Xi − X+)

2)
is minimal sufficient and complete. Let

U =

(

X1 −X+

s
, . . . ,

Xn −X+

s

)⊤

.

The distribution of U does not depend on (µ, σ2), therefore, U is ancillary. Moreover, U and
(X, s2) are independent.
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Example 2.30 Let (Xi, Yi)
⊤, i = 1, . . . , n be independent random vectors with distribution

N2(µ,Σ), where µ = (µ1, µ2)
⊤ and

Σ =

[

σ2
1 ρσ1σ2
ρσ1σ2 σ2

2

]

.

For ρ = 0, (X+, Y +,ΣX
2
i ,ΣY

2
i ) is minimal sufficient and complete, as well as

T̃ = (X+, Y +, SSDX , SSDY ).

Moreover, the distribution of

VXY =
SSDXY√

SSDXSSDY

does not depend on (µ, σ2
1, σ

2
2). By Basu’s theorem, we have then that, for ρ = 0, VXY is

independent of T̃ .

2.3 First-order ancillarity

The concepts of sufficiency and ancillarity have an immediate statistical interpretation, as
we have seen before. The same does not happen with completeness, which is often called an
essentially technical concept. In this section, we will try to obtain a statistical meaning of
this notion. Therefore, we will extend the concepts of ancillarity and sufficiency, which will
also be useful in Chapter 4 (for more details see Lehmann, 1981).

2.3.1 Examples

To develop the following ideas it will be enough to consider parametric families in IR. Let us
first consider the following example.

Example 2.31 Let f be a given probability density. Let us consider the family of distribu-
tions {Pθ : θ ∈ IR}, where Pθ is the distribution corresponding to the density fθ given by
fθ(x) = f(x− θ), ∀x ∈ IR, that is, we have a location model. Let X1, . . . , Xn be independent
and identically distributed random variables, with X1 ∼ Pθ. Table 2.1 shows the minimal
sufficient statistic, T , for θ, based on the sample, when f is a density of the indicated dis-
tributions. In the table X+ denotes the sample mean and X(1) ≤ · · · ≤ X(n) are the order
statistics of the sample X1, . . . , Xn.

It can be shown that a minimal sufficient statistic T is complete in the case of the normal
and exponential distributions and that it is not complete in the other cases indicated in the
table. We will compare T for the listed distributions and see if we can find some pattern that
enables us to characterize the completeness.

First, the dimension of T is one in the cases where T is complete and is larger than one
in the other cases. This indicates that T provides, in a certain way, the largest reduction in
the data when T is complete. Meanwhile, this is not yet the crucial point.
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Table 2.1: Minimal sufficient statistic for some distributions
Distribution given by f Minimal Sufficient Statistic T

Normal X+

Exponential X(1)

Uniform (X(1), X(n))

Logistic (X(1), X(2), . . . , X(n))

Cauchy (X(1), X(2), . . . , X(n))

Double Exponential (X(1), X(2), . . . , X(n))

Define Yi = X(n) − X(i), for i = 1, . . . , n − 1. It is easy to see that the statistic Ỹ =
(Y1, . . . , Yn−1)

⊤ is ancillary, in any location model. In the case of the logistic, Cauchy and
double exponential distributions, where T is not complete, each Yi can be calculated as a
function of T . Then T and Ỹ are correlated. Even in the case of the uniform distribution, Y1 is
a function of T . We conclude that a reduction by sufficiency was not capable of “eliminating”
all the ancillarity contained in the data, in the sense of turning all the ancillary statistics
independent of T . In the case of the normal and exponential distributions, each Yi is not a
function of T , being some of them independent of T (for example, in the case of the normal,
Cov(T, Yi) = Cov(X+, X(i) − X(n)) = 0). The discussion above suggests that completeness
might be associated with the capability of T to eliminate ancillarity.

Let us consider the uniform distribution in the interval (θ1, θ2), where θ1 and θ2 are two
parameters to be determined. Again, the statistic T = (X(1), X(n)) is minimal sufficient.
In this case, Y1 is not ancillary any more, but (Y2, . . . , Yn−1) are and in this case, T is more
efficient in eliminating the ancillarity, than in the uniform in (0, θ) distribution case. It should
be pointed that T is now complete!

Let us recall that Basu’s theorem (Theorem 2.28 (iii)) says that if T is boundedly complete
and sufficient then T is independent of any ancillary statistic. It is evident that, if we had
a converse of Basu’s theorem, then we would have the statistical interpretation of bounded
completeness. Unfortunately, there is no hope that this is possible, since the ancillarity is
globally related to the distribution of the statistic whereas completeness is only related to
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the expectation. This suggests that a modification of the concept of ancillarity should be
made so that it involves only the expectation.

Before continuing we will see an example where a minimal sufficient statistic is not inde-
pendent of the ancillary statistic (then, by Basu’s theorem, the minimal sufficient statistic
cannot be complete).

Example 2.32 Let X be a discrete random variable taking values on

{−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}

with probabilities:

P (X = −5) = ξp2q P (X = 1) = γpq
P (X = −4) = ξpq2 P (X = 2) = q3/2
P (X = −3) = p3/2 P (X = 3) = p3/2
P (X = −2) = −1/2q3 P (X = 4) = αpq2

P (X = 1) = wpq P (X = 5) = αp2q

where α, γ, ξ, w, p and q are positive constants such that

α + γ = ξ + w = 3/2 and p = 1− q ∈ (0, 1).

It can be shown that (see Problem 2.21):

(i) T = |X| is minimal sufficient for p;

(ii) P (X > 0) = 1/2 and therefore V = 1{X>0} is ancillary;

(iii) If α 6= ξ then V is not independent of T .

2.3.2 Main results

Definition 2.33 A statistic V is called first-order ancillary when Eθ(V ) does not depend on
θ and, a statistic T is called first-order sufficient if Eθ(X|T ) does not depend on θ.

Evidently, ancillarity (sufficiency) implies first-order ancillarity (sufficiency).

Theorem 2.34 A sufficient statistic T is boundedly complete for θ if and only if any bounded
real function of T is uncorrelated with any bounded first-order ancillary statistic for θ.

Proof: (⇒) Let T be a boundedly complete sufficient statistic. Consider any bounded
first-order ancillary statistic (for θ), V , and a given real bounded function f . We will show
that f(T ) and V are uncorrelated. Without loss of generality, suppose that Eθ(V ) = 0,
∀θ ∈ Θ. We have that,
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Covθ(f(T ), V ) = Eθ[f(T )V ]− Eθ(V )Eθ(f(T )) = Eθ[f(T )V ]

= Eθ{f(T )Eθ(V |T )}, ∀θ ∈ Θ. (2.6)

We claim that Eθ(V |T ) = 0 [Pθ] ∀θ ∈ Θ. In fact, we have that

0 = Eθ(V ) = Eθ[Eθ(V |T )], ∀θ ∈ Θ.

Note that Eθ(V |T ) does not depend on θ because T is sufficient. Since T is boundedly
complete, then, Eθ(V |T ) = 0 [Pθ] ∀θ ∈ Θ. Then by (2.6), f(T ) and V are uncorrelated,
which is valid for any real bounded function f and boundedly complete T .

(⇐) If T is not boundedly complete, then there exists a bounded function f such that
Eθ(f(T )) = 0, ∀θ ∈ Θ and f(T ) 6= 0, with strictly positive probability for some θ0 ∈ Θ.
Define V (x) = f(T (x)). The statistic V is bounded ancillary of first-order, since, Eθ(V ) =
Eθ(f(T )) = 0, ∀θ ∈ Θ. Moreover, Covθ0(V, f(T )) = Eθ0 [f

2(T )] > 0 because otherwise f(T )
would have a degenerate distribution under Pθ0 which would contradict the definition of θ0.
�

Lehmann (1981) claims that “the analogous result (of Theorem 2.34) holds for com-
pleteness instead of bounded completeness if attention is restricted to statistics with finite
variance”. This statement is somewhat imprecise. In order to clarify it we give a definition
and then prove a result of the kind Lehmann seems to have had in mind.

Definition 2.35 Let F be a class of real valued, measurable functions. We say that the
statistic T is F-complete for some set of functions F , if the condition

∀f ∈ F : Eθ[f(T )] = 0∀θ

implies f = 0 [PTθ], ∀θ.

Theorem 2.36 Let T be a sufficient statistic and let FT be the class of functions given by

FT =
{

f : f is real valued and E[f 2(T )] <∞
}

.

Then T is FT -complete if and only if for all f ∈ FT and first-order ancillary statistic V ,
such that Var θ(V ) <∞ ∀θ we have Cov θ(V, f(T )) = 0, ∀θ.

Proof: (⇒) Let T be FT -complete for θ and f ∈ FT . Let V be first-order ancillary, such
that Var θ(V ) <∞, ∀θ. Also let φ(T ) = E(V |T ). Then

Cov θ(f(T ), V ) = Eθ(f(T )V ) = Eθ(f(T )E(V |T )).

But
0 = Eθ(V ) = Eθ[E(V |T )] = Eθ[φ(T )]
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and

E[φ2(T )] = E[E2(V |T )] = Var [E(V |T )] ≤ Var (V ) <∞.

Then φ ∈ FT and so φ = 0 [PTθ] implies that Cov θ(f(T ), V ) = 0, ∀θ.
(⇐) Let f ∈ FT such that Eθ[f(T )] = 0 ∀θ and assume ∃θ0 such that Pθ0(f(T ) 6=

0) > 0. If we let V = f(T ) then V is first-order ancillary and has finite variance. Then
Cov θ(V, f(T )) = 0, i.e. Eθ[f

2(T )] = 0, ∀θ. Hence, Var θ0 [f(T )] = 0, implying that
Pθ0(f(T ) = 0) = 1 which is a contradiction. Therefore, Pθ(f(T ) 6= 0) = 0, ∀θ. �

Theorem 2.34 gives us an interesting characterization of the concept of bounded com-
pleteness in terms of first-order ancillarity. Note that when the concept of ancillarity is
weakened by defining the first-order ancillarity, we obtain the analogue of Basu’s theorem
but with converse. The existence of this converse shows that the concept of ancillarity has
been weakened in the exact measure for this purpose. Besides it provides an interpretation
of bounded completeness. The concepts of first-order ancillarity and sufficiency will be useful
to interpret the definitions of sufficiency and ancillarity that will be developed for inference
functions in Chapter 4.

2.4 Problems

Sufficiency

Problem 2.1 Let T : (X ,A) → (Y ,B) be a sufficient statistic. Then there exists a Markov
kernel π(·|·), which is a regular conditional probability of P given T for any P ∈ P . Let
X : (X ,A) → (IR,B(IR)) be a random variable with finite expectation for all P ∈ P . Show
that

EP [X|T ](x) =
∫

X
X(x′)π(dx′|T (x)) [P ].

Thus, a conditional P -mean of X given T does not depend on P ∈ P .

Problem 2.2 Let T : (X ,A) → (Y ,B) and T0 : (X ,A) → (Y0,B0). If there exists a
measurable function f : (Y ,B) → (Y0,B0) such that T0 = f ◦T [P ] for any P ∈ P , show that
σ(T0) ⊆ σ(T ) [P ]. Show the converse implication, in the particular case where (Y0, B0) =
(IR,B(IR)).

Problem 2.3 Assume that the measures of P are equivalent. Let P0 ∈ P be arbitrary. Let
fP and g

P
be two versions of dP

dP0
. We know that fP = g

P
[P ] for any P ∈ P . Show that

σ(fP : P ∈ P) = σ(g
P
: P ∈ P) [P ].

Problem 2.4 Let θ ∈ (0,∞) and suppose that X1, . . . , Xn are independent with distribution
U(0, θ). Show, using Theorem 2.10, that X(n) = max{X1, . . . , Xn} is a minimal sufficient
statistic.
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Problem 2.5 Let X and Y be independent with exponential distribution, with mean θ−1

and θ, respectively, where θ ∈ (0,∞). Find a minimal sufficient statistic. Hint: Use Theorem
2.7.

Problem 2.6 Let C be as in Theorem 2.14, that is, C = σ( dP
dP0

: P ∈ P). Let X : (X ,A) →
(IR,B(IR)) be a random variable with finite expectation under any P ∈ P . Show that

∫

EP [X|C]dP =

∫

E0[X|C]dP ∀P ∈ P .

Problem 2.7 Under the conditions of Theorem 2.15, show that, if the representation is
minimal, there exist P1, . . . , Pk, such that α̃(P1), . . . , α̃(Pk) are linearly independent vectors
in IRk.

Problem 2.8 Let X1, . . . , Xn be independent with distribution U(θ, θ + 1), where θ ∈ IR.
Let X(1) = min{X1, . . . , Xn}, and X(n) be as in Problem 2.4. Show that (X(1), X(n)) is
minimal sufficient.

Problem 2.9 Let Xij, i = 1, . . . , k and j = 1, . . . , c be independent random variables, whose
joint distribution is multinomial with parameter θij, i = 1, . . . , k and j = 1, . . . , c. Let P be
a family of multinomial distributions with θij = θi+θ+j. Find the order of the exponential
family P and find the minimal sufficient statistic.

Problem 2.10 Let X be a k-dimensional statistic and let P be the set of distributions of X.
We will assume that P is an exponential family with canonical statistic X. Let T = f(X) be
a statistic such that σ(T ) ⊆ σ(X) ∨ N (P). (Therefore, T may not be equivalent to X, and
a reduction of X by T implies a real reduction of information). Show that, if T is sufficient,
then, ordP ≤ k.

Ancillarity

Problem 2.11 Let X = (−1, 0, 1, 2, . . .), let A be the class of subsets of X and let P =
{Pθ : θ ∈ (0, 1)} be the family of probabilities determined by

Pθ({−1}) = θ

Pθ({x}) = (1− θ)2θx x = 0, 1, . . . .

Let T (x) = x, x ∈ X . Show that T is boundedly complete with respect to P , but that it
is not complete.

Problem 2.12 Let X1, . . . , Xn be independent and identically distributed as N(µ, σ2), µ ∈
IR and σ2 ∈ IR+. Show that

T1 =

∑n−1
i=1 (Xi+1 −Xi)

2

∑n
i=1(Xi −X+)2
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and

T2 =
X(n) −X+

X(n) −X(1)

are both independent of (X+, s
2).

Problem 2.13 Let X1, . . . , Xn be independent random variables with distribution Ga(β, λ),
i = 1, . . . , n.

(i) Show that the maximum likelihood estimator (λ̂, β̂) of (λ, β) is a solution of the equa-
tions

λβ = X+

ψ(λ)− log λ = log
X̃

X+

,

where X̃ = (
∏n

i=1Xi)
1/n, and ψ is the digamma function.

(ii) Show that h(X1, . . . , Xn) is independent of X+ if and only if h(aX1, . . . , aXn) has the
same distribution as h(X1, . . . , Xn) for any a > 0.

(iii) Show that λ̂β̂ and λ̂ are independent.

Problem 2.14 Let X1, . . . , Xn be independent and identically distributed random variables
with density

1

β
e−(x−α) β, x ≥ α,

where α ∈ IR and β > 0. Find the maximum likelihood estimator (α̂, β̂) of (α, β), and show
that α̂ and β̂ are independent.

Problem 2.15 Let X1, . . . , Xn, Y1, . . . , Yn be independent random variables, with the Xi’s
having density given by

f(x) =
1

θ1
e−x/θ1 , x > 0,

and the density of the Yi’s given by

f(y) =
1

θ2
e−y/θ2 , y > 0,

where θ1 > 0 and θ2 > 0. We consider the hypothesis θ1 = θ2

(i) Find the likelihood ratio test for θ1 = θ2, and show that it only depends on X+/Y +.

(ii) Show that X+/Y + has distribution F (2n, 2n) if θ1 = θ2.
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(iii) Show that the likelihood ratio test of θ1 = θ2 of level α has acceptance region

1/C ≤ X+/Y + ≤ C,

where C is the 1− α
2
quantile of the distribution F (2n, 2n).

(iv) Find the power function of the likelihood ratio test for θ1 = θ2.

(v) Write the density of X1, . . . , Xn, Y1, . . . , Yn in the exponential form with (X+, X++Y +)
as canonical statistic, and show that for θ1 = θ2, X+ + Y + is sufficient and complete.
Show that X+/Y + and X+ + Y + are independent if θ1 = θ2.

Problem 2.16 (Fisher-Behrens’ problem). Let X1, . . . , Xn, Y1, . . . , Ym be independent with
Xi ∼ N(µ1, σ

2
1), i = 1, . . . , n and Yi ∼ N(µ2, σ

2
2), i = 1, . . . ,m. Let H0 be the hypothesis

H0 : µ1 = µ2. Let P0 be the class of distributions corresponding to H0. Show that P0 is
an exponential family of order 4, and that T = (ΣXi,ΣYi,ΣX

2
i ,ΣY

2
i ) is minimal sufficient.

Show that T is not complete with respect to P0.

Problem 2.17 Let us suppose that X1, . . . , Xn are independent, with distribution U(0, θ).
Show using Theorem 2.6 (sufficiency) that X(n) is minimal sufficient. (This was already
proved in Problem 2.4 of sufficiency). Furthermore, show that X(n) and X(1)/X(n) are inde-
pendent.

Problem 2.18 Let X1, . . . , Xn be independent with distribution U(θ, θ + 1), θ ∈ IR. Show
that the minimal sufficient statistic (X(1), X(n)) is not boundedly complete with respect to
the class of distributions of (X1, . . . , Xn).

Problem 2.19 Show the claims made in Example 1.10.
Consider a set of independent and identically distributed random variables X1, . . . , Xn,

normally distributed N(µ, σ2).

1. Let X0 = Xn, and assume that µ = 0. Show that

n
∑

i=1

X2
i and

∑n
i=1Xi−1Xi
∑n

i=1X
2
i

are independent.

2. Now let µ be arbitrary, let

X̄ =
1

n

n
∑

i=1

Xi

and let

mr =
1

n

n
∑

i=1

(

Xi − X̄
)r
, r = 2, 3, . . . ,
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g1 =
m3

m
3/2
2

g2 =
m4

m2
2

− 3.

Show that (g1, g2)
⊤ is independent of (X̄,m2)

⊤.

3. From now on, assume that µ = 0. Let β ∈ (−1, 1) and define Y1, . . . , Yn by the system
of equations

Yi + βYi−1 = Xi, i = 1, . . . , n,

where Y0 = Yn. Show that Y = (Y1, . . . , Yn)
⊤ has a multivariate normal distribution,

and show that its probability density function with respect to Lebesgue measure is

f(y) =
1− (−β)n
(2πσ2)n/2

exp

[

− 1

2σ2

{

(1 + β2)
n
∑

i=1

y2i + 2β
n
∑

i=1

yi−1yi

}]

.

4. Let

S =
n
∑

i=1

Y 2
i

R =

∑n
i=1 Yi−1Yi
S

.

Show that if (β, σ2)⊤ varies in (−1, 1) × (0,∞), then (S,R)⊤ is minimal sufficient for
Y . Is (S,R)⊤ also minimal sufficient if σ2 is known and β varies in (−1, 1)?

5. Let g0(r) denote the probability density function of R with respect to Lebesgue measure
in the case β = 0 (you are not required to find g0). Find, for arbitrary (β, σ2)⊤ in
(−1, 1)× (0,∞), the density of (S,R)⊤ with respect to Lebesgue measure on R2. The
final expression for this density must be indicated as explicitly as possible, except that
g0(r) may enter in the expression. Hint: The result in Question 1 may be useful.

First-order ancillarity

Problem 2.20 Show the claims made in Example 1.13.

Problem 2.21 Show the claims made in Example 1.25.
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Chapter 3

INFERENTIAL SEPARATION

In this chapter we will generalize the classical concepts of sufficiency and ancillarity studied
in Chapter 2, for the case when there is a nuisance parameter. We will introduce five new
concepts of sufficiency (S-, L-, G-, M - and I-sufficiency) and four new ones of ancillarity
(S-, G-, M - and I-ancillarity), making reference to the classical concepts introduced in the
preceding chapter as B-sufficiency and B-ancillarity (the B comes from Basu and Bahadur).
In Section 3.1 we will present a motivation for the definition of these concepts, and in Sections
3.2–3.6 we will present the corresponding mathematical theory including some examples. See
Basu (1978) for a review of some complimentary results on partial sufficiency.

3.1 Introduction

Statistical inference is usually done following the steps given below:

(i) Propose a statistical model of the form (X ,A,P) for a certain experiment, where X
is the sample space, A is a σ-algebra and P = {Pθ : θ ∈ Θ} is a family of probability
measures parametrized by θ ∈ Θ.

(ii) Find the likelihood function

L(θ) =
dPθ
dν

(x), (3.1)

where ν is a measure on (X ,A) which dominates Pθ, for all θ ∈ Θ;

(iii) Calculate the maximum likelihood estimator θ̂(x), i.e., the value of θ that maximizes
L(θ) in (3.1);

(iv) Conduct hypothesis tests, using the likelihood ratio.

In many situations this paradigm is not sufficient to solve all problems, particularly when
θ is multidimensional. For example, let θ = (ψ, φ) have two components, ψ and φ, both mul-
tidimensional. Suppose that we want to make inference only on one of the components. Such

77
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a parameter is known as the parameter of interest and the other as the nuisance parameter.
Obviously this case is not considered in the above paradigm. Inferential separation techniques
deal with this situation, making inference on the parameter of interest and eliminating the
nuisance parameter, as it will be illustrated in Examples 3.1 and 3.2.

Example 3.1 Let X1, . . . , Xn be independent random variables with identical distribution
N(µ, σ2). The likelihood function is:

L(µ, σ2) =
n
∏

i=1

(2πσ2)−1/2e−
1

2σ2
(Xi−µ)2

= exp{− n

2σ2
(X̄+ − µ)2}(2πσ2)−n/2 exp

{

− 1

2σ2
SSD

}

,

where X̄+ = 1
n

∑n
i=1Xi and SSD =

∑n
i=1(Xi − X̄+)

2. We obtain the estimators

µ̂ = X̄+ and σ̂2 =
1

n
SSD.

Here we find the first problem. It is known from the theory of linear models that the usual
estimator of σ2 is

s2 =
1

n− 1
SSD.

An argument to justify the use of s2 instead of σ̂2 is that E(s2) = σ2, while E(σ̂2) = n−1
n
σ2 6=

σ2. Later we will present another justification for choosing s2 in terms of the concept of
L-sufficiency or in terms of G-sufficiency.

In Example 3.1, the difference between σ̂2 and s2 is very small for n big. We will see in
the following example that this difference may become significant.

Example 3.2 Let Xij ∼ N(µi, σ
2), j = 1, 2, i = 1, . . . , n, be independent random variables.

This corresponds to an experiment with n groups, each with two observations, where the
mean changes from group to group. This is a typical example of paired observations.

Using the likelihood function, we obtain the following estimators for the parameters of
the model:

µ̂i = X̄i+ =
1

2
(Xi1 +Xi2) and

σ̂2 =
1

2n

∑

i,j

(Xij − X̄i+)
2.

Consequently,

σ̂2 =
1

n

n
∑

i=1

(

Xi1 −Xi2

2

)2 a.s.

−→
n→ ∞

E

[

X11 −X12

2

]2

=
1

2
σ2.
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Therefore, σ̂2 is not a reasonable estimator for σ2 since it is not consistent. Using Xi1−Xi2 ∼
N(0, 2σ2) to estimate σ2 we obtain the estimator

s2 =
1

2n

n
∑

i=1

(Xi1 −Xi2)
2 = 2σ̂2

a.s.

−→
n→ ∞

σ2,

which solves the problem of lack of consistency of σ̂2.

This type of examples have motivated some critics to the maximum likelihood method.
For example, LeCam (1990) says: “Maximum likelihood estimators are considered the best
estimators in all circumstances. However, there are many cases in which they plainly misbe-
have”. However, we assert that the maximum likelihood method is not wrong in itself, but
it is important to choose correctly the model to work with. Both examples discussed above
show that it is not always convenient to deal with the whole likelihood function. Instead of
working with the distribution of X under Pθ in order to make inference, which would lead us
to the complete likelihood function, we propose to use the marginal distribution of a “suffi-
cient” statistic, U = u(X), or the conditional distribution of X given an “ancillary” statistic,
V = v(X). Let us consider now the situation where the parameter θ can be decomposed in
the form θ = (ψ, φ), where ψ = ψ(θ) is the parameter of interest. Let us also suppose that

L(θ) = f(x; θ) = h(u;ψ(θ))g(x|u; θ), (3.2)

where U = u(X) is a statistic, and h and g represent the marginal density of U and the
conditional density of X given U , respectively. We are supposing in (3.2) that the marginal
density of U depends on θ only through the parameter of interest ψ = ψ(θ) and that ψ
parametrizes the family of distributions {h(u;ψ(θ)); θ ∈ Θ}. If in some sense it is possible to
say that the conditional distribution of X given U = u does not contain information about
ψ, then we say that U is sufficient (in the broad sense) for ψ in the presence of φ. In this
case we claim that inference on ψ has to be done using the marginal distribution of U , i.e.,
h(u;ψ(θ)). This basic principle is called the sufficiency principle.

Another situation that may happen is that the likelihood can be written as

L(θ) = f(x; θ) = g(x|v;ψ(θ))h(v; θ), (3.3)

where V = v(X) is a statistic. We assume in (3.3) that the conditional distribution ofX given
V = v depends on θ only through the parameter of interest ψ = ψ(θ) and that ψ parametrizes
the family of distributions {g(x|v;ψ(θ)) : θ ∈ Θ}. If, in some sense, the marginal distribution
of V does not contain information about ψ, then V will be called ancillary (in the broad
sense) for ψ in the presence of φ. In this case any inference on ψ should be done using the
conditional distribution of X given V = v. This principle is called the “ancillarity principle”.
The term ancillary that means “auxiliary”, is used because although the statistic V does not
contains any information about ψ, the observed value v of V shows what is the conditional
distribution that has to be used in the inference on ψ.
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To formalize the definitions of sufficiency and ancillarity given above, we have to be precise
with what is the exact meaning of a distribution that does not contain information about ψ.
In the following sections we will give different definitions of “does not contain information”,
which will correspond to the concepts of sufficiency and ancillarity mentioned in the first
paragraph. It is important to see that the concepts of B-sufficiency and B-ancillarity do not
apply in this context except if φ is a constant and θ is the parameter of interest.

Example 3.3 Let X1, . . . , Xn be independent Bernoulli random variables with

P (Xi = 1) = 1− P (Xi = 0) = θ, 0 < θ < 1.

The likelihood function in this example is

L(θ) =
n
∏

i=1

θXi(1− θ)1−Xi = θX+(1− θ)n−X+ ,

where X+ = X1 + . . . + Xn. The statistic X+ has a binomial distribution and the
conditional distribution of (X1, . . . , Xn)|X+ = x+ is the uniform distribution on the set
C = {(X1, . . . , Xn) ∈ {0, 1}n : X1 + . . .+Xn = x+}. Then we have the factorization

L(θ) =

(

n
X+

)

θX+(1− θ)n−X+

[

(

n
X+

)−1

1C((X1, . . . , Xn))

]

.

In this case the conditional distribution of (X1, . . . , Xn) given X+ = x+ does not depend on
the parameter θ, therefore in this case X+ is B-sufficient for θ.

Example 3.4 The first two examples presented about a B-ancillary statistic were given
by Fisher (1934) in his discussion on the model of location and scale. One is the following,
let X1, . . . , Xn be independent random variable with distribution Xi ∼ Pµ,σ, where Pµ,σ is a
distribution with density

1

σ
f

(

x− µ

σ

)

,

where f is a given density. Evidently the statistic V = v(X) given by

v(X) =

(

X1 −X3

X1 −X2

,
X1 −X4

X1 −X2

, . . . ,
X1 −Xn

X1 −X2

)

,

is B-ancillary. Fisher named v(X) the “sample configuration” claiming that the inference on
µ and σ should be done using the conditional distribution of (µ̂, σ̂2) given v(X) = v.

We have following expression for the distribution of Pµ,σ:

a+ bPµ,σ = Pa+bµ,|b|σ,

whenever b is different from zero. This shows that the family P = {Pµ,σ : µ ∈ IR, σ > 0} is
generated by the group of affine transformations of IR.

The B-ancillarity property of a statistic is often a consequence of its invariance under a
set of transformations, like for v(X) in the example shown above. This idea will be used to
define the concepts of G-sufficiency and G-ancillarity in Section 3.3.
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3.1.1 S-ancillarity

The concepts of S-sufficiency and S-ancillarity are the most immediate generalizations of
those of B-ancillarity and B-sufficiency. There are no special polemics about these concepts,
which is not the case for the rest of the ancillarity and sufficiency concepts. In this section
we will introduce some examples about S-ancillarity, leaving the formal detailed presentation
to Section 3.2.

Example 3.5 Let us consider a continuous time Poisson process with intensity λ. When
the i-th event occurs we observe the i-th random variable Xi, i = 1, 2, . . .. Let us assume
that these random variables X1, . . . , Xn are independent given the process (for every n ∈ IN).
This situation happens commonly in the study of an insurance portfolio, where the event is
the occurrence of a claim and Xi is the value of the i-th claim.

Let us suppose that the process is observed in the interval (0, 1). Let N be the number
of claims in this interval. Let us assume that

Xi ∼ N(µ, 1), i = 1, 2, . . . .

In this case the likelihood function is given by the Poisson distribution with mean λ and,
given N = n, the random variables X1, . . . , Xn are independent and identically distributed
with the same distribution as in Example 3.1, with σ2 = 1. The likelihood is given by

L(µ, λ) =

{

n
∏

i=1

(2π)−1/2e−1/2(xi−µ)2
}

λn

n!
e−λ, (3.4)

and the maximum likelihood estimators of λ and µ are, respectively,

λ̂ = N

µ̂ =

{

1/N
∑N

i=1Xi, if N ≥ 1
undefined, if N = 0 .

In this example it is intuitively clear that in order to talk about the goodness of the
estimator µ̂, i.e., the “distance” between µ̂ and µ, we have to fix n and consider the variance

Var(1/n
n
∑

i=1

Xi) = Var(µ̂|N = n) = 1/n.

Therefore, the random variable N acts like an index of the content of information of the
sample about µ. That is, to evaluate µ̂ it makes no sense to compare different values of N
since the variance of µ̂ depends on the observed value of the random variable N . Thus, if we
observe N = 1 or N = 1000 we have very different situations.

If λ is known, the model is parametrized by θ = µ, and in this case the distribution of N
does not depend on θ and therefore, N is B-ancillary. However, if λ ∈ (0,∞) is unknown,
the model is parametrized by θ = (µ, λ), where µ ∈ IR is the parameter of interest. We will
say that N is S-ancillary for µ, according to the definitions given below, since the class of
marginal distributions for N is the same for any value of µ.
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Next we give the first definition of S-ancillarity. Let us consider the situation where the
parameter θ = (ψ, φ) ∈ Θ, (like in Section 3.1) with ψ ∈ Θ1 and φ ∈ Θ2. We say that a
statistic V is S-ancillary with respect to ψ when Θ = Θ1 × Θ2 and the likelihood function
can be factorized in the following way

L(θ) = g(x|v;ψ)h(v;φ). (3.5)

Observe that the conditional distribution of X given V does not depend on φ and that the
marginal distribution of V does not depend on the parameter of interest ψ.

In the example given above we have the parameter θ = (µ, λ) ∈ IR × (0,∞) where the
marginal distributions of N are the same foe each value of µ. Hence, λ parametrizes the
marginal distributions of N and clearly N is S-ancillary.

Example 3.6 (Linear regression) Let us consider a very frequent example where the ancil-
larity principle is used, although not always explicitly.

Let Y = (Y1, . . . , Yn)
⊤ be a vector of independent random variables with conditional

distribution
Yi|Xi = xi ∼ N(α + βxi, σ

2),

where X = (X1, . . . , Xn)
⊤ is a random vector with X ∼ P ∈ P , and P is a family of

distributions. Let us assume that ψ = (α, β, σ2) is the parameter of interest and that P =
{Pφ : φ ∈ Ψ} is parametrized by φ which varies independently of ψ.

The joint distribution of (X, Y ) can be factorized in the following form:

f(x, y;ψ, φ) = g(y|x;ψ)h(x;φ).

Therefore we have that X is S-ancillary for ψ and that, according to the ancillarity principle,
inference on ψ = (α, β, σ2) has to be done with the conditional distribution of Y given X = x.
This conditional procedure avoids the problem of having to specify the marginal distribution
of X which implies that x1, . . . , xn have to be considered as constants in the analysis, being
themselves realizations of random variables. However, it is important to notice that it is
fundamental that φ does not have any relation with the parameters (α, β, σ2) since otherwise
the marginal distribution of X may contain additional information about these parameters.

The role of X, as auxiliary statistic, is easily illustrated as follows. Let

β̂ =
SPDXY

SSDX

,

where SPDXY =
∑n

i=1(Xi − X̄+)(Yi − Ȳ+) and SSDX =
∑n

i=1(Xi − X̄+)
2. Then the

conditional variance of β̂ given X is

Var(β̂|X = x) =
σ2

SSDX

.

Therefore the random variable SSDX is an index of the conditional distribution of β̂ given
X. Evidently SSDX contains important information about the distribution of β̂, being X
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random. If SSDX is very large the slope of the line would be known very precisely and,
otherwise, if SSDX is small we would have little information about the slope of the line.
That is, the marginal variance of β̂ would be very pessimistic in the first case and very
optimistic in the second one, and it would lead us to adopt an unacceptable procedure. The
S-ancillarity principle would lead us, instead, to make the correct inference, conditioning on
X.

3.1.2 The nonformation principle

Let us summarize the ideas already presented when formulating the nonformation principle.
From this general principle we will derive the ancillarity and sufficiency principles.

Let X be a random variable defined in the measurable space (X ,A), and let P = {Pθ : θ ∈
Θ} be a parametric model in (X ,A). Let ψ = ψ(θ) be the parameter of interest. Sometimes,
it is useful to think of ψ as a component of the vector θ, writing θ = (ψ, φ), where φ is a
nuisance parameter. However, it is important to mention that the nuisance parameter φ will
have just a secondary role in the discussion that follows. Therefore we simply can say that
we are interested in making inference on a function ψ of the original parameter θ, i.e., on
ψ(θ) = ψ. This has to be considered since the nuisance parameter can be defined in different
ways for the same parameter of interest.

Recalling what was said in Subsection 3.1.1, in the case when there exists an statistic
U = u(X) with marginal distribution parametrized only by ψ, the conditional distribution
of X given U does not contain any information about ψ, then U is said to be sufficient for ψ
given φ. The sufficiency principle indicates that in this case inference has to be done using
the marginal distribution of U . That is, the likelihood is factorized in the following way

L(θ) = h(u;ψ(θ))g(x|u; θ). (3.6)

We say that the factor g(x|u; θ), θ ∈ Θ, together with the given x, is nonformative with
respect to the inference on ψ.

If the conditional distribution of X given a statistic V is parametrized by ψ and the
marginal distribution of V does not contain any information about ψ, then V is called
ancillary for ψ given φ. The ancillarity principle says that inference on ψ has to be done
using the conditional distribution of X given V = v, where v is the observed value of V . In
this case the likelihood can be factorized in the following way

L(θ) = g(x|v;ψ(θ))h(v; θ), (3.7)

and we say that the factor h(v; θ), θ ∈ Θ, together with the given v is nonformative with
respect to the inference on ψ.

Let us formulate the general nonformation principle. Let S and T be two statistics and
g(s|t; θ) be a density of the conditional distribution of S given T = t. In the case that
this conditional distribution, together with the observed values s and t of S and T , do not
contain information about the parameter of interest ψ(θ), we say that, in a wide sense, it
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is nonformative with respect to the parameter ψ. The nonformation principle says that
if the sub-model defined by the factor g(s|t; θ) is nonformative with respect to ψ, then this
factor should be discarded, only using the complement of the likelihood to do the inference
on ψ. This point will be explained in more detail later. Note that the nonformation principle
is a generalization of the sufficiency principle, that corresponds to the particular case where
S = X, and of the ancillarity principle, in the particular case when T is constant. In this way
we say that the nonformation principle generalizes the sufficiency and ancillarity principles.

Apparently it is not possible to give a unique definition of nonformation. Up to this
moment we have already discussed two definitions of nonformation:

B: The family of distributions contains a unique element, i.e., the distribution does not
depend on the value of θ;

S: The family of distributions corresponding to a fixed value of ψ is the same for all the
values of ψ (the letter S comes from Sverdrup and Sandved).

In Sections 3.3–3.6 we will introduce four other concepts of absence of information. We
use the letters L (from “likelihood”), G (from group), M (from maximum) and I (from
information).

Sufficiency and ancillarity are the two extremes of the wide collection of possibilities of
nonformation. It is important to recall that many times the nonformation principle is applied
in stages. Thus, we eliminate successively the nonformative factors of the likelihood, arriving
to the exhaustive model , which will be the model to be used for inference on the parameter
of interest, ψ.

Let us explain this process in the case of a likelihood with three factors. Let U and V
be statistics such that the conditional distribution of U given V depends on θ only through
ψ = ψ(θ) and that ψ parametrizes this family of distributions, that is, the conditional
distribution of U given V = v has conditional density of the form

g(u|v;ψ(θ) ) , (3.8)

and ψ parametrizes the family

{g(u|v;ψ(θ) ) : θ ∈ Θ}.

Hence we can write the likelihood of θ as:

L(θ) = g(u|v;ψ(θ) ) h1(v; θ) h2(x|u, v; θ). (3.9)

If the two factors h1 and h2 are both nonformative with respect to ψ, by the nonformation
principle, we should ignore them. Thus, we should make inference on ψ using the exhaustive
factor of the likelihood, g(u|v;ψ).

Let us consider a typical case of this procedure. Let us assume that expression (3.9) has
the form

L(θ) = g(u|v;ψ) h1(v;φ) h2(x|u, v) .
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Hence, since the factor h2(x|u, v) does not depend on θ, we have that (U, V ) is B-sufficient
for θ. We ignore, thus, the factor h2 of the likelihood, because this is nonformative with
respect to θ, and therefore with respect to ψ(θ). The distribution of the B-sufficient statistic
(U, V ) is given by g(u|v;ψ)h1(v;φ).

We suppose now that this factorization is such that V is S-ancillary for ψ in the marginal
distribution of (U, V ). Hence, the factor h1 is nonformative with respect to ψ, and we ignore
it from the likelihood. In this way, inference on ψ should be made using the exhaustive
factor g(u|v;ψ). The reasoning above shows that, in general, we can use different types of
nonformation for each factor of the likelihood.

Example 3.7 Let X1, . . . , Xn be independent random variables with inverse Gaussian dis-
tribution Xi ∼ N−(χ, ψ), given by the density

f(x;χ, ψ) =

√

χ

2πx3
exp[

√

χψ − 1

2
(χx−1 + ψx)] (x > 0).

The likelihood function is

L(χ, ψ) =
( χ

2π

)n/2
n
∏

i=1

x
−3/2
i exp{n

√

χψ − 1

2
(χX− + ψX+)} (3.10)

where X− = X−1
1 + . . .+X−1

n and X+ = X1 + . . .+Xn. Thus, this is an exponential family
of order 2, with minimal canonical statistic (X−, X+)

⊤.
We define the parameters ω = (χψ)1/2 and µ = (χ/ψ)1/2. We consider the case where we

want to make inference on µ when ω = ω0 is known. It is easy to see that for c > 0 we have

cN−(χ, ψ) = N−(cχ, c−1ψ).

Thus, multiplying (X1, . . . , Xn)
⊤ by c, ω = ω0 remains constant and µ is multiplied by c. We

now define S = (X+/X−)
1/2 and T = (X−X+)

1/2. Hence, T is invariant under multiplication
of (X1, . . . , Xn)

⊤ by c, and S has been multiplied by c.
The likelihood of µ, with ω = ω0 fixed is

L(µ) =
(

ω0µ
2π

)n/2∏n
i=1 x

−3/2
i exp{nω0 − 1/2ω0(µX− + µ−1X+)}

=
(

ω0µ
2π

)n/2∏n
i=1 x

−3/2
i exp{nω0 − 1/2ω0T (

µ
S
+ S

µ
)}.

It is evident that both (X−, X+) and (S, T ) are B-sufficient for µ and that T is B-ancillary.
Thus, inference on µ should be made using the conditional distribution of S given T = t.
This distribution was found by Jørgensen (1982) and is given by

S|T = t ∼ N−
g (−n/2, tω0µ, tω0µ

−1)
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where N−
g (λ, χ, ψ) denotes the generalized inverse Gaussian distribution with density

f(x;λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1 exp{−1

2
(χx−1 + ψx)}, x > 0

where

Kλ(w) = 1/2

∫ ∞

0

xλ−1e−1/2(x+x−1)dx

is called the modified Bessel function of third type with index λ.

The concepts of nonformation introduced here should be considered as a help to “separate”
the inference in pieces for a given model. This separation consists in general, in a factorization
of the likelihood function.

Unfortunately it does not seem to be possible to give a unique general definition of non-
formation. Thus, even if it seems to be not so elegant, we give five different definitions. We
should emphasize, however, that each of these concepts accounts for quite different problems.
This is the present state of the developed theory.

It is important to emphasize that the principles not always lead to a unique procedure.
Besides, apparently, these principles are not derived from other more basic principles. Thus,
the major justification of the theory that we will develop are the examples.

3.1.3 Discussion

The ideas of sufficiency and ancillarity, that started being developed by Fisher in the 20’s and
30’s, generated a polemic that lasted up to the present time, although now the discussion is
less intense. We will not give the details of the arguments given by both parts. It is interesting
to note that the sufficiency principle is almost unanimously accepted by the different schools
of modern statistics; however, the same does not happen with the ancillarity principle. This
seems strange at first glance, given that from the point of view of the exposition made above,
the two principles are extremes cases of the same nonformation principle.

A plausible explanation for the easy acceptance of the sufficiency principle is that fre-
quently the procedures produced by this principle coincide with those of widely used statis-
tical procedures. An example of this is the maximum likelihood estimator, which is always
a function of any sufficient statistic. Another example is the classic theorem of Lehmann-
Scheffé, that says that the conditional expectation of an unbiased estimator of a parameter,
given a complete sufficient statistic, is an unbiased estimator of minimal variance (UMVU).
Thus, the use of the sufficiency principle sounds in general familiar to many statisticians.

The ancillarity principle implies a change of reference, which is perhaps what can explain
the resistance to its acceptance. That is, if the original observations X are defined in a
space X , when we apply the ancillarity principle, using the value of an ancillary statistic, say
V = v0, we start to work with a subset of the sample space, {x ∈ X : v(x) = v0}. That is,
by applying the ancillarity principle we are forced to change the sample space.
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The main argument against the ancillarity principle is that the conditional procedure is
less efficient in average in hypothetical repetitions, when compared with the non-conditional
procedure. The main arguments in favour of the ancillarity principle are:

(i) The randomness contained in the ancillary statistic is a source of noise which is elimi-
nated with the conditional procedure.

(ii) The conditional procedure uses the “true” content of information of the sample about
the parameters.

(iii) Given the sample, hypothetical repetitions of the experiment are irrelevant for the
interpretation of the sample.

A more detailed analysis of Example 3.6 about regression, allows us to illustrate the use of
the conditional procedure with more detail and it clearly illustrates the last point mentioned
above. We will compare two possibilities, SSDX = 1, 000 and SSDX = 0.001. To simplify
the discussion, we say that the expected value of SSDX , using the distribution of X, is
SSDX = 1. In the first case, the conditional variance of β̂ is σ2/1, 000 and in the second
case it is 1, 000σ2. The expected value of the variance of β̂ is nearly σ2. If we observe the
value SSDX = 1, 000, then we estimate β with good precision and it would be scientifically
incorrect to ignore this information and say that “the mean variance of β̂ is σ2”. In a similar
way, if the observed value of SSDX is 0.001 it would be too optimistic to say that “this
does not matter, because the mean variance of β̂ is σ2”. Hence, from the principle that
an estimator should be given the precision that the observed sample permits (and not the
one it would have in average) we conclude that the conditional procedure gives the correct
conclusion with respect to the precision of the estimator.

Now let us we give a famous example due to Cox, which will facilitate the presentation
of a general argument in favour of the use of the ancillarity and sufficiency principles.

Example 3.8 (Cox, 1958) Suppose that we want to measure the length of a bar of iron and
to do that we have two instruments. We will also assume that the measurements obtained
with each instrument follow the normal distribution with common mean µ and variance 1 for
one instrument and 100 for the other. The choice of the instrument to measure the bar is
made by tossing a coin that has probability p ∈ (0, 1) of showing heads and, by convention,
if a head is obtained then the measurement is made using the instrument with the smallest
variance, otherwise it is made using the other instrument.

Let V be the random variable that indicates the result of the coin tossing experiment
and let U be the random variable that indicates the result of the measurement. Define
X = (U, V ). We have that V ∼ Bi(1, p). The model has parameter θ = (p, µ), and

U |V = v ∼ N(µ, v), where v =

{

1, if v is heads
100, otherwise .
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Evidently, V is S-ancillary with respect to µ, because N(µ, 1) and N(µ, 100) are both
parametrized by µ ∈ IR. The maximum likelihood estimator of µ, µ̂, has a distribution
given by the density

fµ̂(y;µ, p) = pφ(y − µ) + (1− p)
1

10
φ

(

y − µ

10

)

, (3.11)

where φ is the density of the standard normal distribution. Meanwhile, after the choice of
the instrument the distribution of µ̂ is N(µ, 1) or N(µ, 100). If we know which instrument
was used, it is evidently more sensible to use the distribution N(µ, 1) or N(µ, 100) instead
of (3.11) in order to judge the precision of µ̂. That is, it is better to use the conditional
distribution of U given V = v. We emphasize that in order for the reasoning made above to
be valid it is essential for V to be S-ancillary and for the value of V to be known, otherwise
we would have a mixed model which cannot be solved by simple conditioning.

In a case like in the example above it is quite reasonable to work with the conditional
distribution given an ancillary statistic. Until now, no general argument has been showed to
favour this procedure. We could question then if this situation is general or if it is due only
to a peculiarity of this example. We now give an argument presented by Cox (1958) which
shows that it is reasonable to condition on ancillary statistics.

Let X be a random variable whose distribution, P , is a member of the family of distri-
butions P . Let U = u(X) be a B-ancillary statistic with respect to P . Assume that an
experiment was conducted where we observed X = x. Let u = u(x). The experiment can be
interpreted as being composed of two sub-experiments:

(I) We observe U = u;

(II) We observe that X = x in the conditional distribution given U = u.

Let P( · |U = u) be the family of distributions corresponding to experiment II. Evidently
the two sub-experiments give jointly the same information as the original experiment. But
since U is B-ancillary, and hence its distribution does not depend on P ∈ P , sub-experiment
I does not provide any information about P . On the other hand, sub-experiment II evidently
contains information about P , since, P( · |U = u) contains more than one element. That is,
the information contained in sub-experiment II does not depend on the distribution of U ,
but on the value of U that was observed. Hence, the distribution of U is irrelevant for the
purpose of inference but not the value of U . Since the information about P is all contained
in experiment II, it is reasonable that we make conditional inference.

As it was already mentioned in Examples 3.5 and 3.6, conditional inference is, in some
sense, more “robust” (or stable) than inference made with the full likelihood. This is due
to the fact that the marginal distribution of U is not used, and hence, the validity of the
conditional procedure only depends on the validity of the conditional distribution ofX|U = u.
That is, this procedure continues to be valid even if the marginal distribution is incorrect.
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Once again we stress that the name ancillary, i.e., auxiliary, is justified since an ancillary
statistic is useful to decide which conditional distribution we should use. An ancillary statistic
carries information about the precision of our conclusions about P ∈ P .

If U is B-sufficient for P , we can use similar arguments to the ones given in the case of
ancillarity, dividing the experiment into the same two sub-experiments. Such arguments show
that sub-experiment II does not contain information about P and that experiment I contains
all the information about P . Then inference should be made using the marginal distribution of
U . It happens that the marginal distribution of U is known before conducting the experiment,
which implies that several statistical procedures automatically obey the sufficiency principle
and hence in these cases the statistic obeys this principle without noticing it. It is obvious
that the arguments given above can be extended to justify the ancillarity and sufficiency
principles in the broad sense, and for the general nonformation principle.

Although Cox’s example seems to provide an irrefutable argument in favour of the ancil-
larity and sufficiency principles, there exist examples where the application of these principles
is less obvious. The following example, presented by Fisher (1935), marked the start of the
discussion about ancillarity and illustrates this fact very well.

Example 3.9 (Fisher’s exact test) The data in the table below were collected to investigate
if there exists a relation between the criminal tendency of an individual and its genetic
constitution. Among 13 monozygotic twin brothers and sisters of sentenced criminals, 10
were also sentenced, whereas among 17 bizygotic twin brothers and sisters of sentenced
criminals only 2 were also sentenced.

sentenced not sentenced total
monozygotic 10 3 13
bizygotic 2 15 17

12 18 30

Let p1 be the probability of a monozygotic twin brother or sister of a sentenced criminal
to be also a criminal and p2 be the corresponding probability of a bizygotic twin brother or
sister. The following table represents the model for the general situation represented in this
example,

X1 n1 −X1 n1

X2 n2 −X2 n2

X+ n+ −X+ n+

where X1 and X2 are independent random variables and Xi ∼ Bi(ni, pi), i = 1, 2.
In his 1935 article, Fisher suggested that in order to test the hypothesis p1 = p2, the

conditional distribution given X+ = x+ should be used. This was based on the argument
that X+ does not contain information about the hypothesis of interest. It is convenient to
define

ψ =
p1/(1− p1)

p2/(1− p2)
.
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Note that p1 = p2 if and only if ψ = 1. The distribution of X+ is given by

P (X+ = x+) = (1− p1)
n1p

x+
2 (1− p2)

n2−x+

∑

y

{(

n1

y

)(

n2

x+ − y

)

ψyI[0,n1](y)I[0,n2](x+ − y)

}

,

and the conditional distribution of X1 given X+ is

P (X1 = x1|X+ = x+) =

(

n1

x1

)(

n2

x+ − x1

)

ψx1I[0,n1](x1)I[0,n2](x+ − x1)

∑

y

(

n1

y

)(

n2

x+ − y

)

ψyI[0,n1](y)I[0,n2](x+ − y)

(3.12)

which depends on (p1, p2) only through ψ. Evidently X+ is not B-ancillary nor S-ancillary
with respect to ψ. Nevertheless, Fisher claimed that X+ does not contain information about
ψ and hence concluded that inference on ψ should be made using the conditional distribution
(3.12). The test based on (3.12) is called Fisher’s exact test, because the p-value of this test
can be exactly computed using (3.12) contrary to the traditional Pearson’s χ2-test which uses
the asymptotic χ2-distribution.

In the last example, it is natural to question the fact that X+ is ancillary with respect to ψ
and at the same time that its distribution depends on ψ. As we will see, it will be possible to
define concepts of ancillarity, even in the case where the distribution of the statistic depends
on the parameter of interest. We will show that X+ is M -ancillary for ψ and hence does not
contain information about it, in an objective sense, which will confirm Fisher’s intuition.

In 1935, Fisher used the example above to start the discussion about conditional inference.
In the discussion that followed, this example arouse recurrently and given the difficulty to
interpret the statistic X+ as ancillary, it is not surprising that the debate turned out to
be not very constructive. Besides, Fisher’s imprecise way of expressing himself contributed
to the fact that the true meaning of some basic concepts was not clear at all. If to this
we add that these concepts were inconsistently used, it is not surprising that incorrect and
irrelevant answers were given in the debate that followed, where several articles can be viewed
as attempts to interpret Fisher’s paper.

Fisher’s main idea about conditional inference can be summarized in the ancillarity prin-
ciple: inference should be made conditionally on an ancillary statistic.

In order to understand and use this principle it is necessary to answer the following
questions:

(i) What is an ancillary quantity?

(ii) Why condition?
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According to Fisher, a variable is ancillary if it does not contain information about the
problem of interest. This is essentially the definition of ancillarity and, in a more general
way, of nonformation given above. Evidently, we will need a more rigorous definition, a
mathematical one, in order to continue. Such definition will have to contemplate the largest
possible number of examples where our intuition leads us to use the nonformation principle.
In this way, we will give an answer to question (i) above.

Regarding question (ii), the examples given before illustrate why we should follow the
principle of nonformation, mainly Cox’s example. Besides, Cox’s argument about the rep-
resentation of an experiment in terms of sub-experiments justifies the use of conditional
inference.

3.2 S-nonformation

In this section we will study in detail the concept of S-nonformation, which, as it will be
seen, is a generalization of the concept of B-nonformation. As we have already seen in
Section 3.1, there exist many situations where the B-nonformation principle is not suitable
as, for example, when only a part of the parameter is of our interest. Fraser (1956) made
the first formulations of this kind when he introduced the concept of S-sufficiency and after
that Sverdrup (1965) introduced the notion of ancillarity, both specially adapted for the
situation where there is a nuisance parameter. Sandved (1967 and 1972) modified Sverdrup’s
suggestion, obtaining a quite similar notion to the one we will next describe.

3.2.1 Definition

Let (X ,A,P) be a statistical model, where the family P is of the form P = {Pθ : θ ∈ Θ}
with Θ ⊆ IRk. As before, let us consider a decomposition of the parameter θ = (θ1, θ2) where
θ1 has dimension k1 and θ2 has dimension k2 (k1 and k2 can be both greater than 1) and
k1 + k2 = k. We will assume that θ1 is the parameter of interest and that θ2 is the nuisance
parameter, i.e., we are interested in doing inference only on θ1. Define

Θ1 = {θ1 ∈ IRk1 : ∃ θ2 ∈ IRk2 such that (θ1, θ2) ∈ Θ} and

Θ2 = {θ2 ∈ IRk2 : ∃ θ1 ∈ IRk1 such that (θ1, θ2) ∈ Θ}.

Definition 3.10 Consider the statistic U : (X ,A) → (Y ,D) such that

(i) Θ = Θ1 ×Θ2.

(ii) The family of marginal distributions of U, PU , is parametrized by θ1;

(iii) The family of conditional distributions given U , P( · |U) is parametrized by θ2.

In this case, U is called S-sufficient with respect to θ1 and S-ancillary with respect to θ2.
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Later we will introduce the concept of nonformation, that has as particular cases the
concepts of S-sufficiency and S-ancillarity defined above. We will consider a more general
situation than the one in Definition 3.10. Assume that θ is the parameter of the model and
that we are interested in making inference on a function of θ, say ψ(θ). Evidently the case
above is included in this one, taking the function ψ as a projection of θ on the first coordinate
(i.e., ψ(θ) = θ1, where θ = (θ1, θ2)). We assume that there exist statistics U and V such that
for each value v, in the domain of V , the family of conditional distributions

{PUθ(·|V = v) : ψ(θ) = ψ0} (3.13)

is the same for each value ψ0 of the function ψ. We say then that (3.13) is S-nonformative
with respect to ψ.

Example 3.11 Let X1 and X2 be independent random variables with Poisson distributions
with parameters λ1 and λ2 respectively, i.e., X1 ∼ Po(λ1) and X2 ∼ Po(λ2). We can
parametrize the distribution of (X1, X2) by θ = (λ1, λ2) ∈ Θ = IR+ × IR+. Then the statistic
U = X1 is S-ancillary with respect to λ2 and is S-sufficient with respect to λ1 since

PU = {Po(λ1) : λ1 ∈ IR+},
P(·|U) = {Po(λ2) : λ2 ∈ IR+} and

Θ = IR+ × IR+.

Evidently an analogous result is valid for V = X2.
Let us consider the submodel

Θ = {(λ1, λ2) ∈ IR+ × IR+ : λ2 ≤ λ1} .

In this case, U = X1 is not S-sufficient for λ1 nor S-ancillary for λ2, since Θ 6= Θ1 × Θ2.
This type of restriction in the parameters arises for example in the following way. In an
experiment of counting radioactive particles, let us suppose that we have a source and that
the experiment is conducted in two stages: first we measure the number of particles that
are detected by some instrument (in per-time units), and next we measure the number of
particles that arrive to the receptacle if we put a plaque between the source and the receptacle
(in the same period of time). If λ1 and λ2 are the parameters of the distributions of the first
stage and of the second stage respectively, then λ1 ≥ λ2.

Define the parameters θ1 = λ1 + λ2 and θ2 = λ2/λ1. Evidently θ = (θ1, θ2) = (λ1 +
λ2, λ2/λ1) ∈ IR+ × (0, 1] parametrizes the sub-model considered (θ1 is the “total charge” and
θ2 is the “decay rate”). The statistic U = X1 + X2 is S-sufficient for θ1 and is S-ancillary
with respect to θ2 since PU = {Po(λ1 + λ2) = Po(θ1) : θ1 ∈ IR+} only depends on θ1 and it
is easy to see that

X1|U = u ∼ Bi(u, λ1/(λ1 + λ2)) = Bi(u,
1

1 + θ2
).

We should mention that Fisher (1950) claimed that inference on λ2/λ1 should be made
conditionally on X1 +X2.
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Example 3.12 Let us consider the independent random variables Xij ∼ Po(αiβj), with
i = 1, . . . , r and j = 1, . . . , s. The joint density of these random variables is given by:

[

∏

i,j

e−(αiβj)

] [

∏

i,j

1

xij!

]

exp

[

∑

i

xi+ logαi +
∑

j

x+j log βj

]

.

This is an regular exponential family of order r+s−1. Let α̃i =
αi
α+
, β̃j =

βj
β+

and µ = α+β+.
The joint density can be expressed in terms of these new parameters in the following way:

[
∏

i xi+!][
∏

j x+j!]

x++!

1
∏

i,j xij!
×
(

x++

x1+ . . . xs+

)

α̃
x1+
1 . . . α̃xr+s

×
(

x++

x+1 . . . x+s

)

β̃x+1 . . . β̃x+s × µx++

x++!
e−µ.

The four factors of the expression above correspond respectively to the conditional dis-
tribution of {Xij} given (X1+, . . . , Xr+, X+1, . . . , X+s), the conditional distribution of
(X1+, . . . , Xr+) given X++, the conditional distribution of (X+1, . . . , X+s) given X++ and
the density of X++. Note that (Xi+) and (X+j) are conditionally independent given X++.
We conclude that (Xi+) is S-ancillary with respect to the inference on β̃j, as well as (X+j)
is S-ancillary with respect to α̃i.

Next we will analyse some effects that S-sufficiency and S-ancillarity can have on statis-
tical inference. Let T = t(X) be an S-sufficient statistic for θ1 and S-ancillary for θ2. We
assume that P is dominated by a σ-finite measure µ, and let

f(x; θ) =
dPθ
dµ

(x).

Then the marginal density of T depends only on θ1, since T is S-sufficient with respect to
θ1, i.e. it has density fT (t; θ1). Similarly, the conditional density given T is

f(x; θ)/fT (t; θ1) = f(x|t; θ2)

since T is S-ancillary with respect to θ2. Then we have that

f(x; θ) = fT (t(x); θ1)f(x|t(x); θ2). (3.14)

Therefore, the likelihood function for θ is

L(θ1, θ2; x) = L1(θ1; t)L2(θ2; x|t), (3.15)

where L1(θ1; t) = fT (t, θ1) and L2(θ; x|t) = f(x|t; θ2). We assume that L(θ1, θ2; x) has a
unique maximum, (θ̂1(x), θ̂2(x)). Then L1(θ̂1(x); t) = maxL1(θ1; t) where the maximum
is taken over θ1 ∈ Θ1. Therefore, we obtain the same estimate of θ1 using the original
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likelihood L or the marginal L1. Note that θ̂1(x) depends on x only through T = t(x), say
θ̂1(x) = h(t(x)). Since θ1 is the parameter of interest, we can “reduce” the data to T = t(x)
and estimate θ1, as well as assess the distribution of θ̂1(x) = h(t(x)), using the marginal
distribution of T .

The situation for θ2 (still under (3.14) and (3.15)) is different. We have that

L2(θ̂2(x); x|t) = maxL2(θ2; x|t),

where θ2 ∈ Θ2, so that it is the same to estimate θ2 using the original likelihood L or
the conditional likelihood L2. Meanwhile, it turns out that it makes a difference to use
the conditional likelihood to assess the statistical properties of θ̂2(x), as it can be seen in
Examples 3.5 and 3.6 of Section 3.1.

We will next give an interpretation of the notions of S-ancillarity and S-sufficiency in
terms of the score function. We define the score function, U : Θ −→ IRk as

U(θ1, θ2) =

(

U1(θ1, θ2)
U2(θ1, θ2)

)

=
∂ logL(θ1, θ2; x)

∂(θ1, θ2)
,

where U(θ1, θ2) and U2(θ1, θ2) are the components of U(θ1, θ2) of dimensions k1 and k2,
respectively. Then (3.15) is equivalent to

U1(θ1, θ2) = U1(θ1) =
∂ logL1(θ1; t)

∂θ1

and

U2(θ1, θ2) = U2(θ2) =
∂ logL2(θ2; x|t)

∂θ2
.

Hence, S-ancillarity implies that U1(θ1, θ2) depends on θ only through θ1, and S-sufficiency
implies that U2(θ1, θ2) depends on θ only through θ2.

The next example is somewhat more complex than the others, where we will illustrate a
more recent and realistic application. As it will be seen, we will have to extend the notion
of S-nonformation, if we wish to take into account cases like this.

Example 3.13 (Incubation time of the AIDS virus) The incubation time of the AIDS virus
is very long and, in general, it is not known with precision when the infection took place.
Therefore, to determine the incubation time (i.e., the period of time elapsed between the
infection and the time of appearance of the first symptoms) only data of people infected by
blood transfusion was used, where it is known exactly the date of infection. Let us say that
the study has been made in 1987. The observations are pairs (Xi, Yi), where Xi is the time
of infection and Yi ≤ 1987 is the time of appearance of the first symptoms.

Let us say that the incubation time has distribution function F (·;ψ) parametrized by ψ,
i.e.,

F (z;ψ) = P (Yi −Xi ≤ z), z ≥ 0.
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We assume that people are contaminated according to a non-homogeneous Poisson process
of intensity h(t), that is, the number of contaminated people by blood transfusion in the time
interval (t1, t2) has Poisson distribution with mean

∫ t2
t1
h(t)dt. Therefore, the process of times

of contamination, given by the Xis above, is also a Poisson process with intensity

φ(t) = h(t)F (T − t;ψ), (3.16)

where T = 1987 is the date of conclusion of the research. That is, the intensity of the process
of times of infection is multiplied by F (T − t;ψ), which gives us the probability that such an
individual contaminated at time t manifests symptoms before the conclusion of the research
and thus that such an individual will be included in the sample. We know then the number
of observations N = n and the pairs (X1, Y1), . . . , (Xn, Yn). The likelihood function can be
found as the marginal distribution of (N,X1, . . . , XN) multiplied by the conditional density
of (Y1, . . . , Yn). We will assume that given (N,X1, . . . , XN), Y1, . . . , Yn are independent and
Yi has density f(y −Xi;ψ)/F (T − xi;ψ), f(z;ψ) = F ′(z;ψ). Given N = n, X1, . . . , Xn are
independent, and Xi has density

φ(x)
∫ ⊤
T0
φ(t)dt

,

where T0 is the initial time of the epidemic. Finally N has Poisson distribution with mean
∫ ⊤
T0
φ(t)dt. The likelihood function is

L(ψ;h(·)) =

{

n
∏

i=1

f(yi − xi;ψ)

F (T − xi;ψ)

}{

1

n!

n
∏

i=1

∑

h(xi)F (T − xi;ψ)

}

(3.17)

exp

{

−
∫ ⊤

T0

h(t)F (T − t;ψ)dt

}

=

{

n
∏

i=1

f(yi − xi;ψ)

F (T − x;ψ)

}{

1

n!

n
∏

i=1

φ(xi) exp

[

−
∫ ⊤

T0

φ(t)dt

]

}

.

We are taking h, in (3.16), as a parameter. Note that h(·) is a function which is contained
in an infinite-dimensional space, and hence the model we are using is non-parametric. Since
part of this model is parametric (parametrized by ψ) and the other is non-parametric, we say
that this is a semi-parametric model. Evidently we cannot use the definitions of S-ancillarity
and S-sufficiency given in Definition 3.10. We will see that these concepts can be extended so
as to include this case. We will see that if we allow h(·) to vary freely then (N,X1, . . . , XN)
is, in some sense, S-ancillary for ψ. Roughly speaking, this is due to the fact that since h(·)
varies freely and ψ ∈ Ψ, then, by (3.16), we see that φ(·) also varies freely. Later we will need
a much more precise meaning of (N,X1, . . . , XN) being S-ancillary for ψ. In this way, we
make inference on ψ using only the first factor of (3.17). In the literature it has already been
studied the use of the full likelihood given by (3.16), modelling h(t) as exp(a + bt), where a
and b are parameters. In the latter case (N,X1, . . . , XN) is not S-ancillary any more.
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It is important to stress the difference between the case where no assumptions and some
assumptions on h(·) are made. If we do not make any assumptions on h, inference on ψ
should be based on the first factor of (3.17). In this case, if our model for the incubation
time, i.e., for the form of F ( · ;ψ) is sensible, the model as presented would lead us to sensible
conclusions about ψ. Meanwhile, if we make assumptions on h(·), the second factor of (3.17)
turns out to have importance because of (3.16). Therefore, if we fail in specifying h, we can
err when making inference on ψ. We see then that it is safer, in some sense, to use a more
flexible model (letting h vary freely) and make inferential separation than to try to better
specify the statistical model. This can be crucial in the process of modelling when there
is still not enough information about the phenomenon which is being modelled, to justify
assumptions on h.

Based on data from the U.S., using the conditional likelihood and assuming that the
distribution of the incubation time is Weibull which has a distribution function given by

F (t, ψ) = 1− exp{−(αt)β}

where ψ = (α, β), it was estimated that α = 0.07 and β = 2.5, with t measured in years.
Such a distribution has median 12.3 and the probability of an incubation time of 7 or less
years is only 0.155.

3.2.2 S-nonformation in exponential families

A detailed treatment of S-ancillarity in exponential families can be found in Barndorff-Nielsen
and Blæsild (1975).

Let P = {Pθ : θ ∈ Θ} be a family parametrized by θ, with a decomposition of the
parameter given by θ = (θ1, θ2). If there exists a factorization of the likelihood of the form

L(θ) = L1(θ1)L2(θ2), θ = (θ1, θ2) ∈ Θ,

then θ1 and θ2 are L-independent (where “L” comes from “Likelihood”). If L1 and L2

correspond respectively to the conditional and marginal likelihood for a statistic, say, U ,
then U is called a cut. In the case of a cut the factorization hence takes the form

L(θ) = L(θ1; y|u)L(θ2; u).

In this case, θ1 and θ2 are called L-independent parameters corresponding to the cut. If
Θ = Θ1 × Θ2, where θ1 ∈ Θ1 and θ2 ∈ Θ2 vary freely (and are L-independent) it is evident
(by already given arguments) that the maximum likelihood estimator (θ̂1, θ̂2)

⊤ can be found
maximizing L1(θ1) and L2(θ2) separately.

In the case of exponential families, it is common to find examples where a mixed
parametrization provides L-independent parameters and hence one component of the canon-
ical statistic is a cut. We will present a theorem of Barndorff-Nielsen and Blæsild (1975) that
will give us a necessary and sufficient condition for this to happen.
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Let P be a regular exponential family of order k and minimal representation

dPθ
dν

(x) = a(θ)eθ·t(x) [ν], θ ∈ Θ .

Following the notation of Section 1.5, let A be the m×k matrix of rank m, B the (k−m)×k
matrix of rank k−m, such that AB⊤ = 0 and V = v(X) = At(X), where X has distribution
in P . We define ψ(θ) = EθV = Aτ(θ) and

σ(θ) = Bθ,

as the components of the mixed parameter. In Theorem 1.24 we showed that the domain
of (ψ, σ) is the Cartesian product ψ(Θ) × σ(Θ) = Ψ × Σ. A function f : Θ → IRk is called
additive if

f(ψ, σ) + f(ψ0, σ0) = f(ψ, σ0) + f(ψ0, σ)

∀ψ, ψ0 ∈ Ψ and σ, σ0 ∈ Z.

Theorem 3.14 (Barndorff-Nielsen and Blæsild, 1975) A statistic V is a cut and is S-
ancillary for σ if and only if, θ and log a are additive as functions of ψ and σ.

Proof: By Theorem 1.24, ψ and σ are variationally independent. Evidently, the conditional
distribution of X given V depends on θ only through σ(θ). Therefore, the ancillarity here
only demands that the marginal distribution of V is independent of σ.

We first assume that this is true. Then by (3.14) we have that

f(x;ψ, σ) = g(v(x);ψ)h(x|v(x); σ), (3.18)

where f , g and h are the densities of X, V and X given V , respectively. The densities are
positive, thus

f(x;ψ, σ)f(x;ψ0, σ0)

f(x;ψ0, σ)f(x;ψ, σ0)
= 1 (3.19)

that is

{θ(ψ, σ) + θ(ψ0, σ0)− θ(ψ, σ0)− θ(ψ0, σ)}⊤t(x)
= − log a(ψ, σ)− log a(ψ0, σ0) + log a(ψ, σ0) + log a(ψ0, σ).

The components of t are affinely independent, which shows that θ and log a are additive.
On the other hand, if θ and log a are additive, then obviously, (3.19) is satisfied. This can
be written in the following way

dPψ,σ0
dPψ0,σ0

(x) =
dPψ0,σ

dPψ0,σ0

dPψ,σ0
dPψ0,σ0

.

The second factor is

dPψ,σ0
dPψ0,σ0

(x) =
a(ψ, σ0)

a(ψ0, σ0)
e{θ(ψ,σ0)−θ(ψ0,σ0)}⊤t(x).
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Now, B{θ(ψ, σ0)− θ(ψ0, σ0)} = 0, hence θ(ψ, σ0)− θ(ψ0, σ0) = A⊤η for some η. Thus

dPψ,σ0
dPψ0,σ0

(x) =
a(ψ, σ0)

a(ψ0, σ0)
eη

⊤At(x). (3.20)

The marginal density of V = At(X) can be found through the expression:

g(v;ψ, σ) =
∫ dPψ,σ

dPψ0,σ0
dPV ψ0,σ0

=
∫ dPψ0,σ

dPV ψ0,σ0

dPψ,σ0
dPψ0,σ0

dPV ψ0,σ0

which by (3.20), is equivalent to

g(v;ψ, σ) =
dPψ,σ0
dPψ0,σ0

∫

dPψ0,σ

dPψ0,σ0

dPV ψ0,σ0

=
dPψ,σ0
dPψ0,σ0

f(v; σ).

Since
∫

g(At(x);ψ, σ)Pψ0,σ0(dx) = 1 we have that

∫

f(At(x), σ)Pψ,σ0(dx) = 1,

for any ψ. We use now the fact that V is complete if σ is fixed, then

f(At(x), σ) = 1.

From here it follows that g(v;ψ, σ) does not depend on σ. �

It is evident that a mixed parametrization is not always associated with a cut. It is
enough to see that in the normal distribution, N(µ, σ2) provides a mixed parametrization,
but X̄+ is not a cut.

We will now see an example of a cut in an exponential family.

Example 3.15 Let P be the regular exponential family of trinomial distributions, given by
the density

dPp1,p2
dν

(x) =
n!

x1!x2!(n− x1 − x2)!
px11 p

x2
2 (1− p1 − p2)

n−x1−x2 ,

with respect to the counting measure, ν, where p = (p1, p2)
⊤ ∈ {(p1, p2)⊤ : p1 > 0, p2 >

0, p1 + p2 < 1}. Let V = X1 +X2. The corresponding mixed parametrization is given by

ψ = EP (V ) = n(p1 + p2)

σ = θ1 − θ2 = log
p1
p2
,
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where A = (1, 1), B = (1,−1) and θi = log{pi/(1 − p1 − p2)}, i = 1, 2 are the canonical
parameters. Then

θ1 = log
ψ

n− ψ
+ log

eσ

1 + eσ

θ2 = log
ψ

n− ψ
+ log

1

1 + eσ
,

which is obviously an additive function. We also have that

log a(θ) = −n log(1− p1 − p2) = −n log n− ψ

n

which is also additive. Hence, using Theorem 2.16, V is a cut and S-ancillary for σ. In this
example it is easy to verify this directly, because

dPψ,σ
dν

(x) =
n!

x1!x2!(n− x1 − x2)!
(
ψ

n
)v(1− ψ

n
)n−veσx1(1 + eσ)−v.

Thus, V ∼ Bi(n, ψ/n) and the conditional distribution of X1, given V is X1|V = v ∼
Bi(v, eσ/(1 + eσ)). It follows that V is S-ancillary for the inference on σ and S-sufficient for
the inference on ψ.

3.3 G-nonformation

The concept of G-nonformation is based on the notion of a transformation model. Together
with the exponential families, the composite transformation models form the two most im-
portant types of statistical models. Many models are members of both classes, and form the
class of transformation exponential models. The families of normal and gamma distributions
are examples of models of this last type, since they are exponential families and they are
closed under transformations of scale, which implies that, as we will see, that they are also
transformation models.

In Section 3.3.1 we will consider more basic aspects of transformation models. A broader
introduction can be found in Barndorff-Nielsen (1988), see also Barndorff-Nielsen, Blæsild,
Jensen, and Jørgensen (1982) and Barndorff-Nielsen, Blæsild and Eriksen, (1989). Section
3.3.2 deals with the concept of nonformation especially adapted for transformation models,
namely G-nonformation. This concept generalizes the concept of G-sufficiency, that was
introduced by Barnard (1963). We will use the techniques developed here to treat the non-
trivial example of Cox’s proportional risks which will be left for Section 3.3.3.

3.3.1 Transformation models

Next we will give the basic concepts of the theory of transformation models. To do so, we
will review some basic definitions of the theory of groups.
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Let Y be a given set. The class of injective transformations from Y into Y with the
operation of composition is a group, called the symmetric group of Y and will be denoted by
S(Y). Given a groupG, we say thatG acts on Y if there exists a homomorphism γ : G→S(Y).
In this case, we say that the homomorphism γ is an action of the group G on Y , and we use
the notation

γ(g)(y) = gy = g(y) ,

for g ∈ G and y ∈ Y . This notation is justified by the fact that G and γ(G) ⊆S(Y) are
homomorphic and hence algebraically equivalent.

We say that the action γ is transitive if, for each y1 and y2 ∈ Y , there exists a g ∈ G
such that y1 = gy2. We say that the action γ is free if for each g1 and g2 ∈ G with g1 6= g2,
we have that g1x 6= g2x for all x ∈ Y .

Given y0 ∈ Y an orbit of y0 is the set Gy0 = {gy0 : g ∈ G}. Evidently the collection
of the orbits of Y gives us a partition of Y . Assume that on each orbit of Y we choose a
fixed element which we will call a representative of the orbit. Then each point y ∈ Y can
be determined by specifying the representative of the orbit to the which y belongs, say y0,
and an element of the group G, say g0, that transforms y0 into y, i.e., y = g0y0. In this
way, we express y by two components y = (g0, y0) and we call this decomposition an orbital
decomposition. Note that unless the action of the group is free, the first component of the
orbital decomposition is not unique.

Let us consider the function t : Y → Z. A function t is called invariant if t(gy) = t(y), for
all y ∈ Y and g ∈ G, that is, t is constant on the orbits of Y . If a function t is invariant and
also it is such that t(y) = t(y′) implies that y = g(y′), for some g ∈ G, then t distinguishes the
orbits of Y and we say that t is maximum invariant. If t(x) = t(x′) implies that t(gx) = t(gx′),
∀g ∈ G we say that t is equivariant. In this case, we can define gt(x) = t(gx), which defines
an action of G on t(Y).

We will consider now a situation where we have a statistical model (X ,A,P) and a group
G that acts on the sample space X , with action γ. We will assume, from now on, that the
action is such that the transformations γ(g) : x 7→ gx are A-measurable for all g ∈ G. Then
for each g ∈ G and each measure ν on (X ,A) we can define the g-transformed measure as

g(ν)(B) = ν(g−1(B)), ∀B ∈ A.

If a random variable X has distribution P ∈ P then the transformed random variable g(X)
has distribution g(P ). Hence, the action of G on X induces an action on the space of all as
measures in (X ,A) and in particular, on the space of all probability measures on (X ,A). A
measure ν such that g(ν) = ν ∀g ∈ G is called an invariant measure.

If the family P is given by P = {gP : g ∈ G}, for some P ∈ P , we say that P is a
transformation model generated by G. Note that the definition given above is independent
of the choice of P ∈ P . Let ν be an invariant measure. Then the densities of P with respect
to a ν are given by

dgP

dν
(x) =

dgP

dgν
(x) =

dP

dν
(g−1x).
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Thus, if f is the density with respect to an invariant measure ν, then the family of densities
{f(g−1·) : g ∈ G} corresponds to the transformation model.

The statistical model (X ,A,P) is called closed under the action of G if P ∈ P ⇒ g(P ) ∈
P , ∀g ∈ G. Note that we can associate to the action γ of the group G on X the action γ̄
of G on P given by γ̄(g)P = g(P ), ∀P ∈ P , g ∈ G. In this way, it makes sense to speak
of the orbits of P . Evidently, a transformation model generated by G is a model which is
closed under the action of G and is composed of a single orbit, that is, the action of G on
P is transitive. A model closed under the action of G with more than one orbit is called a
composite transformation model. It is clear that every composite transformation model is a
disjoint union of its orbits and hence of transformation models.

We assume now that P is parametrized by two parameters ψ and φ,

P = {Pψ,φ : ψ ∈ Ψ, φ ∈ Φ},

such that for each g ∈ G we have that g(Pψ,φ) = Pψ,φ′ for some φ′ ∈ Φ. We will denote φ′ by
g(φ). In this case, the parameter φ is called the group parameter and ψ the index parameter
or invariant parameter .

The definitions will now be illustrated with some examples.

Example 3.16 (Location-scale model) Let f be a density in IR. Let us consider the location
and scale family

P = {Pµ,σ : (µ, σ) ∈ Ω}
where Ω = IR× IR+ and for each (µ, σ) ∈ Ω the distribution Pµ,σ has density

f(x;µ, σ) =
1

σ
f

(

x− µ

σ

)

, ∀x ∈ IR.

This model is generated by the group G given by:

G = {(µ, σ) : σ > 0, µ ∈ IR},

with the operation of composition given by

(µ1, σ1) ◦ (µ2, σ2) = (σ1µ2 + µ1, σ1σ2).

The action of G on IR is given by

(µ, σ)x = µ+ σx, ∀ (µ, σ) ∈ G, x ∈ IR.

It is easy to see that G generates the family P and that P is a transformation model. The
action of G is transitive on IR and on P .

In the case where f is the density of the standard normal distribution, the action of G on
P = {N(µ, σ2) : µ ∈ IR, σ2 > 0} is free, and (µ, σ) parametrizes P .
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Example 3.17 (The family of gamma distributions) Let X1, . . . , Xn be independent random
variables with distribution

Xi ∼ Ga(β, λ), i = 1, . . . , n.

Since,

cXi ∼ Ga(cβ, λ),

for c ∈ IR+, then, the model is closed under the action of the group of scale transformations.
Hence we have a composite transformation model. The parameter λ is invariant and β is the
group parameter. The joint density of X1, . . . , Xn is

f(x; β, λ)dx =
βnλ

Γ(λ)n

n
∏

i=1

xλi exp

(

−β−1

n
∑

i=1

xi

)

ν(dx),

where ν(dx) =
∏n

i=1(x
−1
i dxi) is an invariant measure.

Example 3.18 (The family of distributions of von Mises-Fisher) Let us consider the dis-
tribution of von Mises-Fisher introduced in Example 1.11. Let X ∼ vMk(µ, λ), with the
following density with respect to the surface measure of Sk−1,

f(x;µ, λ) = a(λ)eλµ·x,

with µ, x ∈ Sk−1 and λ ≥ 0. Consider the group of orthogonal transformations of Sk−1 given
by x 7→ Ax, where A is an orthogonal matrix (ATA = I). The measure of surface of Sk−1 is
invariant under these transformations, and hence AX has density

f(A−1x;µ, λ) = a(λ)eλµ
⊤A−1x = a(λ)eλ(Aµ)·x = f(x;Aµ, λ),

where we used that A⊤ = A−1, which shows that AX ∼ vMk(Aµ, λ). Hence, the family is a
composite transformation model with index parameter λ.

Note that the action of the group on Sk−1 is not free, since multiplication by A gives us
a rotation that in general leaves two fixed points.

There exist many other important examples of composite transformation models, many
of which come from multivariate analysis. For example, the model of multivariate analysis of
variance (see Barndorff-Nielsen, 1988, pp. 75-78) and Example 3.22. At this stage the reader
should have perceived that we only gave examples of transformation models constructed with
continuous distributions. In general, it is not very interesting to consider discrete parametric
models generated by groups, since, if the sample space X is discrete, the symmetric group
S(X ) is discrete and then the parameter space is also discrete.
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3.3.2 Definition of G-nonformation

We will consider a family P of probability measures on (X ,A), parametrized by Θ, that is
P = {Pθ : θ ∈ Θ}. Let ψ = ψ(θ) ∈ ψ(Θ) be the parameter of interest. For each ψ0 ∈ ψ(Θ)
define the family P(ψ0) = {Pθ ∈ P : ψ(θ) = ψ0}. In this context we have the following
definition.

Definition 3.19 If for each ψ0 ∈ ψ(Θ) the family P(ψ0) is a transformation model generated
by a group of transformations with transitive action on X , then P is called G-nonformative
with respect to ψ.

The concept ofG-nonformation can be justified through the concept of perfect adjustment,
that we will give next. This concept is very important for the study of nonformation and
will be discussed from different points of view throughout this chapter.

To begin this discussion, let us consider the case where the family P(ψ0) is determined
by the family of densities

Dψ0 = {f(g−1 · ) : g ∈ G},
where f is a density of a given probability in P(ψ0), with respect to an invariant measure ν.
Note that under general regularity conditions, there exists such an invariant measure. We
assume that the density f has mode point x0 ∈ X . Then f(g−1 · ) has mode point gx0. If
the action of G on X is transitive, then any x in X is a mode point of some density f(g−1 · ).
Therefore, if we observe the value x ∈ X , there exists g ∈ G such that f(g−1 · ) ∈ Dψ0 has
mode point x, which is interpreted as a perfect adjustment of f(g−1 · ), in the sense that the
mode point of the density is the most plausible observation among the possible ones.

In the case of the definition of G-nonformation, a similar reasoning as in the previous
paragraph is valid for each family P(ψ) with ψ ∈ ψ(Θ), that is, given x ∈ X , each family
P(ψ) has at least one element that adjusts perfectly to x. The following reasoning shows
that the family P together with the observed value x do not contain information about ψ.
Let ψ0 and ψ1 be two values of ψ. Given any observed value x ∈ X , P(ψ0) as well as P(ψ1),
give a perfect adjustment for x. Therefore, it is not reasonable that we prefer the value of ψ0

over ψ1 or vice-versa, based in the quality of the adjustment. This argument is valid for any
pair of values of ψ. Note that if it is possible to obtain some information about ψ, through x
and of the family P , then there should be at least two values of ψ for which we could prefer
one over the other. We conclude that the family P together with the observed value x do
not contain information about ψ.

We will now consider the definitions of G-sufficiency and G-ancillarity. We assume that
the likelihood of θ can be factorized in the following way:

L(θ) = g(u;ψ(θ))h(x|u; θ),

where U = u(X) is a statistic. If the parameter ψ = ψ(θ) parametrizes the family of marginal
distributions of U and if for each u0 in the domain of U the family {h(x|u0; θ) : θ ∈ Θ} is
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G-nonformative with respect to ψ then U is called G-sufficient with respect to the inference
on ψ.

Let V = v(X) be a statistic such that,

L(θ) = h(x|v;ψ(θ))g(v; θ).

We assume that ψ parametrizes the family of the conditional distributions given V , and that
the family {g(v; θ) : θ ∈ Θ} is G-nonformative with respect to ψ. In this case, we say that V
is G-ancillary with respect to the inference on ψ.

Example 3.20 In many cases it is convenient to combine several definitions of nonforma-
tion, to obtain a reduced model to make inference. In the case of the normal distribution,
N(µ, σ2), we first use B-sufficiency to conclude that (X̄+, s

2) is B-sufficient for the parameter
(µ, σ2) and hence we will use (X̄+, s

2) to make inference on (µ, σ2). We assume now that σ2 is
the parameter of interest. We will show that s2 is G-sufficient for σ2. First, the distribution
of s2 depends only on σ2 and is parametrized by σ2. Besides, X̄+ and s2 are independent, and
hence the conditional distribution of X̄+ given s2 is the marginal distribution of X̄+, that is
N(µ, σ2/n). Let us consider now the group G of translations in IR. Evidently a translation
x → x + c transforms the distribution N(µ, σ2/n) into the distribution N(µ + c, σ2/n), and
hence, the action of G the family is transitive. Thus, the model

{N(µ, σ2/n) : µ ∈ IR}

is generated by a group of translations and a transitive action of G on IR. Hence, s2 is
G-sufficient for σ2. A similar argument shows that X̄+ is G-ancillary for σ2. Therefore,
inference on σ2 should be made using the conditional distribution of s2 given X̄+. Now, as
X̄+ and s2 are independent, this equivalent to using the marginal distribution of s2. That
is, G-sufficiency of s2 as well as G-ancillarity of X̄+ lead us to the same exhaustive model,
namely, the marginal distribution of s2.

Let us consider again the parametric family P = {Pψ,φ : ψ ∈ Ψ, φ ∈ Φ} where φ is the
group parameter and ψ is invariant, and let us suppose that if we want to make inference
on ψ, φ is a nuisance parameter and that we have a statistic U = u(X), such that u(·) is
maximum invariant. Then

Pψ,g(φ)(u(X) ∈ A) = Pψ,φ(u(gX) ∈ A) = Pψ,φ(u(X) ∈ A),

∀A ∈ B. Hence, the distribution of U depends on (ψ, φ) only through ψ.
We will show that U is G-sufficient for ψ. Note that the conditional distribution of X

given U is in an orbit Gx0, since U is maximum invariant. Evidently, the action of G on Gx0
is transitive. Besides, for each A ∈ B we have,

g(Pψ,φ)(X ∈ A|U = u) = Pψ,φ(g(X) ∈ A|U = u)

= Pψ,gφ(X ∈ A|U = u),
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that is, the family of conditional distributions of X given U is generated by a transitive
group. Hence, this model is G-nonformative with respect to ψ and then U is G-sufficient for
ψ.

We now assume that ψ is known, that is, we are now considering a family Pψ = {Pψ,φ :
φ ∈ Φ}. We then have a transformation model. Since the distribution of U depends only on
ψ (which is now known) we conclude that U is B-ancillary. Hence we will see that we should
use the conditional distribution of X given U to make inference on φ. Note that we need
that φ parametrizes the family of conditional distributions.

Example 3.21 (Continuation of Example 3.8) The inverse Gaussian distribution follows the
transformation law

cN−(χ, ψ) = N−(cχ, c−1ψ).

Hence, it is closed under the action of the group of transformations of scale and is a composite
transformation model. For n observations (X1, . . . , Xn), the action is

(X1, . . . , Xn) → (cX1, . . . , cXn).

Using the results of Example 3.7, we have that in the space of the sufficient statistic the
action is

(X−, X+) → (c−1X−, cX+).

The parameter of the group is µ =
√

χ/ψ and ω =
√
χψ is the invariant parameter. In the

space of (X−, X+), T = (X−X+)
1
2 is maximum invariant. Hence, inference on ω should be

made using the marginal distribution of T .
If ω is known then inference on µ should be made using the conditional distribution of

S = (X+/X−)
1
2 given T = t, which is parametrized by µ.

Example 3.22 We will consider the inference on a correlation matrix of the multivariate
normal distribution. Let X1, . . . , Xn be independent random vectors with distribution Xi ∼
Nk(µ,Σ), where µ ∈ IRk and Σ is a k × k positive-definite matrix .

Let ρ = {ρij}i,j=1,...,k, with

ρij =
Σij

(ΣiiΣjj)
1
2

,

be the correlation matrix, which will be our parameter of interest. Let

X+ = X1 + . . .+Xn

S =
n
∑

i=1

(Xi − X̄+)(Xi − X̄+)
⊤,

where X̄+ = X+/n. Define the matrix of empirical correlations R = {Rij}i,j=1,...,k, where

Rij =
Sij

(SiiSjj)
1
2

.



106 CHAPTER 3. INFERENTIAL SEPARATION

The distribution of R depends only on ρ and is parametrized by ρ. We will now show that
R is G-sufficient for ρ.

First, we observe that (X+, S) is B-sufficient for (µ,Σ). Consider the group G of trans-
formations of IRnk, defined by

Xij 7→ aj + bjXij, i = 1, . . . , n, j = 1, . . . , k,

where bj 6= 0 ∀j and aj ∈ IR ∀j. Here X ∈ IRnk is represented as {Xij}i=1,...,n,j=1,...,k. The
model is obviously closed under this action and the parameters (µ,Σ) are transformed in the
following way

µj 7→ aj + bjµj

Σjj 7→ b2jΣjj

ρ 7→ ρ,

that is, ρ is the invariant parameter. In the same way, the statistic (X+, S) is transformed
by

X+j 7→ aj + bjX+j

Sjj 7→ b2jSjj

R 7→ R,

which shows that R is maximum invariant. By the arguments above, it follows that R is
G-sufficient for ρ.

3.3.3 Cox’s proportional risks model

We will consider in this subsection the classical Cox model of proportional risks, which is
widely used in survival analysis. This example will be useful to illustrate the construction
of the likelihood function in a more complex situation since this is a semi-parametric model,
i.e., part of the model will be parametrized by an infinite-dimensional parameter.

We assume that we observe the duration until a terminal event in a group of n individuals.
This event can be the death or any event such that when it occurs we end the observation
in this individual, as for example, the recovery of an illness, the occurrence of a defect in a
machine, etc. We will always use the expression “the individual died” to indicate that the
phenomenon happened.

For each individual we are given a set of independent variables (covariates) represented
by Xi ∈ IRk for the i-th individual. In the context of a medical treatment these variables can
represent, for example, the treatment given to the individual, its age, sex, among others. We
want to make a model that explains the chances that an individual survives, as a function of
the covariates, similarly to what is made in generalized linear models.

The distribution of the waiting time until the death of an individual can be described by
the instantaneous risk function, which represents the probability to die in the next instant
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of an individual, given that she or he survived until that moment. That is, the risk function
is given by

P (die in (t, t+ δ)|alive at time t) = h(t)δ + o(δ), (3.21)

where o(δ)/δ−→0 as δ → 0. Another way to express the idea above is to say that

P (dying after time (s+ t) | alive until time s) = exp{−
∫ s+t

s

h(u)du}. (3.22)

It will be useful to compare the model above with a non-homogeneous Poisson process.
Let us consider m individuals with risks h1(t), . . . , hm(t). Let T be a random variable

which describes the time of the first death among the m individuals and, I the individual
that died at instant T . Using the interpretation of the instantaneous risk given in (3.21), we
see that

P (I = i|T = t) =
hi(t)

∑m
j=1 hj(t)

, (3.23)

and so similarly to what was obtained in (3.22),

P (T > t) = exp

{

−
∫ t

0

[

m
∑

j=1

hj(u)

]

du

}

.

Thus, the density of T is
{

m
∑

j=1

hj(t)

}

exp

{

−
∫ t

0

[

m
∑

j=1

hj(u)

]

du

}

. (3.24)

For the n individuals with covariates X1, . . . , Xn we consider a model where the instan-
taneous risk function for the i-th individual is

hi(t) = λ(t)eβ
⊤Xi , (3.25)

where λ(t) is a factor of intensity, common to all the individuals and β is a parameter. This
is the classical Cox model of proportional risks . The specification of (3.25) is fundamental
for the inference that will be developed.

Let D1, . . . , Dn be the times in which the individuals die. Let T1 ≤ T2 ≤ . . . ≤ Tn be the
ordered times Di, and let R1, . . . , Rn the ranks of Di, i.e., Ri is the individual that dies at
instant Ti. We can write the likelihood function as a product of conditional densities in the
following way:

L(β, λ(·)) =
n
∏

i=1

p(ri, ti|(r1, t1), . . . , (ri−1, ti−1))

=
n
∏

i=1

{p(ri|ti, (r1, t1), . . . , (ri−1, ti−1))p(ti|(r1, t1), . . . , (ri−1, ti−1))}.
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Let Ii = {Ri, Ri+1, . . . , Rn} = {1, . . . , n}\{R1, . . . , Ri−1} be the individuals that are alive
at instant Ti−1 (T0 = 0). Given the variables (r1, t1), . . . , (ri−1, ti−1), we have a situation as
in (3.23) and (3.24), where the m (m = i) are the individuals given by Ii, and ti−1 is the
origin of the time axis. From here we obtain,

L(β, λ(·)) =
n
∏

i=1

λ(ti)e
β⊤Xri

∑

j∈Ii λ(ti)e
β⊤Xrj

{

∑

j∈Ii

λ(ti)e
β⊤Xrj

}

exp

{

−
∫ ti

ti−1

[

∑

j∈Ii

λ(u)eβ
⊤Xrj

]

du

}

= exp

(

n
∑

i=1

β⊤Xi

)

n
∏

i=1

λ(ti) exp

{

−
[

∑

j∈Ii

eβ
⊤Xrj

]

∫ ti

ti−1

λ(u)du

}

=
exp(

∑n
i=1 β

⊤Xi)
∏n

i=1{
∑

j∈Ii exp(β
⊤Xrj)}

n
∏

i=1

{

∑

j∈Ii

exp(β⊤Xrj)

}

λ(ti)

exp

{

−
[

∑

j∈Ii

eβ
⊤Xrj

]

∫ ti

ti−1

λ(u)du

}

= p(r1, . . . , rn; β)p(t1, . . . , tn|r1, . . . , rn; β, λ( · ) ).

We want to give arguments to conclude that (R1, . . . , Rn) is G-sufficient for β. That is, we
want to show that the family of conditional distributions of (T1, . . . , Tn) given (R1, . . . , Rn),
for β fixed, is the family generated by a group G, with transitive action. Let G be the group of
all increasing transformations of (0,∞) into (0,∞), i.e., all the increasing transformations of
the time axis. For φ ∈ G, Ti is transformed into φ(Ti) and Ri is invariant. The transformation
φ turns the model above into another model of the same type, with proportional risks, without
altering the value of β, but transforming the common risk λ(·) as

λ(φ−1(t))φ′(φ−1(t)).

Our model is λ(·) ∈ Λ, where Λ is the set of all the functions on (0,∞) with positive values,
then for λ fixed we have

Λ = {λ(φ−1(·))φ′(φ−1(·)) : φ ∈ G}.
Hence, we have that the conditional model given by (R1, . . . , Rn) is generated by a group with
a transitive action. This shows that (R1, . . . , Rn) is G-sufficient for β. The corresponding
marginal likelihood is

p(r1, . . . , rn; β) =
exp(

∑n
i=1 β

⊤Xi)
∏n

i=1{
∑

j∈Ii e
β⊤Xrj }

.

The model of proportional risks can be extended for the very important practical case of
censored data (see, for example, Kalbfleisch and Prentice (1980)).
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3.4 M-nonformation

The concept of transformation model can be applied essentially to the case of continuous
distributions, as we argued in the previous section. Let us recall that the main justification
for introducing the concept of G-nonformation is that the model generated by a group with
a transitive action, has “perfect fit”, which does not depend so much on the concept of group
action. In this section, we will see the notion ofM -nonformation, which will capture the idea
of “perfect fit” and which will be possible to be applied in discrete models, extending in this
way the concept of G-nonformation and complementing the other two previous concepts.

The notion ofM -nonformation is associated to some concepts related to the mode point of
a distribution (from where the letter “M” in M -nonformation comes), which we will develop
in the following.

Let us consider the parametric family Q = {Qω : ω ∈ Ω} of probability measures on
a measurable space (X ,A), where X ⊆ IRk. We say that a point, x ∈ X , is realizable if
x ∈ ∪ω∈ΩSω, where Sω is the support of the measure Qω. We assume that Q is dominated
by a σ-finite measure ν and that

q(x;ω) =
dQω

dν
(x), ∀x ∈ X ,

is the density of Qω ∈ Q with respect to the measure ν. If there exists x0 ∈ X such that

q(x0;ω) = sup
x∈X

q(x;ω)

we say that x0 is the mode point of the density q(·, ω). The family of densities D = {q(· ; ω) :
ω ∈ Ω} is called universal if for each possible x0 ∈ X there exists ω ∈ Ω, such that x0 is a
mode point of the density q(· ; ω), i.e., for all possible x0 ∈ X , x0 there exists ω ∈ Ω, such
that

q(x;ω) ≤ q(x0, ω), ∀x ∈ X . (3.26)

We will use the following extension of the concept of universal family. A realizable point
x0 ∈ X is called a mode point of the family of densities D when

∀ǫ > 0, ∃ω ∈ Ω : (1 + ǫ)q(x0;ω) ≥ sup
x∈X

q(x;ω). (3.27)

If each realizable point x ∈ X is a mode point of the family D, then D will be called
universal. If each realizable x ∈ X is a mode point of some member of the family D, then
D will be called strictly universal. Note that in the case of strict universality each realizable
point of X must be a mode point of some density of D, whereas, in the case of the universality
(non-strict) each realizable point of X must be a mode point of the family D. Therefore,
strict universality is a particular case of universality. If supx∈X q(x;ω) is independent of ω
we say that D has constant mode.

The main interpretation of universality is that for any observation x0 ∈ X , it is possible
to obtain a perfect fit (or almost perfect) of the model D. In the case of strict universality,
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there exists ω ∈ Ω such that x0 is a mode point of q(·;ω), so that we obtain a model with
perfect fit. If we only have universality (non-strict) there exists a ω ∈ Ω for which q(x0;ω) is
as close as we want to supx∈X q(x;ω), so that we obtain a fit as good as we desire.

It is important to note that universality is characteristic of families of densities and not of
a family of distributions, in the sense that universality depends on the chosen measure with
respect to which the densities are defined. In many cases, there exists a natural measure,
that is almost always used, as for example, the counting measure in the discrete case or the
Lebesgue measure in the continuous case. An application of the concept of universality in
the discrete case is simpler because for a fixed measure ν, the density is unique, which does
not happen in the continuous case, where a density can be modified in a set of measure zero.
However, it is usually possible to choose, uniquely, a continuous version of the density.

The following lemma will be useful to establish a relation between M -nonformation and
G-nonformation, as well as to use the notion of universality in certain continuous cases.

Lemma 3.23 Let G be a group of transformations in X , with a transitive action. We assume
that, for some ω0 ∈ Ω,

D = {q(g−1(·);ω0) : g ∈ G}.
Then D is strictly universal with constant mode.

The lemma above says that under general regularity conditions G-nonformation of a
family implies universality with respect to the invariant measure. Therefore, in the case
of continuous distributions, where we frequently find models closed under a group action,
the question of the choice of a dominating measure for the definition of universality can be
answered taking the invariant measure. As we will see, in this case G-nonformation will be
a special case of M -nonformation.

Theorem 3.24 Let U = u(X) be a statistic such that the density of Qω has the following
factorization:

q(x;ω) = h(u;ω)g(x|u;ω)
in terms of the marginal density of U and of the conditional density given U . We assume
that x0 is a mode point of D and let u0 = u(x0). Then x0 is also a mode point for the family
of conditional densities

{g(·|u0;ω) : ω ∈ Ω}.

Corollary 3.25 Under the hypothesis of the theorem above, if D is universal then the family
of conditional densities {g( · |u;ω) : ω ∈ Ω} is also universal.

Definition 3.26 Let (X ,A,P) be a statistical model. Assume that there exists a σ-finite
measure ν such that P ≪ ν and that the family P has the parametrization P = {Pθ : θ ∈ Θ}.
Let us consider the statistics U = u(X) and V = v(X) and the parametric function ψ = ψ(θ).
The sub-model

{PθU( · |V = v) : θ ∈ Θ}
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is called M-nonformative with respect to ψ if for each value v of V and ψ0 ∈ ψ(Θ) the family
{PθU( · |V = v) : ψ(θ) = ψ0} is universal. In this case, if U = u(X) = X then V is called
M-sufficient, and if V is constant then U is called M-ancillary.

The justification for the definition of M -nonformation is similar to the one given for G-
nonformation. Since this point is crucial, we will repeat the argument. First, if for each
value ψ0 of the parameter ψ the family {PθU( · |V = v) : ψ(θ) = ψ0} is universal then, by the
previous arguments, each of these families will provide a perfect fit for the observed value of
the statistic U . In this way, the observed value of U will not allow us to prefer any given
value of ψ over others, in terms of the goodness of fit, because all the families fit perfectly.
We are here using the so-called Orwell’s principle, since, if all fits are perfect, we do not
admit that some are better than others (see Orwell, 1945).

Example 3.27 In Fisher’s example (Example 3.9) we can see that for each fixed value of ψ,
the family of distributions of X+ is universal. Hence, X+ is M -ancillary with respect to ψ.

As we have already mentioned, Lemma 3.23 allows us to conclude that, under regularity
conditions, G-nonformation impliesM -nonformation. In this way, several examples of Section
3.3, such as Examples 3.21 and 3.22, can be justified using M -nonformation instead of G-
nonformation. For example, it is evident that the family of distributions of X̄+ ∼ N(µ, σ2/n)
is universal for σ2 fixed.

Even exploring the same example of the last paragraph, where we wanted to make infer-
ence on σ2, it is evident that using only X̄+ it is not possible to obtain information about
σ2, since this would be equivalent to estimating the variance of the normal distribution with
a single observation, and µ unknown. Note that this last point is fundamental, since if µ is
known, or even if we have information that µ is in a given interval, it is possible to extract
from a single observation some information about σ2. For example, if we know that µ ∈ (0, 1),
the observation X̄+ = 1 indicates that it is less likely that the variance is very large, whereas
X̄+ = 1000 implies that very likely the variance is large. This idea has already been ex-
pressed very clearly by Barnard (1963) who, when introducing the concept now known as
G-sufficiency, called it: “sufficiency for ψ in the absence of knowledge of φ” (adapted to the
notation used in Section 3.3), that is, “sufficiency for ψ, in the absence of information about
φ”.

In Problems 3.9, 3.10 and 3.11 some examples of M -nonformation can be found. The
discussion about M -nonformation will be continued in the following sections.

3.5 I-nonformation

M -nonformation is a property that depends on the choice of the dominating measure of the
family of distributions we are working with. We will show that if we choose adequately
the dominating measure, under very general regularity conditions, the family of densities
obtained is universal. In this way, saying that there exists a measure, with respect to which



112 CHAPTER 3. INFERENTIAL SEPARATION

a given family of distributions is M -nonformative, is a relatively weak claim. But, it is not
always evident how to show the universality of a given family of densities.

We introduce now the concept of I-nonformation, which will take into account many
situations already studied with the notions of M - and G-nonformation. It also arises nat-
urally in the discussion of conditional inference in exponential families. The definition of
I-nonformation will not depend on the dominating measure of the family of distributions
and it will be relatively easy to use. In order to define I-nonformation we will introduce a
version of the concept of saturated model which will have a quite clear interpretation, in the
continuous as well as in the discrete case.

3.5.1 Definitions

Let us consider the parametric family Q = {Qω;ω ∈ Ω} of probability measures dominated
by the measure ν. This family is represented by the densities q(x;ω) = ∂Qω/∂ν (x), with
ω ∈ Ω. Let S be the set of realizable points of Q. We assume that the maximum likelihood
estimator, ω̂(x), is defined for all x ∈ S.

Definition 3.28 Under the conditions above, the family Q is called saturated by the maxi-
mum likelihood estimator if the function ω̂ : S → Ω is one-to-one.

In some situations the maximum likelihood estimator is not defined in the whole set
S. For example, in discrete exponential families, the maximum likelihood estimator is not
defined in the extreme points of the convex support of the canonical statistic. In these cases,
we should interpret the definition above, not considering the points where the maximum
likelihood estimator is not defined, or using an extended domain of the parameter. Note that
the discrete case also shows that ω̂ is in general not subjective.

Observe that the concepts of G- and M -nonformation have apparently no immediate
interpretation in terms of the score function. Meanwhile, this does not happen with the
concept of saturated model by the maximum likelihood estimator. To see this, consider
the score function, U(ω; x) = ∂ log q(x;ω)/∂ω of the parameter ω. Then the family Q is
saturated by the maximum likelihood estimator if and only if the equation U(ω; x) = 0
defines a one-to-one relation between x and ω.

Definition 3.29 Let (X ,A,P) be a parametric statistical model with P = {Pθ : θ ∈ Θ}, and
ψ = ψ(θ) be the parameter of interest. Consider the statistics U and V . If for each value
ψ0 ∈ ψ(Θ), the family {PθU( · |V = v) : ψ(θ) = ψ0} is saturated by the maximum likelihood
estimator, then, we say that the family {PθU( · |V = v) : θ ∈ Θ} is I-nonformative with
respect to ψ.

The justification for this definition is similar to the one given for G- andM -nonformation.
That is, for each value of ψ, the conditional distribution of U |V = v is saturated by maximum
likelihood estimator and hence it gives a perfect fit for the observation of U . This argument,
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together with “Orwell’s principle” presented in Section 3.4, implies that U does not provide
information about ψ.

Evidently, we have associated with the notion of I-nonformation the concepts of I-
sufficiency and I-ancillarity, defined in the usual way.

In order to justify the new definition of nonformation, we will interrupt for the mo-
ment the discussion of I-nonformation and we will turn our attention to the concept of
M -nonformation.

We assume that the maximum likelihood estimator ω̂(x) exists and that q(x; ω̂(x)) is finite
for all x ∈ S. Note that q(x; ω̂(x)) is well defined even if ω̂(x) is not unique and if ω̂(x) does
not exist in extreme points of S, it is sometimes possible to define q(x; ω̂(x)) by continuity.

We define the normed likelihood by

L̄(ω) = q̄(x;ω) =
q(x;ω)

q(x; ω̂(x))

and the canonical measure corresponding to L̄ by

ν̄(dx) = q(x; ω̂(x))ν(dx).

Then we have that,
q(x;ω)ν(dx) = q̄(x;ω)ν̄(dx),

so that L̄(ω) is the version of the likelihood that corresponds to the canonical measure ν̄.
The normed likelihood will play an important role in Section 3.6.

Proposition 3.30 If the maximum likelihood estimator ω̂(x) exists and q(x; ω̂(x)) is finite
for each x ∈ S, and ω̂(S) = Ω, then a family of densities D̄ = {q̄(·;ω) : ω ∈ Ω} is strictly
universal with respect to the canonical measure ν̄, with constant mode. If, furthermore, the
maximum likelihood estimator ω̂(x) is unique for each x ∈ S, then the mode point m(ω) of
q̄(·;ω) is unique for each ω ∈ Ω if and only if the family of distributions Q is saturated by
the maximum likelihood estimator.

Proof: By the definition of ω̂(x) we have

q̄(x;ω) ≤ q̄(x; ω̂(x)) = 1, ∀x ∈ S, ω ∈ Ω,

and hence for a given x0 ∈ S

q̄(x; ω̂(x0)) ≤ 1 = q̄(x0; ω̂(x0)).

Thus, x0 is a mode point for q̄(·, ω̂(x0)), and as ω̂(S) = Ω, we conclude that D̄ is strictly
universal.

We will show the direct implication of the second part of the proposition, leaving the
converse implication as an exercise for the reader.
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Assume that for each ω ∈ Ω there exists a unique mode point m(ω) of q̄(·;ω). Let
x1, x2 ∈ S. Assume that ω̂(x1) = ω̂(x2) = ω0 ∈ Ω. Then q̄(x1;ω0) = q̄(x2;ω0) = 1 and
then x1 and x2 are modes of q̄(·;ω0). Hence, by the hypothesis of uniqueness of the mode,
x1 = x2. We conclude that the function ω̂ is one-to-one and then the family Q is saturated
by the maximum likelihood estimator. �

According to the proposition above, it is almost always possible to showM -nonformation.
It is enough to consider the family of densities with respect to the canonical measure. Mean-
while, a careful examination can show that many times the canonical measure depends on
the parameter ψ. Let us see this in more detail.

Let P = {Pθ : θ ∈ Θ} be a parametric family of distributions, ψ = ψ(θ) the parameter of
interest, U and V statistics. Consider the family Pψ0,v = {PθU( · |V = v) : ψ(θ) = ψ0}. Let
ν̄ψ0,v be the canonical measure of the family Pψ0,v. Define

D̄ψ0,v = {p̄ψ0(u|v; θ) : ψ(θ) = ψ0},
where p̄ψ0(·|v; θ) is the conditional density of U |V = v with respect to ν̄ψ0,v. Proposition 3.30
shows that the family D̄ψ0,v is universal with respect to the canonical measure ν̄ψ0,v and hence
is M -nonformative with respect to ψ. It is obvious that, in general, the canonical measure
ν̄ψ0,v depends on ψ0. The fact that the dominating measure depends on the parameter is not
foreseen in the definition of universality and nor in the one of M -nonformation, but, as we
will see in Example 3.31, this will cause an undesirable behaviour of M -nonformation.

Note that the canonical measure is, in general, not proportional to the commonly used
standardized measure, as for example, Lebesgue or counting measure. On the other hand,
the canonical measure can have a clear statistical interpretation in certain contexts. For
example, in the case of a model generated by a group action, the canonical measure is, under
general assumptions, invariant by the group action.

The following example shows a case whereM -nonformation, with respect to the canonical
measure, has undesirable properties. We will see that the concept of I-nonformation solves
this problem.

Example 3.31 Let X1, . . . , Xn be independent and identically distributed random vari-
ables, with X1 ∼ N(µ, σ2) and (µ, σ2) ∈ IR × IR+. We know that (X̄+, SSD) is B-sufficient
and that in the marginal distribution of (X̄+, SSD) the statistic SSD is G-sufficient for σ2

(see Example 3.20). We have that X̄+ ∼ N(µ, σ2/n) and that, if σ2 is fixed, the model is
universal relative to Lebesgue measure, so X̄+ is M -ancillary for σ2. Since, in this model,
the maximum likelihood estimator of µ is X̄+, then we have a saturated model by the maxi-
mum likelihood estimator, and hence X̄+ is I-ancillary for σ2. Therefore, X̄+ is ancillary for
σ2 and then we should use the conditional distribution given X̄+. Since X̄+ and SSD are
independent, we should make inference on σ2 using the marginal distribution of SSD.

Assume now that we know that µ > 0. In this case, as we have already mentioned in
Section 3.3, the statistic X̄+ gives us some information about σ2. Note that the maximum
likelihood estimator of µ now is given by

µ̂0 =

{

X̄+, if X̄+ > 0
0, otherwise .
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Therefore, the model N(µ, σ2/n), with σ2 fixed, is not saturated by the maximum likelihood
estimator and nor is it universal with respect to Lebesgue measure. Hence, X̄+ is not any
more G-, I-ancillary and M -ancillary with respect to Lebesgue measure, as it should be.
That is, X̄+ is ancillary in the absence of information about the nuisance parameter µ and
it is not any more ancillary if we provide information about µ.

Using Proposition 3.30 we easily see that, even in the presence of the information “µ > 0”,
the statistic X̄+ is M -ancillary for σ2 with respect to the canonical measure. In this way, the
notion of M -nonformation relative to the canonical measure does not behave as it would be
desirable.

The notion of I-nonformation manages to deal with many cases where usually the concept
of M - or of G-nonformation is used. We will show in Subsection 3.5.2 that I-nonformation is
useful in conditional inference in exponential families. Meanwhile, it is important to note that,
in this way, G- andM -nonformation, and I-nonformation are not implied by S-nonformation.
To see this, consider the L-independent pair of parameters (ψ, φ) with domain Ψ × Φ and
suppose that this parameter corresponds to a cut. If we reduce the domain of the parameter
to Ψ × Φ0, where Φ0 ⊆ Φ then we still have a corresponding cut. But, this reduction in
general does not allow the application of I-nonformation, according to the discussion in
Example 3.31.

3.5.2 Conditional inference in exponential families

Inference in exponential families will give us an important class of examples where to apply
the concept of I-nonformation.

Let us consider a regular exponential family with minimal representation

dPθ
dν

(x) = a(θ)b(x)eθ·x,

with θ ∈ Θ and x ∈ IRk. We call families of this type natural exponential families. We define
τ(θ) = −a′(θ)/a(θ). We know that τ is a bijection between Θ and intC, the interior of the
convex support of X. Therefore, the maximum likelihood estimator is given by

θ̂(x) = τ−1(x),

which is a one-to-one function on intC and hence the family {Pθ : θ ∈ Θ} is saturated by
the maximum likelihood estimator.

We will work now with the regular exponential family with minimal representation given
by

f(x;ψ, φ) = a(ψ, φ)b(x)eψu(x)+φv(x), x ∈ X .
We assume that we want to make inference on the parameter ψ. Note that the minimal
canonical statistic (U, V ) = (u(X), v(X)) is B-sufficient for (ψ, φ). For ψ fixed, V is B-
sufficient for φ and hence the conditional distribution U |V = v depends on (ψ, φ) only
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through ψ. Now, is V ancillary for ψ in some sense? Now, we know that for each fixed ψ,
the marginal distribution of V is a natural exponential family and hence it is saturated by
the maximum likelihood estimator. Thus, the statistic V is I-ancillary for ψ. Therefore, we
should make inference on ψ using the conditional distribution of U given V .

Example 3.32 Let us recall Fisher’s example of Section 3.1. We have that Xi ∼ Bi(ni, pi),
i = 1, 2, where X1 and X2 are independent random variables. The parameter of interest is
ψ = log[p1(1− p1)/{p2(1− p2)}]. Writing the likelihood in terms of the canonical parameters
θi = log{pi/(1− pi)}, i = 1, 2, we obtain

L(θ1, θ2) =

(

n1

x1

)(

n2

x2

)

eθ1x1+θ2x2(1 + eθ1)−n1(1 + eθ2)−n2 .

Working in terms of x1 and x+ = x1 + x2 we have

L(θ1, θ2) =

(

n1

x1

)(

n2

x+ − x1

)

eψx1+θ2x+(1 + eψ+θ2)−n1(1 + eθ2)−n2 .

Hence, X+ is I-ancillary with respect to ψ, and inference on ψ should be made in the
conditional distribution of X1 given X+, which justifies Fisher’s exact test.

A second example follows which involves the binomial distribution.

Example 3.33 Let us consider the independent binomial random variables,

Xi ∼ Bi(n, pi), i = −k,−k + 1, . . . , k,

where log pi/(1− pi) = α + iβ.
This model is known as the logistic model of dose-response with doses allocated symmet-

rically around zero. The likelihood is given by

L(α, β) =
k
∏

i=−k

(

n
xi

)

(1 + eα+βi)−nexi(α+βi) (3.28)

= eαx++βx̃+

k
∏

i=−k

(

n
xi

)

(1 + eα+βi)−n,

where X+ = X−k + · · ·+Xk and X̃+ = −kX−k + · · ·+ kXk.
The representation (3.28) shows that we are dealing with an exponential family with

minimal canonical statistic (X+, X̃+). The distribution of (X+, X̃+) is

p(x+, x̃+;α, β) = a(α, β)b(x+, x̃+) exp {αx+ + βx̃+} ,

where

a(α, β) = 2n(2k+1)

k
∏

i=−k
(1 + eα+βi))−n
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and

b(x+, x̃+) = 2−n(2k+1)Σ∗
k
∏

i=−k

(

n
ai

)

,

with Σ∗ being the sum under the restrictions Σai = x+ and Σiai = x̃+.
We easily conclude that X+ is I-ancillary for β and that, hence, inference on β should be

made in the conditional distribution of X̃+ given X+.
It is possible to show that X+ is M -ancillary for β with respect to the counting measure.

This is due to the fact that the distribution of the sum of independent binomial variables
is unimodal (see Keilson and Gerber, 1971). Note that if k 6= 1, the statistic X̃+ is not
M -ancillary for α, but it is I-ancillary for α.

We will consider a situation, such as in Section 1.5, where we have an exponential family
of order k with canonical parameter θ and minimal canonical statistic t(X). Let (ψ, σ) be a
mixed parametrization with respect to V = At(X), where A is a m×k matrix. We recall that
ψ(θ) = Aτ(θ) and σ(θ) = Bθ, where AB⊤ = 0. Interchanging the roles of the parameters,
we will consider inference on σ(θ), where ψ is now the nuisance parameter. Using Theorem
1.21, we conclude that for σ fixed, the distribution of V is a natural exponential family and
hence we have a model saturated by the maximum likelihood estimator. We conclude that
V is I-ancillary for σ and in this way, we should make inference on σ using the conditional
distribution of X given V = v, which depends on θ only through σ(θ). We will see several
applications of this result.

The theory here developed will not be applicable to the following example, but neverthe-
less we will give a satisfactory solution to the presented problem.

Example 3.34 It is curious that one of the most popular statistical methods, the t-test,
cannot be easily explained by the methods used until now. Let us see this in more detail:
recall that if X1, . . . , Xn are independent and identically distributed random variables, with
X1 ∼ N(µ, σ2) then we have the likelihood

L(µ, σ2) = (2πσ2)−n/2 exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

(3.29)

= (2πσ2)−n/2 exp

{

− 1

2σ2

n
∑

i=1

x2i +
nµ2

2σ2
+

µ

σ2

n
∑

i=1

xi

}

.

From (3.29), we obtain that, for µ fixed, the statistic
∑n

i=1(xi − µ)2 is sufficient. Note that
this statistic depends on µ, which makes our methods non-applicable. Nevertheless, we deal
with this problem in the following way.

Using (3.29) we see that (ΣXi,ΣX
2
i ) is a B-sufficient statistic and that, for µ = 0, ΣX2

i

is sufficient. Therefore, to test the hypothesis “µ = 0” we use the conditional distribution
ΣXi|ΣX2

i , which is equivalent to using the conditional distribution

T =

√
n 1
n
ΣXi

√

1
n−1

(ΣX2
i − 1/n(ΣXi)2

∣

∣ΣX2
i . (3.30)
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For µ = 0, the normal distribution N(0, σ2) is generated by a group of transformations of
scale, and T in (3.30) is invariant by this group action. Thus T is ancillary and ΣX2

i is
B-minimal sufficient and complete, which shows, by Basu’s Theorem, that T and ΣX2

i are
independent. If one wishes to test µ = µ0, it is sufficient to work with Xi − µ0, obtaining in
this way the usual t-test.

The example above illustrates the fact that the inference on one component of the canon-
ical statistic is easy, inference on the mean of a component of the canonical statistic can be
difficult and it might even happen that we do not find any solution based on the methods
studied here.

3.5.3 The relation between S- and I-nonformation

As we have already mentioned S-nonformation, in general, is not compatible with I-
nonformation, in the sense that S-nonformation does not imply I-nonformation and vice-
versa. A more refined analysis of this point reveals some fundamental aspects of the theory
of inferential separation which we will present next. Note that it is enough to study the case
of ancillarity.

Let us fix the notation to be used. We will consider a statistical model (X ,A,P), where
P is a parametric family of probability measures, with P = {Pθ : θ ∈ Θ}. We assume that
the parameter θ is decomposed into θ = (ψ, φ) and that the component ψ is the parameter
of interest. We will work with the statistic U = u(X) which will be ancillary for ψ.

Let us consider first the case of S-ancillarity, where the likelihood can be factorized in
the following way

L(θ) = g(x|u;ψ)h(u;φ), (3.31)

where (ψ, φ) ∈ Θ = Ψ × Φ. Note that we are assuming that ψ and φ are variationally
independent (i.e., the parameter (ψ, φ) varies in the Cartesian product Ψ×Φ, where ψ ∈ Ψ
and φ ∈ Φ). The crucial point to characterize S-ancillarity, is that the knowledge of the
marginal distribution of U , or equivalently of φ, does not provide information about ψ. This
is due to the fact that the marginal distribution of U does not depend on ψ and even knowing
the exact value of φ, say φ0, we can only say that (ψ, φ) ∈ Ψ× {φ0}, which does not reduce
the uncertainty about ψ.

The cases of G-, M - and I-ancillarity are different situations, where we have the following
decomposition of the likelihood

L(θ) = g(x|u;ψ)h(u;ψ, φ). (3.32)

It is important to observe that here the marginal distribution of U also depends on ψ.
Therefore, knowing this marginal distribution we also know the value of the parameter ψ,
which is essentially different from the case of S-ancillarity.

Note that in the cases of G-, M - and I-ancillarity, if we had a sample of values of U , we
could obtain some information about ψ using the marginal distribution of U . That is, we
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can, for example, estimate ψ using a sample of values of U and the marginal distribution
of U , even though this procedure is highly inefficient. This, apparently, contrasts the claim
that U does not contain information about ψ, but a careful examination of the arguments
here presented eliminates the paradox.

We recall that the common argument for the cases of M -, G- and I-nonformation, to
justify that the value of U , together with its marginal distribution, does not contain informa-
tion about ψ, is based on the idea of perfect fits. For example, in the case of M -ancillarity,
the family of marginal distributions of U , with ψ fixed, always gives the distribution whose
mode point is the observed value of U , i.e., with perfect fit of the given value of U . It is
important to emphasize that this argument says that a single observation of U , together with
the marginal distribution de U , does not provide any information about ψ. Nothing is said
with respect to the information contained in a samples of values of U .

Another point that distinguishes the concept of S-ancillarity from the rest, is that in the
first case the parameters ψ and φ are variationally independent, and in the other cases this
does not necessarily happen. In this way, in the cases of G-,M - or I-ancillarity, we should say
that U is ancillary for ψ in the absence of information about φ. In the case of S-ancillarity,
it is indifferent to have or not to have information about φ.

Example 3.35 Let us consider the regular exponential family with minimal representation
given by

a(ψ, φ)b(x)eu(x)ψ+v(x)φ, x ∈ X (3.33)

such as in Subsection 3.5.2. We assume that we want to make inference about ψ and that
φ is the nuisance parameter. As we have already said, if we had a single observation, the
statistic V would be I-ancillary for ψ.

We assume now that we have the sample X1, . . . , Xn, of this family. The joint distribution
of this sample is also an exponential family with representation

a(ψ, φ)n
n
∏

i=1

b(xi)e
ψ
∑n
i=1 u(xi)+φ

∑n
i=1 v(xi). (3.34)

We define the statistics Vn and Un by vn(x1, . . . , xn) =
∑n

i=1 v(xi) and
un(x1, . . . , xn) =

∑n
i=1 u(xi). We know that (Un, Vn) is B-sufficient. The same arguments as

before show that Vn is I-ancillary for ψ. This allows us to claim that inference on ψ should
be made using the conditional distribution of Un given Vn.

Note that we show that the statistic Vn is I-ancillary for ψ, but not that the statistic
v′n(X1, . . . , Xn) = (v(X1), . . . , v(Xn)) is I-ancillary for ψ. This is because the family of
marginal distributions of V ′

n is not saturated by the maximum likelihood estimator, since any
x̃ = (x1, . . . , xn) ∈ X n such that

∑n
i=1 v(xi) = x0 ∈ X gives the same value of the maximum

likelihood estimator of φ (for ψ fixed).
We conclude that Vn does not contain information about ψ, since it is I-ancillary. On the

other hand, V ′
n can give some information about ψ, which is in no way a contradiction since

V ′
n is not I-ancillary.
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Summarizing the discussion above, we have that S-nonformation is essentially different
from the other nonformation concepts presented until now.

3.6 L-nonformation

Until now we have studied five different nonformation concepts. In this way, it is natural
to ask ourselves if there exists some concept of nonformation that combines all the previous
concepts, obtaining in this way, a general definition. We will see that the concept of L-
nonformation will provide a partial answer to this question, in the sense that it will include
some of the already given definitions (not all though). On the other hand, the following
discussion will lead us to analyse more carefully the existing relation between the concepts
of sufficiency and ancillarity.

L-sufficiency, which is a particular case of L-nonformation, will turn out to be the most
important definition of sufficiency. Until now, there does not exist any similar concept to
L-ancillarity. L-sufficiency, as it will be seen, will have the advantage to be a relatively simple
definition, and it will be given directly in terms of the likelihood.

In Subsection 3.6.1 we will define the concept of L-sufficiency.

3.6.1 L-sufficiency

Let (X ,A,P) be a statistical model, where P = {Pθ : θ ∈ Θ} is a parametric family of
probability measures dominated by the σ-finite measure ν.

Let U be a statistic and ψ = ψ(θ) be a parametric function, that will be treated as the
parameter of interest. The profile likelihood for ψ is defined by

L̃(ψ) = sup
θ|ψ

L(θ),

where L(θ) = f(x; θ) is the likelihood with respect to the σ-finite measure ν and the symbol
supθ|ψ0

denotes the supremum over the set θ ∈ Θ, such that ψ(θ) = ψ0. Let θ̂ be the maxi-

mum likelihood estimator of θ without restrictions and let θ̂(ψ) be the maximum likelihood
estimator under the restriction ψ(θ) = ψ, so that, L̃(ψ) = L(θ̂(ψ)).

Definition 3.36 A statistic U is called L-sufficient for ψ if:

(i) The marginal distribution of U depends on θ only through ψ(θ), and ψ parametrizes the
family marginal distributions of U ;

(ii) The σ-algebra generated by the normed profile likelihood L̃(ψ)/L(θ̂) is contained in the
σ-algebra generated by U .

If these two σ-algebras are identical, U will be called minimal L-sufficient.
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In the original definition, due to Rémon (1984), item (i) was not included. Its inclusion
is due to Barndorff-Nielsen (1988). Note that this condition is required in all our previous
definitions of nonformation.

Example 3.37 Let X1, . . . , Xn be independent random variables with distribution N(µ, σ2).
Assume that we want to make inference on σ2. The likelihood is given by

L(µ, σ2) = (2πσ2)−
n
2 e−

1
2σ2

∑n
i=1(xi−µ)2 .

Hence, the profile likelihood for σ2 is

L̃(σ2) = (2πσ2)−
n
2 e−

1
2σ2

SSD

using the previous notation. Also,

L(µ̂, σ̂2) = (2πσ̂2)−
n
2 e−

n
2

where σ̂2 = 1
n
SSD. The normed profile likelihood is then

(σ̂2/σ2)
n
2 e

n
2
− 1

2σ2
SSD.

Therefore, SSD or, equivalently, σ̂2, is L-sufficient for σ2. This leads us to the same conclu-
sion obtained with G-sufficiency, that is, the estimator based on the marginal distribution of
SSD is 1

n−1
SSD.

The definition of L-sufficiency can be interpreted as an extension of Fisher and Ney-
man’s Factorization Theorem for B-sufficiency. We define a(x) = L(θ̂), so that we can write
condition (ii) as

L̃(ψ) = a(x)b(u;ψ), (3.35)

where, b(u;ψ) = L̃(ψ)/L(θ̂) is a function that depends on x only through u, according to
point (ii) of the definition. On the other hand if there exist functions a(x) and b(u;ψ) such
that (3.35) holds, then ψ̂ is a function of x only through u, and

L̃(ψ)

L(θ̂)
=
b(u;ψ)

b(u; ψ̂)
,

which shows that condition (ii) is satisfied. Hence, the factorization (3.35) characterizes
L-sufficiency, given that the distribution of U depends on θ only through ψ(θ).

Note that a(x) = L(θ̂) is a density of the canonical measure with respect to ν, where nu
is such that a(x)ν(dx) = ν̄(dx), and that the factor b(u;ψ) em (3.35) is interpreted as the
normed profile likelihood which will be denoted by L̄(ψ).

We will consider the case where ψ = θ, so that item (i) of Definition 3.36 is always
satisfied. In this case, the factorization (3.35) is equivalent to the factorization criterion of
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Fisher-Neyman, according to which U is B-sufficient for θ if and only if L(θ) has a factoriza-
tion of the form L(θ) = a(x)b(u; θ). Hence, B-sufficiency is a particular case of L-sufficiency.
Turning back to the case of a general ψ(θ), the factorization (3.35) shows that L-sufficiency
is equivalent to the application of Fisher-Neyman’s factorization criterion to the profile like-
lihood L̃(ψ).

The concept of L-sufficiency has a simple interpretation in terms of the score function, as
we will next show. To simplify the arguments, we will suppose that θ = (ψ, φ), where φ is a
nuisance parameter, and we will consider the following decomposition of the score function:

U(ψ, φ) =

(

U1(ψ, φ)
U2(ψ, φ)

)

=
∂ logL

∂(ψ, φ)
(ψ, φ).

By condition (i) of Definition 3.36, we have the factorization

L(ψ, φ) = h(u;ψ)g(x|u;ψ, φ),
and then

U1(ψ, φ) = H(u;ψ) +G1(x|u;ψ, φ)
U2(ψ, φ) = G2(x|u;ψ, φ),

where

H(u;ψ) =
∂ log h(u;ψ)

∂ψ
,

B(u;ψ) =
∂ log b(u;ψ)

∂ψ
,

G1(x|u;ψ, φ) =
∂ log g(x|u;ψ, φ)

∂ψ

and

G2(x|u;ψ, φ) =
∂ log g(x|u;ψ, φ)

∂φ
.

Note that the estimator of φ for ψ fixed, denoted by φ̂(ψ), is defined by

G2(x|u;ψ, φ̂(ψ)) = 0. (3.36)

With this notation, we have that

∂ log L̃(ψ)

∂ψ
= H(u;ψ) +G1(x|u;ψ, φ̂(ψ)),

where we use the chain rule to differentiate log L̃(ψ) = logL(ψ, φ̂(ψ)), and equation (3.36).
Using (3.35), we have that condition (ii) of Definition 3.36 is equivalent to

H(u;ψ) +G1(x|u;ψ, φ̂(ψ)) = B(u;ψ),

which is equivalent to supposing that G1(x|u;ψ, φ̂(ψ)) is a function of x only through u. In
this way we have an interpretation of L-sufficiency using the score function.

We will next study the relation between L-sufficiency and the other concepts of sufficiency.
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Theorem 3.38 The concepts of B-, S- and G-sufficiency are particular cases of L-
sufficiency.

Proof: Let U be S-sufficient for ψ, let θ = (ψ, φ) be the corresponding pair of L-
independent parameters and let

L(ψ, φ) = L1(ψ)L2(φ) = h(u;ψ)g(x|u;φ),
be the corresponding factorization. Then L̃(ψ) = L1(ψ)L2(φ̂) and L(ψ̂, φ̂) = L1(ψ̂)L2(φ̂),
where ψ̂ maximizes L1(·) and φ̂ maximizes L2(·). Hence,

L̃(ψ)

L(ψ̂, φ̂)
=
L1(ψ)

L1(ψ̂)
.

Since L1(ψ) = h(u;ψ), then evidently ψ̂ is a function of x only through u. Hence, U is
L-sufficient for ψ. This proof is also valid in the case of B-sufficiency, which is a special case
of S-sufficiency.

Now, let us consider the case where U is G-sufficient for ψ. Let θ = (ψ, φ), following the
notation of Section 3.3. For each g ∈ G we have

sup
φ
f(gx;φ, ψ) = sup

φ
f(gx; gφ, ψ) = sup

φ
f(x;φ, ψ) = L̃(ψ).

Hence, L̃(ψ) is invariant by the action of G. Since U is maximum invariant, L̃(ψ) is a function
of U , which shows that U is L-sufficient for ψ. �

We will give now a general justification for L-sufficiency, which shows that it is related
with a certain type of M -sufficiency, according to Theorem 3.39 below. By condition (i) of
Definition 3.36 we have the factorization

L(θ) = h(u;ψ)g(x|u; θ),
in terms of the marginal and conditional densities of U . By the factorization (3.35) we have
then the relation

h(u;ψ) sup
θ|ψ

g(x|u; θ) = a(x)b(u;ψ),

that is,

sup
θ|ψ

g(x|u; θ)
a(x)

=
b(u;ψ)

h(u;ψ)
. (3.37)

Since a(x)ν(dx) represents a canonical measure, the function

ḡ(x|u; θ) = g(x|u; θ)
a(x)

represents the conditional density of X given U with respect to a measure derived from the
canonical measure. Hence, (3.37) implies that the supremum of ḡ(x|u; θ) for ψ fixed depends
on x only through u. By the same arguments used in the proof of Proposition 3.30, this
implies that the family {ḡ(·|u; θ) : ψ(θ) = ψ0} is strictly universal with constant mode for
each ψ0 fixed.
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Theorem 3.39 A statistic U is L-sufficient for ψ if and only if U is M-sufficient and there
exists a measure such that the family of densities {g(x|u; θ) : ψ(θ) = ψ0} with respect to this
measure is strictly universal with constant mode for each ψ0 fixed.

Proof: The considerations preceding the theorem show that L-sufficiency implies the
existence of a measure such that the family of conditional densities is universal for each ψ
fixed, and hence U is M -sufficient. To show the converse implication, let U be M -sufficient
for ψ, and suppose that the family of conditional densities g(x|u; θ), besides being universal
for φ(θ) fixed, also has constant mode, so that

sup
θ|ψ

g(x|u; θ) = m(u;ψ),

where m(u;ψ) is a function that depends on x only through u. Thus,

L̃(ψ) = h(u;ψ)m(u;ψ).

By the factorization criterion (3.35), this shows that U is L-sufficient for ψ. �

By Theorem 3.39, we have then, that L-sufficiency represents a particular type of M -
sufficiency, and by Theorem 3.38 we have still that B-, S- and G-sufficiency are particular
cases of this type of M -sufficiency. In this way, a general argument to justify B-, S-, G- and
L-sufficiency is based on the concept of strict universality with constant mode.

It is easy to verify that a large part of the examples of L-sufficiency can also be justified
using I-sufficiency. But, apparently, there does not exist any formal relation between L- and
I-sufficiency. It is evident that these two concepts are not equivalent, and that I-sufficiency
does not include, in general, S-sufficiency, as we showed in Section 3.4.

Example 3.40 Let X1, . . . , Xn be independent with density

f(x;µ, λ) = a(λ)b(x)eλt(y;µ) (3.38)

for x and µ in Ω ⊆ IRk. We assume that t(x;µ) ≤ t(x; x) = 0, ∀x, µ ∈ Ω. Then the likelihood
is

L(µ, λ) = a(λ)n
n
∏

i=1

b(xi) exp

{

−λ
2
D(x;µ)

}

,

where D(x;µ) = −2{t(x1;µ) + . . .+ t(xn;µ)} is called the deviance. We will make inference
on λ. The profile likelihood for λ is

L̃(λ) = a(λ)n
n
∏

i=1

b(xi) exp

{

−λ
2
D(x; µ̂)

}

,

where µ̂ minimizes the deviance D(x; ·). Hence, the statistic U = D(X; µ̂) satisfies condition
(ii) of Definition 3.36, but to be L-sufficient, the distribution of U should depend on (µ, λ)
only through λ. Several distributions of the form (3.38) satisfy this condition. An example
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is the normal distribution N(µ, 1/λ), which gives the same inference on σ2 = 1/λ already
derived from G- and M -sufficiency. Another example is the gamma distribution, written in
the following way

f(x;µ, λ) =
λλ

Γ(λ)
x−1 exp {−λ{log(µ/x) + x/µ− 1}} .

A third example is the inverse Gaussian distribution, with density

f(x;µ, λ) =

√

λ

2πx3
exp

{

−λ
2

(x− µ)2

xµ2

}

.

We mention also that any density of the form

f(x; , µ, λ) = a(λ)eλt(x−µ), x ∈ Ω (3.39)

is of the form (3.38). If Ω = IR, any function t(·) such that exp t is integrable can be used in
(3.39). The case Ω = [0, 2π) and t(x) = cos x will give the distribution of von Mises-Fisher.
The case of L-nonformation and L-ancillarity is discussed in Jørgensen (1993).

3.7 Models with many nuisance parameters

In this last section we will show a technique to eliminate a large number of nuisance parame-
ters, that is, we will deal with cases where the number of nuisance parameters increases with
the sample size. We will then have an opportunity to apply some of the techniques developed
in the previous sections in a non trivial way.

We will first consider the general problem of the elimination of nuisance parameters by
means of conditioning on a B-sufficient statistic. Next, we will consider the case where the
number of nuisance parameters increases with the sample size.

Let X be a random variable with distribution Pθ where θ = (ψ, φ), ψ is the parameter of
interest. We assume that there exists a statistic T = t(X) such that T is B-sufficient for φ
if ψ is fixed. This implies that the likelihood is of the form

L(ψ, φ) = g(x|t;ψ)h(t;ψ, φ). (3.40)

If the statistic T is ancillary, in some sense, we can use the conditional distribution of X
given T = t to make inference on ψ.

Meanwhile, without imposing more conditions, the factor h(t;ψ, φ) is not, in general,
nonformative with respect to ψ, and can, in fact, contain information about ψ. This happens
usually in the case where T is not boundedly complete for ψ fixed, which frequently happens
when T = (U, V ), where V is B-ancillary for ψ fixed. In this case, (3.40) changes to

L(ψ, φ) = g(x|v, u;ψ)h1(v;ψ)h2(u|v;ψ, φ), (3.41)
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where h1(v;ψ) in general will depend on ψ. If this is the case, this factor will obviously
contain information about ψ.

If T is boundedly complete for ψ fixed, the situation depicted above given by (3.41) is
impossible, and in this case the model X|T = t is, in a sense that will be explained in the
next theorem, the only possibility to obtain a model that involves only ψ. The theorem
comes from the theory of hypothesis testing.

Theorem 3.41 Let H0 be a hypothesis on the model P, and U be minimal sufficient under
H0. We assume that A is a critical region for H0 which is similar, i.e., P (A) = α for any
P ∈ P. If U is boundedly complete under H0, then

P (A|U = u) = α.

Proof: The condition P (A) = α can be written as

EP (1A) = α ∀P ∈ H0

or

EP{E(1A − α|U)} = 0, ∀P ∈ H0,

where the conditional expectation does not depend on P . Since U is boundedly complete
and EP (1A − α|U) is bounded, we conclude that

E(1A − α|U) = 0 [P ] or

P (A|U = u) = α.

If T , in the discussion above, is boundedly complete, this theorem leads us to work
with the conditional distribution given T , to make inference on ψ. Nevertheless, T is not
necessarily nonformative with respect to ψ. The discussion in Section 3.5.2 shows that this
can be related with the domain of φ, which should be as large as possible.

We consider now the situation where the dimension of φ is large, more precisely, its size
is the sample size. Let X1, . . . , Xn be independent random variables with distribution

Xi ∼ Pψ,φi , i = 1, . . . , n,

where ψ is the parameter of interest and φi = (φ1, . . . , φn) is the nuisance parameter. We
assume that Vi = v(Xi) is a B-minimal sufficient statistic for φi, with ψ fixed, in such a way
that the likelihood is

L(ψ, φi) =
n
∏

i=1

g(xi|vi;ψ)
n
∏

i=1

h(vi;ψ, φi).

It is not necessary to require that Vi is boundedly complete, although the discussion above
shows that this would be desirable.
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This situation was considered by Andersen (1970, 1973), who considered estimation based
in the conditional likelihood

Lc(ψ) =
n
∏

i=1

g(xi|vi;ψ),

and showed that, under regularity conditions, the conditional estimator ψ̂c, that maximizes
Lc(ψ), is consistent and asymptotically normal. He also showed (Andersen, 1971) that the
likelihood ratio test based on Lc converges to the χ2 distribution.

The problem with the maximum likelihood estimator when there is an infinite number of
nuisance parameters was first studied by Neyman and Scott (1948), and was considered in
Example 3.2 of Section 3.1.

Example 3.42 This example, besides from illustrating the ideas of exponential families and
inferential separation, provides a useful statistical model which is used in pedagogical and
psychological experiments, where n persons are exposed to m tests (called items).

Let Xij, i = 1, . . . , n, j = 1, . . . ,m be random variables with Bernoulli distribution

pij = P (Xij = 1) = 1− P (Xij = 0).

The model used is given by

pij =
eαi+βj

1 + eαi+βj
,

that is, the generalized linear model with logistic link and with two factors with no interaction.
The parameter (α1, . . . , αn, β1, . . . , βm)

⊤ varies freely in IRn+m.

The density of the Bernoulli distribution is px(1 − p)1−x, and hence, the joint density of
all the Xijs is

∏

i,j

(1− pij)

(

pij
1− pij

)xij

=

{

∏

i,j

[1 + eαi+βj ]−1

}

exp

(

n
∑

i=1

αiXi+ +
m
∑

j=1

βjX+j

)

,

where the symbol “+” as an index, indicates the sum. Using the identity X+m = X++ −
X+1 − . . . − X+m−1 =

∑

iXi+ − X+1 − . . . − X+m−1, we can verify that the model can be

parametrized by α̃i = αi + βm, i = 1, . . . , n and β̃j = βj − βm, j = 1, . . . ,m − 1. The
parameter (α̃1, . . . , α̃n, β̃1, . . . , β̃m−1)

⊤ varies freely on IRn+m−1. This is a regular exponential
family of order n+m− 1.

This model was introduced by G. Rasch under the name item analysis. This and other
models are explained in the books by Rasch (1960) and Cox and Snell (1989). The model
was created to be used in the analysis of intelligence tests used for admission to the army.
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The data can be represented in the following way:

question
i \ j 1 · · · j · · · m
...

...
...

...
person i Xi1 · · · Xij · · · Xim

...
...

...
...

n Xn1 · · · Xnj · · · Xnm

The i, j-th cell of the table contains 1 if person i answered question j correctly, and 0 if
the answer was wrong.

We can assume that
Xij ∼ Bi(1, pij).

Let δi be a number that measures the ability of the i-th person to answer the type of questions
used. Large values of δi mean that the person has a good ability to answer the questions. Let
ǫj be a parameter that indicates the degree of difficulty of the question numbered j, where
large ǫj means that the question is difficult. Then it is reasonable to infer that the probability
of the i-th person to answer correctly to the j-th question, pij, depends on δi and ǫj, or that

pij = π(δi, ǫj).

We assume that the ability and the difficulty are measured in a scale from 0 to ∞, in
such a way the we can compensate the fact that if the difficulty is doubled the ability is also
doubled. We conclude that π depends on δ and ǫ only through δ/ǫ, i.e.,

π(δ, ǫ) = π

(

δ

ǫ

)

.

It is reasonable to assume that

π(v) →
{

1 if v → ∞
0 if v → 0.

A function that satisfies this criterion is

π(v) =
v

1 + v
, v ∈ IR+.

Rasch then chose the model given by

pij = π(
δi
ǫj
)

=

δi
ǫj

1 + δi
ǫj

=
exp {log δi − log ǫj}

1 + exp {log δi − log ǫj}
δi > 0 , ǫj > 0.
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From the point of view of generalized linear models, it is important to verify the link, but
the canonical link that Rasch used has the advantage of giving a regular exponential family,
where it is possible to apply the results developed in this chapter.

Let us consider now the case m = 2. Define β̃ = β1 − β2. Then

P (Xi1 = 1) =
eα̃i+β̃

1 + eα̃i+β̃
and P (Xi2 = 1) =

eα̃i

1 + eα̃i
.

Obviously, the parameter β̃ characterizes the difference between the two questions. The
likelihood equations are

Xi+ = (1 + e−α̃1−β̃)−1 + (1 + e−α̃i)−1 i = 1, . . . , n

and

X+1 =
n
∑

i=1

(1 + e−α̃i−β̃)−1.

According to the possible values of Xi+, which are 0, 1 and 2, we have

α̃ =







−∞ if Xi+ = 0

−1
2
β̃ if Xi+ = 1

∞ if Xi+ = 2.

In this way, the following equation is obtained

X+1 = N00 +N1(1 + e−
1
2
β̃)−1 +N21,

where Nj is the number of Xi+ equal to j, j = 0, 1, 2. The last equation is hence

−1

2
β̃ = log

N1 −X+1 +N2

X+1 −N2

.

Since X+1 −N2 is the number of pairs (Xi1, Xi2) with value (1, 0), and N1 −X+1 +N2 is the
number of pairs with value (1, 0), by the law of large numbers we have that

X+1 −N2

N
→ 1

n

n
∑

i=1

e−α̃i

(1 + e−α̃i−β̃)(1 + e−α̃i)

and
N1 −X+1 +N2

X+1 −N2

→ 1

n

n
∑

i=1

e−α̃i−β̃

(1 + e−α̃1−β̃)(1 + e−α̃1)
.

Hence,

−1

2
β̃ → log(e−β̃) = −β̃.
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This shows that β̃ converges to the wrong value, as σ̂2 in Example 3.2 of Section 3.1.
If we consider the conditional distribution of Xi1 given Xi+ = xi+, we have the conditional

density

P (Xi+|Xi+ = xi+) =











1{xi1=0} if xi+ = 0
eβ̃xi1

1+eβ̃
if xi+ = 1

1{xi1=1} if xi+ = 2.

In order to justify this model, we note that Xi+ is M -ancillary for β̃. The likelihood function
for these conditional densities is

Lc(β̃) = eβ̃N10(1 + eβ̃)−N01−N10 ,

where Nij is the number of pairs (Xi1, Xi2) so (i, j). We obtain then the conditional estimator

β̃c = log
N10

N01

→ log(
1

e−β̃
) = β̃,

using the previous argument. This estimator converges to the true value.

This example shows once again the importance of using the marginal or conditional dis-
tribution for making inference, if there are nuisance parameters. The general case of Example
3.42 can be solved with the theory presented by Andersen (1973).

3.8 Problems

S-nonformation

Problem 3.1 Let X and Y independent random variables with

P (X = 0) = q, P (X = 1) = p, p+ q = 1

and
P (Y = −1) = a, P (Y = 0) = q P (Y = 1) = p− a,

where (a, p)⊤ has domain

Θ = {(a, p)⊤ : 0 ≤ a ≤ p,
1

2
≤ p ≤ 2

3
}.

The parameter of interest is p. Show that X + Y 2 is S-sufficient with respect to p.

Problem 3.2 Let f be the function defined on IR2 by

f(u1, u2) =
uλ1−1
1 u−λ2−λ1−1

2

Γ(λ1)Γ(λ2)β
λ1
1 β

λ2
2

e
− 1
β2u2

(
β2
β1
u1+1)

,

where u1 > 0 and u2 > 0, and (λ1, λ2, β1, β2) ∈ IR4
+.
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(i) Show that f is a density function and that the family of distributions with density f
and (λ1, λ2, β1, β2) ∈ IR4

+ is an exponential family. Give the order of this family.

(ii) Show that u1/u2 is S-sufficient with respect to (λ1, β1) and that u2 is S-sufficient for
(λ2, β2).

Problem 3.3 Let X1, . . . , Xn be independent, and Xi ∼ Np(µ,Σ), i = 1, . . . , n, where
µ ∈ IRp and Σ is p× p is positive definite.

(i) Show, using Basu’s Theorem, that the maximum likelihood estimator X̄+ for µ and
1
n

∑n
i=1(Xi − X̄+)(Xi − X̄+)

⊤ for Σ are independent.

(ii) Show that X̄+ is not S-ancillary with respect to Σ.

(iii) Let p = 2 and n = 1. Show that X11 is a cut, and find the corresponding pair of
L-independent parameters.

Problem 3.4 Let (U, V )⊤ be a random vector with density

f(u, v) =
vλ−1e−v/u

2

u2λΓ(λ)(2πσ2)
1
2

exp

{

− 1

2σ2
(u− α)2

}

, u ∈ IR, v ∈ IR+

where α ∈ IR and λ, σ2 ∈ IR+.

(i) Show that U ∼ N(α, σ2), and that the conditional distribution of V given U = u is the
distribution Ga(u2, λ).

(ii) Show that the distribution of (U, V ) is an exponential family of order 3.

(iii) Let (U1, V1)
⊤, . . . , (Un, Vn)

⊤ be independent and identically distributed random vectors
with density f . Show that (U1, . . . , Un) is S-sufficient for (α, σ2) and S-ancillary for λ.

(iv) Show that
(

n
∑

i=1

Ui,

n
∑

i=1

U2
i

)

and
n
∑

i=1

log
Vi
U2
i

are independent.

(v) Show that the maximum likelihood estimators α̂, σ̂2 and λ̂ are independent.

Problem 3.5 Let P = {Pθ : θ ∈ Θ} be a parametric family of probability measures on
the sample space (X ,A). Let ψ be a parametric function and x → (u(x), v(x)), x ∈ X , a
measurable bijection. We assume that U = u(X) and V = v(X) are cuts and that the set
Ψ = {ψ(θ) : θ ∈ Θ} parametrizes the marginal distributions of V as well as the conditional
distributions given U . Hence, U is S-ancillary with respect to ψ and V is S-sufficient with
respect to ψ. In this case, the principle of S-ancillarity states that inference on ψ should be
made using the marginal distribution of V , whereas the principle of S-ancillarity says that
inference on ψ should be made using the conditional distributions given U . Show that, if
P is boundedly complete, then the two principles suggest the same class of distributions for
inference on ψ.
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G-nonformation

Problem 3.6 Let Q = {fψ(·) : ψ ∈ Ψ} be a family of densities in IR, such that no fψ(·) can
be obtained from another member of Q by means of a transformation of location and scale.
Let Pψ,µ,σ be defined by the density

x→ 1

σ
fψ

(

x− µ

σ

)

.

(i) Show that for (a, b) ∈ IR× IR+,

a+ bPψ,µ,σ = Pψ,a+bµ,bσ

and that this corresponds to a group of transformations of the sample space.

(ii) Find a G-sufficient statistic for ψ, based on a random sample X1, . . . , Xn from Pψ,µ,σ.

(iii) If ψ is known, find a B-ancillary statistic for (µ, σ).

Problem 3.7 Consider the generalized inverse Gaussian distribution in Example 3.7 of Sec-
tion 3.1. LetX1, . . . , Xn be random variables with distributionN−(λ, χ, ψ), where λ is known.
Study the inference on the parameters µ =

√

χ/ψ and ω =
√
χψ from a G-sufficiency point

of view. Also, study the inference on µ when ω is known.

Problem 3.8 Define the function a(λ) by

a(λ)−1 =

∫ 2π

0

eλ cosxdx, λ ≥ 0.

Consider the distribution Pµ,λ defined by the density

f(x;µ, λ) = a(λ)eλ cos(x−µ) x ∈ [0, 2π)

where λ ≥ 0 and µ ∈ [0, 2π). This is called the von Mises’ distribution. The distribution Pµ,0
is the uniform distribution on [0, 2π), whereas for λ > 0, f(·;µ, λ) has mode point µ and is
more and more concentrated around µ when λ increases.

(i) Let G be the group of rotations, that is, translations modulo 2π, defined by

x→ (g + x) mod 2π, x ∈ [0, 2π).

Let the elements of G be denominated by g ∈ [0, 2π). Show that

g(Pµ,λ) = Pg(µ),λ.
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(ii) Let X1, . . . , Xn be independent random variables with distribution Pµ,λ. Show that the
statistic

(X1+, X2+)
⊤ =

(

n
∑

i=1

cosXi,

n
∑

i=1

sinXi

)⊤

is B-sufficient for (µ, λ) and that the family {Pµ,λ : µ ∈ [0, 2π), λ ≥ 0} is an exponential
family of order 2. Show that (X1+, X2+)

⊤ is a minimal canonical statistic. The vector
(X1+, X2+)

⊤ is called the resultant vector. Hint: Use trigonometric relations.

(iii) Let R be the length of the resultant vector defined by

R = (X2
1+ +X2

2+)
1/2,

and D = 1
R
(X1+, X2+)

⊤, called the direction. Show that, with respect to the space of
(X1+, X2+)

⊤, R is maximum invariant and D is equivariant.

(iv) Show that R is G-sufficient for λ.

(v) Show that, if µ is known, R is B-ancillary with respect to µ, hence, inference on µ
should be made using the conditional distribution of D given R = r.

M-nonformation

Problem 3.9 Show that the family {N(µ, σ2) : µ ∈ IR} is strictly universal with constant
mode point with respect to Lebesgue measure, for any given σ2 > 0. Show the use of this
result for inference on σ2 in the distribution N(µ, σ2).

Problem 3.10 Show that the family of exponential densities λe−λx (x > 0) for λ > 0 is
universal, but not strictly universal.

Problem 3.11 Show that the binomial family {Bi(n, p) : p ∈ (0, 1)} is universal. Is it
strictly universal? What would be the use of this result?

I-nonformation

Problem 3.12 Show that the negative binomial distribution Nb(λ, p) is saturated by the
maximum likelihood estimator for any fixed value of λ. Show that the binomial distribution
Bi(n, p) is saturated by the maximum likelihood estimator for n fixed.

Problem 3.13 Let Xi ∼ Po(λi), i = 1, 2 be independent, and define ψ = log(λ1/λ2). Show
that X1 +X2 is I-ancillary for ψ.

Problem 3.14 Show that the family of arcsine distributions

f(x; θ) =
sin(πθ)

π
xθ−1(1− x)−θ, 0 < x < 1

for θ ∈ (0, 1), is saturated by the maximum likelihood estimator.
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Problem 3.15 Let Xi ∼ N−(χ, ψ), i = 1, . . . , n, be independent. Show that X− = X−1
1 +

· · ·+X−1
n is I-ancillary for ψ, and suggest a conditional test for the hypothesis H0 : ψ = ψ0.

(Here we use the notation of Example 3.7).

L-nonformation

Problem 3.16 Let Xi ∼ N−(χ, ψ) be independent, i = 1, . . . , n, and let ω =
√
χψ be the

parameter of interest. Show that the statistic T = (X−X+)
1
2 is L-sufficient for ω. (Here we

use the notation of Example 3.7).

Problem 3.17 Let X1, . . . , Xn be independent with negative binomial distribution, Xi ∼
Nb(λ, p). Show that X+ is I-ancillary for the parameter λ.

Problem 3.18 Let X1, . . . , Xn, Y1, . . . , Yn be independent and

Xi ∼ Bi (r, φiψ/(1 + φiψ))

Yi ∼ Bi (s, φi/(1 + φi)) .

Discuss inference on ψ.

Problem 3.19 Let Y ∼ Nk(Xβ, σ
2I) be a linear model. Show that SSD = ||Y −µ̂||2, where

µ̂ = Xβ̂, is L-sufficient for σ2, and use this to derive the usual estimator of σ2, SSD/f , where
f is the number of degrees of freedom.



Chapter 4

INFERENCE FUNCTIONS

4.1 Introduction

The traditional theory of point estimation deals with properties of estimators which are func-
tions only of the observations, i.e. statistics. Constraints, such as invariance, unbiasedness
or asymptotic normality, are usually imposed in the class of estimators to be considered. A
criterion of ordering (or partial ordering) in the restricted class of estimators, such as the
variance or the asymptotic variance of the estimator, is then given and used to define an
optimal estimate. We refer to two classical examples of these paradigmatic developments:
the traditional unbiased minimum variance estimation and the maximum likelihood theory,
where efforts are put into finding estimators that are asymptotically normally distributed
with minimum variance. In spite of the beauty of these theories, some criticisms can be
made. For instance, the method of uniform unbiased estimation may produce estimators
which are absurd (see Kendall and Stuart, 1979 p. 36). Moreover, the minimum variance
unbiased method is not invariant under smooth reparametrizations, i.e. the estimator ob-
tained depends on the arbitrarily chosen parametrization. On the other hand, the method
of maximum likelihood estimation is invariant under smooth reparametrizations, but these
estimators may be (asymptotically) inefficient or even inconsistent. In Chapter 3 we gave
some alternatives to the pure maximum likelihood method that satisfactorily solve some of
these situations. In particular, the so-called Neyman-Scott paradox has been addressed via
the notion of nonformation. Here we give another alternative to the maximum likelihood
theory by developing a theory of what we call inference functions or estimating equations.

In the approach of estimating equations we consider estimators which can be expressed
as solutions of an equation such as

Ψ(x; θ) = 0 . (4.1)

Here Ψ is a function of the given data, say x, and the parameter, say θ, of a certain statistical
model. We call Ψ an inference function, also known as an estimating function (the precise
definition will be given later). The equation (4.1) is often called an estimating equation.
Following the same procedure as in the classical theories, one introduces some constraints in

135
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the class of inference functions to be considered, and a criterion for ordering the estimators
obtained from the estimating equations in the restricted class. Equivalently one might in-
troduce a criterion for ordering the inference functions, and choose the uniformly best (if it
exists). It is clear that in most of the classical “well-behaved” cases, the maximum likelihood
estimator is given by the solution of an estimating equation. Moreover, the criterion for
ordering inference functions is closely related to the asymptotic variance of the associated es-
timators. In that way, the approach of estimating equations can be viewed as a generalization
of the maximum likelihood theory. Due to the optimal behaviour of the maximum likelihood
in “regular” cases, it is not surprising that the optimal inference function will give us exactly
the maximum likelihood estimator. However, there are some situations in which the max-
imum likelihood theory fails and the estimating equation theory works well. For instance,
we will see that the theory of estimating equations provides an alternative justification for
conditional inference.

The earliest mention of the idea of estimating equations is probably due to Fisher (1935)
(he used the term “equation of estimation”). A remarkable example of an early non-trivial
use of inference functions can be found in Kimball (1946), where estimating equations were
used to give confidence regions for the parameters of the family of Gumbel distributions (or
extreme value distributions). There, the idea of “stable” estimating equations, i.e. inference
functions whose expectations are independent of the parameter, was introduced, anticipating
the theory of sufficiency and ancillarity for inference functions proposed by McLeish and
Small (1987) and Small and McLeish (1988a,b).

The theory of optimality of inference functions appears in the pioneering paper of Go-
dambe (1960). In the same year Durbin (1960) introduced the notion of unbiased linear
inference function and proved some optimality theorems particularly suited to applications
in time series analysis.

Since that time, the theory of inference functions has been developed a great deal, both
by Godambe (c.f. Godambe, 1976, 1980, 1984; Godambe and Thompson, 1974, 1976), and
by others in different contexts and with different names and approaches. We mention, for
instance, the so-called theory of M -estimators developed in the seventies in order to obtain
robust estimators, and the quasi-likelihood methods used in generalized linear models. As one
can see, the theory of inference functions was not only inspired by an alternative optimality
theory for point estimation. One could say that there is now a firm and well established theory
of inference functions, with many branches, some of them based on very deep mathematical
foundations. A notorious example is the sophisticated theory of weak convergence due to
Hoffman-Jørgensen(1990), used for proving the consistency of estimators associated with
estimating equations in a very general context (not even measurability is assumed, see also
Van der Vaart and Wellner, 1996). In the present text, we concentrate on the use of inference
functions for point estimation. We do not intend a complete coverage of the theory, but merely
to give an overview of some important aspects.

The chapter is organized as follows. Section 4.2 presents some basic notions of the theory
of inference functions, in particular the concept of unbiased inference function and the im-
plications of the unbiasedness in terms of the consistency of the associated estimates, under
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regularity conditions. The theory of optimality of inference functions is discussed in Section
4.3. This section begins by presenting the basic notions of the theory of inference functions for
the case where the parameter is one-dimensional, including also the notion of regular asymp-
totic linear estimate and some connections with the classic theory of point estimation. The
section closes with a generalization of the theory to the case of a multidimensional parameter.
Section 4.4 studies the theory of inference functions in the presence of nuisance parameters.
We first give a general formulation of the optimality theory for inference functions in this
new context. Next, we specialize to models with a one-dimensional parameter of interest and
arbitrary nuisance parameters, for which we can easily obtain some results that allow us to
find explicitly optimal inference functions. At this point we give an alternative justification
for conditional inference when one has a likelihood factorization of a particular form. A cri-
terion for the existence of optimal inference functions is then given in a very general context
(of semiparametric models) and it is proved that the only possibility for obtaining an optimal
inference function is the so-called efficient score function (i.e. the orthogonal projection of
the partial score function onto the orthogonal complement of the nuisance tangent space).
This generalizes the results obtained in the previous section.

4.2 Preliminaries

Consider a statistical model (X ,A,P). Here P is a family of probability measures defined on
a common measurable space (X ,A). We study first the case where P is a parametric family,
say

P = {Pθ : θ ∈ Θ ⊆ IRk} ,
for some fixed k ∈ IN . Later on we extend the theory to a more general context where one
can also have a nuisance parameter, not necessarily finite dimensional.

Let us consider a function Ψ : X × Θ −→ IRk such that for each θ ∈ Θ the component
function Ψ( · ; θ ) : X −→ IRk, obtained by fixing the value of the parameter, is measurable.
Such a function is called an inference function. We stress that Ψ is an IRk-valued function,
where k is the dimension of the parameter space Θ.

Given an inference function, say Ψ, one can define for each possible value of the observa-
tion, say x ∈ X , an estimate θ̂ = θ̂(x) as the solution to the following equation

Ψ(x; θ) = 0

with respect to θ. Accordingly, one associates an estimator to the inference function Ψ.
Obviously, the inference function Ψ must satisfy some regularity conditions in order for the
estimate θ̂ to be well defined and well behaved, but for now we postpone this discussion.

It is interesting to observe that given an inference function, say Ψ : X × Θ −→ IRk, one
can easily construct other inference functions with the same estimator associated. To see
this, suppose that one has an inference function, say Φ : X × Θ −→ IRk, such that for all
x ∈ X and all θ ∈ Θ

Φ( x ; θ ) = C(θ)Ψ( x ; θ ),
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where C(θ) is a k × k matrix of full rank. The two inference functions Ψ and Φ are then
said to be equivalent. We denote the equivalence of Ψ and Φ by “Ψ ∼ Φ”. It is easy to see
that “ ∼” really defines an equivalence relation (see Problem 4.1) and that two equivalent
inference functions have the same estimator associated. Hence, we must identify the inference
functions contained in the same equivalence class. We will see that this is done implicitly in
the theory developed in this chapter.

In the following, we work with a sample, say X1, . . . , Xn, of size n from an unknown (but
fixed) distribution Pθ ∈ P based on which one would like to estimate Pθ, or equivalently θ.
Of course, the theory of inference functions can be applied in a more general context, but,
due to the introductory nature of this chapter, it is better to concentrate on the treatment
of this specific case.

Clearly, one can redefine the problem above in terms of the “product statistical model”,
say (X n,An,Pn), and define an inference function in this context as a function from X n×Θ
into IRk in a completely general form. However, in the classical theory of inference functions
one usually restricts the attention to the particular case of inference functions defined as
follows. Let Ψ : X × Θ −→ IRk be an inference function defined as before. Consider the
inference function for the extended model Ψn : X n ×Θ −→ IRk given by

Ψn(x ; θ ) =
n
∑

i=1

Ψ(xi; θ)

where x = (x1, . . . , xn)
⊤. We then define the estimator θ̂ = θ̂n = θ̂n(x) as the solution of

the equation
n
∑

i=1

Ψ(xi; θ̂n) = Ψn(x; θ̂n) = 0. (4.2)

In other words, we are considering inference functions in the extended model which are
additive over the sample. This approach has the advantage that it makes it easy to tie up
with the classical asymptotic theory under a repeated sampling scheme, and with the theory
of empirical processes (see Van der Vaart and Wellner, 1996).

An inference function Ψ : X ×Θ −→ IRk is said to be unbiased if for each θ ∈ Θ

∫

Ψ(x; θ)Pθ(dx) = 0 . (4.3)

Let us introduce the notation Ψ(θ) to denote the random vector Ψ(·; θ) and Eθ(X) the
expectation of the random vector X under Pθ. Then for each θ ∈ Θ, the expectation (4.3)
becomes

Eθ{Ψ(θ)} = 0 .

Clearly, if an inference function Ψ : X × Θ −→ IRk is unbiased, then the inference function
Ψn : X n × Θ −→ IRk based on a sample of size n (i.e. Ψn(x; θ) =

∑n
i=1 Ψ(xi; θ)) is also

unbiased (and vice-versa).
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In the rest of this section we try to elucidate the meaning of the assumption of unbiased-
ness in the context of a one-dimensional parameter (i.e. k = 1). We will not obtain full
generality of the arguments presented here, but try to be illustrative.

We start by fixing a value of the parameter, say θ0 ∈ Θ ⊆ IR, which is regarded as the
“true value of the parameter θ”. Define the function λθ0 : Θ −→ IR by

λθ0(θ) = λ(θ) = Eθ0{Ψ(θ)}. (4.4)

Clearly, Ψ is unbiased if and only if

λθ0(θ0) = 0 , ∀ θ0 ∈ Θ.

Now if Ψ is not unbiased then there exists at least one member of Θ, say θ1, such that
λθ1(θ1) 6= 0. If, additionally, λθ1 : Θ −→ IR is continuous in a neighbourhood of θ1, then
there exists an ǫ > 0 such that for all θ ∈ (θ1 − ǫ, θ1 + ǫ)

λθ1(θ) 6= 0 .

Hence, for n large enough, there would be no roots of Ψn in the interval (θ1 − ǫ, θ1 + ǫ),
Pθ1-almost surely. Then the sequence of estimators defined by the roots of Ψn would not
be (strongly) consistent! The assumption of continuity of λθ1 holds in most of the cases
encountered in practice and it is somehow related with the stability of the inference function
in play.

Clearly, the problem presented above does not occur with unbiased inference functions.
However, one should be careful to post the reciprocal of the argument presented. One possi-
bility is given in the next theorem.

Theorem 4.1 Suppose that Ψn(·) is continuous [Pθ0 ], and that there exists a δ0 > 0 such
that for all θ ∈ (θ0 − δ0, θ0)

λ(θ) > 0

and for all θ ∈ (θ0, θ0 + δ0)

λ(θ) < 0.

Then there exists a sequence of roots of Ψn, say {θ̂n}, such that

θ̂n
Pθ0−→ θ0.

Proof: Take δ ∈ (0, δ0). From the strong law of large numbers

Ψn(θ0 − δ) −→ λ(θ0 − δ) > 0 [Pθ0 ],

and

Ψn(θ0 + δ) −→ λ(θ0 + δ) < 0 [Pθ0 ],
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as n→ ∞. Hence, there exists an n0 = n0(δ) such that for all n ≥ n0 one has, almost surely
with respect to Pθ0 , that

Ψn(θ0 − δ) > 0

and

Ψn(θ0 + δ) < 0.

Then from the continuity of Ψn, there exists, almost surely with respect to Pθ0 , a root θ̂n(δ)
of Ψn in the interval (θ0 − δ, θ0 + δ) such that

Pθ0(|θ̂n(δ)− θ0| < δ) −→ 1,

as n → ∞. Now, instead of θ̂n(δ), we take the root θ̂n which is closest to θ0. Clearly, this
root does not depend on δ and also satisfies

Pθ0(|θ̂n − θ0| < δ) −→ 1 , (4.5)

as n −→ ∞. Note that the existence of θ̂n(δ) ensures the existence of at least one root of Ψn

that satisfies (4.5). From the arbitrariness of the choice of δ in (0, δ0), one concludes from
(4.5) that θ̂n converges in probability to θ0 under Pθ0 . �

4.3 Optimality of inference functions

In this section, we study a criterion for selecting inference functions which is reminiscent
of the classical theory of point estimation. The idea is to restrict attention to a class of
inference functions in such a way that it will be easy to tie up with the classical theory
of point estimation. It is then desirable to have a set of conditions that ensure at least
that the associated estimators are consistent and asymptotically normally distributed. Then
we choose the inference function with the smallest asymptotic variance. This “optimal”
inference function is equivalent to the score function in most of the well behaved cases,
providing an alternative justification for the maximum likelihood estimator. However, the
original formulation of the optimality theory, due to Godambe, is noteworthy in that it
does not involve asymptotic arguments. Actually, Godambe’s conditions used for defining
regular inference functions are not sufficient to ensure asymptotic normality. This makes the
coincidence of the “optimal” inference function and the score function even more interesting,
provided one agrees with the intuitive justification of the definition of information.

4.3.1 The one-dimensional case

Let (X ,A,P) be a statistical model, where P = {Pθ : θ ∈ Θ}. In order to postpone
technicalities, we first study the case where the parameter space Θ is one-dimensional; i.e. Θ
is a subset of the real line. Moreover, we assume that each distribution in P is dominated by
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a common σ-finite measure µ. For each Pθ ∈ P , we choose a version of the Radon-Nikodym
derivative with respect to µ, which we denote by

p(·; θ) = dPθ
dµ

(·).

An inference function ψ : X ×Θ → IR is said to be a regular inference function when the
following conditions are satisfied for all θ ∈ Θ:

i) Eθ{ψ(θ)} = 0 (i.e. ψ is unbiased);

ii) The partial derivative of ψ(x; θ) with respect to θ exists for µ-almost every x ∈ X .

ii) The order of integration and differentiation may be interchanged as follows:

d

dθ

∫

X
ψ(x; θ)p(x; θ)dµ(x) =

∫

X

∂

∂θ
[ψ(x; θ)p(x; θ)] dµ(x);

iv) 0 < Eθ{ψ2(θ)} <∞;

v) 0 < E2
θ |∂ψ(θ)/∂θ| <∞.

We let G denote the class of regular inference functions.
If the score function U(x; θ) = ∂ log p(x; θ)/∂θ is a regular inference function and Θ ⊆ IR is

an open interval, then the statistical model is said to be regular. We will consider only regular
statistical models. However, the reader should be aware that there are simple examples of
non-regular models. The next example illustrates this point.

Example 4.2 (A non-regular model) Consider the uniform distribution on the interval [0, θ],
where θ ∈ Θ = (0,∞). Then we may take p(x; θ) = θ−1I[0,θ)(x). Consequently,

log p(x; θ) =

{

log θ−1 if x ∈ [0, θ)
−∞ otherwise.

Note that ∂ log p(x; θ)/∂θ is not defined for x ≥ θ, but since the set [θ,∞) has Pθ-measure
zero, we may define the score function arbitrarily there. Accordingly, we let

U(x; θ) =

{

−θ−1 if x ∈ [0, θ)
0 otherwise.

Clearly U is not unbiased, so the model is not regular.

Before developing the optimality theory for inference functions, we analyse the assumption
of regularity in more detail. We first define the function i : Θ → (0,∞) by

i(θ) = Eθ{U2(θ)},
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which is called the Fisher information. Using condition iii), it can be easily shown that

i(θ) = −Eθ

[

∂2 log p(x; θ)

∂θ2

]

.

provided that the second partial derivative ∂2 log p(x; θ)/∂θ2 exists for µ-almost every x.
Henceforth we assume the existence of this derivative. Condition iv) ensures that i(θ) > 0
for each θ ∈ Θ.

It is convenient to denote the partial derivatives ∂ψ/∂θ and ∂2ψ/∂θ2 and by ψ′(θ) and
ψ′′(θ), respectively.

We now define the Godambe information and provide an intuitive justification. We define
two real functions associated with a regular inference function ψ ∈ G. The variability Vψ(·)
of ψ is defined as

Vψ : θ 7−→ Vψ(θ) = Eθψ
2(θ) = Vθ{ψ(θ)},

while the sensitivity Sψ(·) of ψ is defined as

Sψ : θ 7−→ Sψ(θ) = Eθ{ψ′(θ)}.

Clearly, one seeks inference functions with low variability, meaning that the inference function
assumes a value close to its mean (zero) at the true value of the parameter. One also seeks
high absolute value of the sensitivity, meaning that small parameter changes to the inference
function in a neighbourhood of the true value provoke large changes in the inference function.

Different inference functions cannot be compared on the basis of variability alone. Equiva-
lent inference functions (i.e. those yielding identical estimators) can have different variability
(for example, multiply a given inference function by 2). One way to deal with this problem,
which also takes the sensitivity into account, is to use the Godambe information (in reference
to the pioneering work of V.P. Godambe), which can be expressed as

Jψ(θ) =
S2
ψ(θ)

Vψ(θ)
.

Inference functions with high absolute sensitivity and low variability then correspond to
functions having high Godambe information.

An alternative interpretation of the Godambe information is obtained through the notion
of standardized inference function. Recall the equivalence relation “∼” between regular in-
ference functions. From each equivalence class, say [ψ], choose the (unique) function in that
class having sensitivity equal to one (see Problem 4.8 item i)). For each equivalence class [ψ]
(associated with a regular inference function ψ), this function is the standardized version of
ψ defined by

ψ̃(x; θ) =
ψ(x; θ)

Sψ(θ)
,

θ ∈ Θ, x ∈ X . Having chosen this representative from each equivalence class, we make
comparisons between different classes by comparing the variability of their representatives.
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Now the variability Vψ̃ of the standardized version of ψ can be obtained from the Godambe
information of ψ; i.e. for each θ ∈ Θ

Vψ̃(θ) = J−1
ψ (θ).

Hence, we need only use the Godambe information to compare inference functions.
Note that the above discussion makes no direct reference to asymptotic arguments. This

is interpreted in the literature (in particular the many papers by Godambe) as meaning that
there is a finite sample justification (maximizing the Godambe information) for the optimality
theory for inference functions. However there are some criticisms of this viewpoint (see
Pfanzagl, 1990, p. 36) since the arguments make no reference to properties of the sequence
of estimators {θ̂n}, which is in fact the primary object of interest.

We now study the asymptotic distribution of the roots of a regular inference function ψ.
Suppose x1, x2, x3, . . . are a sequence of independent observations drawn from an unknown
distribution Pθ ∈ P . In the following theorem, we consider a sequence of estimators {θ̂n}n≥1 =

{θ̂n(x1, · · · , xn)}n≥1 satisfying the equations

n
∑

i=1

ψ(xi; θ̂n) = 0, (4.6)

for each n ≥ 1. The following result shows that, under regularity conditions, Jψ is the

inverse of the asymptotic variance of {θ̂n}n≥1, providing a further (asymptotic) argument for
preferring inference functions with large Godambe information.

Theorem 4.3 Let ψ : X × Θ → IR be a regular inference function and let {θ̂n}n≥1 be a
sequence of estimators satisfying (4.6) for each n ≥ 1. Assume that the model is regular.
Suppose that there is a θ ∈ Θ such that,

θ̂n
P→ θ as n→ ∞ ,

under Pθ and that ψ(x; ·) is twice continuously differentiable, and that there exists a constant
c and a measurable function M : X −→ IR such that for all x ∈ X and all θ∗ ∈ (θ− c, θ+ c),

|ψ′′(x; θ∗)| < M(x) , (4.7)

and
∫

X M(x)p(x; θ)µ(dx) <∞. We then have that for all θ ∈ Θ,

√
n(θ̂n − θ)

D→ N(0, J−1
ψ (θ))

under Pθ.

Here “
D→” denotes convergence in distribution (relative to Pθ) and “

P→” convergence in
probability.
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The assumptions of Theorem 4.3 can be relaxed somewhat. Actually it is not necessary
to assume the kind of boundedness given by (4.7), but this assumption simplifies very much
the proof. In Problem 4.9 the proof of Theorem 4.3 without assumption (4.7) (but assuming
instead that

∫

X ψ
′′(x; θ)p(x; θ)dµ(x) ∈ IR) is sketched for the interested reader.

Proof: For each n ∈ N and each sample x = (x1, ..., xn) define the functions Ψn(x; · ) :
Θ → IR by, for θ ∈ Θ,

Ψn(x; θ) =
n
∑

i=1

ψ(xi; θ),

and let Ψ′
n(x; · ) and Ψ′′

n(x; · ) denote the derivatives of Ψn with respect to θ. A Taylor
expansion with Lagrange reminder term of Ψn(θ̂n) around θ yields

0 = Ψn(x; θ̂n) = Ψn(x; θ) + (θ̂n − θ)Ψ′
n(x; θ) +

1

2
(θ̂n − θ)2Ψ′′

n(x; θ
∗
n). (4.8)

where θ∗n lies between θ and θ̂n. Solving for θ − θ̂n and multiplying by
√
n gives,

√
n(θ̂n − θ) =

− 1√
n
Ψn(x; θ)

1
n
Ψ′
n(x; θ) +

1
2
(θ̂n − θ) 1

n
Ψ′′
n(x; θ

∗
n)
. (4.9)

The Central Limit Theorem gives

1√
n
Ψn(θ)

D→ N (0, Vψ(θ)) .

We show that the denominator of (4.9) converges in probability to Sψ(θ), which in light of
Slutsky’s Theorem and he last remark implies the theorem.

Note that, from the law of large numbers, 1
n
Ψ′
n(θ)

P−→ Sψ(θ). Hence we just have to prove

that 1
n
Ψ′′
n(θ

∗
n) remains bounded in probability as n → ∞, because θ̂n − θ

P−→ 0. Using (4.7)
and the law of large numbers,

∣

∣

∣

∣

1

n
Ψ′′
n(θ

∗
n)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ψ′′(xi; θ
∗
n)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

M(xi)
P−→
∫

X
M(x)p(x; θ)µ(dx) <∞ . (4.10)

We conclude that 1
n
Ψ′′
n(θ

∗
n) remains bounded in probability, which proves the theorem. �

4.3.2 Regular asymptotic linear estimators

In the last section we gave an interpretation of the Godambe information based on the asymp-
totic normality of the sequence of estimates associated with a sufficiently regular inference
function. In the proof of Theorem 4.3, on the asymptotic normality of the roots of inference
functions, the crucial step was a Taylor expansion of a regular inference function. In this
section we use the same idea to propose a rich class of estimators which are consistent and
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asymptotically normally distributed. That is, we consider the class of estimates for which we
have the expansion we need, which of course will contain the class of estimates considered in
the Theorem 4.3.

Proceeding in this way, we stress what from our point of view is the mathematical kernel
of the theory of optimality. This differs from the original formulation in which the motivation
was more in the direction of reproducing, in the context of inference functions, the classical
theory of optimality of point estimation, a kind of analogy which is explored in the next
section. Finally we note that the class of estimators we consider here has often been used
to obtain optimality results in more general contexts than the one considered here, see for
instance Bickel et al. (1993).

We say that a sequence of estimates {θ̂n}n∈N = {θ̂n(x1, . . . , xn)}n∈N , based on a sample
x1, . . . , xn, is regular asymptotic linear if there exists a measurable function ψ : X ×Θ −→ IR
and a random sequence {an} such that for each θ ∈ Θ

n/an
P−→ 1, under Pθ; (4.11)

ψ(θ) ∈ L2(Pθ) ; (4.12)
∫

ψ(x; θ)dPθ(x) = 0 ; (4.13)

θ̂n = θ +
1

an

n
∑

i=1

ψ(xi; θ) + oPθ(n
−1/2) . (4.14)

The function ψ is said to be the influence function associated with {θ̂n}. This definition is
slightly more general than the definition by Bickel et al. (1993), whose definition corresponds
to taking an = n.

Theorem 4.4 If {θ̂n}n∈N is regular asymptotic linear, then for each θ ∈ Θ,

√
n(θ̂n − θ)

D−→ N(0, Vψ(θ)),

where Vψ(θ) =
∫

ψ2(x; θ) dPθ(x) denotes the variability of ψ.

Proof: From (4.11)–(4.14) we have that

√
n(θ̂n − θ) =

√
n

an

n
∑

i=1

ψ(xi; θ) +
√
n oPθ(n

−1/2)

=
n

an
√
n

n
∑

i=1

ψ(xi; θ) + oPθ(1).

On the other hand, by the Central Limit Theorem,

1√
n

n
∑

i=1

ψ(xi; θ)
D−→ N(0, Vψ(θ)),
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and
n/an

P−→ 1 ,

as n→ ∞. By Slutsky’s Theorem,

√
n(θ̂n − θ) =

n

an

1√
n

n
∑

i=1

ψ(xi; θ)
D−→ N(0, Vψ(θ)).

�

Proposition 4.5 Under the assumptions of Theorem 4.3 (or Problem 4.9), the sequence of
roots, {θ̂n}, of a regular inference function ψ : χ×Θ → IR is regular asymptotic linear.

Proof: Without loss of generality, assume that ψ is standardized, i.e.

Sψ(θ) = Eθ{ψ′( θ)} = 1.

Take an = Ψ′
n(x; θ) +

1
2
(θ̂n − θ)Ψ′′

n(x; θ
∗
n). From the law of large numbers one has

1

n
Ψ′
n(θ)

P−→ Eθ{ψ′(θ)} = 1.

From the argument given in the proof of Theorem 4.3 the second term of an divided by n

converges in probability to zero. Using Slutsky’s Theorem it follows that n/an
P−→ 1. The

theorem follows by solving Equation 4.8 for θ̂n and defining the term oPθ(n
−1/2) = 0. �

The previous theorem shows that regular asymptotic linearity is sufficient to have consis-
tency and asymptotic normality. We show now that, in a certain sense, these are the minimal
natural conditions, in the sense that in order to drop one of the assumptions (4.11)–(4.14)
and keep the consistency and asymptotic normality, one should introduce rather complicated
and artificial conditions. First of all, we have already given arguments showing that the
unbiasedness, i.e. ( 4.13), is a kind of minimal condition for having consistency provided one
also has asymptotic normality. Moreover, (4.12) and (4.13) ensure asymptotic normality via
the Central Limit Theorem in a natural way when an independent identically distributed
scheme is assumed. Of course, in view of Feller’s reciprocal of the Central Limit Theorem,
Lindeberg’s condition would be the most general condition to have asymptotic normality.
However, we should agree that sequences of estimators based on inference functions that
satisfy Lindeberg’s condition but not (4.14) are rare.

4.3.3 Generalizations of classical estimation theory

In this section, we explore the mathematical structure associated with the class of regular
inference functions to obtain some parallels with the classical theory of point estimation.
This approach is in the spirit of the original formulation of the optimality theory of inference
functions due to Godambe. The assumption of regularity of the inference function is crucial
here.
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It can be shown that the asymptotic variance of the sequence of estimators {θ̂n}n≥1

associated with a regular inference function ψ cannot be smaller than the inverse of the Fisher
information i(θ), provided that the sequence of estimators is consistent and asymptotically
normally distributed. On the other hand, i(θ) is precisely the Godambe information of the
score function. This is closely connected with the following theorem.

Theorem 4.6 Under the previous assumptions, if ψ is a regular inference function, then for
every θ ∈ Θ,

Jψ(θ) ≤ i(θ). (4.15)

Equality is attained in (4.15) if and only if ψ is equivalent to the score function.

Proof: First note that since ψ is unbiased, we have
∫

X
ψ(x; θ)p(x; θ)dµ(x) = 0. (4.16)

Differentiating this expression with respect to θ and interchanging the order of integration
and differentiation, we obtain

0 =

∫

X
ψ′(x; θ)p(x; θ) dµ(x) +

∫

X
ψ(x; θ)

∂p(x; θ)

∂θ
dµ(x)

= Eθψ
′(θ) + Eθ[ψ(θ)U(θ)]. (4.17)

It follows that
E2
θ{ψ′(θ)} = E2

θ[ψ(θ)U(θ)]. (4.18)

From (4.16) (and the unbiasedness of the score function), the right-hand side of this equation
is the squared correlation between ψ(θ) and U(θ). By the Cauchy-Schwartz inequality,

E2
θ[ψ(θ)U(θ)] ≤ Eθ{ψ2(θ)}Eθ{U2(θ)}.

Applying this result to (4.18) and dividing through by Eθψ
2(θ), we obtain the desired in-

equality Jψ(θ) ≤ i(θ). Equality is obtained in this expression if and only if there exist real
parameters a(θ) and k(θ) such that ψ(θ) = a(θ) + k(θ)U(θ). But since ψ(θ) is unbiased, we
must have a(θ) = 0. Hence the Godambe information attains the upper bound i(θ) if and
only if the inference function is equivalent to the score function U(θ). �

We stress that the bound obtained in (4.15) is a generalization of the classical information
inequality. Thus, consider a statistic T = t(X) with finite variance, i.e. Vθ{t(X)} < ∞ for
all θ ∈ Θ. Define the unbiased inference function ψ given by

ψ(x; θ) = t(x)− Eθt(X)

for all x ∈ X and θ ∈ Θ. We assume that ψ is regular. (The reader is invited to check that
this is equivalent to the classical assumptions of estimation theory). Noting that Eθψ

′(θ) =
−∂{Eθt(X)}/∂θ and Eθ{ψ2(θ)} = Vθ{t(X)}, (4.15) implies

[

∂
∂θ
Eθt(X)

]2

Vθ{t(X)} =
E2
θψ

′(θ)

Eθ{ψ2(θ)} ≤ i(θ), (4.19)
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which is the classical information inequality. Moreover, if T is unbiased, i.e. Eθt(X) = θ for
all θ ∈ Θ, inequality (4.19) becomes

1

Vθ{t(X)} ≤ i(θ), (4.20)

which is the Cramér-Rao inequality.
We note that equality holds in (4.20) if and only if the statistical model is an exponential

family. To see this, suppose that ψ(x; θ) = t(x)− θ is an optimal inference function (i.e. the
bound (4.20) holds with equality). Then ψ(x; θ) = k(θ)U(x; θ) for some k : Θ −→ IR \ {0}.
Hence, for some θ0 ∈ Θ and a : X −→ IR, the log-likelihood function has the form

l(x; θ) = a(x) +

∫ θ

θ0

U(z)dz

= a(x) + t(x)

∫ θ

θ0

1

k(z)
dz −

∫ θ

θ0

z

k(z)
dz

= a(x) + t(x)α(θ)− β(θ),

where α and β are the integrals appearing in the second equality. Hence we have

p(x; θ) = ea(x)et(x)α(θ)−β(θ),

which specifies an exponential family. In particular, the Cramér-Rao bound is attained with
equality if and only if θ is the mean parameter of an exponential family.

The connection between classical estimation theory and the theory of optimal inference
functions is not restricted to the information inequality. Many other analogies exist. For
example, the following theorem generalizes the classical Rao-Blackwell theorem of estimation
theory.

Theorem 4.7 Let t(X) be a B-sufficient statistic (sufficient in the sense defined in Chapter
2) for the family {Pθ : θ ∈ Θ ⊆ IR}, and let Φ be a regular inference function. Define

ψ(t0; θ) = Eθ{Φ(X; θ)|T = t0}.

Then under the previous regularity conditions, for all θ ∈ Θ,

JΦ(θ) ≤ Jψ(θ), (4.21)

with equality if and only if, for all θ ∈ Θ,

Φ(x; θ) = ψ(t(x); θ) [Pθ].

Before presenting the proof, we show that this theorem is indeed a generalization of the
Rao-Blackwell theorem. Define, for each θ ∈ Θ and x ∈ X ,

Φ(x; θ) = f(x)− θ,
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where f(x) is an unbiased estimator of θ. In the notation of the theorem, one has

ψ(t0; θ) = f ∗(t0)− θ,

where f ∗(t0) is the conditional expectation of f(X) given T = t0. The inequality (4.21) then
becomes

Vθ{f ∗(t(X))} ≤ Vθ{f(X)},
with equality if and only if f(x) = f ∗(t(x)) [Pθ]. This is exactly the Rao-Blackwell theorem.

It is also possible to obtain an analogue of the Lehmann-Scheffé Theorem in the context
of inference functions. However, there is no need to do so, because we have already found an
optimal inference function, namely the score function.

The theorem basically says that if we want to maximize the Godambe information, then we
need only consider inference functions that depend on the data through a sufficient statistic.
This idea is consistent with the principle of sufficiency.
Proof: Note that for all θ ∈ Θ,

Eθψ(θ) = EθΦ(θ) = 0.

Moreover,
EθΦ

2(θ) = Eθ [Varθ{Φ(θ)|T}] + Eθψ
2(θ).

It then follows that

0 =
d

dθ
Eθψ(θ)

=

∫

X

∂

∂θ
[ψ(x; θ)p(x; θ)] dx

=

∫

ψ′(x; θ)p(x; θ)dx+

∫

ψ(x; θ)
∂

∂θ
p(x; θ)dx

= Eθψ
′(θ) + Eθ[ψ(θ)U(θ)],

and therefore
−Eθψ

′(θ) = Eθ[ψ(θ)U(θ)].

Here we have invoked the regularity conditions to interchange the order of integration and
differentiation. Since T is sufficient,

−Eθψ
′(θ) = Eθ[ψ(θ)U(θ)] = Eθ {Eθ[Φ(θ)|T ]U(θ)}

= Eθ[Φ(θ)U(θ)]

= −Eθ(Φ
′(θ)).

Hence we obtain, for all θ ∈ Θ,

JΦ(θ) =
E2
θ[ψ

′(θ)]

Eθψ2(θ) + Eθ[Varθ{Φ(θ)|T}]
≤ Jψ(θ).

�
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4.3.4 The multidimensional case

In this section, we extend the concepts of the previous section to the multidimensional con-
text. The parameter space Θ is then assumed to be an open subset of IRk, where k ∈ IN . As
before, it is assumed that we have a parametric family of distributions P = {Pθ : θ ∈ Θ ⊆ IRk}
and a σ-finite measure µ defined on a given measurable space (X ,A). For each Pθ ∈ P , we
choose a version of the Radon-Nikodym derivative (with respect to µ), denoted by

p( · ; θ) = dPθ
dµ

(·) .

We now extend the notion of regular inference function to this multidimensional context.
A function Ψ : X × Θ −→ IRk is said to be a regular inference function when the following
conditions are satisfied for all θ = (θ1, · · · , θk) ∈ Θ and for i, j = 1, . . . , k.

(i) Eθ{Ψ(θ)} = 0;

(ii) The partial derivative ∂Ψ(x; θ)/∂θi exists for µ-almost every x ∈ X ;

(iii) The order of integration and differentiation may be interchanged as follows:

∂

∂θi

∫

X
Ψ(x; θ)p(x; θ)dµ(x) =

∫

X

∂

∂θi
[Ψ(x; θ)p(x; θ)] dµ(x) ;

(iv) Eθ{ψi(θ)ψj(θ)} ∈ IR and the k × k matrix

Vψ(θ) = Eθ{Ψ(θ)Ψ⊤(θ)}

is positive-definite;

(v) Eθ

{

∂ψi
∂θr

(θ)
∂ψj
∂θs

(θ)
}

∈ IR and the k × k matrix

Sψ(θ) = Eθ{∇θΨ(θ)}

is nonsingular.

Here ψi denotes the ith component of the vector function

Ψ(·) = (ψ1(·), . . . , ψk(·))⊤ ,

and ∇θ denotes the gradient operator relative to the vector θ, defined by

∇θf(θ) =
∂f

∂θ⊤
(θ).

It is easy to see that the preceding conditions generalize those given earlier for the one-
dimensional case.
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As before, if the score function

U(x; θ) = ∇⊤
θ log p(x; θ)

is a regular inference function and Θ is an open region of IRk, then the model (X ,A,P) is
said to be regular. Henceforth, we consider only regular models. In the multidimensional
context, the Fisher information is the matrix-valued function i : Θ −→ IRk×k defined by

i(θ) = Eθ[U(θ)U
⊤(θ)].

Given a regular inference function Ψ, the Godambe information is the matrix-valued
function JΨ : Θ −→ IRk×k defined by

JΨ(θ) =
[

E−1
θ {∇θΨ(θ)}Eθ{Ψ(θ)Ψ⊤(θ)}E−⊤

θ {∇θΨ(θ)}
]−1

= S⊤
Ψ(θ)V

−1
Ψ (θ)SΨ(θ).

Here B−⊤ = (B−1)⊤. The following theorem gives an asymptotic interpretation of the Go-
dambe information. The reader is invited to provide a finite sample justification similar to
the one given in the preceding section.

Theorem 4.8 Take θ ∈ Θ fixed. Under the previous assumptions, if the sequence of esti-
mators {θ̂n}∞n=1 associated with a regular inference function Ψ : X ×Θ −→ IRk converges in
probability to θ, then this sequence is asymptotically normal,

√
n(θ̂n − θ)

D−→ Nk

(

0, J−1
Ψ (θ)

)

under Pθ.

The proof of this theorem can be obtained by modifying that of the one-dimensional
version given previously (see Problem 4.10).

In the one-dimensional case, we used the Godambe information to compare two regular
inference functions. We prefer the function having the larger Godambe information. In
the multidimensional case, the Godambe information is no longer a number but a k × k
matrix. Accordingly, we must be more careful when comparisons are made between inference
functions. Several equivalent approaches for partially ordering the class of regular inference
functions are presented in the literature (see Bhapkar (1972), Kale and Chandrasekar (1983),
Chandrasekhar and Kale (1984), Chandrasekhar (1988), Joseph and Durairajan (1991) or
Durairajan (1989)).

We shall here use the Löwner partial ordering of matrices. For k × k matrices A and B,
we write “A ≥ B” if and only if A − B is positive-semi-difinite. Then given two inference
functions Ψ and Φ, we prefer Ψ if, for all θ ∈ Θ, JΨ(θ) ≥ JΦ(θ). The regular inference
function Ψ is said to be optimal when, for all θ ∈ Θ and all regular inference functions Φ,
one has

JΨ(θ) ≥ JΦ(θ).



152 CHAPTER 4. INFERENCE FUNCTIONS

The natural interpretation of the criterion given above is the following. Due to the asymptotic
normality of the sequence of estimators {θ̂n}∞n=1 associated with an inference function, one can
construct an asymptotic confidence region for the parameter; a k-dimensional ellipsoid. Now,
the volume of this ellipsoid is given by the determinant of the inverse Godambe information
(i.e. the determinant of the asymptotic covariance matrix). Since A ≥ B implies that
det(A − B) ≥ 0, we conclude that the optimal inference function minimizes the volume of
the asymptotic confidence region.

The next result is again a multidimensional analogue of a previous theorem.

Theorem 4.9 Under the previous assumptions, given a regular inference function Ψ, one
has, for all θ ∈ Θ,

JΨ(θ) ≤ i(θ).

Equality holds if and only if Ψ is equivalent to the score function.

To show the theorem, we will first define some special subspaces of L2 in which the
components of the regular inference function and the components of the score function reside.
These spaces are closed and hence are Hilbert spaces when considered with the natural inner
product of L2. With this convenient mathematical structure we will obtain a decomposition
of each regular inference function into two orthogonal components, one of them equivalent
to the score function. We will prove then that the information of the component of the score
function that is equivalent to the score function is larger than the Godambe information of
the original inference function.

We note that the technique we introduce here is rather general and, except for a more
sophisticated decomposition of the regular inference function, the procedure is essentially the
same as we will develop for the case with an arbitrary nuisance parameter.

For each θ ∈ Θ define

L2
0(Pθ) =

{

f ∈ L2(Pθ) :

∫

f(x) dPθ(x) = 0

}

and
Uθ = span{Ui(·; θ) : i = 1, . . . , k}

where Ui(·; θ) is the ith component of the score function, U , evaluated at θ. Note that
if Ψ : X × Θ −→ IRk is a regular inference function with components ψ1, . . . , ψk, then
ψi : X × Θ −→ IR and ψi(·; θ) ∈ L2

0(Pθ) for i = 1, . . . , k. Furthermore, if the inference
function Ψ is equivalent to the score function (in the sense of the equivalence relation “∼”
defined before) then, for i = 1, . . . , k, ψ(·; θ) ∈ Uθ. The next lemma gives a convenient
mathematical structure for L2

0 and Uθ.

Lemma 4.10 We have the inclusions Uθ ⊆ L2
0(Pθ) ⊂ L2(Pθ), ∀θ ∈ Θ. Moreover, Uθ and

L2
0(Pθ) are real, closed and convex vector subspaces of L2(Pθ) (when endowed with the inner

product of L2(Pθ)).
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Proof: Let θ ∈ Θ be fixed but otherwise arbitrary. The inclusion Uθ ⊆ L2
0(Pθ) follows

from the fact that the score function is unbiased and belongs to L2(Pθ). The other inclusion
is obvious.

The convexity and the vector space structure of Uθ and L2
0(Pθ) are straightforward. Fur-

thermore, since Uθ is a finite-dimensional vector space, it is closed. For the closedness of
L2
0(Pθ) we argue as follows. Take an arbitrary generalized sequence {fα}α∈A contained in

L2
0(Pθ) such that for some f ∈ L2(Pθ), fα

L2(Pθ)−→ f as α ր . Here A is a given ascendent
directed set. By the continuity of the inner product

0 =

∫

fα(x) dPθ(x) =< fα,1 >θ−→< f,1 >θ=

∫

f(x) dPθ(x)

where < ·, · > is the inner product of L2(Pθ) and 1 is the constantly equal to 1 function.
Then

∫

f(x) dPθ(x) = 0 which implies that f ∈ L2
0(Pθ). Since the sequence {fα} is arbitrary

we conclude that L2
0(Pθ) is closed. �

We now define Aθ to be the orthogonal complement of Uθ with respect to L2
0(Pθ), θ ∈ Θ.

Lemma 4.11 Given a regular inference function Ψ : X × Θ −→ IRk with components
ψ1, . . . , ψk, the following decomposition holds for each x ∈ X and θ ∈ Θ

Ψ(x; θ) = Ψa(x; θ) + ΨU(x; θ)

where

Ψa(x; θ) = (ψa1(x; θ), . . . , ψak(x; θ))
⊤

ΨU(x; θ) = (ψU1(x; θ), . . . , ψUk(x; θ))
⊤

with

ψa1(·; θ), . . . , ψak(·; θ) ∈ Aθ

ψU1(·; θ), . . . , ψUk(·; θ) ∈ Uθ

Proof: Let i ∈ {1, . . . , k} be arbitrary. From Lemma 4.10, ψi(·; θ) ∈ L2
0(Pθ). By the

orthogonal projection theorem, ψi can be decomposed as ψi(·; θ) = ψai(·; θ) + ψUi(·; θ) and
ψai(·; θ) ∈ Aθ and ψUi(·; θ) ∈ Uθ, as was required. �

Lemma 4.12 Let Ψ : X × Θ −→ IRk be a regular inference function (except from the fact
that here we allow the sensitivity to vanish) such that ψi(·; θ) ∈ Aθ for θ ∈ Θ and i = 1, . . . , k.
Then

∫ {

∂

∂θi
Ψ(x; θ)

}

dPθ(x) = 0, i = 1, . . . , k

i.e. the sensitivity of Ψ, SΨ, vanishes at θ.
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Proof: Take θ ∈ Θ and i ∈ {1, . . . , k}. Note that
∫

Ψ(x; θ)
∂

∂θi
p(x; θ) dµ(x) =

∫

Ψ(x; θ)Ui(x; θ)p(x; θ) dµ(x) = 0

because ψ1(·; x), . . . , ψ(·; θ) ∈ Aθ, i.e. they are orthogonal to the score function. Hence,

∫

∂

∂θi
{Ψ(x; θ)p(x; θ)} dµ(x) =

∫ {

∂

∂θi
Ψ(x; θ)

}

p(x; θ) dµ(x)

+

∫

Ψ(x; θ)
∂

∂θi
p(x; θ) dµ(x)

=

∫

∂

∂θi
{Ψ(x; θ)p(x; θ)} dµ(x)

= 0.

�

We now have the necessary elements to prove the optimality theorem.
Proof: Let θ ∈ Θ be arbitrary. From the linearity of the gradient operator and the
expectation we obtain

SΨ(θ) = Eθ {∇θΨ(θ)} = Eθ [∇θ {Ψa(θ) + ψU(θ)}]
= Eθ {∇θΨa(θ)}+ Eθ {∇θΨU(θ)}
= SΨa(θ) + SΨU (θ) = SΨU (θ).

The last equality follows from Lemma 4.12. On the other hand,

VΨ(θ) = Eθ{Ψ(θ)Ψ(θ)⊤}
= Eθ[{Ψa(θ) + ΨU(θ)}{Ψa(θ) + ΨU(θ)}⊤]
= Eθ{Ψa(θ)Ψ

⊤
a (θ)}+ E{ΨU(θ)Ψ

⊤
U(θ)}

= VΨa(θ) + VΨU (θ).

Here the cross-products vanish because of orthogonality.
Hence, we have

J−1
Ψ (θ) = S−1

Ψ (θ)VΨ(θ)S
−⊤
Ψ (θ)

= S−1
ΨU

(θ)VΨ(θ)S
−⊤
ΨU

(θ)

= S−1
ΨU

(θ) {VΨU (θ) + VΨa(θ)}S−⊤
ΨU

(θ)

= J−1
ΨU

(θ) + S−1
ΨU

(θ)VΨaS
−⊤
ΨU

(θ).

The second term in the last expression is positive-definite, so J−1
Ψ (θ) ≥ J−1

ΨU
(θ). It follows

easily that JΨ(θ) ≤ JΨU (θ). Note that JΨU (θ) = JU(θ), because ψU ∼ U . Also, JU(θ) = i(θ).
We have hence shown that JΨ(θ) ≤ i(θ) and that this upper bound is attained by the score
function. �
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4.4 Inference functions with nuisance parameters

We now develop the theory of inference functions for models with nuisance parameters. The
idea of nuisance parameters seems to have more than one interpretation in the statistical
literature. We use this term here in the sense defined in the following.

Consider a statistical model (X ,A,P), where the family of probability measures P is
parametrized as

P = {Pθξ : θ ∈ Θ ⊆ IRk, ξ ∈ Z} (4.22)

Here Θ is an open region of IRk and Z is an arbitrary set (typically infinite-dimensional).
It is assumed that the parametrization of P given in (4.22) is identifiable, i.e., the mapping
(θ, ξ) 7−→ Pθξ, from Θ×Z into P , is one-to-one.

The parameter θ is considered as the parameter of interest, for which we would like to
make inference, and the parameter ξ is understood as a nuisance parameter, which we have no
interest in estimating. This kind of model is the prototype of a semiparametric model and this
is the most general context we consider in this chapter. The terminology “semiparametric”
is meant to reflect the fact that only the parameter θ is assumed to be finite-dimensional,
whereas ξ is not necessarily finite-dimensional.

An inference function, in this new context, is a function, Ψ : X × Θ −→ IRk, of the
observations and the parameter of interest taking values in IRk (recall that Θ ⊆ IRk), such
that for each θ ∈ Θ, the function, Ψ( · ; θ) : X −→ IRk, obtained by fixing the value of
the parameter of interest, is measurable (A, Borel(IRk) measurable). As before, we use the
convenient notation Ψ(θ) to mean the random vector Ψ( · ; θ); moreover, ψ1, . . . , ψk denote
the k components of the function Ψ, ∇θ is the gradient operator (with respect to θ), and so
on.

We note that an inference function must not depend on the nuisance parameter. However,
the nuisance parameter plays an important role in the theory that we develop here, and one
should take some care in this respect. For instance, see the following definition of unbiased
inference function.

An inference function Ψ is said to be unbiased when for each θ ∈ Θ and each ξ ∈ Z one
has

Eθξ{Ψ(θ)} = 0.

Here Eθξ(X) denotes, of course, the expectation of X under Pθξ.

We study in the following an extension of the optimality theory to the context of models
with nuisance parameters. We give also a brief introduction to a kind of inferential separation
theory in this context. We close the section by developing some differential-geometric based
arguments, showing that the so-called efficient score function is the only possible optimal
inference function one can have, and give a criterion for the existence of optimal inference
functions. No previous knowledge in differential geometry is assumed.
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4.4.1 Optimality theory

We begin by assuming that the family P is dominated by a σ-finite measure µ and that for
each Pθξ ∈ P a version of the Radon-Nikodym derivation was chosen, and is denoted by

p( · ; θ, ξ) = dPθξ
dµ

( · ).

An inference function Ψ : X ×Θ −→ IRk is said to be regular if for all θ ∈ Θ, all ξ ∈ Z and
for i, j = 1, . . . , k, the following conditions hold:

1. Eθξ{Ψ(θ)} = 0;

2. The partial derivative ∂Ψ(x; θ)/∂θi exists for µ-almost every x ∈ X ;

3. The order of integration and differentiation may be interchanged as follows:

∂

∂θi

∫

X
Ψ(x; θ)p(x; θ, ξ)dµ(x) =

∫

X

∂

∂θi
[Ψ(x; θ)p(x; θ, ξ)] dµ(x) ;

4. Eθξ{ψi(θ)ψj(θ)} ∈ IR, and the k × k matrix

VΨ(θ, ξ) = Eθξ{Ψ(θ)Ψ⊤(θ)}

is positive definite;

5. Eθξ

{

∂ψi
∂θm

(θ)
∂ψj
∂θn

(θ)
}

∈ IR and the k × k matrix

SΨ(θ, ξ) = Eθξ{∇θΨ(θ)}

is nonsingular.

Conditions 1)–5) above are similar to the conditions given in the definition of regular
inference function in the multivariate case, the only difference being the presence of the
nuisance parameter. The class of regular inference functions is denoted G.

It is convenient to introduce the notion of regular quasi-inference function (or in short
quasi-inference function) which is a function, say Φ : X ×Θ×Z −→ IRk, of the parameters
and the observations, such that for each θ ∈ Θ and each ξ ∈ Z the conditions (i)–(v) hold
with Ψ(θ) replaced by Φ(θ, ξ). We assume that the model is regular if the partial score
function U : X ×Θ −→ IRk which for each x ∈ X , θ ∈ Θ and ξ ∈ Z is given by

U(x; θ, ξ) = ∇⊤
θ [log{p(x; θ, ξ)}]

is a regular quasi-inference function and Θ is an open region of IRk. Note that we here allow
the partial score function to depend on the nuisance parameter.
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As before, we define the Godambe information for a quasi-inference function, say Φ :
X × Θ × Z −→ IRk, as the matrix-valued function JΦ : Θ × Z −→ IRk×k, which for each
θ ∈ Θ and each ξ ∈ Z is given by

JΦ(θ, ξ) = E⊤
θξ[∇θ{Φ(θ, ξ}]E−1

θξ {Φ(θ, ξ)⊤Φ(θ, ξ)}Eθξ[∇θ{Φ(θ, ξ}] (4.23)

= S⊤
Ψ(θ, ξ)V

−1
Ψ (θ, ξ)SΨ(θ, ξ) .

We note that, in the literature, the Godambe information is usually defined only for regular
inference functions, but if a regular quasi-inference function does not depend on the nuisance
parameter (i.e. it is a regular inference function) then the traditional notion of Godambe
information coincides with our definition. In the following development, we deal several
times with quasi-inference functions—such as the partial score function and the efficient
score function—and then it is convenient to work with the extended setup given here.

We make the same use of the Godambe information as we did before, i.e., we want to
maximize the Godambe information. Thus, a regular inference function Ψ : X × Θ −→ IRk

is said to be optimal when, for all θ ∈ Θ, all ξ ∈ Z and all regular inference functions
Φ : X ×Θ −→ IRk

JΨ(θ, ξ) ≥ JΦ(θ, ξ). (4.24)

Note that the symbol “≥” in (4.24) means that the matrix JΨ(θ, ξ) is “larger than or equal
to” the matrix JΦ(θ, ξ), in the sense of the partial ordering of matrices (as in Section 4.3).
Moreover, (4.24) should hold for all θ ∈ Θ and all ξ ∈ Z. It is natural, then, to ask whether
an optimal inference function exists. We anticipate the answer: there are simple situations
where there exist no optimal regular inference functions. We will illustrate this situation
with an example and give a theorem characterizing the situation at the end of this section.

4.4.2 One-dimensional interest parameter

Before developing a theory characterizing the existence of optimal inference functions for
models with nuisance parameters, we present some classical results, due to Godambe, which
allow us to compute optimal inference functions in many practical situations. For the sake
of simplicity we study, in this section, models with a one-dimensional parameter of interest,
but in the next section we work in full generality. It must be said that the development
given here is slightly more general than Godambe’s original formulation, because we consider
nuisance parameters of arbitrary nature and avoid assumptions about differentiability with
respect to the nuisance parameter.

The following technical (and trivial) lemma will be the kernel of the proofs that follow.
But first it is convenient to introduce the following notation. Given a regular inference
function Ψ : X ×Θ −→ IRk, we define

Ψ̃(x; θ) =
Ψ(x; θ, ξ)

Eθξ{Ψ′(θ)} ,

which is called the standardized version of Ψ. Here Ψ′(θ) = ∇θΨ(θ).
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Lemma 4.13 Under the previous regularity conditions, for each regular inference function
Ψ and Φ : X ×Θ −→ IR and each θ ∈ Θ and ξ ∈ Z, the following assertions hold:

(i)
Eθξ{Ψ(θ)U(θ; ξ)}

Eθξ{Ψ′(θ)} = −1,

where U(θ; ξ) is the partial score function at (θ; ξ);

(ii)

Eθξ

{

Φ̃2(θ)
}

= Eθξ

[

{Φ̃(θ)− Ψ̃(θ)}2
]

+ 2Eθξ

{

Φ̃(θ)Ψ̃(θ)
}

− Eθξ

{

Ψ̃2(θ)
}

.

Proof: Since Ψ is unbiased, one has

∫

Ψ(x; ξ)p(x; θ, ξ)dµ(x) = 0.

Differentiating the expectation above with respect to θ and interchanging the order of differ-
entiation and integration, we obtain

Eθξ

{

∂

∂θ
Ψ(θ)

}

+ Eθξ{Ψ(θ)U(θ; ξ)} = 0

which is equivalent to the first part of the lemma. The second part is straightforward. �

The following theorem gives a useful tool for computing optimal inference functions.

Theorem 4.14 Assume the previous regularity conditions. Consider two functions A :
Θ −→ IR\{0} and R : X × Θ× Z −→ IR. Suppose that, for each regular inference function
Φ, one has, for each θ ∈ Θ and ξ ∈ Z,

∫

R(x; θ, ξ)Φ(x; θ)p(x; θ, ξ)dµ(x) = 0 .

If a regular inference function Ψ can be written in the form, for all θ ∈ Θ,

Ψ(x; θ) = A(θ)U(x; θ, ξ) + R(x; θ, ξ), (4.25)

for x [Pθξ], (Ψ does not depend on ξ even though U and R do), then Ψ is optimal. Further-
more, a regular inference function Φ is optimal if and only if

Φ̃(θ) = Ψ̃(θ) [Pθξ] ∀θ ∈ Θ, ∀ξ ∈ Z,

provided that there exists a decomposition as (4.25) above.
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Proof: Take an arbitrary (θ, ξ) ∈ Θ×Z. Given Φ ∈ G one has

Eθξ{Φ̃(θ)Ψ̃(θ)} = Eθξ

[

Φ(θ)A(θ)U(θ, ξ) + Φ(θ)R(·; θ, ξ)
Eθξ{Φ′(θ)}Eθξ{Ψ′(θ)}

]

(4.26)

=
A(θ)

Eθξ{Ψ′(θ)}
Eθξ{Φ(θ)U(θ, ξ)}

Eθξ{Φ′(θ)}

= − A(θ)

Eθξ{Ψ′(θ)} .

Hence the value of Eθξ{Φ̃(θ)Ψ̃(θ)} does not depend on Φ, in particular,

Eθξ{Φ̃(θ)Ψ̃(θ)} = Eθξ{Ψ̃2(θ)} > 0.

On the other hand, from (ii) of Lemma 4.13, one has

Eθξ{Φ̃2(θ)} = Eθ[{Φ̃(θ)− Ψ̃(θ)}2] + 2Eθξ{Φ̃(θ)Ψ̃(θ)} − Eθξ{Ψ̃2(θ)} (4.27)

= Eθ[{Φ̃(θ)− Ψ̃(θ)}2] + Eθξ{Ψ̃2(θ)}
≥ Eθξ{Ψ̃2(θ)},

for each Φ ∈ G. Thus, ∀θ ∈ Θ, ∀ξ ∈ Z, ∀Φ ∈ G,

JΦ(θ, ξ) =
1

Eθξ{Φ̃2(θ)}
≤ 1

Eθξ{Ψ̃2(θ)}
= JΨ(θ, ξ). (4.28)

We conclude that Ψ is optimal. For the second part of the theorem, note that one has equality
in (4.27), and hence in (4.28), if and only if ∀θ ∈ Θ, ∀ξ ∈ Z, Eθξ[{Φ̃(θ)− Ψ̃(θ)}2] = 0. That
is, if a regular inference function Φ is optimal then Φ̃(·; θ) = Ψ̃(·; θ) [Pθξ], ∀θ ∈ Θ, ∀ξ ∈ Z.
�

We now study the situation where we have a likelihood factorization of the following form.
Suppose that there exists a statistic T = t(X) such that, for all θ ∈ Θ all ξ ∈ Z and all
x ∈ X ,

p(x; θ, ξ) = ft(x; θ)h{t(x); θ, ξ}. (4.29)

Theorem 4.15 Assume that the previous regularity conditions hold and that there exists a
statistic T such that one has the decomposition (4.29). Moreover, suppose that the class
{P t

θξ : ξ ∈ Z}, where P t
θξ is the distribution of T (x) under Pθξ (i.e. X ∼ Pθξ), is complete.

Then the regular inference function given by

Ψ(x; θ) =
∂

∂θ
log ft(x; θ), ∀x ∈ X , ∀θ ∈ Θ (4.30)

is optimal. Moreover, if Φ is also an optimal inference function then Φ is equivalent to Ψ.
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The theorem above gives an alternative justification for the use of conditional inference.
As an immediate consequence, we also justify the use of the correct denominator for the
estimation of the variance in the normal model and solve the paradox of Neyman-Scott.
Proof: Take θ ∈ Θ and ξ ∈ Z fixed. From (4.29),

U(x; θ, ξ) =
∂

∂θ
log p(x; θ, ξ) =

∂

∂θ
log ft(x; θ) +

∂

∂θ
log h(x; θ, ξ) . (4.31)

We apply Theorem 4.14 to prove that ψ is a (“unique”) optimal inference function. More
precisely, defining A(θ) = 1 and R(x; θ, ξ) = −∂ log h{t(x); θ, ξ}/∂θ, and using (4.31) we can
write Ψ in the form

Ψ(x; θ) =
∂

∂θ
log ft(; θ) = A(θ)U(x; θ, ξ) +R(x; θ, ξ) .

According to Theorem 4.14, if R is orthogonal to every regular inference function, then Ψ is
optimal, moreover Ψ is the unique optimal inference function, apart from equivalent inference
functions.

Take an arbitrary regular inference function φ. We show that φ and R are orthogonal.
Note that for each ξ ∈ Z,

0 =

∫

φ(x; θ)p(x; θ, ξ)dµ(x) =

∫

φ(x; θ)ft(x; θ)h{t(x); θ, ξ)dµ(x) .

On the other hand Eθξ(φ|T ) =
∫

φ(x; θ)ft(x; θ)dµ(x), which is independent of ξ. We write
Eθ(φ|T ) for Eθξ(φ|T ), and we have Eθξ{Eθ(φ|T )} = 0. Since T is complete, Eθ(φ|T ) = 0, Pθξ
almost surely. We have then,

Eθξ{φ(θ)R(θ, ξ)} = Eθξ{R(θ, ξ)Eθ(φ|T )} = 0 .

�

4.4.3 Optimality theory for the general case

We treat next the optimality theory in a context where the parameter of interest is k dimen-
sional and inference is to be done in the presence of an arbitrary nuisance parameter.

We introduce next several submodels of P required for the development. Given any value
θ ∈ Θ ⊆ IRk of the parameter of interest, define the submodel

Pθ = {Pθξ : ξ ∈ Z} .

We interpret Pθ as the “nonparametric component” of P at θ. It is convenient to introduce
also the following notation for the class of densities of Pθ,

P∗
θ =

{

dPθξ
dµ

( · ) := p(·; θ, ξ) : ξ ∈ Z
}

.
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We shall use often P∗
θ to characterize Pθ.

Next we consider “well behaved” submodels of P∗
θ which are parametrized by a one-

dimensional parameter. Formally, given (θ, ξ) ∈ Θ×Z, a differentiable path (in the direction
of the nuisance parameter) at (θ, ξ) is an application from a left neighbourhood of zero,
V ∈ [0,∞) on P∗

θ , represented by the generalized sequence {pt}t∈V ⊆ P∗
θ , such that there

exists a function ν ∈ L2
0(Pθξ) and for each t ∈ V there is rt ∈ L2

0(Pθξ) with

pt( · ) = p( · ; θ, ξ) + p( · ; θ, ξ)ν( · ) + p( · ; θ, ξ)rt( · ) (4.32)

and

rt
L2(Pθξ)−→ 0 , as t ↓ 0 . (4.33)

The L2
0(Pθξ) function ν is called the tangent of the path {pt}. Solving (4.32) for ν one

obtains, for each t ∈ V ,

ν( · ) = pt( · )− p( · ; θ, ξ)
tp( · ; θ, ξ) − rt( · ) . (4.34)

The expression above leads to the interpretation of the tangent ν as (an L2 approximation
to) the score function in a submodel of Pθ given by {pt : t ∈ V } at t = 0. The idea of
differentiable paths traces back to the pioneer article of Stein (1956) where the “worst regular”
one-dimensional submodel was used for reducing a nonparametric problem to estimation in
a regular one-dimensional model. Here we make a different use of such notion.

The class of all tangents of differentiable paths at (θ, ξ) ∈ Θ× Z is termed the nuisance
tangent set and the L2

0(Pθξ) closure of its span is referred as the nuisance tangent space.
More precisely, the nuisance tangent set at (θ, ξ) is given by

T 0
N(θ, ξ) :=







ν ∈ L2
0(Pθξ) : ∃{pt} ⊆ P∗

θ , ∃{rt} ⊆ L2
0(Pθξ)

such that (4.32) and (4.33) hold







.

The nuisance tangent space at (θ, ξ) is

TN(θ, ξ) := clL2(Pθξ)

[

span
{

T 0
n(θ, ξ)

}]

.

In the literature (see Pfanzagl, 1990; Bickel et al. , 1993 and references therein) the notions
of path differentiability and tangent space introduced above are known as strong or L2 path
differentiability and tangent spaces. Other useful notions of path differentiability can be
obtained by using alternative definitions for the convergence of the sequence {rt} given in
(4.33) (for example convergence in the supremum norm or in the L1 sense).

The following proposition establishes the first connection between the notions introduced
above and the theory of (quasi-) inference functions.
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Proposition 4.16 Let Ψ : X × Θ × Z −→ IRk be a regular quasi-inference function with
components ψ1, . . . , ψk. For all θ ∈ Θ, ξ ∈ Z and i ∈ {1, . . . , k},

ψi( · ; θ, ξ) ∈ T⊥
N (θ, ξ) .

Here and in the rest of this section T⊥
N (θ, ξ) is the orthogonal complement of TN(θ, ξ)

in L2
0(Pθξ). We denote the inner product and the norm of L2

0(Pθξ) by 〈 · , · 〉θξ and ‖ · ‖θξ
respectively. Proof: Take θ ∈ Θ, ξ ∈ Z and i ∈ {1, . . . , k} fixed and an arbitrary
ν ∈ T 0

N(θ, ξ). We prove that ν and ψi( · ; θ, ξ) are orthogonal in the sense of L2(Pθξ). This
implies the proposition, because of the continuity of the inner product. Using (4.34), for each
t ∈ V ,

〈ν( · ), ψi( · ; θ, ξ)〉θξ = 〈[{pt( · )− p( · ; θ, ξ)}/p( · ; θ, ξ)]− rt( · ), ψi( · ; θ, ξ)〉θξ
=

∫

X
ψi(x; θ, ξ)pt(x)dµ(x)−

∫

X
ψi(x; θ, ξ)p(x; θ, ξ)dµ(x)

−〈rt( · ), ψi( · ; θ, ξ)〉θξ

= −〈rt( · ), ψi( · ; θ, ξ)〉θξ .

Since rt
L2(Pθξ)−→ 0, from the continuity of the inner product, we conclude that

〈ν( · ), ψi( · ; θ, ξ)〉θξ = 0 .

�

If the quasi-inference function does not depend on the nuisance parameter (i.e. it corre-
sponds to a genuine inference function), then we can obtain a sharper result.

Proposition 4.17 Let Ψ : X × Θ −→ IRk be a regular inference function with components
ψ1, . . . , ψk. For all θ ∈ Θ and i ∈ {1, . . . , k},

ψi( · ; θ) ∈
⋂

ξ∈Z
T⊥
N (θ, ξ) .

In fact the proposition above holds for a certain class of quasi-inference function “contain-
ing” the regular inference functions (see exercise 4.11)Proof: Take θ ∈ Θ and i ∈ {1, . . . , k}
fixed and arbitrary ξ ∈ Z and ν ∈ T 0

N(θ, ξ). We prove that ν and ψi( · ; θ) are orthogonal in
the sense of L2(Pθξ).

Using (4.34), for each t ∈ V ,

〈ν( · ), ψi( · ; θ)〉θξ = −〈rt( · ), ψi( · ; θ)〉θξ

Since rt
L2(Pθξ)−→ 0, we conclude that 〈ν( · ), ψi( · ; θ)〉θξ = 0. �
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We define the efficient score function, UE : X × Θ × Z −→ IRk, by the orthogonal
projection of the partial score function, U onto T⊥

N (θ, ξ). More precisely, for each θ ∈ Θ and
ξ ∈ Z, the efficient score function at (θ, ξ) is given by

UE( · ; θ, ξ) = Π{U( · ; θ, ξ)|T⊥
N (θ, ξ)},

where Π(·|A) is the orthogonal projection operator onto A (with respect to the inner product
〈f , g〉θξ).

The space spanned by the components UE
1 , . . . , U

E
k of the efficient score function at (θ, ξ) ∈

Θ×Z is denoted by E(θ, ξ), i.e.

E(θ, ξ) = span{UE
i ( · ; θ, ξ) : i = 1, . . . , k} .

Note that E(θ, ξ) is a closed (since it is finite-dimensional vector space) subspace of L2
0(Pθξ).

Hence given any regular quasi-inference function Ψ : X × Θ × Z −→ IRk with components
ψ1, . . . , ψk we have, for all θ ∈ Θ, ξ ∈ Z and i ∈ {1, . . . , k} the decomposition

ψi( · ; θ, ξ) = ψAi ( · ; θ, ξ) + ψEi ( · ; θ, ξ) , (4.35)

where ψEi ( · ; θ, ξ) ∈ E(θ, ξ) and ψAi ( · ; θ, ξ) ∈ A(θ, ξ) := E⊥(θ, ξ). Here A(θ, ξ) is the or-
thogonal complement of E(θ, ξ) in L2

0(Pθξ). The decomposition above induces the following
decomposition of each regular quasi-inference function

Ψ( · ; θ, ξ) = ΨA( · ; θ, ξ) + ΨE( · ; θ, ξ) , (4.36)

where the components ψAi ( · ; θ, ξ), . . . , ψAi ( · ; θ, ξ) of ΨA at (θ, ξ) are in A(θ, ξ) and the com-
ponents ψEi ( · ; θ, ξ), . . . , ψEi ( · ; θ, ξ) of ΨE at (θ, ξ) are in E(θ, ξ).

We show next that taking the “component” ΨE of a regular (quasi-) inference function
improves the Godambe information. However, at this stage a technical difficulty appears,
the function ΨE is not necessarily a regular quasi-inference function, and hence does not
necessarily possesses a well-defined Godambe information. For this reason we introduce next
an extension of the notion of sensitivity, and consequently of Godambe information, which
will make us able to speak of Godambe information of some non-regular inference functions.
To motivate our extended notion of sensitivity, consider a regular inference function Ψ :
X × Θ × Z −→ IRk. We characterize the sensitivity of Ψ in an alternative form that will
suggest the extension one should define. For each (θ, ξ) ∈ Θ × Z and each i, j ∈ {1, . . . , k}
we have

0 =
∂

∂θi

∫

X
ψj(x; θ, ξ)p(x; θ, ξ)dµ(x) (4.37)

(differentiating under the integral sign )

=

∫

X

∂

∂θi
{ψj(x; θ, ξ)p(x; θ, ξ)} dµ(x)

=

∫

X

∂

∂θi
{ψj(x; θ, ξ)} p(x; θ, ξ)dµ(x) +

∫

X
ψj(x; θ, ξ)

∂

∂θi
{p(x; θ, ξ)} dµ(x) .
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Hence
∫

X

∂

∂θi
{ψj(x; θ, ξ)p(x; θ, ξ)} dµ(x)

= −
∫

X
ψj(x; θ, ξ)

∂

∂θi
{p(x; θ, ξ)} dµ(x)

=

∫

X
ψj(x; θ, ξ)Ui(x; θ, ξ)p(x; θ, ξ)dµ(x) = −〈ψj( · ; θ, ξ), Ui( · ; θ, ξ)〉θξ

(decomposing Ui = UA
i + UE

i with UE
i ∈ T⊥

n and UA
i ∈ TN)

= −〈ψj( · ; θ, ξ), UE
i ( · ; θ, ξ)〉θξ − 〈ψj( · ; θ, ξ), UA

i ( · ; θ, ξ)〉θξ
(Since ψj ∈ T⊥

n and UA
i ∈ TN)

= −〈ψj( · ; θ, ξ), UE
i ( · ; θ, ξ)〉θξ

(decomposing ψj = ψAi + ψEi and using the orthogonality of UE
i and ψAi )

= −〈ψEj ( · ; θ, ξ), UE
i ( · ; θ, ξ)〉θξ .

We conclude that the sensitivity of Ψ at (θ, ξ) is given by

SΨ(θ, ξ) =
[

−〈ψEj ( · ; θ, ξ), UE
i ( · ; θ, ξ)〉θξ

]j=1,...,k

i=1,...,k
. (4.38)

Here [aij]
j=1,...,k
i=1,...,k denotes the matrix formed by aij’s with i indexing the columns and j indexing

the lines.
We define the extended sensitivity (or simply the sensitivity ) of Ψ by the matrix in the

right-hand side of (4.38). The (extended) Godambe information is defined in the same way
we did before but using the extended sensitivity instead of the sensitivity. Note that both,
the standard and the extended, versions of the sensitivity (and the Godambe information)
coincide in the case where Ψ is regular. Moreover, the extended sensitivity is defined for each
quasi-inference function whose components are in L2

0, not only for regular inference functions.
According to the new definition both Ψ and ΨE posses the same sensitivity.

Proposition 4.18 Given a regular inference function Ψ, for all θ ∈ Θ and all ξ ∈ Z,

JΨ(θ, ξ) ≤ JΨE(θ, ξ) .

Proof: For each θ ∈ Θ and ξ ∈ Z,

J−1
Ψ (θ, ξ) = S−1

Ψ (θ, ξ)VΨ(θ, ξ)S
−T
Ψ (θ, ξ)

= S−1
ΨE

(θ, ξ){VΨE(θ, ξ) + VΨA(θ, ξ)}S−T
ΨE

(θ, ξ)

= S−1
ΨE

(θ, ξ)VΨE(θ, ξ)S
−T
ΨE

(θ, ξ) + S−1
ΨE

(θ, ξ)VΨA(θ, ξ)S
−T
ΨE

(θ, ξ)

≥ S−1
ΨE

(θ, ξ)VΨE(θ, ξ)S
−T
ΨE

(θ, ξ) = JΨE(θ, ξ) .

�

The following proposition gives further properties of regular inference functions, which
will allow us to establish an upper bound for the Godambe information.
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Proposition 4.19 Given a regular inference function Ψ, for all θ ∈ Θ and all ξ ∈ Z, we
have:

(i) ΨE ∼ UE;

(ii) span{ΨE
i ( · ; θ, ξ) : i = 1, . . . , k} = E(θ, ξ);

(iii) JΨE(θ, ξ) = JUE(θ, ξ).

Proof: Take θ ∈ Θ and ξ ∈ Z fixed.
(i) Assume without loss of generality that the components of the efficient score func-
tion UE

1 ( · ; θ, ξ), . . . , UE
k ( · ; θ, ξ) are orthonormal in L2

0(Pθξ). For each i ∈ {1, . . . , k}, ex-
panding ψi( · ; θ, ξ) in a Fourier series with respect to a basis whose first k elements are
UE
1 ( · ; θ, ξ), . . . , UE

k ( · ; θ, ξ) one obtains

ψi( · ; θ, ξ) = 〈UE
1 ( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ UE

1 ( · ; θ, ξ)
+ · · ·+ 〈UE

k ( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ UE
k ( · ; θ, ξ) + ψAi ( · ; θ, ξ) .

That is,

ψEi ( · ; θ, ξ) = 〈UE
1 ( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ UE

1 ( · ; θ, ξ) (4.39)

+ · · ·+ 〈UE
k ( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ UE

k ( · ; θ, ξ) .

Moreover, for j = 1, . . . , k

〈UE
j ( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ = 〈UE

j ( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ + 〈UA
j ( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ(4.40)

= 〈Uj( · ; θ, ξ), ψi( · ; θ, ξ)〉θξ
=

∫

X
ψi(x; θ, ξ)Uj(x; θ, ξ)p(x; θ, ξ)dµ(x)

= −
∫

X

{

∂

∂θj
ψi(x; θ, ξ)

}

p(x; θ, ξ)dµ(x) .

The last equality above comes from the following

0 =
∂

∂θi

∫

X
ψj(x; θ, ξ)p(x; θ, ξ)dµ(x)

(differentiating under the integral sign )

=

∫

X

∂

∂θi
{ψj(x; θ, ξ)p(x; θ, ξ)} dµ(x)

=

∫

X

∂

∂θi
{ψj(x; θ, ξ)} p(x; θ, ξ)dµ(x) +

∫

X
ψj(x; θ, ξ)

∂

∂θi
{p(x; θ, ξ)} dµ(x)

=

∫

X

∂

∂θi
{ψj(x; θ, ξ)} p(x; θ, ξ)dµ(x) +

∫

X
ψj(x; θ, ξ)Ui(x; θ, ξ)p(x; θ, ξ)dµ(x) .
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We conclude from (4.39) and (4.40) that ΨE( · ; θ, ξ) = −SΨ(θ, ξ)U
E( · ; θ, ξ), which means

that ΨE and UE are equivalent.
(ii) From the previous discussion span{ΨE

i ( · ; θ, ξ) : i = 1, . . . , k} is the space spanned by
−SΨ(θ, ξ)U

E( · ; θ, ξ) which is the span of {UE
i ( · ; θ, ξ) : i = 1, . . . , k}, since the sensitivity by

assumption is of full rank.
(iii) Straightforward.

�

A consequence of the two last proposition is that JUE is an upper bound for the Godambe
information of regular quasi inference functions. This upper bound is attained by any (if any
exists) extended regular inference functions with components in E. In particular if UE is
a regular (quasi-) inference function, then it is an optimal (quasi-) inference function. We
consider next some examples.

Example 4.20 (Semiparametric location model) Consider the following semiparametric ex-
tension of the location model.

P =

{

Pθξ :
Pθξ
dµ

( · ) = ξ( · − θ), θ ∈ Θ = IR , ξ ∈ Z
}

. (4.41)

Here Z is the class of probability densities ξ : IR −→ IR such that (4.42)-(4.47) given below
hold.

∀x ∈ IR, ξ(x) > 0; (4.42)

∫

IR

ξ(x)dµ(x) = 1; (4.43)

∫

IR

xξ(x)dµ(x) = 0; (4.44)

∫

IR

x2ξ(x)dµ(x) <∞; (4.45)

ξ is differentiable almost everywhere; (4.46)

∫

IR

{ξ′(x)}2
ξ(x)

dµ(x) <∞ . (4.47)

Conditions (4.42) and (4.43) ensure that ξ is a density of a probability measure with
support equal to the whole real line. From condition (4.44) the parametrization (θ, ξ) 7→ Pθξ
is identifiable. Conditions (4.46) and (4.47) ensure that the score function

U( · ; θ) = ξ′( · − θ)

ξ( · − θ)
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is well-defined and in L2(Pθξ).
We calculate next the nuisance tangent space at θ = 0 and ξ ∈ Z. It is easy to see that

the nuisance tangent space at an arbitrary point of the parameter space is

TN(θ, ξ) = {ν( · − θ) : ν ∈ TN(0, ξ)} . (4.48)

We prove next that TN(0, ξ) = [span{ν( · ) = ( · )}]⊥. Consider the path, given for t ∈ V by

pt( · ) = ξ( · ) + t( · )ν( · ) .

Here ν ∈ C∞
k ∩ [span{( · )}]⊥ and C∞

k is the space of smooth (C∞) functions from IR to IR
that are compact supported. It is easy to verify that for t small enough pt ∈ P∗

0 , hence
{pt} is a differentiable path (at (0, ξ)) with tangent ν. That is, ν ∈ T 0

N(0, ξ). We conclude
that C∞

k ∩ [span{( · )}]⊥ ⊆ T 0
N(0, ξ). Furthermore, it is well-known that C∞

k is dense in
L2(Pθξ), hence C

∞
k ∩ [span{( · )}]⊥ is dense in [span{( · )}]⊥ ⊂ L2(Pθξ). We conclude that

[span{( · )}]⊥ ⊆ TN(0, ξ).
Let us prove now that TN(0, ξ) ⊆ [span{( · )}]⊥. Take ν ∈ T 0

N(0, ξ), we prove that ( · )
and ν are orthogonal, which implies what we want to prove here.

〈ν( · , ( · )〉0ξ = 〈pt( · )− ξ( · )
ξ( · ) − rt( · ), ν( · )〉0ξ

=
1

t

{∫

IR

ν(x)pt(x)dµ(x)−
∫

IR

ν(x)ξ(x)dµ(x)

}

〈−rt( · ), ν( · )〉0ξ
= = 〈−rt( · ), ν( · )〉0ξ .

Since rt converges to zero in L2(P0ξ), we conclude that 〈ν( · , ( · )〉0ξ = 0. We have then proved
that the nuisance tangent space is given by

TN(θ, ξ) = [span{ν( · ) = ( · − θ)}]⊥

and hence

T⊥
N (θ, ξ) = span{ν( · ) = ( · − θ)} .

We calculate next the efficient score function. To project U( · ; θ, ξ) onto T⊥
N (θ, ξ) we take

an orthonormal basis {ei : i = 1, 2, . . .} in L2
0(Pθξ) with the first element being the function

e1 = ( · − θ). Expanding U( · ; θ, ξ) in terms of that basis we obtain

U( · ; θ, ξ) = 〈U( · ; θ, ξ), ( · − θ)〉θξ ( · − θ) +
∞
∑

i=2

〈U( · ; θ, ξ), ei( · − θ)〉θξ ei( · − θ) .

Hence the efficient score function is given by

UE( · ; θ, ξ) = 〈U( · ; θ, ξ), ( · − θ)〉θξ ( · − θ) .
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The Fourier coefficient 〈U( · ; θ, ξ), ( · − θ)〉θξ can be calculated explicitly if we insert the
assumption that the density ξ is continuous and limx→±∞ xξ(x) = 0 (integrate by parts). In
that case the Fourier coefficient is −1. It can also be shown that inserting this assumption
in the model, the nuisance tangent space remains unchanged. Clearly, the efficient score
function does not depend on the nuisance parameter and hence, from the previous discussion
it is optimal. It is easy to see that under a repeated sample schema the root of the efficient
is the sample mean.

Example 4.21 (Models without nuisance parameter) It is easy to see that in a model without
nuisance parameter the “nuisance tangent space” is the space {0} and hence its orthogonal
complement in L2

0 is L2
0 itself. If the score function is in L2

0 then it is the efficient score
function. Moreover, the efficient score function does not depend on the nuisance parameter
and hence is optimal. That is the score function is optimal, which is in accordance with the
previous results.

4.5 Problems

Basic setup

Problem 4.1 Show that the relation “∼ ” is an equivalence relation, i.e., given any inference
function ψ, φ and ζ, then

(i) ψ ∼ ψ;

(ii) ψ ∼ φ⇒ φ ∼ ψ;

(iii) ψ ∼ φ and φ ∼ ζ ⇒ ψ ∼ ζ.

Problem 4.2 Consider a regular inference function ψ for a one-dimensional parameter θ.

(i) Let C(θ) be a constant function, and define

φ(θ) = C(θ)ψ(θ).

Show that C(θ) may be chosen in such a way that for all θ

Vφ(θ) = −Sφ(θ).

(ii) Show that C(θ) = 1 if ψ is the score function.

(iii) Show that, with C chosen as in (i),

Jψ(θ) = −Sφ(θ) = Vφ(θ),

Express this formula in terms of the derivatives of the likelihood function in the case
where ψ is the score function.
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(iv) Define a quasi-likelihood function by

L(θ) =

∫ θ

θ0

φ(θ) dθ.

Show that the stationary points of L are the same as the solutions to ψ(θ) = 0. Why
might one prefer the stationary points that correspond to local maxima of L? Show that
L is a version of the log likelihood function in the case where ψ is the score function.

(v) Comment on the possibilities of generalizing these results to dimension k > 1, in par-
ticular the difficulty of generalizing the definition of L.

Problem 4.3 Let ψ : X × Θ −→ IRk be an inference function based on one observation.
For each n ∈ IN define ψn using the expression (4.2).

(i) Note that ψ and ψn are defined in different sample spaces. Write the definition of the
function ψn given the domain and image and state precisely the measurability basic
condition to ψn.

(ii) Show that ψ is unbiased if and only if ψn is unbiased.

Problem 4.4 (Location model) Consider the following parametric family:

P = {Pµ ≪ ν :
dPµ
dν

(·) = f(· − µ), µ ∈ IR},

where ν is the Lebesgue measure on the real line, and f : IR −→ IR is such that

(a) f ∈ C2(IR);

(b) f(x) > 0, ∀x ∈ IR;

(c)
∫

f(x)dν(x) = 1;

(d)
∫

xf(x)dν(x) = 0;

(e) f ′ is integrable.

Clearly f is a probability density of a distribution with support equal to the whole real
line.

(i) Compute the score function for µ and show that
∫

f ′(x)dν(x) = 0 is a necessary and
sufficient condition to the unbiasedness of the score function;

(ii) Show that if f(x) → 0 as x → ±∞ then the score function is unbiased (Hint: use the
fundamental theorem of calculus.)
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(iii) Compute the function νµ defined by (4.4) and show that νµ satisfies the conditions of
Theorem 4.1;

(iv) Show that the same conclusion holds for f satisfying (b)–(e) and the following condition:

(a’) f(x) ≥ 0 for x, [ν];

(v) Show that if f is the density of a centred exponential distribution (i.e. shifted to have
mean zero mean as required by (d)) then the score function is not an unbiased inference
function;

(vi) Show that condition (d) ensures the identifiability of the model.

Problem 4.5 (The Huber estimator of location) Consider the location model defined in
Problem 4.4. Let K be a fixed positive real number. Define the inference function φK :
IR× IR −→ IR given by

φK(x;µ) =

{

x− µ if |x− µ| < K
{sgn(x− µ)}K if |x− µ| ≥ K

The root of this inference function is called the Huber estimator of location.

(i) Show that, under a sequence of independent and identically distributed observations,
for K large enough the sample mean is a root of φK , except for a set of Lebesgue
measure zero;

(ii) Show that, under a sequence of independent and identically distributed observations,
for K sufficiently close to zero, the sample median is a root of φK , ν-almost everywhere;

(iii) Compute the function λµ for the inference function φK and show that λµ is a continuous
function;

(iv) Show that if f is a symmetric function (i.e. f(x) = f(−x), ∀x ∈ IR) then for each
µ ∈ IR, λµ satisfies the conditions of Theorem 4.1, and hence has consistent roots;

(v) Consider the Gumbel distribution with density given, for all x ∈ IR, by

f(x) = e−xe−e
−x

Show that λ0 has a root different from 0 and hence φK is not unbiased. Show that the
Huber estimator is not consistent in this case.
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Problem 4.6 (Scale model) Consider the parametric family

P =

{

Pσ ≪ λ :
dPσ
dλ

(·) = σ−1f(·/σ), σ ∈ IR+

}

,

where λ is the Lebesgue measure and f is as in Problem 4.4 with condition (d) replaced by

(d′)

∫

x2f(x)dλ(x) = 1.

(i) Compute the score function for σ and find conditions under which this score function
is unbiased;

(ii) Study the function λσ;

(iii) Show that if f is the density of the standardized exponential distribution, then the
score function is unbiased;

(iv) What can one conclude about the maximum likelihood estimator in this case?

Problem 4.7 (Ratio of means) Suppose that Y11, . . . , Y1n, Y21, . . . , Y2n are independent ran-
dom variables such that for i = 1, . . . , n one has

E(Y1i) = θE(Y2i).

In other words, one has independent pairs of observations such that the rate of the means
in each pair is constant. We assume, of course, that the expectations are all finite and that
θ 6= 0. If we do not know anything else about the random variables above, we may use the
inference function

ψn(ỹ, θ) =
n
∑

i=1

(y1i − θy2i),

where ỹ = (y11, . . . , y1n, y21, . . . , y2n)
⊤ are the observations. Show that

θ̂ = θ̂(ỹ) =
∑

y1i/
∑

y2i

is a root of ψn. More generally, we may consider the inference function

ψwn (ỹ, θ) =
n
∑

i=1

wi(y1i − θy2i),

where w1, . . . , wn is a set of weights. Give conditions under which ψwn is unbiased and the
functions λθ satisfy the conditions of Theorem 4.1. Discuss the consistency of the root of ψwn .
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Optimality theory

Problem 4.8 Consider the one-parameter context (i.e. k = 1).

(i) Show that the sensitivity function is linear, i.e., for each K 6= 0 and each regular
inference function ψ, SKψ(θ) = KSψ(θ);

(ii) Show that in each equivalence class defined by the relation ∼, there is only one inference
function with sensitivity equal to 1;

(iii) Show that the Godambe information defines a partial ordering in the class of regular
inference functions;

(iv) What can you conclude from (iii) regarding the existence of an optimal inference func-
tion (Hint: Consider Zorn’s Lemma);

(v) Extend items (i)–(iv) to the k-dimensional (k ≥ 1) case.

Problem 4.9 This exercise aims to improve Theorem 4.3 by replacing the assumption of
boundedness of ψ′′ given in (4.7) by the assumption that

∫

X ψ
′′(x; θ)p(x; θ)dµ(x) ∈ IR.

Consider then the set-up and notation introduced in Theorem 4.3 and in its proof. The proof
sketched will be the same as the proof of Theorem 4.3 except from the argument given in
(4.10), where the assumption (4.7) is used.

(i) We start with the following lemma of convergence in probability. Prove that a se-
quence of random variables (defined in a common probability space) {Xn} converges
in probability to the random variable X as n → ∞ if and only if each subsequence of
{Xn} possesses a subsubsequence that converges almost surely to X. Hint: ⇒ is a well-
known result (see any reasonable book of probability). For proving ⇐ use contradiction
(A→ B if and only if not B ⇒ not A);

(ii) Show that θ∗n
P−→ θ. Hint: Use the facts that θ̂n

P−→ θ and |θ∗n − θ| ≤ |θ̂n − θ|. Show

that 1
n
Ψ′′
n(x; θ)

P−→
∫

X ψ
′′(x; θ)p(x; θ) dµ(x);

(iv) Given a subsequence of {θ̂n} show that there exist a subsubsequence of that subsequence
converging almost surely to θ. Analogously, given a subsequence of { 1

n
Ψn(x; θ)} show

that there exist a subsubsequence of that subsequence converging almost surely to
∫

X ψ
′′(x; θ)p(x; θ)dµ(x);

(v) Given a subsequence {n(m) : m ∈ N} ⊆ {n : n ∈ N} show that there is a sub-
subsequence, say {n(m(i)) : i ∈ N} ⊆ {n(m) : m ∈ N} ⊆ {n : n ∈ N} such that
1
n
(m(i))Ψn(m(i))(x; θ) converges almost surely to

∫

X ψ
′′(x; θ)p(x; θ)dµ(x) and θ̂n(m(i)) con-

verges almost surely to θ;
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(vi) Given a subsequence of { 1
n
Ψn(x; θ

∗
n)} show that there exist a subsubsequence of that

sequence converging to
∫

X ψ
′′(x; θ)p(x; θ)dµ(x). Hint: This is the delicate step of the

proof. Given a subsequence {n(m) : m ∈ N} ⊆ {n : n ∈ N} take subsubsequence
{n(m(i)) : i ∈ N} ⊆ {n(m) : m ∈ N} ⊆ {n : n ∈ N} defined in the previ-
ous item. Consider the set A = {ω : θ∗n(m(i))(ω) → θ and 1

n(m(i))
Ψn(m(i))(x; θ)(ω) →

∫

X ψ
′′(x; θ)p(x; θ)dµ(x)} (here ω is an element of the sample space on which the ran-

dom variables are defined and θ∗n and Ψn(x; θ) are viewed as random variables on that
space). Define A∗ = {ω : 1

n(m(i))
Ψn(m(i))(x; θ

∗
n(m(i))(ω))(ω) →

∫

X ψ
′′(x; θ)p(x; θ)dµ(x)}.

Note that by construction Pθ(A) = 1. Show that A ⊆ A∗. To prove the last statement
take an arbitrary element ω ∈ A and use the continuity of Ψ(x(ω); · );

(vii) Using the first item and the previous item conclude that

1

n
Ψn(θ

∗
n)

P−→
∫

X
ψ′′(x; θ)p(x; θ)dµ(x) ;

(viii) Conclude the proof of the theorem.

Problem 4.10 The goal of this exercise is to obtain a multidimensional versions of the the-
orem on asymptotic normality of consistent sequences of roots of regular inference functions.

(i) Write a multidimensional version of Problem 4.9;

(ii) Write a multidimensional version of Theorem 4.3;

(iii) Using Theorem 4.3 and Problem 4.9 prove the theorems given in the previous items.
Hint: Consider the Cramér-Wold Theorem to reduce the problem to an arbitrary linear
combination;

Problem 4.11 (i) A regular quasi-inference function Ψ : X × Θ × Z −→ IRk is said to
be nuisance ancillary if for each θ ∈ Θ and ξ, ξ∗ ∈ Z, Eθξ{Ψ(X; θ, ξ∗) = 0. Write and
prove a proposition analogue to proposition 4.17 using nuisance ancillary quasi-inference
functions instead of inference functions.

(ii) A quasi-inference function Ψ : X ×Θ×Z → IR is said to be E-ancillary with respect to
the nuisance parameter if there is a generalized sequence {Ψα : X ×Θ×Z → IR}α∈A
such that for all θ ∈ Θ and ξ1, ξ2 ∈ Z,

Ψα(·; θ, ξ1)
L2(Pθξ)−→ Ψ(·; θ, ξ1)

and
Eθξ1 {Ψα(·; θ, ξ2)} = 0

(see Small and McLeish, 1988a). Write and prove a proposition analogue to proposition
4.17 using E-ancillary quasi-inference functions instead of inference functions.
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Appendix A

MOMENT GENERATING

FUNCTIONS

The moment generating function is an indispensable tool for handling exponential families.
The present appendix gives a brief but self-contained introduction to the requisite theory
for moment generating functions, characteristic functions and Fourier-Laplace transforms for
multivariate distributions. Although standard, this material is not easily available in the
literature. Both Lukacs (1970), who treats characteristic functions, and Kawata (1972), who
treats Fourier transforms, concentrate on the univariate case.

A.1 Definition and properties

Let Mk denote the set of all probability distributions on IRk. For P ∈ Mk, we define the
moment generating function of P by

MP (s) =

∫

es·xP (dx), s ∈ IRk,

and we define the cumulant generating function of P by

KP (s) = logMP (s), s ∈ IRk.

The effective domain of MP , respectively KP , is defined by

ΘP = {s ∈ IRk : MP (s) <∞}.

If X is a random vector with distribution P we write MX instead of MP , and similarly KX

and ΘX instead of KP and ΘP , respectively. When no confusion arises we sometimes omit
the subscript P , respectively X, etc.

Theorem A.1 Assume that X ∼ P , where P ∈ Mk. Then
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(i) 0 < MP (s) ≤ ∞ for s ∈ IRk.

(ii) MP (0) = 1 and KP (0) = 0.

(iii) If B is an ℓ× k matrix and c an ℓ× 1 vector then

ΘBX+c = {s ∈ IRℓ: BT s ∈ ΘX}
MBX+c(s) = MX(B

T s)es·c, s ∈ IRℓ ,

and
KBX+c(s) = KX(B

T s) + s · c, s ∈ IRℓ.

(iv) Let X = (XT
1 , X

T
2 )

T , where X1 is d-dimensional and X2 is (k−d)-dimensional, and let
s = (sT1 , s

T
2 )

T be the corresponding partition of s. If X1 and X2 are independent, then

MX(s) =MX1(s1)MX2(s2), s ∈ IRk

and
KX(s) = KX1(s1) +KX2(s2), s ∈ IRk

Proof: See Problem A.1. �

Example A.2 Let us derive the moment generating function of the multivariate normal
distribution. Consider first the case where X ∼ Nk(0, Ik). Then for s ∈ IRk,

MX(s) = (2π)−k/2
∫

exp(−1

2
x · x+ s · x)dx

= (2π)−k/2 exp(
1

2
s · s)

∫

exp{−1

2
(x · x− 2s · x+ s · s)}dx

= exp(
1

2
s · s)

∫

(2π)−k/2 exp{−1

2
(x− s) · (x− s)}dx

= exp(
1

2
s · s).

If B is an ℓ× k matrix an µ an ℓ× 1 vector then BX +µ ∼ Nℓ(µ,
∑

), where
∑

= BBT . By
Theorem A.1 (iii) we have

MBX+µ(s) = exp

{

1

2
(BT s) · BT s+ s · µ

}

= exp

{

1

2
sTΣs+ s · µ

}

, s ∈ IRℓ,

which is hence the moment generating function of the ℓ-variate normal distribution Nℓ(µ,
∑

).
Since the matrix B was arbitrary, the result holds even if

∑

is singular.
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The next theorem concerns convexity properties of MP and KP . But first we introduce
Hölder’s inequality .

Proposition A.3 Let P ∈ Mk. Then for any s1, s2 ∈ IRk and 0 ≤ α ≤ 1 we have

∫

exp{αs1 · x + (1− α)s2 · x}P (dx) ≤
{∫

es1·xP (dx)

}α{∫

es2·xP (dx)

}1−α
. (A.1)

If 0 < α < 1 and s1 6= s2 the inequality is strict if and only if P is not concentrated on an
affine subspace of IRk.

Proof: The logarithm is a concave function, and hence for any a1 > 0, a2 > 0 and
0 ≤ α ≤ 1 we have

α log a1 + (1− α) log a2 ≤ log(αa1 + (1− α)a2). (A.2)

Let ci =
∫

esi·xP (dx), i = 1, 2. If either c1 = ∞ or c2 = ∞ the inequality (A.1) is trivial. If
both c1 and c2 are finite let

ai = es1·x/ci, i = 1, 2. (A.3)

Inserting this in (A.2) and taking the exponential function on both sides we get

exp{αs1 · x+ (1− α)s2 · x}/(cα1 c1−α2 ) ≤ αes1·x/c1 + (1− α)es2·x/c2. (A.4)

By integrating both sides of (A.4) with respect to x we obtain (A.1).
Since log is a strictly concave function we have strict inequality in (A.2) if 0 < α < 1 and

a1 6= a2. Hence, if 0 < α < 1 and s1 6= s2, then equality in (A.1) is obtained if and only if
in (A.3) a1 = a2 with probability 1 with respect to P , which is equivalent to

(s1 − s2) · x = log(c1/c2) (A.5)

with probability 1 with respect to P . Since s1 − s2 6= 0, the set of xs that satisfy (A.5) is
an affine subspace of IRk, and hence the condition for strict inequality in (A.1) follows. �

Using the result of Proposition A.3, we may now obtain the convexity properties of MP

and KP .

Theorem A.4 Let P ∈ Mk. Then

(i) The set ΘP is convex.

(ii) MP is a convex function on ΘP .

(iii) KP is a convex function on ΘP , and strictly convex if and only if P is not concentrated
on an affine subspace of Rk.
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Proof: Assume that s1, s2 ∈ ΘP and 0 ≤ α ≤ 1. Then by Hölder’s inequality

MP (αs1 + (1− α)s2) =

∫

exp{αs1 · x+ (1− α)s2 · x}P (dx)

≤ MP (s1)
αMP (s2)

1−α. (A.6)

By the definition of ΘP we have MP (si) < ∞ for i = 1, 2, and hence by (A.6) MP (αs1 +
(1− α)s2) <∞. This implies that αs1 + (1− α)s2 ∈ ΘP , and hence ΘP is convex.

The convexity of KP follows from (A.1) by taking logs on both sides. The condition for
strict convexity follows from the condition for strict inequality in Hölder’s inequality. Finally,
the convexity of MP follows because MP is the composition of exp and KP , where exp is
convex and increasing and KP is convex, see Problem A.11. �

Example A.5 Consider a multinomial random vector X = (X1, . . . , Xk)
T with probability

function

f(x1, . . . , xk) =

(

n

x1 . . . xk

)

px11 . . . pxkk ,

where pi ≥ 0, xi ≥ 0, i = 1, · · · , k, p1 + · · · + pk = 1 and x1 + · · · + xk = n. The moment
generating function of X is, for s = (s1, . . . , sk)

T ∈ IRk,

MX(s) =
∑

x1+···+xk=n ;xi≥0

(

n

x1 . . . xk

)

px11 · . . . · pxkk exp(s1x1 + · · ·+ skxk)

=
∑

x1+···+xk=n

(

n

x1 . . . xk

) k
∏

j=1

(

pje
si

∑k
i=1 pie

si

)xj ( k
∑

i=1

pie
si

)x1+···+xk

=

(

k
∑

i=1

pie
si

)n

.

Since X1 + · · ·+Xk = n the distribution is concentrated on an affine subspace of IRk, and it
is not difficult to verify directly (Problem A.2) that the cumulant generating function of X
is not strictly convex, in agreement with Theorem A.4 (iii).

Let us consider the linear transformation Y = BX = (X1, . . . , Xk−1)
T , where

B =



















1 0 · · · 0
0 1
...

. . .

0 · · · 1 0.



















By Theorem A.1 (iii) the moment generating function of Y is, for s = (s1, . . . , sk−1) ∈ IRk−1,

MY (s) =

(

k−1
∑

i=1

pie
si + pk

)

.
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A.2 The characteristic function and the Fourier-

Laplace transform

A very important property of the moment generating function is that it is analytic, making
the powerful tools of complex function theory available to us.

For this purpose we need to extend the definition of the moment generating function to
complex arguments. For P ∈ Mk we define the Fourier-Laplace transform of P by

M̃P (z) =

∫

ez·xM̃P (z) =

∫

ez·xP (dx), z ∈ ICk. (A.7)

More explicitly, let z = (z1, . . . , zk)
T and write zj = sj + itj where i is the imaginary unit.

Then

M̃(s1 + it1, . . . , sk + itk) =

∫

es·x cos(t · x)P (dx) +
∫

es·x sin(t · x)P (dx),

where s = (s1, . . . , sk)
T and t = (t1, . . . , tk)

T .
A special case of the Fourier-Laplace transform is the characteristic function, defined by

ϕP (t) = M̃P (it) for t ∈ IRk. Hence

ϕP (t) =

∫

eit·xP (dx)

=

∫

cos(t · x)P (dx) + i

∫

sin(t · x)P (dx), t ∈ IRk.

We use the same conventions regarding random variables as in the case of moment generating
functions, and write M̃X instead of M̃P if X ∼ P etc.

The next theorem summarizes the elementary properties of M̃P and ϕP . By ℜz we mean
the real part of the complex number z.

Theorem A.6 Let P ∈ Mk. Then

(i) The integral (A.7) is absolutely convergent if and only if z ∈ Θ̃P , where

Θ̃P = ΘP + iIRk = {s+ it: s ∈ ΘP , t ∈ IRk}.

(ii) M̃P (s) =MP (s) for s ∈ ΘP .

(iii) M̃P (it) = ϕP (t) for t ∈ IRk.

(iv) M̃P (0) = ϕP (0) = 1.

(v)
∣

∣

∣M̃P (z)
∣

∣

∣ ≤MP (ℜ z) for z ∈ Θ̃P , where ℜ z = (ℜ z1, . . . ,ℜ zk)
T .
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(vi) |ϕP (t)| ≤ 1 for t ∈ Rk.

(vii) Let B be an ℓ× k matrix and c an ℓ× 1 vector, and let X have distribution P . Then

M̃BX+c(z) = M̃X(B
T z)ez·c, BTZ ∈ Θ̃P

and

ϕBX+c(t) = ϕX(B
T t)eit·c, t ∈ IRk

(viii) Let X = (XT
1 , X

T
2 )

T be a partition of X with components of dimension d and k − d,
respectively, and let z = (zT1 , z

T
2 )

T and t = (tT1 , t
T
2 )

T be similar partitions of z ∈ ICk and
t ∈ Rk. If X1 and X2 are independent then

M̃X(z) = M̃X1(z1)M̃X2(z), z ∈ Θ̃P

and

ϕX(t) = ϕX1(t1)ϕX2(t2), t ∈ IRk.

Proof: For z = s+ it ∈ ICk we have

|ez·x| =
∣

∣es·xeit·x
∣

∣ = es·x. (A.8)

Hence, by majorization we have that the integral (A.7) is convergent if and only if
s = ℜ z ∈ ΘP , which shows (i). By (A.8)

∣

∣

∣M̃P (z)
∣

∣

∣
≤
∫

|ez·x|P (dx) =MP (s),

which shows (v) and, for s = 0, (vi). The remaining parts of the theorem are trivial, and
the proofs are left for the reader. �

A.3 Analytic properties of univariate moment generat-

ing functions

To facilitate the discussion of the analytic properties we begin with the univariate case, which
allows us to rely on the familiar theory for analytic functions in one variable. The results
in the multivariate case, treated in Section A.5, may be derived from the corresponding
univariate result.

Let P ∈ M1 and let M̃P be the Fourier-Laplace transform of P and MP the moment
generating function of P . The effective domain for MP is then an interval on the real line,
and Θ̃P is the corresponding vertical strip in the complex plane. The following theorem shows
that M̃P is an analytic function.
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Theorem A.7 Let P ∈ M1 and assume that 0 ∈ int ΘP . Then the Fourier-Laplace trans-
form M̃P is analytic on int Θ̃P . The Taylor expansion of M̃P around 0 is

M̃P (z) =
∞
∑

j=0

µj(P )

j!
zj, (A.9)

where

µj(P ) =

∫

xjP (dx)

is the jth moment for P , which exists for any j = 0, 1, 2, . . . . The cumulant generating
function KP is analytic with Taylor expansion

KP (s) =
∞
∑

j=0

Kj(P )

j!
sj (A.10)

around 0, where Kj(P ) is the jth cumulant of P , which exists for any j = 0, 1, 2, . . . . In
particular, P has mean and variance (writing X ∼ P )

E(X) = K′
P (0) Var(X) = K′′

P (0),

respectively. If P is not degenerate, then Var(X) > 0.

Proof: Let z0 = s0 + it0 ∈ int Θ̃P and write M̃P as follows for |z − z0| < ε

M̃P (z) =

∫

exp{(z − z0)x+ z0x}P (dx)

=

∫ ∞
∑

j=0

(z − z0)
jxj

j!
ez0xP (dx), (A.11)

where ε > 0 is such that |z − z0| < ε implies z ∈ int Θ̃P . For any n ≥ 0 we have

∣

∣

∣

∣

∣

n
∑

j=0

(z − z0)
jxj

j!
ez0x

∣

∣

∣

∣

∣

≤
∞
∑

j=0

|z − z0|j |x|j
j!

|ez0x|

= exp(|z − z0| |x|+ s0x)

≤ (eεx + e−εx)es0x. (A.12)

We have s0 ± ε ∈ ΘP , so the integral of (A.12) with respect to P is finite. By Lebesgue’s
dominated convergence theorem we may hence interchange integration and summation in
(A.11). Thus, for |z − z0| < ε

M̃P (z) =
∞
∑

j=0

(z − z0)
j

j!

∫

xjez0xP (dx),
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which shows that M̃P is analytic on int Θ̃P . For z0 = 0 we obtain (A.9), and that µj(P )
exists for any j ≥ 0.

Let Log denote the principal branch of the complex logarithm. Since MP (s) > 0 for
s ∈ ΘP , LogM̃P (z) exists in the domain

R = {z ∈ int Θ̃P : M̃P (z) /∈ (−∞, 0]} (A.13)

and is analytic in R. Hence KP (s) = logMP (s) is analytic with Taylor series (A.10). Finally,
if P is not degenerate, then K′′

P (0) = Var (X) > 0, cf. Problem A.20. �

Example A.8 Let us find the characteristic function of the normal distribution. From Ex-
ample A.2 we know that the moment generating function of the univariate normal distribution
N(0, 1) is exp

(

1
2
s2
)

. By analytic continuation, the corresponding characteristic function is
exp

{

1
2
(it)2

}

= exp
(

−1
2
t2
)

. By Theorem A.6 (viii) the characteristic function of Nk(0, Ik) is
hence

exp(−1

2
t21) · · · · · exp(−

1

2
t2k) = exp(−1

2
t · t),

where t = (t1, . . . , tk). Finally, by Theorem A.6 (vii) we conclude that the characteristic
function of the normal distribution Nk(µ,Σ) is

exp(−1

2
tTΣt+ it · µ),

where we have used the transformation X → BX + µ, Σ = BBT , as in Example A.2.

By Theorem A.7, MP (s) is continuous and differentiable on int ΘP , and in the next
theorem we show that MP is continuous at the boundary of ΘP in the one-dimensional case.
This is not generally so in the multivariate case, cf. Barndorff-Nielsen (1978, p. 105).

Theorem A.9 Let P ∈ M1, and assume that ΘP has a finite endpoint θ0. Let limθ→θ0

denote either limθ↓θ0 or limθ↑θ0, depending on whether θ0 is the upper or lower endpoint of
Θ0. Then the following two statements are equivalent

(i) θ0 ∈ ΘP

(ii) limθ→θ0 MP (θ) exists and is finite.

If (i) or (ii) holds, then MP (θ0) = limθ→θ0 MP (θ).

Proof: We assume that θ0 is the lower endpoint of ΘP , the proof in the opposite case being
similar. If θ0 ∈ ΘP , then MP (θ0) <∞. For θ0 ≤ θ ≤ θ0 + ε, we have

eθx ≤ eθ0x + e(θ0+ε)x. (A.14)

For θ0 + ε ∈ ΘP we have MP (θ0 + ε) < ∞, which together with (A.14) and Lebesgue’s
Dominated Convergence Theorem implies that limθ↓θ0 MP (θ) exists and is equal to MP (θ0).
This shows the implication (i) ⇒ (ii). Now assume that (ii) holds. By Fatou’s Lemma,
applied to the sequence of positive functions eθx for a sequence of θs, we find that MP (θ0) ≤
limθ→θ0 MP (θ). Hence θ0 ∈ ΘP , concluding the proof. �
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A.4 The uniqueness theorem for characteristic func-

tions

We now show that a distribution is characterized by its characteristic function. The Fourier-
Laplace transform provides a link between the moment generating function MP and the
characteristic function ϕP . This allows us to use the fact that ϕP characterizes P to show
that MP also characterizes P .

Theorem A.10 Let P1, P2 ∈ Mk be two distributions such that

ϕP1(t) = ϕP2(t) for t ∈ IRk.

Then P1 = P2.

Proof: We show how a distribution P ∈ MK may be recovered from its characteristic
function ϕ. The starting point of the proof is the fact that

e−it·sϕ(t) =

∫

eit·(x−s)P (dx).

By integrating both sides of this equation with respect to the density function of the normal
distribution Nk(0, a

−1Ik), we get

(

2π

a

)−k/2 ∫

ϕ(t) exp(−it · s− 1

2
at · t)dt

=

∫ ∫

eit·(x−s)P (dx)

(

2π

a

)−k/2
e−1/2at·tdt

= (
2π

a
)−k/2

∫ ∫

exp

{

it · (x− s)− 1

2
at · t

}

dtP (dx)

=

∫

exp{− 1

2a
(s− x) · (s− x)}P (dx),

where we have use the result of Example A.8. Hence we have the relation

(

2π

a

)− k
2
∫

exp(−it · s− 1

2
at · t)ϕ(t)dt =

∫

fa(s− x)P (dx), (A.15)

where fa is the density function of the normal distribution Nk(0, a Ik). The right-hand side of
equation (A.15) is the density function of the convolution of P with the normal distribution
Nk(0, a Ik), whereas the left-hand side depends on P only through ϕ. Since the convolution
on the right-hand side converges in distribution to P as a tends to 0, we may hence recover
P from ϕ, which proves the theorem. �
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Corollary A.11 (Cramér-Wold) Let X have distribution P ∈ Mk. Then P is uniquely
determined by the set of marginal distributions of θ ·X for θ ∈ IRk.

Proof: The characteristic function of θ ·X is for s ∈ IR

ϕθ·X(s) =

∫

exp(isθ · x)P (dx) = ϕX(sθ). (A.16)

If the distribution of θ ·X is known for any θ ∈ IRk, then by (A.16) the characteristic function
ϕX(u) is known for any u = sθ ∈ IRk. Hence, by the uniqueness theorem, the distribution of
X is known. �

Using Theorem A.10 we may now show that a univariate analytic moment generating
function characterizes its distribution. The corresponding result for the multivariate case is
shown in the next section.

Theorem A.12 Let P1 and P2 belong to M1. If there exists an open set S ⊆ ΘP1 ∩ ΘP2

such that
MP1(s) =MP2(s) for s ∈ S, (A.17)

then P1 = P2.

Proof: Let θ0 ∈ S and define

Qi(dx) = {eθ0x/MPi(θ0)}Pi(dx), i = 1, 2. (A.18)

Then Q1 and Q2 are distributions in M1, and actually (A.18) is an example of a linear
exponential family. The Fourier-Laplace transform of Qi is

M̃Qi(z) = M̃Pi(z + θ0)/MPi(θ0),ℜ z ∈ ΘPi − θ0.

Defining R = int Θ̃P1 ∩ int Θ̃P2 − θ0, we have S − θ0 ⊆ R, and by (A.17) M̃Q1 and M̃Q2 are
identical on S − θ0. By analytic continuation, M̃Q1 and M̃Q2 are hence identical on R, and
since R includes the imaginary axis we conclude that Q1 and Q2 have the same characteristic
function. Hence Q1 = Q2, and by (A.18) this implies P1 = P2. �

A.5 Analytic properties of multivariate moment gen-

erating functions

We now generalize the results of Section A.3 to the multivariate case. We first show that an
analytic moment generating function characterizes its distribution.

Theorem A.13 Let P ∈ Mk and let MP be the moment generating function of P with
effective domain ΘP . If int ΘP 6= ∅ then MP characterizes P .
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Proof: Let θ0 ∈ int ΘP , and define the distribution Q by

Q(dx) = {eθ0·x/MP (θ0)}P (dx). (A.19)

with moment generating function

MQ(s) =MP (θ0 + s)/MP (θ0), s ∈ ΘP − θ0.

If X ∼ Q and θ ∈ IRk, then θ ·X has moment generating function

Mθ·X(s) =MP (θ0 + sθ)/MP (θ0),

and since int ΘP 6= ∅ we have int Θθ·X 6= ∅ for any θ ∈ IRk. By Theorem A.12 the distribution
of θ · X may be recovered from MQ, which in turn is defined in terms of MP . Hence, by
Corollary A.11, the distribution of Q may be recovered from MP . By (A.19) P is uniquely
determined by Q, and hence the conclusion of the theorem follows. �

Corollary A.14 Let P ∈ Mk and assume that int ΘP 6= ∅. Then the function s→MP (θ0+
sθ) is analytic for any θ0 ∈ int ΘP and θ ∈ IRk. In particular, MP is analytic separately in
each coordinate.

Proof: Follows immediately from the proof of Theorem A.13. �

As a prologue to the multivariate version of Theorem A.7 we look at the Taylor expansion
of the exponential function. The reason is that in the proof of Theorem A.7 the Taylor
expansion of the Fourier-Laplace transform was obtained by integrating the Taylor expansion
of the exponential function term by term. In the multivariate case we need the expansion of
exp(z1 + · · ·+ zk), which may be obtained from the Taylor expansion of exp. Thus

exp(z1 + · · ·+ zk) =
∞
∑

i=0

(z1 + · · ·+ zk)
i

i!

=
∞
∑

i=0

1

i!

∑

i1, . . . , ik ≥ 0
i1 + · · ·+ ik = i

(

i

i1 . . . ik

)

zi11 . . . z
ik
k

=
∞
∑

i1=···=ik=0

zi11 · · · zikk
i1! · · · ik!

.

This shows that exp(z1+· · ·+zk) is analytic as a function of the complex arguments z1, . . . , zk,
by displaying it as the sum of its Taylor series. In general, a function of several complex
variables, f , is said to be analytic in a region S if for every z0 ∈ S, f is given by its Taylor
expansion around z0 in some neighbourhood of z0,

f(z) =
∞
∑

i1=···=ik=0

∂i1+···+ikf(z0)

∂zi11 . . . ∂z
ik
k

· (z1 − z01)
i1 · · · · · (zk − z0k)

ik

i1! · · · ik!
.

The multivariate version of Theorem A.7 is
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Theorem A.15 Let P ∈ Mk and assume that 0 ∈ int ΘP . Then the Fourier-Laplace trans-
form M̃P is analytic on int Θ̃P . The Taylor expansion of M̃P is

M̃P (z) =
∑

i1=...=ik=0

µi1...ik(P )

i1! · . . . · ik!
zi11 · . . . · zikk (A.20)

where

µi1...ik(P ) =

∫

xi11 . . . x
ik
k P (dx)

is the (i1, . . . , ik)th moment of P and z = (z1, . . . , zk)
T , x = (x1, . . . , xk)

T . The cumulant
generating function KP is analytic with Taylor expansion around 0.

Kp(s) =
∞
∑

i1=...=ik=0

Ki1...ik(P )

i1! . . .!ik!
si11 · . . . · sikk , (A.21)

where Ki1...ik(P ) is the (i1, . . . , ik)th cumulant of P and s = (s1, . . . , sk)
T . In particular, P

has moments and cumulants of arbitrary order.

Proof: Let z0 = s0 + it0 ∈ int Θ̃P be given, and let ε > 0 be such that |z − z0| < ε implies
z ∈ int Θ̃P . Here |z| denotes the Euclidean norm on ICk, obtained by identifying ICk with the
Euclidean space IR2k. Using the univariate Taylor expansion of the exponential function we
obtain

M̃P (z) =

∫

exp{(z − z0) · x+ z0 · x}P (dx)

=

∫ ∞
∑

i=0

{(z − z0) · x}i
i!

ez0·xP (x).

The following inequality justifies the use of Lebesgue’s theorem of dominated convergence,
writing s0 = (s01, . . . , s0k)

T etc.,

∣

∣

∣

∣

∣

n
∑

i=0

{(z − z0) · x}i
i!

ez0·x

∣

∣

∣

∣

∣

≤
∞
∑

i=0

|(z − z0) · x|i
i!

es0·x

= exp{|(z − z0) · x|+ s0 · x}
≤ exp{|(z1 − z01)| x1 + · · ·+ |(zk − z0k)xk|+ s0 · x}(A.22)

≤
k
∏

i=1

{(eεxi + e−εxi)esoixi}. (A.23)

We may choose ε such that the rectangle with vertices s0i±ε is contained in int ΘP . Then the
function (A.23) is integrable with respect to P , and interchanging summation and integration
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in (A.22) we obtain

M̃P (z) =
∞
∑

i=0

∫ {(z − z0) · x}i
i!

ez0·xP (dx)

=
∞
∑

i=0

∫

1

i

∑

i1, . . . , ik ≥ 0
i1 + · · ·+ ik = i

(

i

i1 . . . ik

)

(z1 − z01)
i1xi11 · . . . · (zk − z0k)

ikxikk e
z0·xP (dx)

=
∞
∑

i1=...=ik=0

(z1 − z01)
i1 . . . (zk − z0k)

ik

i1! · . . . · ik!

∫

xi11 · . . . · xikk ez0·xP (dx),

which shows that M̃P is analytic in int Θ̃P . For z0 = 0 we obtain (A.20). Since MP (s) > 0
for s ∈ ΘP , LogM̃P is defined and analytic in a region of ICk containing Θ̃P , and hence
KP = logMP is analytic, with Taylor expansion (A.21). �

Corollary A.16 Let P ∈ Mk, let X ∼ P , and assume that 0 ∈ int ΘP . Then X has mean
vector µ = (µ1, . . . , µk)

T with

µi =
∂KP (s1, . . . , sk)

∂si
|s=0

and variance matrix V = {vij, i, j = 1, . . . , k} with

vij =
∂2KP (s1, . . . , sk)

∂si∂sj
|s=0 .

The variance matrix V is positive-definite if and only if P is not concentrated on an affine
subspace of IRk.

Proof: The expressions for µi and vij follow from the results of Theorem A.15. The
condition for positive-definiteness of V follows from general properties of variance matrixes,
cf. Problem A.20. �

A.6 Problems

Problem A.1 Prove Theorem A.1.

Problem A.2 Show that the cumulant generating function of the multinomial distribution
is not strictly convex.

Problem A.3 Show, without using Theorem A.4, that the cumulant generating function of
the multivariate normal distribution Nk(µ,Σ) is strictly convex if and only if Σ is positive-
definite.
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Problem A.4 Use the convexity of the exponential function to show, without using Theorem
A.4, that the moment generating function MP is convex.

Problem A.5 Find the moment and cumulant generating functions of the following dis-
tributions: degenerate, uniform, exponential, gamma, normal, inverse Gaussian, Poisson,
binomial and negative binomial.

Problem A.6 Let P be the measure with probability density 1
2
e−|x|. Find MP and ΘP for

this measure.

Problem A.7 Let P be the Cauchy distribution with density function

f(x) = 1/{π(1 + x2)}.

Show that ΘP = {0}.

Problem A.8 Show that the moment generating function of a univariate distribution P is
strictly convex if and only if P is not concentrated in zero.

Problem A.9 Show that the only univariate distributions whose cumulant generating func-
tions are not strictly convex are the degenerate distributions.

Problem A.10 Let U = {a+ bt: t ∈ IR} with a, b ∈ IR, b 6= 0, denote an affine subspace of
IR2. Give an example of a distribution P concentrated on U , but not degenerate, and show
that KP is not strictly convex.

Problem A.11 Show that if f : A → B, and g: B → IR, where A ⊆ IRk is convex and
B ⊆ IR is an interval, and f and g are convex functions and g increasing, then g◦f is convex.
Give conditions under which g◦f is strictly convex. Show that exp{f(x)} is a convex function
for f convex.

Problem A.12 Show that if P ∈ Mk has bounded support, then ΘP = IRk.

Problem A.13 Consider the moment generating function MX in Example A.5 for k =
2. Derive the relation between MX and the moment generating function of the binomial
distribution.

Problem A.14 Consider the moment generating function MY in Example A.5. Give neces-
sary and sufficient conditions for KY = logMY to be strictly convex.

Problem A.15 Make a plot of Θ̃P for the distributions mentioned in Problem A.5.

Problem A.16 Verify the details of the proof of Theorem A.10 in the case k = 1.
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Problem A.17 Show that the cumulants of the standard normal distribution N(0, 1) are
K1 = 0, K2 = 1 and Kj = 0 for j ≥ 2.

Problem A.18 Write the Taylor expansions (A.9) and (A.10) for each of the distributions
of Problem A.5. In particular, find mean and variance in each case.

Problem A.19 Let P and Q be distributions in Mk such that there exists an open set S
with 0 ∈ S ⊆ ΘP ∩ΘQ with MP (s) =MQ(s) for s ∈ S. Show that P = Q. Can you suggest
any improvements of this result?

Problem A.20 Show that Var(X) ≥ 0 for any random variable X, and that Var(X) > 0,
unless X is degenerate. Use this result to show that the variance-covariance matrix V for
a random vector X is non-negative definite, and that V is positive definite, unless X is
concentrated on an affine subspace of IRk.

Problem A.21 Prove that X + aY
d→ X as a → 0 for any two random vectors X and Y .

This is important for the proof of one of the theorems in this appendix. Which?
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Monografias de Matemática no 52, IMPA, Rio de Janeiro.

[54] Joseph, B. and Durairajan, T.M. (1991). Equivalence of various optimality criteria for
estimating functions. J. Statist. Plann. Inference 27, 355–360.

[55] Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical Analysis of Failure Time
Data. Wiley, New York.

[56] Kale, B.K. and Chandrasekar, B. (1983). Equivalence of optimality criteria for vector
unbiased statistics. J. Indian Statist. Assoc. 21, 49–58.

[57] Kawata, T. (1972). Fourier Analysis in Probability Theory . New York: Academic Press.

[58] Keilson, J. and Gerber, H. (1971). Some results for discrete unimodality. J. Amer. Statist.
Ass. 66, 386–389.

[59] Kendall, B.K. and Stuart, A. (1979). The Advanced Theory of Statistics, 4th ed., Vol. 2.
Charles Griffin, London.

[60] Kimball, B.K. (1946). Sufficient statistical estimation functions for the parameters of
the distribution of maximum values. Ann. Math. Statist. 17, 299–309.

[61] LeCam, L. (1990). Maximum likelihood: An introduction. Internat. Statist. Rev. 58,
153–171.



BIBLIOGRAPHY 195

[62] Lehmann, E.L. (1959). Testing Statistical Hypothesis . Wiley, New York.

[63] Lehmann, E.L. (1981). An interpretation of completeness and Basu’s theorem. J. Amer.
Statist. Assoc. 76, 335–340.

[64] Lukacs, E.E. (1970). Characteristic Functions . Second Edition. London, Griffin.

[65] McLeish, D.L. and Small, C.G. (1987). The Theory and Applications of Statistical in-
ference Functions. Lecture Notes in Statistics 44, Springer-Verlag, New York.

[66] Neyman, J. and Scott, E. (1948). Consistent estimates based on partially consistent
observations. Econometrika 16, 1–32.

[67] Orwell, G. (1945). Animal Farm: A Fairy Story. Secker and Warburg (1987 edition),
London.

[68] Pfanzagl, J. (1990). Estimation in Semiparametric Models: Some Recent Developments.
Lecture Notes in Statistics, 63. Springer-Verlag.

[69] Plausonio, A. (1968). De Re Ætiopia. XXII edition. Editora Rodeziana. Barcelona-São
Paulo.

[70] Rasch, G. (1960). Probabilistic Models for some Intelligence and Attainment Tests . Stud-
ies in Mathematical Psychology I. Danish Institute for Educational Research, Copen-
hagen.

[71] Rémon, M. (1984). On a concept of partial sufficiency: L-sufficiency. Internat. Statist.
Rev. 52, 127–135.

[72] Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press.

[73] Sandved, E. (1967). A principle for conditioning on an ancillary statistic. Skand. Aktuar.
J. 50, 39–47.

[74] Sandved, E. (1972). Ancillary statistics in models without and with nuisance parameters.
Scand. Actuar. J. 55, 81–91.

[75] Small, C.G. and McLeish, D.L. (1988a). Generalizations of ancillarity, completeness and
sufficiency in an inference function space. Ann. Statist. 16, 534–551.

[76] Small, C.G. and McLeish, D.L. (1988b). Projection as method for increasing sensitivity
and eliminating nuisance parameters. Technical Report Series STAT-88-11. University
of Waterloo.

[77] Stein, C. (1956). Efficient nonparametric testing and estimation. Proc. Third Berkeley
Symp. Math. Statist. Prob. 1, 187–195. California Press, Berkeley.



196 BIBLIOGRAPHY

[78] Sverdrup, E. (1965). Estimates and test procedures in connection with stochastic models
for deaths, recoveries, and transfers between different states of health. Scand. Actuar. J.
48, 184–211.

[79] Van der Vaart, A. and Wellner, J. (1996) Weak Convergence and Empirical Processes
with Applications to Statistics. Springer-Verlag, New York. ISBN 0-387-94640-3.


