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Abstract

Multi-layer networks arise when more than one type of relation is observed on a

common set of actors. Modeling such networks within the exponential-family

random graph (ERG) framework has been previously limited to special cases

and, in particular, to dependence arising from just two layers. Extensions to

ERGMs are introduced to address these limitations: Conway–Maxwell-Binomial

distribution to model the marginal dependence among multiple layers; a “layer

logic” language to translate familiar ERGM effects to substantively meaningful

interactions of observed layers; and non-degenerate triadic and degree effects.

The developments are demonstrated on two previously published data sets.

Keywords: ERGM Multi-Layer Multi-Relational Multiplexity
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1. Background

Studying social processes unfolding in networks consisting of a common set

of actors incident on multiple types of relationships has long been of interest

across the social sciences. Variously called multivariate or multiplex, multi-item,

and multi-relational networks (P. E. Pattison 1982; S. E. Fienberg, Meyer, and
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Wasserman 1980; Frank and Shafie 2016; Jeub et al. 2017; Voros and Snijders

2017), these social structures typically involve connections among actors on

more than one type of binary relationship, which are conceptually “stacked” into

layers (Magnani and Wasserman 2017). This type of layered network data can

be used to address research questions about social structure and processes that

may unfold both within and between layers. Multi-layer models would allow one

to consider questions such as: what is the likelihood of forming a friendship tie

given the presence of a trust tie between two actors? Do friendships tend to

form between actors who consider the same people to be trustworthy? Previous

network analytic approaches to multi-layer networks include a combination

of covariance based measures (i.e., correlation, singular value decomposition,

canonical correlation), descriptive measures (i.e., joint density, multiplexity, edit

distance) and model-based inference (i.e., entailment analysis, stochastic block-

models, network regression and two-layer exponential-family random graph

models). These important foundational techniques are limited in that they

provide few tools for analyzing cross-layer structural effects that are often of

substantive interest to researchers. Moreover, methods that handle association

across many network layers jointly while considering structural properties both

within and between layers are not currently available. This paper addresses

these gaps by building upon the foundations of multi-layer network analysis.

The balance of this manuscript is organized as follows. First, a brief literature

review of modeling multiple layers using the exponential-family random graph

family of models (ERGMs) is provided. Second, three novel advances for the

statistical analysis of an arbitrary number of layers in a network using this frame-

work is described: section 2 proposes the Conway–Maxwell-Binomial distribution

for modeling marginal dependence across layers; section 3, introduces layer

logic—a language for modeling joint and conditional dependence across layers;
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and section 4 introduces non-degenerate cross-layer triadic effects. Combined,

these contributions provide methods to address research questions about how

social structure unfolds within and between multiple layers of relationships, while

controlling for the underlying marginal association among the layers. Finally,

in section 5, two empirical analyses using previously published data (Lazega’s

Lawyers and a subset of Knecht’s Students) are presented.

1.1. Previous Work on Multi-Layer Exponential-Family Random Graph Models

There is a long history of random graph approaches for modeling both local

and global structures within observed network systems, the majority of which

focus on single binary relations (Erdős and Rényi 1959; Frank and Strauss 1986;

Holland and Leinhardt 1981; S. Fienberg and Wasserman 1981; Wasserman

and Pattison 1996). However, network processes, particularly when considering

relationships that span great lengths of time between actors, often involve

multiple relations. To investigate associations among those multiple relations,

methods used include relational algebras and block modeling approaches (D. R.

White and Reitz 1983; H. C. White, Boorman, and Breiger 1976; Boorman and

White 1976; Barbillon et al. 2017; P. E. Pattison 1982), correlational approaches

(Krackardt 1987; Wasserman, Faust, and Galaskiewicz 1990), and comparisons to

null distributions, such as multivariate uniform graph distributions (S. Fienberg

and Wasserman 1981). Extensions have been developed that considered local

structural characteristics within a stochastic modeling framework were initiated

over 30 years ago where the dyadic independence model was augmented to

incorporate multiple relations (Wasserman 1987). The stochastic blockmodels of

Nowicki and Snijders (2001) incorporated multilayered relations. In the 1990s,

Wasserman and Pattison (1996) adapted random graph models of Frank and

Strauss (1986) to larger network systems with more complicated dependence

structures and made innovations in parameter estimation. With these newly
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specified p∗ models, or ERGMs, came the potential to move beyond dyadic

independence and to hypothesize and fit models with more complex dependence

structures. In so doing, the door was opened to consider the potential for such

hypothesized dependencies to be characterized by interdependent relations of

different types (Koehly and Pattison 2005).

In the late 1990s, ERGMs were applied to several multivariate network

datasets, most notably resource exchanges among lawyers in Lazega’s classic

dataset (Lazega and Pattison 1999). These models were also redefined to consider

temporal networks, with longitudinal measurements on the same relations (G.

Robins and Pattison 2001). Lazega and Pattison (1999), in particular, proposed

an initial taxonomy of possible triad configurations for directed networks. Un-

fortunately, the type of triad-based specification used has since been found to

induce poorly behaved models in a phenomenon that has come to be called

degeneracy (Handcock 2003; Schweinberger 2011). In the paper of Lazega and

Pattison (1999), it may have been masked by their use of maximum pseudo-

likelihood estimation (MPLE) (Strauss and Ikeda 1990) as opposed to the more

accurate MCMC-based methods (Snijders 2002; Hunter and Handcock 2006)

that were developed a few years later. (Schweinberger et al. (2020) provides

a more detailed historical account.) A more recent chapter by Wang (2012)

described a number of specifications for two-layer networks, reviewing the models

introduced by Lazega and Pattison (1999) and introducing two-layer extensions

of the non-degenerate specifications of (Snijders et al. 2006), implemented in

the XPNet software.

Ultimately, applications that consider multi-layer networks are still limited,

due, largely, to the increased complexity of and inability to fit such multi-layer

models with more than a few relations of interest. Given the complex social worlds

within which we live and the importance of interpersonal mechanisms on health,
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well-being, and mortality (Holt-Lunstad, Smith, and Layton 2010), development

of models to understand how varying types of social ties are structured has

important implications. As such, there has been significant effort within the

community towards identifying methodological approaches to characterize these

complex social systems. Moreover, one of the advantages of estimating joint

models with many layers—rather than simply fitting separate ERGMs for each

layer—is that within-model contrasts between differences in social processes at

play in the separate layers can be evaluated.

These methodological advances bring with them some challenges to implemen-

tation. First, as discussed by Voros and Snijders (2017), the number of structural

parameters that can characterise a structural model increases exponentially as

the number of layers defining the system increases. As such, there is a plethora

of interpersonal mechanisms that may explain potential cross-layer dependencies

requiring model specification to be hypothesis driven and grounded in theory.

Second, logistical and computational aspects related to model specification and

estimation become more complicated in multi-layer contexts, particularly when

one is aiming to move beyond correlation between layers. There has been success

in implementing such models with just a few relational layers, including among

one-mode multi-layer networks and between two-mode and one-mode networks

(Huitsing et al. 2012; Snijders, Lomi, and Torló 2013; Wang 2012). But, exten-

sions moving beyond just a few layers are scarce and most of those extensions

are limited in their ability to map to hypothesised structural characteristics that

might be threaded across layers. For example, Frank and Shafie (2016) and Shafie

(2015) consider the use of entropy to identify interdependencies among a set of

network variables derived from multigraphs. Salter-Townshend and McCormick

(2017) propose latent space analysis as a way to understand dependencies across

layers conditional on within layer structure. Others have used data reduction
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approaches, such as cluster analysis, to reduce the dimensionality of layers and,

thus, simplify the multigraph problem (Voros and Snijders 2017). And, De

Domenico et al. (2013) demonstrate the use of tensor algebra for investigating

structural aspects of multi-layer networks that can account for both multiplex

relations and temporal dynamics.

These developments notwithstanding, there exists a considerable gap in the

theory and estimation of ERGMs for multi-layer networks. In what follows, our

contribution builds upon this history from within the ERGM framework. We

begin with some notation for multi-layer networks.

1.2. Notation

Let Y be a random multi-layer network among a common set of actors

N = {1, . . . , n}, on L binary relations where Yi,j,l indexes the presence (= 1) or

absence (= 0) of the l-th relation between actors i and j (i 6= j ∀ l). Let y be

a realization of Y . This multi-layer network can be regarded as a composition

of L binary networks, y1, . . . , yL or as a multivariate network, where each dyad

~yi,j is a binary L-vector [yi,j,l]
L
l=1.

1.3. Multilayer ERGM

To specify an ERGM on such a network, define the set of potential relations

within each layer: Yl, l = 1, . . . , L. For a directed layer, Yl ⊆ {(i, j) : (i, j) ∈

N × N}, and for an undirected layer, Yl ⊆ {{i, j} : (i, j) ∈ N × N}. For

convenience, also define Y· ≡ Y1 ∪ · · · ∪ YL: the set of dyads (ordered or

unordered) for which a relation may exist in at least one layer. In the case where

both directed and undirected layers are modeled jointly, it is convenient to treat

Y· as directed, with an undirected Yl being treated as {(i, j), (j, i) : {i, j} ∈ Yl}

for the purpose of taking this union. The sample space for the ERGM is the set

of possible subsets of potential relations of interest: Y ⊆ 2Y1×···×YL .
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An ERGM is specified by its vector function g(Y ), sufficient statistics,

operationalizing the multilayer network’s features of interest—including those of

its constituent layers individually or, as discussed later, various combinations

thereof—and, in some formulations (Hunter and Handcock 2006; Krivitsky 2017),

a mapping η(θ) of model parameter vector θ to the natural parameters. Then,

write Y ∼ ERGMY,g,η(θ) if for y ∈ Y,

Pr(Y = y) = exp{η(θ) · g(y)}
/

κ(θ),

where κ(θ) =
∑

y′∈Y
exp{η(θ) · g(y′)} is the normalizing constant (Hunter and

Handcock 2006).

1.4. Homogeneous and Heterogeneous Layer Effects

Before introducing models for dependence between layers, it is helpful to

consider how a model may “couple” layers even under the assumption of condi-

tional independence. Observe that an ERGM may be specified for each layer

individually, that is,

Pr(Yl = yl) = exp{ηl(θl) · gl(yl)}
/

κl(θl),

with the likelihood that results being

L
∏

l=1

Pr(Yl = yl) = exp{

L
∑

l=1

ηl(θl) · gl(yl)}
/

L
∏

l=1

κl(θl).

This is a single ERGM, whose sufficient statistic g(y) ≡ [g1(y1)⊤, . . . , gL(yL)⊤]⊤,

parameter vector η(θ) ≡ [η(θ)⊤
1 , . . . , η(θ)⊤

L ]⊤, and κ(θ1, . . . , θL) ≡
∏L

l=1 κl(θl).

Even if forms of corresponding gk(·) for two layers are the same, no assumption

is made about whether the social forces they embody have the same strength

and direction—they are heterogeneous. However, one can also consider models
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in which the strength and the direction are assumed to be the same—net of

other social forces—even though the layers themselves are still stochastically

independent. This can provide better parsimony and more statistical power,

and heterogeneity of forces may be tested using likelihood-ratio testing or score

testing. That is, if effect gk(·) is assumed to be homogeneous among the layers

with coefficient ηk(θ), it may be expressed through a joint model

Pr(Y1 = y1, . . . , YL = yL) =

L
∏

l=1

exp{ηl(θl) · gl(yl) + ηk(θ) · gk(yl)}
/

κl(θl)

= exp{

L
∑

l=1

ηl(θl) · gl(yl) + ηk(θ) ·

L
∑

l=1

gk(yl)}
/

κ(θ1, . . . , θL),

with a sufficient statistic simply summing the layer-specific statistics. Homo-

geneous effects can also be applied to subsets of layers.

2. The Conway–Maxwell-Binomial Model

Layers, which are assumed are composed of binary random variables, may or

may not be independent and multi-layer ERGM model terms may depend on

linear combinations of edges across layers. This is particularly the case when

the research question involves multi-layer networks comprising some mixture

of underlying relational constructs, such as cohesion and conflict identified

by Koehly and Marcum (2016). Thus, special consideration should be given

to the distribution of edges across a set of L binary relations in a multi-layer

network. One of the principal challenges in modeling associated Bernoulli random

variables is the asymmetry between positive and negative pairwise correlations.

Kadane (2016) proposes an approach to this problem via the Conway–Maxwell-

binomial (CMB) distribution. Here, this approach is used to model the marginal

dependence among all dyads across layers in which they have a tie.
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A random variable X ∈ {0, . . . , m} is CMB if, up to a constant,1

Pr(X = x; π, γ) ∝

(

m

x

)1−γ

πx(1 − π)m−x. (1)

Then, if γ = 0, X is binomial. When γ > 0, the denominator of the binomial

coefficient (i.e., x!(m−x)!) is attenuated, thus increasing the variance for a given

π; and, conversely, when γ < 0, the binomial coefficient is amplified, inducing

underdispersion relative to the binomial distribution with a given π. Viewed as

a sum of Bernoulli random variables, higher variance (for a given expectation)

corresponds to a positive correlation among the variables, and a lower variance

corresponds to a negative correlation.

CMB is an exponential family, and CMB distribution for the number of

layers within a dyad can be induced with gCMB(y) = −
∑

(i,j)∈Y·

log
(

L
yi,j,·

)

,

where yi,j,· =
∑L

l=1 yi,j,l, the number of relations between i and j across all

layers. Such ties may be directed or undirected, and in the latter case only

the upper or lower triangle of the layer’s associated adjacency matrix need be

evaluated. Observe that in an ERGM whose only element of g(·) is the total

number of edges across all layers (gedge(y) =
∑

(i,j)∈Y·

yi,j,·), for any given (i, j),

Yi,j,· ∼ Binomial{L, logit−1(θedge)}. Then, adding gCMB(y) to the model would

turn this distribution into the CMB specification above, with γ ≡ θCMB. The

CMB statistic can also be computed across only a subset of layers. For example,

a positive association may be expected among layers measuring relations with

positive valence and among those with negative valence, but likely not between

the two subsets. Practically, although CMB has an intractable normalizing

constant, in an ERGM context it is absorbed into κ(θ), requiring no additional

computational effort (Krivitsky 2012).

1This parametrization is slightly different from Kadane’s.
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Other coefficients held constant, the coefficients associated with the CMB

term in an ERGM therefore have a convenient associational interpretation. The

sign of θCMB determines whether on average, the dependence across the relations

is positive or negative. As a corollary, this result may be useful for simulating

underlying association between graphs from fitted models employing CMB terms,

thus providing one mechanism for drawing reference distributions for multi-layer

graph correlations (akin to Kadane’s intent for simulating binomial random

variates with known correlation).

A limitation of this approach is that it entails a homogeneity assumption of

sorts: strictly speaking, the CMB form in (1) implies that success probabilities

are equal for all constituent binary observations, which in our context implies

that all layers evaluated by a CMB term have equal densities. When this does

not hold, the distribution will not be strictly CMB—but the effect of the sign of

θCMB is not affected.

3. Layer Logic

Multi-layer network data may comprise a large number of layers which may

be substantively associated in a variety of ways. That is, layers may depend

upon one another. This dependence can be modeled marginally using CMB, but

one may also wish to model some specific structural characteristics that describe

cross-layer dependencies in a conditional and joint manner. Such conditional

dependencies may take the form of cross-layer (i.e., cross-relation) effects where

the presence or absence of a tie in one layer conditionally affects the presence

or absence of ties in another. As discussed in section 1, there is considerable

interest in these types of cross-layer effects in the published literature. However,

descriptions of such effects are distributed throughout the literature and no

single source lingua franca currently exists. Thus, this work introduces a general
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language for such interactions across layers. This language is based on Boolean

logic and so we call it layer logic.

Perhaps the most well-studied conditionally dependent cross-layer effect is

entailment (D. R. White 1996). The presence of a trust relation between two

actors, i and j, for instance, may be necessary for the presence of an exchange

relation between them. Or, the absence of conflict and disrespect relations

between i and j may be required for a friendship to form between them. While

such dyadwise cross-layer effects are interesting, one may also be interested

in higher-order tuples of actors across relations (such as triads). Moreover,

substantively, the relations represented by observed layers in the data may not

be the same ones as those one might wish to model. For example, suppose that

one wishes to model a scenario in which an individual i’s next-door neighbor

k recommends laborer j, whom k regularly hires to perform yard-work, and i

subsequently also hires j. Here, i and k have a “live close together” relationship,

and k and j have an “engage in commerce” relationship, and the triad is closed

by i and j also establishing an “engage in commerce” relationship. However,

one would expect a similar effect if i and k were coworkers or personal friends or

some other form of acquaintances, instead of, or in addition to, being neighbors.

One might thus want to construct a logical layer “acquaintanceship”, in which

i and k have a relation if they are neighbors, coworkers, or friends (or any

combination thereof). One could then formulate a triadic closure term of these

layers, such as that if i and k are acquainted, and k and j engage in commerce,

that increases the probability that i and j will engage in commerce. Thus, layer

logic represents a flexible system for theorizing, representing, and modeling

multiplex relationships between actors.

In the balance of this section, a layer logic is formalized and described that

encompasses, generally, arbitrary combinations of multi-layer effects including
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those described above. As the most simple cases in any Boolean logic involve

relations between two binary elements, our descriptions involve two hypothetical

relations “A” and “B” (and employing a third “C” where necessary). However,

this layer logic applies to any number of relations, and our technical implemen-

tation is general enough to model conditional dependence across layers in an

arbitrary fashion, provided that the researcher has a theoretical reason to do so.

3.1. Elements of Layer Logic

Elements of layer logic include the following:

Conjunction A∧B: A logical layer A∧B is considered to have a relationship

between i and j if there are relationships between them in both layers A and

B. A simple example where this form may be useful is for a network which in-

cludes familial relations (“A”), coworker relations (“B”), and advising/mentoring

relations (“C”). Substantively, advice and mentoring in the context of one’s

employment is likely to be different in its character and content from advice and

mentoring in the context of one’s family, so one may distinguish A∧C from B∧C.

In the literature on social networks, this effect is referred to as “entrainment” by

Lusher and Robins (2013) and is often induced by an intersection-rule of two or

more relations as described by Koehly and Marcum (2016).

Disjunction A∨B: A logical layer A∨B is considered to have a relationship

between i and j if there are relationships between them in one or the other layer,

or both. Substantively, this represents substitutability: either A or B can, for

example, create the two-path needed to set up triadic closure. In the literature,

this logical network is often induced by a union-rule of two or more relations.

Exclusive disjunction A ⊕ B: A logical layer A ⊕ B is considered to have

a relationship between i and j if there are relationships between them in one

or the other layer, but not if it’s in both. For example, suppose that one is

interested in a set of family relationships where the layer logic returns a network
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of kinship types meant to exclude half-related ties. In this case, since the

network boundary is limited to family members, i and j can either be related

in the logical layer network if they are consanguineous or social kin but are

not considered related if the nature of their family relationship is a mixture of

the two. Another example where exclusive disjunction may be of use is in the

analysis of strictly non-ambiguous relationships between actors where a mixture

of pro- and anti-social ties have been measured. For example, friendship and

bullying in a high school, where the research question asks about joint structure

between non-multiplex dyads.

Negation and other logical operations can also be used, and different elements

can be combined. We call a given layer logic sparse if, in the absence of ties in all

of the observed layers, there are no ties in the resulting logical layer: an empty

observed network produces an empty logical layer. Similarly, a layer logic is

dense if an empty observed network produces a complete logical layer. Naturally,

logical layers that result from a layer logic on at least two layers will induce edges

according to the truth-table (e.g., the matrix of possible binary outcomes) of

the underlying logic. That is, logical layers inherit the properties of their logical

operators, the outcome of which may depend on the number of layers employed.

For example, an exclusive disjunction of layers A ⊕ B ⊕ C results in a logical

layer where the resulting network draws an edge between i and j in one or all

layers, but an exclusive disjunction of layers A ⊕ B ⊕ C ⊕ D results in a more

complicated logical layer where the resulting network has an edge between i and

j when an edge is present in one or three of the layers but not otherwise. Thus,

care must be taken on the part of the researcher when applying layer logic on

multi-layer networks to ensure that the desired logical layers represent sensible

relations.
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3.2. Direct Effects of Logical Layers

In addition, layer operations can be used to model specific forms of dependence

among the layers. The following examples provide a substantive interpretation

and a description of their conditional effects on the model.

Conjunction: For a model with L = 2, Consider an ERGM of the form

Pr(Y = y) ∝ exp{θ1

∑

(i,j)∈Y

yi,j,A + θ2

∑

(i,j)∈Y

yi,j,B + θ3

∑

(i,j)∈Y

yi,j,A∧B}. (2)

one can express the third statistic as
∑

(i,j)∈Y
(yi,j,A × yi,j,B); then, the

conditional probability of yi,j,A can be expressed as logit−1(θ1 + θ3yi,j,B). This

means that θ3 > 0 induces a positive association between the two layers: presence

of a relationship in layer B increases the probability of one in layer A and vice

versa.

Disjunction: Consider instead a model of the form

Pr(Y = y) ∝ exp{θ1

∑

(i,j)∈Y

yi,j,A + θ2

∑

(i,j)∈Y

yi,j,B + θ3

∑

(i,j)∈Y

yi,j,A∨B}.

Reexpressing the last term as
∑

(i,j)∈Y
max(yi,j,A, yi,j,B) gives the conditional

probability of yi,j,A as logit−1{θ1 + θ3(1 − yi,j,B)} which, for θ3 > 0, induces

a negative association, since absence of a relationship in layer B increases its

probability in A.

Exclusive Disjunction: Lastly, a model of the form

Pr(Y = y) ∝ exp{θ1

∑

(i,j)∈Y

yi,j,A + θ2

∑

(i,j)∈Y

yi,j,B + θ3

∑

(i,j)∈Y

yi,j,A⊕B},

gives the conditional probability of yi,j,A as logit−1{θ1 +θ3(−1)yi,j,B }: for θ3 > 0,

presence of a relationship in layer B decreases its probability in A. This effect
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can therefore be used to model mutual exclusivity between relationship types.

The three models specified above all have three free parameters and model

a system with four possible states, whose probabilities sum to 1. It can be

easily seen that they are reparametrizations of the same distribution of networks:

as is the case with static network analysis in general, the model itself cannot

resolve direction of causality, so care must be taken when specifying layer logic

constructs that they reflect likely substantive effects.

On the other hand, it is important to distinguish an ERGM fit to a logical

layer of a multilayer network from an ERGM fit to a network constructed by

evaluating the same logical expression. This is because while the sufficient

statistic may be the same, the normalizing constant in the denominator may

be different. For example, using model (2) as a starting point, if one were to

estimate θ3 fixing θ1 = θ2 = 0, the likelihood would be

Pr(Y = y) ∝ exp{θ3

∑

(i,j)∈Y

yi,j,A∧B}
/

∏

(i,j)∈Y

{3 + exp(θ3)}.

This is because one must consider four possible states of each dyad: one in which

an edge is present in both A and B and three in which it is absent from at least

one of the layers. On the other hand, if one models the intersection of A and B,

i.e.,

Pr(YA∧B = yA∧B) ∝ exp{θ3

∑

(i,j)∈Y

yi,j,A∧B}
/

∏

(i,j)∈Y

{1 + exp(θ3)},

each dyad only has two states. This underscores the importance of considering

sample spaces in ERGMs very carefully.
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3.3. Directedness

Here, we briefly consider additional issues raised by directed layers. Firstly,

some directed relations may be more meaningful (together or in logical layer

combinations) with their ties reversed. For example, a researcher may consider

reports of being bullied by someone to be more reliable than reports of bullying

someone, but modelling bullying may be more substantively interpretable than

modelling being bullied. Thus, the tie-reversal operation can be a useful part of

the layer logic toolkit.

Secondly, it is also possible for observed layers to be heterogeneous in their

directedness. For example, Nowicki and Snijders (2001) analyzed data collected

by Kapferer (1972), in which two workers working together was an undirected

relation, whereas friendship nominations between workers were directed. In the

context of layer logic, the most natural approach to an operation on a directed

and an undirected layer is to treat each edge in the undirected layer as a pair of

directed reciprocating edges. (When the layer logic does not call for an operation

between layers with different directedness, this conversion is not needed.)

4. Non-Degenerate Multi-Layer Triadic and Degree Effects

Layer logic permits flexible modeling of degree and triadic effects within a

single layer—observed or logical—as such combinations of layers produce single

relational structures on which any arbitrary graph statistic may be calculated.

That is, given an observed or logical layer, commonly used ERGM terms may

be used to model social process and structure on those networks. However, it

may also be desirable to explicitly consider cross-layer triadic effects and degree

effects in an ERGM. For example, in a directed network measuring relations

“considers to be a friend” and “trusts”, one may wish to distinguish between

modeling whether i is more likely to trust j if i’s friends are friends with j, if
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i’s friends trust j, and if people i trusts are friends with j. Moreover, one may

wish to model the joint degree distribution resulting from the combination of

ties accumulated in the trust and friendship layers. Here, we recognize that

these cross-layer terms may be of special importance to researchers studying

multi-layer networks.

As discussed in the introduction, the triadic specifications proposed by Lazega

and Pattison (1999) may lead to degenerate models, and we therefore extend

the more recent developments of Snijders et al. (2006) and Hunter (2007) to the

multi-layer paradigm for both triadic and degree effects. We note that we are not

the first to do so: Wang (2012) extended Snijders et al. (2006) formulation to

two-layer networks. Our work differs in three ways: we extend the specification

beyond two layers, we allow a more fine-grained specification of the triadic

structure, and we reformulate the effects in the geometrically weighted terms of

Hunter (2007).

4.1. Triadic Effects

In the parametrization of Hunter (2007 eq. (25)), the model term “Geometri-

cally Weighted Edgewise Shared Partners” (GWESP) to represent friend-of-a-

friend effects is

v(y; θ1, θ2) = θ1 eθ2

n−2
∑

a=1

{1 − (1 − e−θ2)a} EPa(y),

where EPa(y) is the number of extant relations (i, j) such that the number

of 2-paths between i and j in the network is exactly a. Then θ1 controls the

overall strength and direction of the triad closure or anti-closure effect, and

θ2 controls the effect of each additional shared partner. The latter parameter

can either be fixed as a tuning parameter, or (with some difficulty (Hunter and

Handcock 2006; Stewart et al. 2019)) estimated from the data. EPa(·) can be
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further decomposed into a sum of indicators that test whether there are exactly

a 2-paths between i and j:

v(y; θ1, θ2) = θ1 eθ2

n−2
∑

a=1

{1 − (1 − e−θ2)a}
∑

(i,j)∈Y

yi,jI {
∑n

k=1 yi,kyk,j = a}

= θ1 eθ2

∑

(i,j)∈Y

yi,j

n−2
∑

a=1

{1 − (1 − e−θ2)a}I {
∑n

k=1 yi,kyk,j = a}

= θ1 eθ2

∑

(i,j)∈Y

yi,j{1 − (1 − e−θ2)TPi,j(y)} (3)

where TPi,j(y) =
∑n

k=1 yi,kyk,j is the number of two-paths between i and j,

and for the case of θ2 = 0, 00 is defined to equal 1. “Geometrically Weighted

Dyadwise Shared Partner (GWDSP)” (Hunter 2007, eq. (26)) can be constructed

from (3) by omitting “yi,j”, and “Geometrically Weighted Non-edgewise Shared

Partner” (GWNSP) can be constructed by replacing it with “(1 − yi,j)”.

For directed networks, one may further contrast (to use the nomencla-

ture of Butts (2008)) the Outgoing Two-Paths (OTPi,j(y) =
∑n

k=1 yi,kyk,j)

with Incoming Two-Paths (ITPi,j(y) =
∑n

k=1 yj,kyk,i), Outgoing Shared Part-

ners (OSPi,j(y) =
∑n

k=1 yi,kyj,k), and Incoming Shared Partners (ISPi,j(y) =

∑n
k=1 yk,iyk,j).

From this formulation, we propose to extend GWESP to multi-layer modeling

by specifying two additional items: the layer in which the “yi,j” is measured, and

the layers in which the two-path may lie. In particular, one may specify in which

(possibly different) layers the segments of the two-path or shared partnership lie

and the ordering of layers in the directed two-path. (Recall the earlier example

distinguishing the count of friends of i who trust j from the count of those whom

i trusts who consider j a friend.) For OSP and ISP variants, one may similarly

distinguish between counting friends of i whom j trusts from friends of j whom
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i trusts, but only if presence or absence of yi,j is involved. Table 1 provides a

taxonomy of the terms, as well as indication whether their direction and ordering

is significant or whether it produces isomorphic structures.

In practice, the principle of marginality requires that each component sub-

structure of any given triad be specified in a model aimed at identifying such

triadic effects. For single-layer networks, this is relatively straightforward: the

sub-structure terms one would introduce to model general triadic effects with

a GWESP term in an undirected network under the principle of marginality

include edges and two-stars. However, for multi-layer triadic effects, one must also

consider sub-structure terms across all layers included in the triadic term. For

instance, a three-layer undirected two-path GWESP term—such as that shown

in the first row and column of table 1—one would need to specify edges terms

for all three layers and three two-star terms reflecting the three combinations of

layer segments that are centred about each vertex (i.e., in the table, the (i, k)

red to (k, j) blue star, the (i, k) red to (i, j) green star, and (j, k) blue to (j, i)

green star). Thus, care must be taken in model specification to ensure that the

desired multi-layer triadic effect is appropriately identified. By extension, one

may consider cross-layer terms for each pair of segments along a two-path or

two-star centred on the topmost node described in table 1.

4.2. Degree Effects

The cross-layer degree and degree distribution effects can be modelled in

our framework in a number of ways. Firstly, a common degree effect such as

degree frequency, alternating-k-star (Snijders et al. 2006), or the geometrically

weighted degree of Hunter (2007 eq. (14)) statistic can be evaluated on each

layer of interest and summed to produce a homogeneous (per section 1.4) model.

Secondly, a substantively meaningful logical layer can be constructed and a degree

statistic of interest evaluated on it. For example, the cross-layer alternating-k-

19



Table 1: Triadic configurations of multi-layer networks.

Undirected Directed
TP OTP ITP OSP ISP

Edgewise

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

Dyadwise

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

i j
k

k

k

.

.

.

Nonedgewise
i j

k

k

k

.

.

.

6 i j
k

k

k

.

.

.

6 i j
k

k

k

.

.

.

6 i j
k

k

k

.

.

.

6 i j
k

k

k

.

.

.

6

Layer: first segment second segment base

Base: present 6 absent either

Order: any specified

Note: Segments along any of the depicted triadic configurations may represent edges in up to
three different layers (and thus, up to three different relations such as friendship, advice, and
trust). Edgewise triadic configurations conditions the sufficient statistic associated with these
terms on the presence of a base tie between i and j, nonedgewise conditions on the absence of
a base tie between i and j, and dyadwise considers either case.
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star effect described by Wang (2012, fig. 10.4) can be represented as an ordinary

alternating-k-star effect evaluated on a disjunction. As a variant of the second

approach, one may instead count a tie between i and j in both layer A and layer

B as two separate ties for the purposes of degree.

Lastly, an important special case, identified by both Lazega and Pattison

(1999) and Wang (2012, fig. 10.2), is cross-layer two-stars and two-paths. These

should be used with some caution, as they have an unbounded change statistic

(change due to adding or removing an edge) and may thus be prone to degeneracy

(Schweinberger 2011), but are nonetheless very useful for representing a variety

of phenomena.

In a directed context the modeller must also decide whether a configuration

containing a tie from i to j in layer A and a tie from j to i in layer B—exchange—

is a special case of a cross-layer two-path.

5. Empirical Examples

5.1. Data and Methods

We draw upon two previously published datasets for the empirical example

component of this paper: Knecht’s Netherlands Classroom dataset and Lazega’s

Lawyers dataset. We use two datasets to illustrate different aspects of the multi-

layer ERGM developments we’ve proposed here. We describe each network and

their limitations by turns below; briefly, we use eight of the relations captured

by Knecht to model the marginal distribution of edges across many layers using

the CMB parameterization described above and we use three of the relations

captured by Lazega to demonstrate the utility of the layer-logic in modeling

conditional effects that are traditionally sought after in the ERG framework.

Parameter estimation was accomplished using an experimental package

ergm.multi extending the ergm package (Hunter et al. 2008) in the Statnet
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suite of packages for R, which implements the above-mentioned MCMC-based

estimation (Hunter and Handcock 2006). A benchmark study of the software

is included in the supplementary materials. Where of interest, we use linear

hypothesis tests to evaluate contrasts between coefficients representing simi-

lar social processes unfolding in different layers in a single model.2 Model fit

was evaluated by comparing observed values of graph statistics to those under

simulation of the fitted model.

For convenience, we group the data description, model specification, and set

of results separately by data set in the following subsections.

5.2. Knecht’s Classroom Data

This data set was collected by Knecht (2008) and consists of a rich source

of longitudinal, multi-layer, multi-site, network data on relationships between

children in Dutch schools. For our purposes, we extract one of the largest

classrooms from Wave 1, consisting of 32 students. The network data were

collected in a classroom census via questionnaire, in which each student could

nominate up to twelve of their classmates in response to each network question.

We chose eight layers to employ in our empirical example of CMB: current

classmates respondent has been friends with at primary school (basis layer),

respondent’s best-friends nominations (friend layer), classmates who provide

emotional support to the respondent (emosup layer), classmates who provide

practical support to the respondent (pracsup layer), classmates whom respondents

would lend 25 Euro to (lend layer), classmates whom respondents would not

lend 25 Euro to (notlen layer), classmates respondents dislike (dislik layer), and

classmates respondents have been bullied by (bully layer). We also make use of

several actor-level covariates available in the dataset that are a priori thought

2That is, to test a null hypothesis δ = 0 for δ ≡ θa − θb, write δ̂ = θ̂a − θ̂b, with

var(δ̂) = var(θ̂a) + var(θ̂b) − 2 cov(θ̂a, θ̂b), and then use a z-test with z = δ̂/
√

var(δ̂).

22



to be important in the formation of one or more of the relations indexed in the

multi-layer network. These include the gender of the student, how much pocket

money the student has per month, the number of siblings the student has, and

the extent to which the student self-reports having engaged in kissing, lying, and

skipping class.

Figure 1 presents illustrations of the Knecht multi-layer network and the

associations between layers. Vertices in the Panel A network projections are

colored by gender and scaled by the amount of self-reported monthly allowance

(a rough indicator of social class of the student’s family). The edges are weighted

in proportion to the count of layers in which vertices i and j have a tie present,

respectively among prosocial and antisocial layers. There is apparently a stronger

force of gender homophily for prosocial affiliation than there is for antisocial

affiliation among these students, as the aggregated prosocial layers shown in

Panel A exhibits clear separation between boys and girls while the antisocial

aggregated layers exhibit relatively more apparent gender mixing. By visual

inspection, there does not appear to be a strong effect of social class on edge

formation in these networks. From Panel B, which plots the raw graph pairwise

correlations, the anti-correlation is very low but positive correlations within

pairs of layers corresponding to either prosocial or antisocial components are

strong. This result is further illuminated in Panel C, the biplot of the first two

principal components of the vectorized layers (Koehly and Marcum 2016), which

demonstrates strong association within, but orthogonality between, components.

Given these descriptive results, we would expect that a two-component CMB

model may be well-suited to model the marginal association across layers.

5.2.1. Model Specification

As an exposition on how to model marginal and conditional association

across layers, a series of baseline multi-layer ERGMs was fit to the Knecht
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Figure 1: The Knecht multi-layer classroom. Panel A visualises two aggregate perspectives on
the Knecht classroom multi-layer network. The left network represents the resulting network
from the sum of the five prosocial layers (basis, friend, emosup, pracsup, and lend) with edge
values scaled in proportion to the value of that network and the right network represents
the same aggregation of the antisocial layers (dislik, notlen, and bully). Vertices are scaled
in proportion to the amount of monthly allowance the student reports and are coloured by
gender. The layout was determined via the Fruchterman-Reingold algorithm. Panels B and C
illustrate two perspectives on the association between layers in this dataset; Panel B reports
the raw Pearson product-moment pairwise correlations and Panel C is a biplot of the first two
components from the principal component analysis of the vectorized layers
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dataset. Specifically, we ask the question of how well can observed association

among layers be recovered under various models employing CMB and layer

logic model specifications. After these models were estimated, 1,000 realizations

were simulated from each one and the simulated pairwise distribution of graph

correlations (Pearson product-moment) was compared to the observed values.

We specified four baseline models in this exercise: a pair of models (Models 1

and 3) with edge terms for pairwise conjunction of logical layers not resulting in

sparse networks to model conditional association (one without covariates and

one with covariates, respectively) and a pair of models (Models 2 and 4) with

two CMB terms for the prosocial and antisocial component layers (again, one

with and one without covariates, respectively). All models contain layer-specific

edge terms and all covariate models assume homogeneity within prosocial and

antisocial component layers, respectively.

5.2.2. Results

Table 2 reports terms, coefficients, standard errors, and p-values from the

multi-layer ERGM fits of Knecht’s classroom data. Controlling for differences

in layer-specific densities, strong positive edge count terms for logical-layer

conjunctions of most prosocial pairs of layers, on the one hand, and most

antisocial pairs of layers on the other, are indicative of positive conditional

association. Consistent with observing little negative association in figure 1, only

a single pairwise conjunction had a significant negative association; that between

baseline friendship and disliking (−2.68, p = 0.03). On average, the coefficients

for both layer-specific edge count terms and logical-layer conjunction edge count

terms appear to be attenuated slightly by the presence of terms for covariates in

Model 3. Similarly, the two component CMB terms in Models 2 and 4 are both

positive and significant (2.06, p < 0.001; 2.59, p < 0.001; and, 1.94, p < 0.001;

2.54, p < 0.001 , respectively), indicating positive marginal association across
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layers in both antisocial and prosocial components as expected. As the CMB

terms model the distribution of edges across all layers in each component, there

is some expected collinearity with the layer-specific edges terms which is evident

in the relatively small edges terms estimates when compared to Models 1 and

3. Net of all else, only the positive homogeneous effect of gender homophily on

prosocial layers and the negative homogeneous effect of having similarly reported

“kissing” statuses on antisocial layers were significant in Models 3 and 4.

Notably, among the four models, Akaike’s Information Criterion (AIC) selects

Model 3 whereas the BIC—which tends to value parsimony more—selects Model

4; similarly, the more parsimonious CMB Models 2 and 4 are preferred over the

pairwise conjunction Models 1 and 3 by BIC but not by AIC.

Figure 2 illustrates how well each baseline approach models the observed

correlation structure among the layers by overlaying observed values in pairwise

correlations (top panels) and underlying variance components (bottom panels)

on the boxplots of 10,000 simulated values from each of those statistics under

the respective models. Clearly, modeling conditional dependence using pairwise

logical layer conjunctions in Model 1 better represents the respective observed

pairwise product-moment correlations than the two-component marginal CMB

in Model 2 does, on average. However, the two-component CMB approach

in Model 2 appears to do at least as well replicating the underlying variance

components from the observed principal components analysis as Model 1. These

results highlight a trade-off from a modeling perspective: pairwise logical layer

conjunctions perform better as a model of correlation between two layers in a

multi-layer network, but with a greater number of parameters to estimate, and

CMB performs at least as well as a model of underlying covariance among many

layers with fewer parameters. Thus, when one wishes to model the association

across many layers and the specific pairwise association between those layers is
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Figure 2: Simulations of correlation structure under Models 1 and 2 of the multi-layer ERGM
fits to the Knecht classroom data. Boxplots in the top row of panels represent the distribution
of pairwise product-moment correlations as simulated under Models 1 (in blue) and 2 (in green)
for all pairs of layers (number of simulations = 10,000 multi-layer networks) with observed
values indicated by red dots. Likewise, the bottom two panels represent the distribution
of variance components from the principal components analysis of multi-layer networks as
simulated under Models 1 and 2 also with observed values indicated by red dots.

unimportant, CMB is likely to be a better approach, particularly when parsimony

is valued over complexity.

5.3. Lazega’s Lawyers Data

This dataset comes from a network study of corporate law partnership that

was carried out in a Northeastern US corporate law firm, referred to as SG&R,

1988-1991 in New England by Lazega (2001). Measurements of the networks

among the 71 attorneys (partners and associates) of this firm include (among

others) whether the ego has received alter’s assistance in preparing documents

(coworker layer), received alter’s advice (advice layer), and whether the ego

considers the alter a friend outside of work (friendship layer). Various lawyers’

attributes are also part of the dataset including: age and seniority, formal

social status, office in which they work, gender, law school attended, individual
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performance measurements (hours worked, billable fees), and even attitudes

concerning various management policy options. All layers in this network are

directed and lack loops.

These data were previously analysed as a two-layer network using the ERGM

framework by Lazega and Pattison (1999), which represents a foundational study

that motivates our work here. Three different views of the multi-layer network

are presented in figure 3.

5.3.1. Model Specification

We estimate four models of the Lazega data. The first (Model 1) represents a

baseline that includes only within-layer structural terms and covariates. Specifi-

cally, we add within-layer structural effects for edge counts, reciprocated dyads,

and geometrically weighted two-paths closed transitively with decay fixed at

0.25. We also control within each layer for various mixing and covariate effects

based on actor-level attributes for lawyer gender, type of legal practice, office

department, status within the firm (associate vs. partner), and years at the firm.

Model 2 builds upon the baseline by adding cross-layer and multi-layer

structural terms. These include a complex cross-layer effect for geometrically

weighted transitive two-paths (with a fixed decay parameter of 0.25) specified to

capture the effect of seeking friendship ties from lawyers whom one’s coworkers

seek advice from: that is, the base relation in the corresponding diagram in

table 1 would be friendship (the focal tie that transitively closes the two-path)

and the out-bound two-path follows i to k along a coworker tie and k to j along

an advice tie. While primarily included as a demonstration, one might argue

that being a source of advice for one’s coworkers is an attractive friendship

quality, especially within a profession where advice is highly valued. Similarly,

we include as a control a term for a cross-layer outbound two-path effect, likewise

following i to k along a coworker tie and k to j along an advice tie. This effect is
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Figure 3: Three visualisations of the Lazega’s Lawyers multi-layer network. Edges between
vertices are coloured in Panel A to represent all seven possible combinations of advice (A),
friendship (F), and coworker (C), relations (with the absent eighth combination representing
no edge between two vertices i and j). A sociomatrix projection in Panel B illustrates an
alternative visualisation of the same multi-layer network and demonstrates the heterogeneity
across edges layer combinations. Panel C plots the three layers separately. Layouts for
projections in Panels A and C were determined using the same coordinate output from the
Fruchterman-Reingold force-directed algorithm and vertices were scaled in proportion to their
relative seniority in the firm.
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intended to capture the lower-order two-path component that is marginal to the

cross-layer GWESP term. Also in Model 2, two terms modeling the multi-layer

geometrically weighted in- and out- degree distributions (with decay parameters

fixed at 0.40) are added, which all other things equal results in declining weight

to ties among higher degree nodes. With Model 3, we add edge and reciprocated

dyads in all pairwise logical conjunction layers, reciprocated ties in each pair of

layers (ties sent in one layer and reciprocated in either of the other layers in the

pair), and the number of instances of an individual receiving advice from one

alter and helping another alter prepare documents (i.e., a cross-layer two-path).

Finally, in Model 4 layer-specific cyclically closed two-paths within each layer

are added.

5.3.2. Results

The results from the multi-layer ERGM fit of the Lazega lawyers data are

reported in table 3. The best fitting model by BIC was the most complex Model

4 (BIC = 9161.197), which included all within-layer covariate terms, cross-layer

terms, multi-layer terms, and additionally employed more complex within-layer

GW terms. Due to the number of parameters (64), we are wary of the multiple

testing problem, and therefore we only consider results with significance level of

0.01 and, ideally, even stronger. In the following, the coefficients reported are all

from Model 4.

We summarise the within-layer covariate effects first, followed by the within-

layer structural terms, and finally the multi- and cross-layer effects. Within-layer

reciprocation of ties appears to be present in all layers (c/w: 2.46, p < 0.001;

fr.: 2.55, p < 0.001; adv.: 0.66, p = 0.004), though the reciprocity appears to be

weaker in the advice layer than in the other layers (adv. vs. c/w: δ̂ = −1.80, p <

0.001; adv. vs. fr.: δ̂ = −1.90, p < 0.001; fr. vs. c/w: δ̂ = 0.09, p = 0.7).

We next consider the actor covariate effects within layers. Although there
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appears to be differential gender covariate effects in some of the layers, some

such effects appear to be moderated by multi-layer structural terms in the more

complex models. For instance, while gender homophily appears to be weak or

absent in the coworker layer across all models (via the non-significant gender

matching coefficients), friendship (and to a lesser extent advice) layers have

significant positive coefficients for gender matching in the first two models, which

lose both magnitude and significance in Models 3 and 4 with the presence of

conjunction logical layer and cross-layer reciprocation terms. Moreover, across

all models, women are less likely to be the senders of coworker and friendship

ties, more likely to be receivers of friendship ties. Lawyers co-located in the

same office also tend to interact in all layers more with each other, as indicated

by the respective significant positive matching effects.

There are differential covariate effects for legal practice in each layer. Lit-

igators, for example, are less likely than their corporate counterparts to re-

ceive coworker ties (coefficients −0.31, p = 0.002), and more likely to receive

(0.36, p = 0.002) but possibly less likely to send friendship ties (−0.31, p = 0.007).

Evidence of legal practice homophily is present in all models for coworker and

advice layers, but the matching practice coefficients in Models 1 and 2 switch

signs from positive to negative for the friendship layer in Models 3 and 4 sug-

gesting that friendship homophily between litigators depends on some structure

involved in having joint ties across multiple layers.

The covariate effects of years of tenure in a firm are likewise mixed. Net

of partner/associate status, the longer a lawyer has been at a firm, the less

likely they are to send ties of all types (though the respective coefficients are

non-significant in Models 3 and 4 in the friendship layer) and the more likely

they are to receive friendship and advice ties from their colleagues. Recalling

that coworker and advice layers concern receiving help and advice, this means
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that more experienced lawyers tend to advise others and require less advice

themselves. Increasing the absolute difference in years at the firm between two

lawyers has no detectable effect on their likelihood of forming coworker ties, but

significantly decreases their chances of being friends (log-odds-ratio per year

difference, −0.05, p < 0.001). This suggests a cohort effect on friendship—lawyers

who joined the firm around the same time are more likely to be friends—but

not necessarily more likely to have professional interactions. (We have also

considered the effects of age, but we found them universally non-significant net

of other effects in the model.)

The effect of being a partner (as opposed to an associate) in a firm appears

to increase sending and receiving coworker ties to and from colleagues. The

significant positive receiver effects evident in Models 1 and 2, however, may be

explained by the logical and cross-layer terms in Models 3 and 4, as they lose

significance in those more complex models. There do not appear to be substantial

effects of partnership status on the sending or receiving of ties in the friendship

layer and, in the most complex Model 4, partners are more likely than associates

to be both targets and reporters of advice ties (coefficients are (0.37, p = 0.003

and 0.32, p = 0.02). Lawyers display status heterophily in the coworker layer

(−0.61, p < 0.001) and homophily in advice (0.78, p < 0.001). This confirms

the finding of the original analysis of Lazega (2001): when a partner in a firm

brings in a client, he or she recruits one or more associates (as opposed to other

partners) to work together on the client’s case, while occasionally seeking advice

from other partners.

The within-layer triadic effects are consistently positive and highly significant

for transitive configurations and negative and slightly weaker (both in effect size

and statistical significance) for cyclical configurations. The exception being layer

friendship, which has a weaker cyclical effect, particularly compared to advice
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(contrasts fr. vs. c/w: δ̂ = 0.25, p = 0.1; fr. vs. adv.: δ̂ = 0.44, p < 0.001),

suggesting that friendship relations are less hierarchical than the professional

relations.

Lastly, we discuss the results of the cross- and multi-layer terms. The cross-

layer GWESP term modeling the distribution of out-bound two-paths leading

first along advice and then along coworking ties to be closed transitively by

friendship ties has a significant negative coefficient in Models 2 through 4 (e.g.

−0.39, p < 0.001 in Model 4). Net of everything else, it appears that others who

are sought after for advice by one’s coworkers are not, apparently, acquiring a

quality desirous in forming one’s friendship ties. This result suggests that under

simulation, our model would lead to multi-layer networks with fewer number of

triads involving cross-layer out-bound two-paths of this nature closed transitively

by friendship. This does not appear to be the result of having a dearth of

marginal two-paths however, as the coefficient for the distinct out-bound two-

path starting along coworker and continuing to advice layers is significant and

positive in Model 2 and has no detectable effect in Model 4 (δ̂ = 0.44, p < 0.001).

This suggests that, at least marginally, this model would produce networks

with a greater number of out-bound two-paths that follow along advice to

coworker ties that are either closed cyclically by friendship or not closed at

all. Similarly, the multi-layer geometrically weighted out-degree distribution

model term coefficient is negative and significant in Models 2 and 3 (coefficients

of about −0.92, p < 0.05) and drops out in Model 4, while the corresponding

positive coefficient for the multi-layer in-degree distribution is not significant in

any model.

There is an interesting pattern involving the edge count and reciprocated

dyads coefficients associated with the logical layer terms: in Models 3 and 4 the

conjunction logical layer edge count coefficients are all positive, the corresponding
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reciprocated dyads coefficients are negative, and the cross-layer reciprocation

effects are positive. In Model 4 all of the conjunction logical layer effects are

significant while only the coworker/advice cross-layer reciprocated dyads effect

is significant. These results suggest that, net of all else in Model 4, ties sent

from one lawyer to another in one of the layers are very likely to also be sent

in the other layers but that reciprocation of those same ties in specific dyads is

unlikely. The exception to this is a special case when ties sent in the coworker

layer are reciprocated in specific dyads in a cross-layer fashion from the advice

layer (or vice versa).

The goodness-of-fit for the Lazega example was assessed by simulating 10,000

draws from the fitted Model 4 and evaluating the extent to which observed

sufficient statistics were covered by the distribution of those same statistics

under simulation. Briefly, there is no evidence that the model is degenerate.

Dyadwise and edgewise partner distributions are captured reasonably well, as are

lower order component two-path effects. Finally, the model does a moderately

good job capturing the shape and scale of the multi-layer degree distributions.

A more detailed discussion can be found in the supplement.

6. Conclusion

This paper, introduces new approaches for the analysis of multi-layer networks

using ERGMs. Previous work focused largely on modeling just a few layers

of multi-relational networks; our contribution applies to an arbitrary number

of layers. A new approach for modeling marginal dependence between a set

of correlated Bernoulli variables using the Conway-Maxwell Binomial (CMB)

distribution was adapted to the case of ERGMs for multi-layer networks. Addi-

tionally, both a layer logic and novel ERGM terms (including non-degenerate

shared partners and degree distributions, as well as two-star and two-path terms
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for multi-layer applications) were introduced, facilitating modeling conditional

dependence across—or between—layers. Two empirical examples, that consisted

of networks with eight and three layers, were presented to highlight different

aspects of our advances. With these examples, the paper also demonstrated how

fitting joint ERGMs to multiple layers—logical or observed—facilitates the use

of within-model contrasts to test for differences in the magnitude of coefficients

modeling the same social processes across layers.

The results of our empirical example using the Knecht classroom data in

section 5.2.2 demonstrated that there exists a trade-off between using two-layer

logical intersection layer specifications (which model well bivariate correlations

with a greater number of parameters) and using the CMB specifications (which

are better at modeling underlying dependence structure across many layers with

fewer parameters). We also demonstrated that our approach can be useful in

revealing new features of social structure and process vis-à-vis cross-layer ERGM

effects. Specifically, using the Lazega lawyers data in section 5.3.2, we showed

that triadic processes involving two-paths that cross two different layers in each

segment may be important for suppressing ties in a third layer, controlling for

other within- and cross-layer effects.

It is important to note that, as presented, these multi-layer ERGMs are best

suited for theoretically informed, hypothesis driven analyses. The number of

structural features that can be constructed from the layer logic and through the

CMB increase exponentially with the number of layers comprising the network

system. Thus, it is important for users of multi-layer ERGMs to be thoughtful

about model specification, such that conceptually appropriate and hypothesized

structural characteristics define the estimated models. For example, in some

scenarios the CMB may represent a theoretically important structural feature

of the multi-layer system. These might include the case when multiple raters
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are informing on a single relation (Krackhardt 1987; Koehly and Pattison 2005)

or multi-item construct networks (Koehly and Marcum 2016). However, in

other scenarios, the layers may be distinct, with totally different meanings (e.g.,

positive and negative ties); in these scenarios, the CMB may not be meaningful,

requiring the use of the layer logic to characterize hypothesized associations

across layers.

More generally, while CMB effects behave well in our analyses, more study—

both theoretical and simulation—is needed. For example, in Knecht Model 4, the

prosocial CMB coefficient is significantly smaller than its antisocial counterpart

(δ̂ = −0.60, p = 0.005), but does that mean that there is greater positive

association among the antisocial layers? In particular, the number of layers differ

between the prosocial and antisocial sets, which may mean that they cannot

be compared on an interval scale. And, as we note in section 2, the effects of

heterogeneous layer densities on the CMB statistic require further study as well.

Innovations in multi-layer ERGMs that we’ve introduced here make a clear

contribution to advance the field of statistical social network analysis. However,

we would be remiss to not mention several limitations and opportunities for

future work. First, while in principle our approach is appropriate for an arbitrary

number of layers from a theoretical perspective, there are computational and

practical limitations that may make estimation infeasible for very complex models

with a large number of layers. The burden is on the researcher to ensure that their

multi-layer model makes sense for the social processes and structures investigated

by the research question at hand. Second, while we address how to apply the

principle of marginality to cross-layer triadic effects, realizing carefully written

models to that end remains a challenge in maximum likelihood estimation. In

part, this is because two-path and two-star effects, on which many triadic closure

processes are conditioned, often lead to ERGM degeneracy in general—cross-layer
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specifications of such terms are apparently not spared from this result based on

our supplemental analysis. An alternative to specifying such ideal models is to

evaluate how well one’s candidate model replicates features from omitted terms.

For example, in our cross-layer triadic closure model using the Lazega data,

we simulated cross-layer two-paths from fitted models and compared the resulting

distribution to corresponding two-path values of the observed network. This

procedure helps to diagnose how well a higher-order cross-layer triadic term

in a model recovers its lower order constituent two-path/two-star terms under

simulation. Improvements in estimation for such degeneracy-inducing terms are

needed for ERGMs in general and specifically for multi-layer ERGMs where the

nascence of these models may inspire new innovations. Second, we’ve limited

our treatment of this family of models to the cross-sectional multi-layer case

where we’ve discussed each layer as representing different social relations. As

both Koehly and Pattison (2005) and Snijders, Lomi, and Torló (2013) point

out, however—by adopting strong theoretical and measurement approaches—the

multi-layer ERGM methods can be adapted to multiple rater, or multiple time,

assessments of a single relation. Finally, the models we choose to estimate and

feature in this paper for our empirical examples may not be ideal from a social

theoretic perspective and may suffer from omitted variable biases. Rather than

strive for such theoretical niceties, we choose to use the empirical examples to

highlight novel features for estimating multi-layer ERGMs that we’ve introduced

here—we at least believe the models to be sensible, if not ideal. We leave ample

room for new research questions to be explored using multi-layer ERGMs on these

publicly available datasets. Thus, our contributions towards the development

of ERGMs for multi-layer networks augments the toolkit from which network

scientists may draw in their own research.
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