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Abstract 

We consider a hidden Markov model with multidimen- 

sional observations, and with misspecification, i.e. the 

assumed coefficients (transition probability matrix, and 

observation conditional densities) are possibly differ- 
ent from the true coefficients. Under mild assumptions 
on the coefficients of both the true and the assumed 
models, we prove that : (i) the prediction filter for- 
gets almost surely their initial condition exponentially 

fast, and (ii) the extended Markov chain, whose com- 

ponents are : the unobserved Markov chain, the obser- 

vation sequence, and the prediction filter, is geomet- 

rically ergodic, and has a unique invariant probability 

distribution. 

1 Introduction 

Let {X,, , n 2 0) and {Y, , n 2 0) be two random 

sequences defined on the probability space (f& F, P.), 
with values in the finite set S = { 1, . . . , N} and in Rd 
respectively. It is assumed that : 

l The unobserved state sequence {X, , n _> 0) is a 
time-homogeneous Markov chain with transition 
probability matrix &. = (@), i.e. for any integer 

n>O,andforanyi,jES 

P.[Xn+l=j(Xn=i]=q$j, 

and initial probability distribution p. = (p”,), i.e. 

for any i E S 

P.[Xo = i] = pi . 

l The observations {Yn , n 2 0) are mutually in- 

dependent given the sequence of states of the 
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Markov chain, i.e. for any integer n 2 0, and 

for any ie, +. . , in E S 

P.[Yn E &/n,**.,Yo E dy0 1 Xn = in,***,Xo = io] 

= fi P.[Y, E dyrc 1 Xk = ik] . 
k=O 

For any integer n 1 0, and for any i E S, the 
conditional probability distribution of the obser- 
vation Y, given that (X, = i) is absolutely con- 
tinuous with respect to a non-negative and u- 
finite measure X on Rd, i.e. 

P*[Y, E dY I Xn = i] = bf(y) X(dy) ) 

with a X-a.e. positive density. For any y E Rd, 
let 

b.(Y) = PJf(Y)r4~(Y)l* 7 

B.(Y) = diag[bf(~),...,b~(~)l - 

Here and throughout the paper, the notation * 
denotes the transpose of a matrix. 

Example 1 .l [conditionally Gaussian observations] 

Assume that the observations are of the form 

K = h(Xn) + Vn 7 

for any integer n _> 0, where {V, , n _> 0) is a Gaussian 
white noise sequence, with identity covariance matrix. 

The mapping h. from S to Rd is equivalently defined 

as h. = (hi) where hf E Rd for any i E S. In this 

case, X is the Lebesgue measure on Rd, the mutual 

independence condition is satisfied, and 

l~f(y)=(27r)-~/~ exp{ -iIy-hf12} , 

for any i E S, and any y E Rd. Here and throughout 
the paper, the notation 1.1 denotes the Euclidean norm. 

Throughout the paper, we make the following assump- 

tion : 
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Assumption A : The stochastic matrix Q. = (qf”) 
is primitive (or equivalently, irreducible and ape- 

riodic). 

Remark 1.2 Under Assumption A, there exist con- 

stants 0 < p. < 1 and K. > 1 such that, for any 
integer n 2 1 i_r- 

f *qia;xs ~lq%)-q$j(n), <K&l) 
IES 

and the Markov chain {X,, n 2 0) is ergodic, with a 

unique invariant probability distribution /J. = (pi) on 

5’. Here and throughout the paper (q?(n)) denote the 
entries of the stochastic matrix Qt, i.e. for any i, j E S 

p. [xl =jI&=i]=qf’j(n). 

For any integer n 1 1, let pi = (pk) denote the 
prediction filter, i.e. the conditional probability distri- 
bution under P. of the state X, given observations 

(yo;-0, Y,-1) : for any i E S 

Pi = P.[X, = i 1 Yo, . . . , Y,-I] . 

The random sequence {pi, n 2 0) takes values in the 

set P(S) of probability distributions over the finite set 

S, and satisfies the forward Baum equation 

. Q:B.(W P:, 
p,+l = b: (Y,) p:, ’ (1) 

for any integer n 1 0, with initial condition pi = p.. 

In practice, the transition probability matrix Q. and 
the initial probability distribution p. of the unobserved 

&rkov chain {X, , n 2 0}, and the conditional densi- 

ties b. (e) of the observation sequence { Yn , n 2 0) are 

possibly unknown. For this reason, we consider instead 

of (1) the more general equation 

p n +1 = Q*B(G) pn = f[Y p ] 
b* Wd P, 

n, 11 7 (2) 

for any integer n 2 0, with initial condition po = ?, 

where Q = (qj*j) is a N x N stochastic matrix, p = (p’) 
is a probability vector on S, and b( .) = ( bi (e)) are A-a.e. 
positive densities on Rd. 

To make explicit the dependency w.r.t. the initial con- 

dition and the observations, we introduce the notation 

Pn+l = f[K,*-~,L,P7nl 9 

for any integers n, m such that n > m. 

Under the true probability measure P., the extended 

1Iarkov chain { 2, = (Xn, Y,,p,) , n 2 0) with values 

in S x Rd x P(S), has the following transition proba- 
bility matrix / kernel 

I@ (y, p, dy’, dp’) = q$j bj. (Y’) A(&‘) Jf[y,p] CdP’) . 

Notice that both 

the initial condition for the prediction filter, 

the transition matrix, and the observation condi- 
tional densities, 

are possibly unknown. We expect that a wrong ini- 

tial condition for the prediction filter is rapidly forgot- 

ten, so that we could use any initial condition with 

practically the same effect. On the other hand, we 

expect that two different transition probability matri- 

ces, and two different observation conditional densities 
will have a significantly different effect, i.e. will produce 
significantly different values for some related Kullback- 
Leibler information, so that we could estimate the un- 
known transition probability matrix and the unknown 

observation conditional densities accurately, by accu- 

mulating observations - this estimation problem is 

addressed in LeGland and Mevel [lo, 111. Indeed, it 

can be shown that the log-likelihood function for the 

estimation of the unknown transition probability ma- 

trix and the unknown observation conditional densities, 

can be easily expressed as an additive functional of the 
extended Markov chain { 2, = (Xn, Y,, p,) , n > 0). 
Consequently, an asymptotic expression can be ob- 
tained for the corresponding Kullback-Leibler informa- 
tion provided some ergodicity property holds. 

These statements are made rigorous in this paper, with 
the proof of the following two properties : 

l the exponential forgetting of the initial condition 

for the sequence {p, , n > 0) defined in (2), 

l and the geometric ergodicity of the extended 

Markov chain (2, = (X,,Y,,p,), n 2 0). 

In the case of conditionally Gaussian observations, the 

exponential forgetting property has been investigated 
by Atar and Zeitouni [2] in terms of Lyapunov expo- 

nents, and the existence of a unique invariant proba- 
bility distribution for a related extended Markov chain 
(based on the filter itself instead of the prediction fil- 
ter) has been proved by DiMasi and Stettner [4] and by 
Stettner [14], under some additional restrictive assump- 
tion. In this paper, we adopt the approach initiated, in 
a special case of HMM with observations in a finite set, 
by Arapostathis and Marcus [l] - see also LeGland 

and Mevel [8] for a generalization. 



Here is a short overview of our results, under the as- 

sumption that the stochastic matrix Q is primitive - 

full details can be found in LeGland and Mevel [9] : 

l We obtain in Theorem 2.2 a bound for the differ- 

ence between the solutions of equation (2) start- 

ing from two different initial conditions. As a 

corollary, we obtain in Proposition 2.3, an upper 
bound for the P.-a.s. exponential rate of forget- 

ting of the initial condition for equation (2). 

l Using the estimate of Theorem 2.2 we prove in 

Theorem 3.3, under some integrability assump- 
tion on the observation densities b(e) and b.(a), 
the geometric ergodicity of the extended Markov 

chains {Z,, = (X,,,Y,,p,), n 2 0). 
. . 

.‘: 

We notice that 

fwn[yd~*,YmlPl = 

= 

if we define 

Q;B(yn) . . ’ QF,Aym) P 

e* [Qz$(Y~) --*QF,$(Y~) PI 

Mm P 

e* Mn,m p ’ 

Mt,m = Q;B(yn). - - QiAynd > 

and our results will be based on auxiliary estimates 

for products of non-negative matrices, which improve 
earlier estimates in Furstenberg and Kesten [5]. See 
in particular Proposition A.l, which is stated without 
proof in Appendix A. 

Remark 1.3 Most of this work could be generalized 

easily, under suitable assumptions, to the case where 

the state space of the Markov chain {Xn , n > 0) is 
compact. 

2 Exponential forgetting 
for the prediction filter 

Throughout the paper, ]] + I] will denote the &-norm, Notice that 0 < A-1 5 1, hence for any sequence 
i.e. for any zc = (ui) in RN il;.. ,i, E S 

lbll = c VI - 
i&S 

The sequence {p,, , n 1 0) satisfies (2), i.e. 

Q*W’-n) prz 
pn+l = P(Yn) p, 

= f[Yn,pn] = f[~*,*~An,Pml 7 

for any integers n, m such that n 2 m. For the stochas- 
tic matrix Q = (q’>j), and for any y E Rd, we define 

b(Y) = 

ye. bib> 
y$; b” ( y> 

<CC and & = I+; qi’j > 0 , 

where the notation min + denotes the minimum over 
positive elements. 

Proposition 2.1 If the stochastic matrix Q is posi- 

tive, then for any p,p’ E P(S), any integers n, m such 
that-n 1 m, and any sequence y,,,, . . . , yn E Rd 

Ilf [Ym *. . ,YmPl -f[Yn,~~~,Y7mP’l II 

5 2&-l d(ym) (1 - &)n--m+l ]]p - p’]] . 

For any p, p’ E P(S) such that p # p’, and for any 
infinite sequence ym, . . . , yn, - - 1 E Rd, the difference 

Ilf [Ym * * - ,~m,~l-f[~,,~~~,~~,~‘lII~~~~~~~~~~~~~~- 
ponential rate 

limsupl log Ilf[yn,..*,ymtPl - fkh~*~~Y~70P’l II n-00 n 

5 log(1 - E) . 

Theorem 2.2 If the stochastic matrix Q is primitive, 
with index of primitivity T, then for any p,p’ E P(S), 

any integers n,m such that n 1 m + T - 1, and any 
sequence y,,,, . . . , y,, E Rd 

Ilf [Ym - * * > YmtPl - f[Yn,*~*,YmP’l II 

I 2 E-P 6(Ym) * . . J(Ym+r--1) IIP - P’ll 

In4 

j-J (1 - Er [ ~(Ym+fctr+l) + * . ~(Y*+(/c+l)r--1) I-’ 1 t 

kc=0 

where [n,m] = 1 

To obtain an estimate of the almost sure exponential 

rate of forgetting in this case, we define 

A-r = n$ 
I 

Rd 6-l(~) b:(y) X(h) - 

02 *** J J Rd Rd 
(1 - EP [ 6(Y2) . . * b(YT) I-’ > 

bi’(yl) - + . b> (y,.) X(dyl) . . . X(dyr) 

= l--E+ J 6-l (Y> b? (Y) X(h) k&J Rd 
5 14A:;‘=l-R<l, 

with R = E’ AL;r > 0. Notice that when the matrix 

Q is positive, i.e. when T = 1, then R reduces to R = E. 



Proposition 2.3 If the stochastic matrix Q is primi- 
tive,-with index of primitivity T, and if Assimption A 
holds, then for any p,p’ E P(S) such that p # p’, and 
any integer m 

limsupl log Ilf[Yn,*-*,Ym,P] -f[K~*~*7Ym~P’l II 
n-m n 

:s,-. 

5 f log(1 - R) , P.-a.s. 

where R = E’ AL;‘. 

Remark 2.4 In Atar and Zeitouni [2, Corollary 2.11 

the exact exponential rate of forgetting is expressed, in 

the case of an HMM with conditionally Gaussian ob- 

servations, without misspecification, as the difference 

between the two top Lyapunov exponents of the equa- 

tion (1). Since no explicit expression is available in 
general for these Lyapunov exponents, estimates for 
the exponential rate are given in Theorems 1.3 and 1.4 

of [2] when the signal-to-noise ratio is large or small 

respectively. 

In this paper, we not only obtain explicit estimates 

for the exponential rate of forgetting, but we also ob- 
tain non-logarithmic and non-asymptotic bounds, in 

the more general case of a misspecified HMM with 
arbitrary observation conditional densities, and with 
primitive transition probability matrices (for both the 
true and the assumed models). Our proof of the geo- 
metric ergodicity of the extended Markov chain (2, = 

(X,, Yn, p,) , n > 0) is based on these explicit bounds. 

3 Geometric ergodicity 
of the Markov chain {X,, Y,, p,) 

Under the probability measure P. corresponding to the 
true transition probability matrix Q. and the true ob- 
servation densities b.(m), the extended Markov chain 

prl = (X,,, Y,,p,) , n > 0) has the following transi- 

tion probability matrix / kernel 

Hilj (y,p, dy’, dp’) = q?j ti .(Y’) WY’) 6f[Y,p](dp’) . 

For any real-valued function g defined on S x Rd x 

P(S), which is equivalently defined as a c;llection g = 

Eg’eof real-valued functions defined on R x P(S), we 

(ng)i(Y>P) = 

= E.[g(Xn+l,Yn+l,p,+d , -G = i,yn = Y,P~ =P] 

S~(Y',P'> @j(y,p,dy',dp') , 

for any i E S, any y E Rd, and any p E P(S). 

In addition to the Assumption A on the true transition 

probability matrix Q., we shall need the following in- 
tegrability assumption on the observation densities b(m) 
and b.(.) : 

A = ycy 
J 

J(Y) b:(y) Vdy) < 00 - 
Rd 

Example 3.1 If the observation conditional densities 
are Gaussian for both the true and the assumed models, 

i.e. in particular 

b”(y) = (2n)-d/2 exp { - 3 Iy - hiI } , 

for any i E S, and any y E Rd, then A is finite. Indeed, 

for any i, j E S, and any y E Rd 

b’(y)= 
M(Y) 

exp { - 4 ,y ; hiI + 3 ,y - hj12 } 

= exp { y* (hi - hj) - $ (h” + hj)* (hi - hj) } , 

hence 

J(Y) I ew { s! lh’ -hjl [Iv, +yE$hill } . 

We introduce next the following suitable class of test 

functions defined on S x Rd x P(S). 

Definition 3.2 Let L denote the set of functions g = 
(g”) defined on S x Rd x P(S), such that for any i E 
S, and any y E Rd the partial mapping p t) gi(y,p) 
is Lipschitz continuous (hence bounded since P(S) is 

compact), i.e. 

IsYy,d -db~‘)l I Wh7i7y) lb-p’ll y 

for any p,p’ E P(S), and such that 

Lip(g) = yg J Lip(g’, y) bf(y) X(dy) < 00 , 
Rd 

K(g) = y$s Rd J Kkt, 9) b:(y) N&l < 00 7 
where by definition 

W&Y) = SUP ISi(Y,PN * 
PEWS) 

Theorem 3.3 If the stochastic matrix Q is primitive, 
with index of primitivity T, if Assumption A holds, and 
if A is finite, then there exist constants 0 < p < 1, with 
p > ma&p., (1 - R)“‘), and C > 0 such that, for any 
z, z’ E S x Rd x P(S), and for any function g = (gi) 
in L 

Inn g(z) - II” dz’)I I CE+ [Lip(g) + K(g) I pn , 
where the constant C depends only on T, A, and K.. 



The constants p. and K. are defined in Remark 1.2 

above. The following corollary holds, whose proof is 

similar to the proof of Proposition 2 in Benveniste, Me- 

tivier and Priouret [3, Part II, Chapter 21. 

Corollary 3.4 With the assumptions of Theorem 3.3, 
the Markov chain {Zn = (X,, Y,,p,);n 2 0) has, un- 
der the true probability measure P., a unique invariant 
probubility distribution p = (pi) on S x Rd x P(S). FIT 

any z E S x Rd x P(S), and for any function g = (9’) 
in L 

IHI” g(z) - 4 I CE-’ [Lb(g) + K(g) I & , 

and there exist a unique solution V = (V’) defined on 
S x Rd x P(S) of the Poisson equation 

[I - II] V(z) = g(z) - x ) 

where X is defined as 

A = 5 J,,,,,, d(w) cLi(&v dp) . 

The proof of the theorem is based on the next propo- 
sition. 

Proposition 3.5 If the stochastic matrix Q is primi- 
tive, with index of primitivity r, and if A is finite, then 
for any p,p’ E P(S), for any integers n,m such that 
n>m+2r- 1, and for any function g = (9’) in L 

max 
J J 

. . . p+qyn+1, f [Yn, * * *, YmPl> 
hn, -+,+lES @ Rd 

-gin+l (Yn+l, f [Yn, . . . , YmP’l) I 

b$” (ym) . . . b:+’ (y,,+l) X(dy,) . . . X(dy,+l) 

5 CE-+ Lip(g) p:--m+1-2r . 

where p* = (1 - R)‘? and where the constant C de- 
pends only on T, and A. 

Remark 3.6 In DiMasi and Stettner [4], the existence 

of a unique invariant probability distribution is proved 

for another extended Markov chain based on the filter 

itself instead of the prediction filter, in the case of a 
misspecified HMM with conditionally Gaussian obser- 
vations, with positive transition probability matrices 
(for both the true and the assumed models), and under 
the somewhat restrictive assumption that the mapping 
h, = (hf) from S to Rd is injective. 
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A Product of non-negative matrices 

Let S = {1,-sa,N}, and let ]I . ]I denote the &-norm, 

i.e. for any u = (ui) in RN 

1141 = c I4 * 
iE.5 

We recall some results on coefficients of ergodicity, 

taken from Seneta [12] and [13, Chapter 31. 

For any column-allowable nonnegative N x N matrix 
T = (TjTi) (i.e. with at least one positive element in 

each column) the Birkhoff contraction coefficient 7~3 (T) 
is defined by 

1-M 
<1-m, 

rnCT)=l+m- 

where 

a if each row of T is either zero-free or all-zero 

Th h Tjzh 

3(T) = il,i2Tjfj2ES Tjl,ia Tjz,il ’ 

where the indices ji, jz E S are restricted to the 

zero-free rows, 

l otherwise (i.e. if there is a row with both zero and 

positive elements), a(T) = 0, 

see Seneta [13, Theorems 3.10 and 3.121. 

For any stochastic matrix P = (Pi”), and any proba- 
bility vectors p, q E P(S) 

Iv* 03 - dll I n(P) IIP - 911 7 

where the coefficient of ergodicity ,1(P) is defined by 

q(P) = 3 *x+a;xs c IP”” - pi’q 7 
JES 

For any integer n 2 0, let A, = (A:j) be a row- 

allowable nonnegative N x N matrix. For any integers 

n, m such that n 1 m, define the backward product 

A m,n = (A$J = A,,, . . . A,, , 

and the forward product 

i&&m = (M+,i,) = M,, . . . M,,, = A;,, , 

and for any i E S, define the sum of the i-th column 

entries of M,,m, or equivalently the sum of the i-th 

row entries of A,,,,,,, as 

M”i = 
nm c 

M$;, = c A$ = A$* . 

jES j&S 

Define also the ratio 

yEy Mi:k 
4Mnm) = minMO,i * 

IES n,m 

Proposition A.1 For any integers n, m such that n 2 
m, and any p, q E P(S) 

II eY;;Lp - e:;;Jq 11 
5 2w(Mn,m) m(Mn,m) IIP - QII - 

The proof follows the same lines as the proof of 

Lemma 2.2 in Arapostathis and Marcus [l], see also 

Lemma 6.2 in Kaijser [6], and Lemma 8.1 in Kaijser [7]. 

see Seneta [12]. Moreover 71 (P) 5 7-n (P”), and if in 
addition the stochastic matrix P is allowable (i.e. both 
row- and column-allowable), then ri (P) < m(P*) = 
m(P), see Seneta [13, Theorem 3.131. 


