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Abstract

We establish an exponential formula for the reachable sets of quantum stochastic di�erential

inclusions (QSDI) which are locally Lipschitzian with convex values. Our main results partially

rely on an auxilliary result concerning the density, in the topology of the locally convex space

of solutions, of the set of trajectories whose matrix elements are continuously di�erentiable.

By applying the exponential formula, we obtain results concerning convergence of the discrete

approximations of the reachable set of the QSDI. This extends similar results of Wolenski [19]

for classical di�erential inclusions to the present noncommutative quantum setting.
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1. INTRODUCTION

We continue our studies in [5] concerning the reachable sets (or attainability sets) of quantum

stochastic di�erential inclusions given by

dX(t) 2 E(t;X(t))d ^� (t) + F (t;X(t))dAf (t) +G(t;X(t))dA+
g (t)

+ H(t;X(t))dt; almost all t 2 [0; T ]

X(0) = X0: (1:1)

In (1.1), E;F;G;H lie in L2
loc([0; T ] �

~A)mvs; X : [0; T ] ! ~A belongs to L2
loc(

~A) and

^�; Af ; A
+
g : [0; T ]! ~A are the driving gauge, annihilation and creation processes. As usual ~A

is the locally convex space of noncommutative stochastic processes whose topology is generated

by the family of seminorms fkxk�� = j < �; x� > j : x 2 ~A; �; � 2 ID
IEg(see [2-5, 8-10] for

details).

For arbitrary �; � 2 ID
IE, it is well known (see [3, 4, 8 ]) that (1.1) is equivalent to the �rst

order initial value nonclassical inclusion given by

d

dt
< �;X(t)� > 2 P (t;X(t))(�; �)

X(0) = X0; almost all t 2 [0; T ] (1:2)

where (�; �) ! P (t;X(t))(�; �) is a multivalued sesquilinear form on ID
IE with values in IC,

the �eld of complex numbers. The explicit form of the map P is presented in Section 2 below.

By adopting similar notations as in Wolenski [19], involving reachable sets and sets of tra-

jectories of classical di�erential inclusions, our considerations in this paper mainly focus on the

reachable set R(T )(X0), which is de�ned by

R(T )(X0) = f�(T ) : �(�) solves (1:2)g: (1:3)

For arbitrary �; � 2 ID
IE, we associate with (1.3) the set

R(T )(X0)(�; �) := f< �;�(T )� >: �(T ) 2 R(T )(X0)g: (1:4)

Similarly, the set of trajectories of (1.2) is de�ned by

S(T )(X0) := f�(�) : �(�) solves (1:2)g: (1:5)

Again, associated with (1.5), we de�ne S(T )(X0)(�; �) by :

S(T )(X0)(�; �) := f< �;�(�)� >: �(�) 2 S(T )(X0)g: (1:6)

The main result of this paper is that the exponential formula

R(T )(X0)(�; �) = lim
N!1

(I +
T

N
P )N (X0)(�; �) (1:7)
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holds subject to the map (t; x)! P (t; x)(�; �) being locally Lipschitzian with convex values and

the stochastic processes are de�ned only on a simple Fock space. The power of (I + T
N
P ) in

(1.7) is that of composition of multivalued sesquilinear forms, de�ned in Section 4 and the limit

is a set limit in the sense of Kuratowski. The identity multifunction I : ~A ! 2
~A takes x! fxg:

An important consequence of formula (1.7) is that solutions of the inclusion (1.1) or (1.2)

need not be invoked in order to determine the points in R(T )(X0)(�; �). This situation is similar

to what was obtained in the case of reachable sets for classical di�erential inclusions as explained

in [19].

Another important feature of Equation (1.7) concerns discretizations of quantum stochastic

di�erential inclusion (1.2). Equation (1.7) implies that the set of all endpoints of the matrix

elements of discrete trajectories of (1.2) converge to the entire reachable set R(T )(X0)(�; �).

Consequently, we obtain convergence results concerning discrete approximate reachable sets of

(1.2).

This work is partly motivated by the need to develop numerical analysis of quantum stochas-

tic di�erential inclusions. As highlighted in [5], emphasis so far has been on numerical procedures

for continuous quantum stochastic di�erential equations with high degree of di�erentiability of

the matrix elements of solutions (see [2, 3, 4]). The numerical analysis of the discontinuous

equations needs to be developed as well since a large number of quantum stochastic di�erential

equations arising from applications are discontinuous but may be reformulated as regularized

inclusions. Questions concerning estimations of the Hausdor� distance between the sets of so-

lutions of (1.2) and the set of solutions of its discrete approximation will be considered in a

forthcoming paper.

The plan for the rest of the paper is as follows: Section 2 contains preliminary notations

and basic prerequisite results. In Section 3, we establish a result concerning approximation of

trajectories of (1.2) by trajectories whose matrix elements are continuously di�erentiable. This

extends the result of Wolenski [19] concerning approximations of solutions of classical di�er-

ential inclusions by C1 trajectories. The main results, concerning the exponential formula, is

established in section 4. We formulate the discrete Euler approximations of the reachable set of

(1.2). Finally, we show that the discrete reachable sets converge to the entire reachable set of

(1.2).

2. PRELIMINARY RESULTS AND ASSUMPTIONS

As in [2-5,8-10], we associate with the locally convex state space ~A of noncommutative

stochastic processes the spaces Ad( ~A); Ad( ~A)wac; L
p
loc(

~A); L1;loc(IR+) for a �xed Hilbert

space  and for 0 < p <1.

If A is a topological space, then clos(A) (resp. comp(A)) denotes the collection of nonvoid

closed (resp. compact ) subsets of A.
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We employ the Hausdor� topology �H on clos( ~A) determined by a family of pseudo-metrics

f���(�); �; � 2 ID
IEg on clos( ~A) as follows:

For x 2 ~A; M; N 2 clos( ~A);

d��(x;N ) � inf
y2N

kx� yk�� ;

Æ��(M;N ) � sup
x2M

d��(x;N );

and

���(M;N ) � max(Æ��(M;N ); Æ��(N ;M)):

For M2 clos( ~A); kMk�� := d��(M; f0g).

Similarly, for A; B 2 clos(IC) and x 2 IC, the complex numbers, let

d(x;A) = inf
y2A

jx� yj

Æ(A;B) = sup
x2A

d(x;B)

and

�(A;B) = max(Æ(A;B); Æ(B;A))

Then we employ the metric topology on clos(IC) induced by �. The set -theoretic operations are

adopted as usual (see [8-10] for details).

In the following, Kuratowski limits of set will be frequently employed. If fMjg1j=1 is a

sequence of subsets of ~A, we de�ne the limsup and liminf of fM1
j=1g by

lim
j!1

supMj = fa : lim
j!1

inf d��(a;Mj) = 0g (2:1)

lim
j!1

infMj = fa : lim
j!1

supd��(a;Mj) = 0g: (2:2)

If limsupMj = lim infMj , we say that the limit exists and write limj1Mj for the common

value. We observe that if each Mj and A are compact in ~A and contained in a bounded set,

then from (2.1) and (2.2), A = limj!1Mj if and only if ���(Mj ; A)! 0 as j !1.

Similar de�nitions hold for the Kuratowski limit of a sequence of subsets of IC, the �eld of com-

plex numbers. However, the Hausdor� metric � will now replace the family of pseudo metric

above.

Continuous Multivalued Stochastic Processes

A multivalued stochastic process indexed by the set [0; T ] � IR+ is a multifunction on

[0; T ] with values in clos( ~A). As in [5], the set of all locally p-integrable multivalued stochastic

processes will be denoted by LPloc(
~A)mvs, p 2 (0;1) while Lploc(I �

~A)mvs is the set of maps
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� : I � ~A 7! clos( ~A) such that the map t ! �(t;X(t)) ; t 2 [0; T ] lies in LPloc(
~A)mvs for every

X 2 L
p
loc(

~A).

For f; g 2 L1;loc(IR+); � 2 L1B();loc(IR+), 1 is the identity map on R
�(L2
(IR+)) and M is

any of the processes Af ; A
+
g ; ^� and s 7! s1; s 2 IR+,then the multivalued stochastic integralR t

t0
�(s;X(s))dM(s) is adopted as in [8].

Let G : [0; T ] ! 2
~A be a given multivalued stochastic process indexed by [0; T ]. Then we

say that G is upper semicontinuous at t0 2 [0; T ] if

lim
j!1

supG(tj) � G(t0)

for all sequences ftjg with tj ! t0.

The map G is lower semicontinuous at t0 if

G(t0) � lim
j!1

infG(tj)

for all ftjg with tj ! t0.

G is said to be continuous if it is both upper and lower semicontinuous. Similar de�nitions

of continuity hold for a multifunction of the form:� : ~A! 2
~A:

Lipschitzian Multifunctions

These are de�ned as follows:

(i) Let N be an open subset of ~A. A map � : N ! comp( ~A) will be called Lipschitzian if

for all �; � 2 ID
IE, there exist positive numbers K�� such that

���(�(x);�(y)) � K��kx� yk�� ; 8x; y 2 N :

We say that � is locally Lipschitzian if it is Lipschitzian on each compact subset of N :

(ii) If � : N ! 2sesq(ID
IE), where sesq(ID
IE) is the linear space of sesquilinear forms on

ID
IE, then � is Lipschitzian if

�(�(x)(�; �);�(y)(�; �)) � K��kx� yk��;

where K�� are positive real numbers.

We remark here that by Proposition (6.2) in [8], the map (t; x) ! P (t; x)(�; �) appearing in
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(1.2) is Lipschitzian if the coeÆcients E;F;G;H : [0; T ]� ~A ! 2
~A in (1.1) are Lipschitzian.

For E;F;G;H lying in L2
loc(I �

~A)mvs, (1.1) is understood as an integral inclusion given by

X(t) 2 X0 +

Z t

0
(E(s;X(s))d ^� (s) + F (s;X(s))dAf (s)

+ G(s;X(s))dA+
g (s) +H(s;X(s))ds); t 2 [0; T ]; (2:1)

with initial data (t0;X0).

The explicit form of the map P (t; x)(�; �) is given as follows: For (t; x) 2 IR+� ~A; �; � 2 ID
IE,

such that � = c
 e(�); � = d
 e(�), c; d 2 ID, �; � 2 L1;loc(IR+), de�ne the multifunction

P�� : [0; T ] � ~A! 2
~A

by

P��(t; x) = ���(t)E(t; x) + ��(t)F (t; x) + ��(t)G(t; x) +H(t; x)

where

���(t) =< �(t); �(t)�(t) >

��(t) =< f(t); �(t) >

and

��(t) =< �(t); g(t) > :

This leads to the multifunction

P : [0; T ]� ~A ! 2sesq(ID
IE)

de�ned by

P (t; x)(�; �) :=< �; P��(t; x)� >= f< �;Z(t; x)� >: Z(t; x) 2 P��(t; x)g:

As in [19], we shall introduce the notion of escape times. In what follows, unless otherwise

indicated, we consider the autonomous version of (1.1) and (1.2).

Let N � ~A be an open subset and x0 2 N . Assume that P (x)(�; �) has compact values

and is locally Lipschitzian on N . Then we de�ne the escape time ~T by

~T := supfT : cl
[

0�t�T

R(t)(x0) is compact in Ng;

where \ cl" denotes the closure of the set.

6



Next, we present a non-commutative generalization of the Fillipov existence theorem for

inclusion (1.2) due to [8], in a form suitable for our purpose. To this end, for an arbitrary

process Z : [0; T ]! ~A lying in Ad( ~A)wac, we de�ne

�(Z) :=

Z T

0
d(

d

dt
< �; Z(t)� >; P (Z(t))(�; �))dt:

Theorem 2.1. Assume that the following conditions hold:

(a) Z : I 7! ~A is an arbitrary process lying in Ad( ~A)wac such that there exists positive functions

W��(t) satisfying

d(
d

dt
< �; Z(t)� >; P (Z(t))(�; �)) �W��(t):

(b) There exists � > 0 and N � ~A such that each of the maps E;F;G;H is Lipschitzian from

N to (clos( ~A); �H) and that

QZ;� = fx 2 ~A : kx� Z(t)k�� � �;8� ; � 2 ID
IE for some t 2 [0; T ]g � N :

(c) K�� > 0 are the Lipschitz constants for the map P : N ! 2sesq(ID
IE) on N .

(d) For arbitrary �; � 2 ID
IE; t 2 [0; T ],

E��(t) = etK��

Z t

0
dsW��(s):

If in addition, E;F;G;H are continuous from ~A to (clos( ~A); �H) and

Z T

0
W��(t)dt < �e�K��T ;

then there exists a solution � 2 S(T )(Z(0)) of (1.2) satisfying

k�(t)� Z(t)k�� < �(Z)eK��T ; t 2 J

and

j
d

dt
< �;�(t)� > �

d

dt
< �; Z(t)� > j � K��E��(t) +W��(t)

for almost all t 2 J where

J = ft 2 [0; T ] : E��(t) � �(Z)eK��T � �g:

The next result is a useful lemma due to Wolenski [19].

Lemma 2.2. Suppose that R;S;M1;M2;MN are real constants satisfying

Mj+1 = R+ SMj ; for j = 1; 2 � � �N;
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then

MN = R(
1� SN

1� S
) + SNM0 if S 6= 1;

= NR+M0 if S = 1:

3. SOME DENSITY RESULTS

In this section, we show that an arbitrary trajectory of the Inclusion (1.2) may be approx-

imated in ~A by a trajectory whose matrix elements are of class C1[0; T ], provided that the

coeÆcients E;F;G;H are locally Lipschitzian and the map P (x)(�; �) has convex values in IC.

This extends similar results in [19] to the present non-commutative quantum setting. In what

follows, in this Section and Section 4, we consider the initial space R � IC. Consequently,

ID
IE = IE and R
N

�(L2
(IR+)) � �(L2

(IR+)):

Theorem 3.1. Suppose that the following conditions hold.

(i) N is an open subset of ~A and P : N ! 2sesq(IE) is a multivalued sesquilinear form with

nonempty, convex and compact values in IC.

(ii) The coeÆcients E;F;G;H are locally Lipschitzian on N .

(iii) �(�) 2 S(T )(x0) is a trajectory of (1.2) with matrix element

< �;�(�)� >:= ���(�) 2 S(T )(x0)(�; �):

Then for each � > 0, there exists ~�(�) 2 S(T )(x0) such that

< �; ~�(�)� >:= ~���(�) 2 S(T )(x0)(�; �)
\

C1[0; T ]

and

k�(t)� ~�(t)k�� < �:

We �rst establish the following Proposition which will be employed in the proof of Theorem 3.1.

Proposition 3.2. Let N , the map P and the coeÆcients E;F;G;H be as in Theorem (3.1)

and suppose that the following hold.

(i) Y : [0; T ] ! ~A is an arbitrary process lying in Ad( ~A)wac such that its matrix elements
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Y��(�) :=< �; Y (�)� > belong to C1[0; T ] for each pair �; � 2 IE.

(ii) There is a compact set Q � ~A and � > 0 such that the set

fx : kx� Y (t)k�� � �; for some 0 � t � T 8 �; � 2 IEg � Q � N :

Let K�� be Lipschitz constants for the map P on Q. Assume further that

�(Y ) < �e�K��T :

Then, there exists a trajectory ~Y (�) 2 S(T )(Y (0)) with

~Y��(�) 2 S(T )(Y (0))(�; �)
\

C1[0; T ]

satisfying

kY (t)� ~Y (t)k�� < �(Y )ek��T :

We require the following lemma for the proof of Proposion (3.2).

If A � IC is a closed, convex set and a 2 IC, we denote by proj(a;A), the unique element in

A closest to the point a.

Lemma 3.3. Suppose that G : [0; T ] ! 2
~A is a multivalued stochastic process such that

the map t! G(t)(�; �) is a continuous multivalued sesquilinear form with nonempty, closed and

convex values on [0; T ]. Suppose further that V : [0; T ] ! ~A is an adapted process such that

the map t!< �; V (t)� > is continuous for each pair of �; � 2 IE. Then the map

t! proj(< �; V (t)� >;G(t)(�; �))

is continuous on [0; T ].

Proof: The proof is an adaptation of the arguments in ( [19], Lemma 3.3 ) as follows: For

each pair of �; �, set

P��(t) := proj(< �; V (t)� >;G(t)(�; �))

Let t0 2 [0; T ] and ftjgj�1 � [0; T ] with tj ! t0 as j !1.

Since t ! G(t)(�; �) is continuous, the sequence fP��(tj)g is bounded and therefore has a

convergent subsequence.

We assume that P��(tj)! ~p�� as j !1 by passing to a subsequence if necessary but retaining

the same notation. To conclude the proof, it is suÆcient for us to show that

P��(t0) = ~P�� :
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Since t ! G(t)(�; �) is upper semicontinuous at t0, we have ~p�� 2 G(t0)(�; �), where ~p�� =<

�; ~p� >, for some ~p 2 G(t0) � ~A:

Again, since t ! G(t)(�; �) is lower semicontinuous at t0, there exists q��;j 2 G(tj)(�; �) such

that q��;j ! P��(t0).

Hence, we have

jV��(t0)� ~p��j = lim
j!1

jV��(tj)� P��(tj)j

� lim
j!1

jV��(tj)� q��;jj by de�nition of P��(tj)

= jV��(t0)� P��(t0)j; (3:1)

by continuity of V��(�) and the absolute value function j � j:

But P��(t0) is the unique element in G(t0)(�; �) closest to V��(t0). Therefore, the last inequality

implies that

P��(t0) = ~p�� :

Proof of Proposition 3.2. The stochastic process Y 2 Ad( ~A)wac is given such that <

�; Y (�)� >2 C1[0; T ] for each �; � 2 IE and satis�es

�(Y ) < �e�K��T :

By Lemma 3.3,

t! V��;0 := proj(
d

dt
< �; Y (t)� >; P (Y (t))(�; �))

is continuous on [0; T ].

Set

Y��;1 =< �; Y (0)� > +

Z t

0
V��;0(s)ds:

Then,

Y��;1(�) 2 C1[0; T ];

with
d

dt
Y��;1(t) = V��;0(t) 2 P (Y (t))(�; �)

by de�nition.

Since Y��;1(t) is a sesquilinear form on [0; T ], there exists a stochastic process Y1 : [0; T ] ! ~A

such that

Y��;1(t) =< �; Y1� > :

Since

jY��;1(t)� Y��(t)j = j
Z t

0
(V��;0(s)�

d

ds
< �; Y (s)� >)dsj

�
Z t

0
jV��;0(s)�

d

ds
< �; Y (s)� > jds

=

Z t

0
d(

d

ds
< �; Y (s)� >; P (Y (s))(�; �))ds

� �(Y ) < �:
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i.e.

kY1(t)� Y (t)k�� < �:

Then,

Y1(t) 2 Q � N ;8t 2 [0; T ]:

Next, we set

Y��;0(�) = Y��(�):

Inductively, suppose that n � 1 and that adapted processes fYjg
n
j=1 have been chosen such

that the sequence f< �; Yj(�)� >gnj=1 are continuously di�erentiable on [0; T ] for all �; � 2 IE

satisfying (3.3) -(3.6) below, for all 0 � t � T and j = 1; 2 � � � n

d

dt
< �; Yj(t)� >2 P (Yj�1(t))(�; �); (3:3)

j
d

dt
< �; Yj(t)� > �

d

dt
< �; Yj�1(t)� > j �

�(Y )Kj�1
�� tj�2

(j � 2)!
; (3:4)

j < �; Yj(t)� > � < �; Yj�1(t)� > j � �(Y )
(K��t)

j�1

(j � 1)!
; (3:5)

Yj(t) 2 Q: (3:6)

First, we observe that when j = 1; (3.5) and (3.6) follow directly from (3.2), (3.3) is obvious

and (3.4) is vacuous.

Next, we begin by de�ning

V��;n+1(t) = proj(
d

dt
< �; Yn(t)� >; P (Yn(t))(�; �))

and

Y��;n+1(t) =< �; Y (0)� > +

Z t

0
V��;n+1(s)ds

=< �; Yn+1(t)� >;

for some stochastic process Yn+1 : [0; T ]! ~A.

By Lemma 3.3, t! V��;n+1(t) is continuous and

d

dt
Y��;n+1(t) = V��;n+1(t):

This implies that

Y��;n+1(�) 2 C1[0; T ]:

Let t 2 [0; T ], then
d

dt
Y��;n+1(t) 2 P (Yn(t))(�; �):
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Therefore,

j
d

dt
Y��;n+1(t)�

d

dt
< �; Yn(t)� > j

= d(
d

dt
< �; Yn(t)� >; P (Yn(t))(�; �))

� �(P (Yn�1(t))(�; �); P (Yn(t))(�; �)) by (3.3),

� K��kYn�1(t)� Yn(t)k�� by Lipschitz property,

= K�� j < �; Yn�1(t)� > � < �; Yn(t)� > j

� �(Y )
Kn
��t

n�1

(n� 1)!
by (3.5): (3:7)

The last inequality shows that (3.4) holds for j = n+ 1:

Next, we have

j < �; Yn+1(t)� > � < �; Yn(t)� >

�
Z t

0
j
d

ds
Y��;n+1(s)�

d

ds
< �; Yn(s)� > jds

� �(Y )

Z t

0

Kn
��s

n�1

(n� 1)!
ds by (3.7)

= �(Y )
(K��t)

n

n!
: (3:8)

The last inequality shows that (3.5) holds for j = n+ 1. Finally, we have

kYn+1(t)� Y (t)k��

= j < �; Yn+1(t)� > � < �; Y (t)� > j

�
nX
j=0

j < �; Yj+1(t)� > � < �; Yj(t)� > j

� �(Y )
nX
j=0

(K��t)
j

j!
by (3.5) and (3.8)

� �(Y )eK��T < �: (3:9)

This shows that Yn+1(t) 2 Q. The induction proof is complete.

The foregoings imply the existence of a subsequence fYjg1j=1 of adapted processes Yj : [0; T ]! ~A

lying in Q with the property that the sequence f< �; Yj(�)� >g1j=1 are continuously di�erentiable

on [0; T ].

It follows from (3.5) and (3.4) that fYj(t)g is Cauchy in Q with the property that f d
dt

<

�; Yj(t)� >g is also Cauchy in IC, the �eld of complex numbers.

Consequently, fYj(t)g converges uniformly to some ~Y (t) in Q, i.e.

kYj(t)� ~Y (t)k�� = j < �; Yj(t)� > � < �; ~Y (t)� > j ! 0 as j !1:

This implies that

< �; Yj(t)� >!< �; ~Y (t)� > as j !1:

12



The function < �; ~Y (�)� > is continuously di�erentiable on [0,T] since < �; Yj(�)� > lies in

C1[0; T ] for each j.

Hence
d

dt
< �; Yj(t)� >!

d

dt
< �; ~Y (t)� > :

By (3.4), d
dt
< �; ~Y (t)� > is continuous by the continuity of the sequence f d

dt
< �; Yj(t)� >g on

[0,T] for each j.

Moreover, for each t 2 [0; T ] and by (3.3), we have

d

dt
< �; ~Y (t)� > = lim

j!1

d

dt
< �; Yj(t)� >

2 lim
j!1

P (Yj�1(t))(�; �)

= P ( ~Y (t))(�; �):

Hence,

~Y (�) 2 S(T )(Y (0)

with

< �; ~Y (�)� >2 S(T )(Y (0))(�; �):

Finally, from (3.9), we obtain

k ~Y (t)� Y (t)k�� = lim
n!1

kYn+1(t)� Y (t)k��

� �(Y )eK��T :

The next result is a direct application of Lusin's Theorem (see Rudin [16], Phillips [15]) to

elements of Ad( ~A) with Lebesque measurable matrix elements. The result will be employed in

the proof of Theorem (3.1) that follows.

Theorem 3.4: Assume that the following conditions hold:

f : [0; T ]! ~A is a stochastic process such that for all �; � 2 IE,

f��(t) :=< �; f(t)� >

is Lebesque measurable on [0,T] and

R�� = sup
[0;T ]

jf��(t)j:

Then, given � > 0, there exists a borel subset J � [0; T ] and a continuous function Z�� : [0; T ]!

IC such that

Z��(t) = f��(t); t 2 [0; T ] � J;

13



sup
[0;T ]

jZ��(t)j � R��

and

L(J) < �;

where L denotes the Lebesque measure.

Proof: Since f��(t) is measurable on [0; T ] and L([0; T ]) < 1, then, by Lusin's Theorem, (see

Phillip [15] page 225 ) there exists a Borel subset J � [0; T ] such that

L(J) < �

and

f��(�) 2 C([0; T ]� J):

Next we de�ne

Z��(t) = f��(t); t 2 [0; T ] � J;

Z��(t) =
R��

j < �; � > j
< �; � >; t 2 J:

We note that Z��(�)is well de�ned since j < �; � > j 6= 0; 8 �; � 2 IE, where

< �; � >= e<�;�>;

� = e(�); � = e(�); �; � 2 L2
(IR+):

Consequently,

Z��(�) 2 C[0; T ]

and the set

J = ft 2 [0; T ] : Z��(t) 6= f��(t)g

satis�es

L(J) < �:

Again,

sup
[0;T ]

jZ��(t)j � sup
[0;T ]

jf��(t)j = R�� :

Proof of Theorem 3.1: Given that �(�) 2 S(T )(X0) and � > 0, we have ���(�) 2 S(T )(X0)(�; �)

for each pair of �; � 2 IE. We show that there exists a trajectory ~�(�) such that

~���(�) 2 S(T )(X0)(�; �)
\

C1[0; T ];

and

k�(t)� ~�(t)k�� < �;

14



where

~���(�) =< �; ~�(�)� > :

We assume without loss of generality that � is suÆciently small so that the following hold

fu : ku� �(t)k�� � �; for some 0 � t � T;8�; � 2 IEg � Q � N ;

for some compact set Q contained in N .

Let K�� � 1 be Lipschitz constants for the map x! P (x)(�; �) on Q and let

R�� = supfjv�� j : v�� 2
[
u2Q

P (u)(�; �)g:

Since �(�) 2 S(T )(X0), we have

j
d

dt
< �;�(t)� > j � R��;

for almost all t satisfying 0 � t � T:

Let

f��(t) =
d

dt
< �;�(t)� >; t 2 [0; T ];

then by Theorem (3.3), there exists continuous functions Z��(�) on [0; T ] and a Borel subset

J � [0; T ] such that

Z��(t) = f��(t); for t 2 [0; T ]� J; 8�; �;

sup
[0;T ]

jZ��(t)j � R�� ;

and

L(J) �
�

4K��R��(1 + T )eK��T
;

where L is the Lebesque measure on [0; T ].

Next we de�ne for each pair of �; �

Y��(t) =< �;X0� > +

Z t

0
Z��(s)ds:

Then

Y��(�) 2 C1[0; T ]:

As Y��(t) is a sesquilinear form, there exists a stochastic process Y : [0; T ]! ~A such that

Y��(t) =< �; Y (t)� >; almost all t 2 [0; T ]:

It is immediate that Y lies in Ad( ~A)wac by de�nition.
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Observe that for all t 2 [0; T ] � J , < �; Y (t)� > � < �;�(t)� >= 0.

However, for all t 2 [0; T ], the following hold:

j < �; Y (t)� > � < �;�(t)� > j = kY (t)� �(t)k��

�
Z
J
jZ��(s)�

d

ds
< �;�(s)� > jds

� 2R��L(J)

�
�

2K��e
K��T (1 + T )

�
�

2
: (3:10)

Again, we observe that (3.10) implies that the set fu : ku� Y (t)k�� �
�
2g is contained in Q.

Next, we estimate �(Y ) as follows:

�(Y ) :=

Z T

0
d(

d

dt
< �; Y (t)� >; P (Y (t))(�; �))

�
Z
[0;T ]�J

�(P (�(t))(�; �); P (Y (t))(�; �))dt

+

Z
J
d(

d

dt
< �; Y (t)� >; P (Y (t))(�; �))dt

� K��

Z T

0
k�(t)� Y (t)k��dt+ 2R��L(J):

Consequently, by applying (3.10), we have

�(Y ) �
K��T�

2K��e
K��T (1 + T )

+
�

2K��e
K��T (1 + T )

;

=
�

2
[
K��T + 1

K��(1 + T )
]e�K��T

<
�

2
e�K��T ; since K�� � 1:

Application of Proposition (3.2) to the process Y : [0; T ] ! ~A with � = �
2 and Q, implies that

there exists ~�(�) 2 S(T )(X0) such that

~���(�) 2 S(T )(X0)(�; �)
\

C1[0; T ] 8 �; � 2 IE

and

kY (t)� ~�(t)k�� <
�

2
:

Finally, by employing (3.10) again, we conclude that

k�(t)� ~�(t)k�� � k�(t)� Y (t)k�� + kY (t)� ~�(t)k�� < �:

i.e

k�(t)� ~�(t)k�� < �:
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4. THE EXPONENTIAL FORMULA

We �rst present the de�nitions of composition of multifunctions suitable for our purpose. Unless

otherwise indicated, �; � 2 IE such that � = e(�); � = e(�); �; � 2 L2
(IR+): In what follows

I is the multifunction that takes x! fxg.

De�nition 4.1. Let G0 and G1 : ~A ! 2
~A be multifunctions de�ned on ~A. By composition

G0 ÆG1 : ~A ! 2
~A of G1 with G0, we mean the set

G0 ÆG1(x) = fz : there exists y 2 G1(x) with z 2 G0(y)g:

GN
0 denotes the composition of G0 with itself N times.

De�nition 4.2: The composition of the multivalued sesquilinear form P : ~A ! 2sesq(IE) with

itself N times is de�ned by

PN (x)(�; �) =< �; PN
��(x)� >;

where

PN
�� : ~A ! 2

~A

is the composition of P�� with itself N times in the sense of De�nition (4.1).

Theorem 4.3: Suppose N � ~A is open and P : ~A ! 2sesq(IE) is a locally Lipschitzian multi-

valued sequilinear form with nonempty, compact values on N . Let X0 2 N be �xed.

(i) For 0 � T � ~T , one has

lim
N!1

sup(I +
T

N
)N (X0)(�; �) � clR(T )(X0)(�; �) (4:1)

(ii) If in addition, P is assumed to have convex values, then for all T � 0, we have

R(T )(X0)(�; �) � lim
N!1

inf(I +
T

N
P )N (X0)(�; �): (4:2)

Proof: (i) Suppose 0 � T � ~T : Let Q = cl
S

0�t�T R
(t)(X0).

Then Q is compact by de�nition of ~T . So there exists � > 0 such that Q+ �B � N , where B is

the closed unit ball in ~A.

We put

R�� = supfjV�� j : V�� 2 P (Q+ �B)(�; �)g

:= supfjV�� j : V�� 2
[

u2Q+�B

P (u)(�; �)g

17



and put K�� > 0 to be Lipschitz constants for P on Q+ �B.

Let � > 0: We show that for all large N satisfying

T

N
� minf

�

R��K��Te
K��T

;
�

2R��

g; (4:3)

the inclusion

(I +
T

N
P��)

j(X0) � R(j T
N
)(X0) + �B (4:4)

holds. Consequently, the inclusion

(I +
T

N
P )j(X0)(�; �) � R(j T

N
)(X0)(�; �) + �B(�; �) (4:5)

immediately follows from (4.4). Here, B(�; �) = f< �; x� >: x 2 Bg: Since � is arbitrarily small,

we can then conclude that (4.1) holds.

In the sequel, we put h = T
N
, tj = jh for j = 0; 1; 2 � � �N , where N satis�es (4.3).

We shall establish (4.4) by induction on j. The case j = 0 is trivial. For the induction hypothesis,

suppose (4.4) holds for all i such that 0 � i � j < N:

Let Yj+1 2 (I + hP��)
j+1(X0): Then there exists Y0 = X0; Y1; Y2 � � � Yj and U0; U1 � � �Uj so

that for 0 � i � j, we have

Ui 2 P��(Yi) and Yi+1 = Yi + hUi:

We remark that when 0 � i � j; (4.4) implies that

Yi 2 Q+
�

2
B

so that

< �;Ui� >2 P (Q+ �B)(�; �)

and so

j < �;Ui� > j = kUik�� � R�� :

Let �(�) be de�ned on [0; tj+1] as the piecewise linear interpolation of fYig
j+1
i=0 equally spaced

on [0; tj+1] as follows

�(t) = Yi + (t� ti)Ui if ti � t � ti+1: (4:6)

�(t) is adapted and weakly absolutely continuous on [0; tj+1]:

The range of �(�) lies within Q+ �B because

Yi + (t� ti)Ui 2 Q+
�

2
B + hR��B � Q+ �B:

This follows from (4.3) since hR�� �
�
2 :

Hence we have

�(�) =

Z tj+1

0
d(

d

dt
< �;�(t)� >; P (�(t))(�; �))dt

18



�
jX

i=0

Z ti+1

ti

�(P (Yi)(�; �); P (�(t))(�; �))dt

� K��

jX
i=0

Z ti+1

ti

kYi � �(t)k��dt by Lipschitz property of P

� K��TR��h � �e�K��T by (4.3):

By Theorem (2.1), there exists a solution ~� of (1.2) such that

k~�(t)��(t)k�� � �(�)eK��T ; 0 � t � tj+1:

In particular, if we put t = tj+1; i = j + 1, we have from (4.6) �(tj+1) = Yj+1 and

k~�(tj+1)� Yj+1k�� � �(�)eK��T < �:

This implies that

d��(Yj+1; R
(tj+1)(X0)) < �:

Hence, we have

Yj+1 2 R(tj+1)(X0) + �B:

Thus (4.4) holds for all j = 0; 1; 2 � � �N . This completes the proof of (i).

(ii) The values of x ! P (x)(�; �) are now assumed to be convex. Thus Theorem (3.1) can

be applied.

Let �(�) 2 S(T )(X0) such that its matrix elements

< �;�(�)� >:= ���(�) 2 C1[0; T ], for each pair of �; � 2 IE.

By Theorem (3.1), any ~�(�) 2 S(T )(X0) can be approximated to any degree of accuracy by

�(�). Consequently, to prove (4.2), it is suÆcient to show that

< �;�(T )� > 2 lim
N!1

inf(I +
T

N
P )N (X0)(�; �):

Denote by Q, the range of �(�), i.e

Q = fx : x = �(t); t 2 [0; T ]g

and choose � > 0 so that

Q+ �B � N :

Let K�� be Lipschitz constants for the map P on Q + �B. For each integer N , h = T
N
; tj =

jh; j = 1; 2 � � �N , de�ne

"N;�� = sup
j=0;1;���N

j
< �;�(tj+1)� > � < �;�(tj)� >

h
�

d

dt
< �;�(t)� > jt=tj j: (4:7)
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Since < �;�(�)� > is continuously di�erentiable on [0; T ]; "N;�� ! 0 as N !1.

Assuming that N is large enough so that

"N;�� <
�K��

eK��T � 1
;

then it can be shown that

< �;�(T )� >2 (I +
T

N
P )N (X0)(�; �) +

"N;��

K��

(eK��T � 1)B(�; �): (4:8)

To prove (4.8), we proceed by letting Y0 = X0 so that

Y��;0 =< �; Y0� >=< �;X0� >

and

U��;0 =
d

dt
< �;�(t)� > jt=t0 ; M0 = 0 2 IR:

Having chosen

Y��;j =< �; Yj� >; U��;j =< �;Uj� >

for some Uj; Yj 2 ~A, let

Y��;j+1 =< �; Yj� > +h < �;Uj� >;

where

Yj+1 = Yj + hUj ;

U��;j+1 = proj(
d

dt
< �;�(t)� > jt=tj+1 ; P (Yj+1)(�; �))

and

Mj+1 = (1 +K��h)Mj + 1:

We note that

Mj �Mj+1

for each j and therefore by Lemma (2.2) ( with R = 1; S = 1 +K��h ) we have

MN =
1

K��h
((1 +K��h)

N � 1)) �
1

K��h
(eK��T � 1): (4:9)

Inductively, suppose for 0 � j < N; the estimate

kYj � �(tj)k�� � h"N;��Mj (4:10)

holds. When j = 0, (4.10) is trivial as Y0 = �(0):

We have from (4.9) that

h"N;��Mj �
"N;��

K��

(eK��T � 1) � �
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by the choice of N .

Hence (4.10) implies that

Yj 2 Q+ �B;

since Q consists of elements in the range of �(�) and

B = fx : kxk�� � 1g � ~A:

By the Lipschitz property of P on Q+ �B and the choice of U��;j , we have

j < �;Uj� > �
d

dt
< �;�(t)� > jt=tj j

= �(P (Yj)(�; �); P (�(tj))(�; �)

� K��kYj � �(tj)k�� � K��h"��;NMj (4:11)

by (4.10).

Therefore,

j < �; Yj+1� > � < �;�(tj+1)� > j

� j < �; Yj� > � < �;�(tj)� > j+ hj < �;Uj� > �
d

dt
< �;�(t)� > jtj j

+j < �;�(tj)� > +h
d

dt
< �;�(t)� > jtj� < �;�(tj+1)� > j

� h"N;��Mj +K��h
2"N;��Mj + h"N;�� ; by (4:10); (4:11); and (4:7)

= h"N;�� [(1 +K��h)Mj + 1]

= h"N;��Mj+1:

Hence

kYj+1 � �(tj+1)k�� � h"N;��Mj+1:

The estimate (4.10) holds for j + 1.

When j = N , (4.10) combined with (4.9) leads to

j < �; YN� > � < �;�(T )� > j = kYN � �(T )k��

�
"N;��

K��

(eK��T � 1) (4:12)

By the choice of Yj; j = 0; 1; 2 � � �N , < �; YN� > lies in P (I + T
N
P )N (X0)(�; �) so that (4.8)

follows directly from (4.12).

By letting N !1 in (4.8), the conclusion (4.2) follows.

The exponential formula is recorded in the next Corollary as an immediate consequence of

Theorem 4.3.
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Corollary 4.4. Suppose that N � ~A is open and P is locally Lipschitzian on N with nonempty,

compact and convex values. Then for any X0 2 N , and 0 � T � ~T , we have

R(T )(X0)(�; �) = lim
N!1

(I +
T

N
P )N (X0)(�; �):

The next Corollary indicates that the interval [0; T ] may be partitioned in an arbitrary manner

provided that the width of the largest subinterval goes to zero. To this end, we need the follow-

ing de�nitions.

If D = ft0; t1; � � � ; tNg is a patition of [0,T] ( that is t0 < t1 < t2 � � � < tN = T ), de�ne

jDj = sup
0�j�N�1

jtj+1 � tj j:

If fP��;jg
N
j=1 is a collection of multifunctions P��;j : ~A ! 2

~A, de�ne the multifunction product

by

(�N
j=1P��;j)(x) = (P��;N Æ P��;N�1 Æ � � �P��;1)(x):

For �; � 2 IE, this leads to the de�nition of the sesquilinear form:

(�N
j=1Pj)(x)(�; �) :=< �; (�N

j=1P��;j)(x)� > :

Corollary 4.5. Suppose that N and P are as in Corollary 4.4 and let X0 2 N ; 0 � T < ~T and

�; � 2 IE: Then for any sequence of partitions Dk = ftk0 ; t
k
1 ; � � � t

k
Nk
g of [0; T ] with jDkj ! 0 as

k !1, we have

R(T )(X0)(�; �) = lim
k!1

(�Nk�1
j=0 (I + (tkj+1 � tkj )P )(X0)(�; �):

Proof: Follows similar steps as in the proof of Theorem 4.3 by replacing h by hkj := tkj+1 � tkj :

Approximations of Reachable Set for the QSDI

Consider now the autonomous version of QSDI (1.2). Then the Euler approximation to the

reachable set in the case of equally spaced partition ftig can be written as follows

RN
��;1 = (I + hP )(Y0)(�; �)

RN
��;2 = (I + hP )2(Y0)(�; �)

::::::::::::::::::::::::::::::::::::::::::::::

RN
��;i = (I + hP )i(Y0)(�; �)
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where the power of (I + hP ) is that of composition of set valued map described in Section 4.

Then, by Theorem (4.3) and Corollary (4.4) RN
��;N will converge to R(T )(X0)(�; �) in the sense

that

R(T )(X0)(�; �) = lim
N!1

(I +
T

N
P )N (X0)(�; �):

provided that the conditions of the Theorem are satis�ed.
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