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Abstract

We first introduce and derive some basic properties of a two-parameters (α, γ ) family of one-sided Lévy
processes, with 1 < α < 2 and γ > −α. Their Laplace exponents are given in terms of the Pochhammer
symbol as follows

ψ(γ )(λ) = c
(
(λ + γ )α − (γ )α

)
, λ � 0,

where c is a positive constant, (λ)α = �(λ+α)
�(λ)

stands for the Pochhammer symbol and � for the Gamma
function. These are a generalization of the Brownian motion, since in the limit case α → 2, we end up to the
Laplace exponent of a Brownian motion with drift γ + 1

2 . Then, we proceed by computing the density of
the law of the exponential functional associated to some elements of this family (and their dual) and some
transformations of these elements. More precisely, we shall consider the Lévy processes which admit the
following Laplace exponent, for any δ > α−1

α ,

ψ(0,δ)(λ) = ψ(0)(λ) − αδ

λ + α − 1
ψ(0)(λ), λ � 0.

These densities are expressed in terms of the Wright hypergeometric functions. By means of probabilistic
arguments, we derive some interesting properties enjoyed by these functions. On the way, we also char-
acterize explicitly the semi-group of the family of self-similar continuous state branching processes with
immigration.
© 2008 Elsevier Masson SAS. All rights reserved.
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Résumé

Nous introduisons et étudions quelques propriétés élémentaires d’une famille de processus de Lévy com-
plètement asymmétriques. Leurs lois sont caractérisées par leurs exposants de Laplace qui s’expriment en
termes du symbole de Pochhammer. Ensuite, nous calculons la loi de la fonctionnelle exponentielle associée
à certains éléments de cette famille et d’une tranformation de ces éléments. Ces lois s’avèrent absolument
continues et leurs densités s’expriment en termes des fonctions hypergéométriques de Wright. En utilisant
des arguments probabilistes, nous déduisons que ces fonctions possèdent des propriétés analytiques inté-
ressantes. Lors du déroulement de la preuve, nous caractérisons également le semi-groupe des processus
auto-similaires de branchement avec immigration.
© 2008 Elsevier Masson SAS. All rights reserved.

MSC: 60E07; 60G18; 60G51; 33E12

Keywords: Lévy processes; Exponential functional; Self-similar processes; Continuous state branching processes with
immigration; Wright hypergeometric functions

1. Introduction

Let ζ be a Lévy process with a negative first moment, the exponential functional associated
to ζ is defined as follows

∞∫
0

eζs ds.

This positive random variable plays an important role from both theoretical and applied perspec-
tives. Indeed, it appears in various fields such as diffusion processes in random environments,
fragmentation and coalescence processes, the classical moment problems, mathematical finance,
astrophysics, etc. We refer to the paper of Bertoin and Yor [7] for a thorough survey on this
topic and a description of cases when the law of such a functional is known explicitly. In par-
ticular, we mention that Bertoin and Yor [6] determine, through their negative entire moments,
the law of the exponential functional associated to spectrally positive Lévy processes and Patie
[32] expresses its Laplace transform for some spectrally negative Lévy processes. We also refer,
in the case of the Brownian motion with a negative drift, to the two survey papers of Matsumoto
and Yor [26,27] where the law of the exponential functional allows to characterize several in-
teresting stochastic processes and to develop stochastic analysis related to Brownian motions on
hyperbolic spaces. Finally, we indicate that Bertoin et al. [3] have derived the law of the exponen-
tial functional of a Poisson point process by means of q-calculus and have made an interesting
connection to the indeterminate moment problem associated to a log-normal random variable.

In this paper, we start by introducing through both their Laplace exponents and their char-
acteristics triplets, a two (α, γ )-parameters family of spectrally negative Lévy processes, with
1 < α � 2 and γ > −α. Their Laplace exponents have the following form

ψ(γ )(λ) = c
(
(λ + γ )α − (γ )α

)
, λ � 0, (1.1)

where c is a positive constant, (λ)α = �(λ+α)
�(λ)

stands for the Pochhammer symbol and � for the
Gamma function. It turns out that this family possesses several interesting properties. Indeed,
their Lévy measures behave around 0 as the Lévy measure of a stable Lévy process of index α.
Moreover, a member of this family has its law at a fixed time which belongs to the domain of
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attraction of a stable law of index α. They include the family of Brownian motion with posi-
tive drifts but also negative since they admit negative exponential moments. After studying some
further basic properties of this family, we compute the density of the law of the exponential func-
tional associated to some elements of this family (and their dual) and some transformations of
these elements. More specifically, we shall consider the Lévy processes which admit the follow-
ing Laplace exponent, for any δ > α−1

α
,

ψ(0,δ)(λ) = ψ(0)(λ) − αδ

λ + α − 1
ψ(0)(λ), λ � 0. (1.2)

The densities of the corresponding exponential functionals are expressed in terms of the Wright
hypergeometric function 1Ψ1. As a specific instance, we obtain the inverse Gamma law and hence
recover Dufresne’s result [13] regarding the law of the exponential functional of a Brownian
motion with negative drifts. As a limit case, we show that the family encompasses the inverse
Linnik law.

The path we follow to derive such a law is as follows. The first stage consists on characterizing
the family of Lévy processes associated, via the Lamperti mapping, to the family of self-similar
continuous state branching processes with immigration (for short cbip). We mention that this
family includes the family of squared Bessel processes and belong to the class of affine term
structure models in mathematical finance, see the survey paper of Duffie et al. [12]. At a second
stage, by using well-know results on cbip, we derive the spatial Laplace transforms of the semi-
groups of this later family. Then, by means of inversion techniques, we compute, in terms of
a power series, the density of these semi-groups. In particular, we get an expression of their
entrance laws in terms of the Wright hypergeometric function 1Ψ1. Finally, we end up our journey
by related these entrance laws to the law of the exponential functionals associated to the family
of Lévy processes (1.2).

On the way, we get an expression, as a power series, for the density of the semi-group of
a family of self-similar positive Markov processes (for short sspMp). We mention, that beside
the family of Bessel processes, such a semi-group is only known explicitly for the so-called
saw-tooth processes (a piecewise linear sspMp) which were studied by Carmona et al. [11].
Therein, the authors use the multiplicative kernel associated to a Gamma random variable to
obtain an intertwining relationship between the semi-group of the Bessel processes and the family
of piecewise linear sspMp.

The remaining part of the paper is organized as follows. In the next section, we gather some
preliminary results. In particular, we introduce a transformation which leaves invariant the class
of sspMp without diffusion coefficients. We also provide the detailed computation of an integral
which will appear several times in the paper. Section 3 concerns the definition and the study of
some basic properties of the new family of one-sided Lévy processes (1.1). Section 4 is devoted
to the statement and the proof of the law of the exponential functionals under study. Section 5
contains several remarks regarding some representations of the special functions which appear
in this paper. Finally Section 6 is a summarize of the asymptotic behaviors of the Wright hyper-
geometric functions.

2. Preliminary results

2.1. Self-similar positive Markov processes

Let ζ = (ζt )t�0 denote a real-valued Lévy process starting from y ∈ R. Then, for any α, t > 0,
introduce the time change process
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Xt = eζAt ,

where

At = inf

{
s � 0; Σs :=

s∫
0

eαζu du > t

}
.

Lamperti [22] showed that the process X = (Xt )t�0 is a positive α-self-similar Markov process
starting from ey and that the mapping is actually one-to-one. We shall refer to this time change
transformation as the Lamperti mapping. Next, we recall that the infinitesimal generator, Q, of
the α-sspMp X is given for any α,x > 0 and f a smooth function on R+, by

Qf (x) = x−α

(
σ

2
x2f ′′(x) + bxf ′(x) +

+∞∫
−∞

((
f

(
erx

) − f (x)
) − xf ′(x)rI{r�1}

)
ν(dr)

)
,

where the three parameters b ∈ R, σ � 0 and the measure ν which satisfies the integrability con-
dition

∫ ∞
−∞(1∧|r|2) ν(dr) < +∞ form the characteristic triplet of the Lévy process ζ , the image

of X by the Lamperti mapping. Finally, let us denote by T X
0 = inf{s � 0; Xs− = 0, Xs = 0} the

lifetime of X. Note that T X
0 = ∞ or < ∞ a.s. according to ζ drifts to +∞ or −∞ a.s. We

proceed by stating a general result on a transformation between sspMp.

Proposition 2.1. Let ζ , with characteristic exponent Υ , be the image via the Lamperti mapping of
an α-sspMp X and fix β > 0. Then, if σ = 0, the α

β
-sspMp Xβ and the α-sspMp X(β), obtained

as the image via the Lamperti mapping of the Lévy process βζ , have the same image via this
mapping. Otherwise, the characteristics exponent of the image via the Lamperti mapping of the
α
β

-sspMp Xβ is

Υ (βλ) + σ

2
β(β − 1)λ, λ ∈ R.

The proof is split into the following two lemmas.

Lemma 2.2. For any β > 0, we have the following relationship between sspMp,

X
(β)
t = X

β∫ t
0 X

(β)α( 1
β

−1)

s ds

, t < T X
0 , (2.1)

where X(β) is the sspMp associated to the Lévy process βζ .

Proof. Since β > 0, note that the lifetime of both processes are either finite a.s. or infinite a.s.
Then, set At = ∫ t

0 X−α
s ds and observe that the Lamperti mapping yields, for any t < T X

0 ,

log
(
X

β
t

) = βζAt

= log
(
X

(β)∫ At
0 eαβξs ds

)
= log

(
X

(β)∫ t
0 X

α(β−1)
s ds

)
which completes the proof. �
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Lemma 2.3. With the notation as above, for any β > 0, the Laplace exponent of the Lévy process
associated to the α

β
-sspMp Xβ is given by

Υ (βλ) + σ

2
β(β − 1)λ, λ ∈ R.

Proof. Let us denote by Qβ the infinitesimal generator of Xβ and set pβ(x) = xβ for any β > 0.
Since the function x �→ pβ(x) is a homeomorphism of R+ into itself, we obtain, after some easy
computations,

Qβf (x) = Q(f ◦ pβ)
(
x1/β

)
= x−α/β

(
σ

2
β2x2f ′′(x) +

(
bβ + σ

2
β(β − 1)

)
xf ′(x)

+
+∞∫

−∞

((
f

(
eβrx

) − f (x)
) − βxf ′(x)rI{r�1}

)
ν(dr)

)
.

The proof is completed by identification. �
The proof of the proposition follows by putting pieces together.

2.2. An integral computation

We proceed by computing an integral, expressed in terms of ratios of Gamma functions, which
will be very important for the sequel. Indeed, it will be useful for computing the characteristic
triplet associated to the families (1.1) and (1.2), which will be provided in Section 3. We fix the
following constants

c = − 1

α cos(απ
2 )

> 0,

cα = c

�(−α)
> 0.

The motivation for the choice of theses constants is given in Remark 3.2 below.

Theorem 2.4. For any α,λ, γ ∈ C, with 1 < 	(α) < 2, 	(λ) � 0 and 	(α + γ ) > 0, we have

cα

1∫
0

(uλ − 1)uα+γ−1 − λ(u − 1)

(1 − u)α+1
du = c

(
(λ + γ )α − (γ )α

) − cαλ

α − 1
, (2.2)

where we recall that (λ)α = �(λ+α)
�(λ)

is the Pochhammer symbol and cα = c
�(−α)

> 0.

Proof. In the sequel, we denote by Fλ,α,γ the integral of the left-hand side on (2.2) divided by cα .
Before starting the proof, we recall the following integral representation of the Beta function, see
e.g. Lebedev [23],
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B(γ,α) = �(γ )�(α)

�(γ + α)

=
1∫

0

(1 − v)γ−1vα−1 dv, 	(γ ) > 0, 	(α) > 0,

and the recurrence relation for the Gamma function �(λ + 1) = λ�(λ). Then, reiteration of
integrations by parts yield

Fλ,α,γ = −λ(λ + γ )α�(1 − α)

α(λ + γ + α − 1)
+ λ

α − 1
− α + γ − 1

α
F ,

where we have set

F :=
1∫

0

(
uλ − 1

)
uα+γ−2(1 − u)−α du

and we have used the condition 	(α + γ ) > 0. Next, according to the binomial expansion, we
have

F =
∞∑

n=0

(α)n

n!
1∫

0

(
uλ − 1

)
un+α+γ−2 du

= −1

λ

∞∑
n=0

(α)n

n!
1∫

0

(1 − v)v
n+α+γ−1

λ
−1 dv

= −λ

∞∑
n=0

(α)n

(n + α + γ − 1 + λ)(n + α + γ − 1)n!

= − λ

α + γ − 1

∞∑
n=0

(α)n(α + γ − 1)n

(α + γ )nn!(n + α + γ − 1 + λ)
.

Using the power series of the 2 F1 hypergeometric functions, see e.g. [23, 9.1],

2 F1(α,β;γ ; z) =
∞∑

n=0

(α)n(β)n

(γ )nn! zn, |z| < 1,

we observe that

F = − λ

α + γ − 1
lim

z→1−

z∫
0

uλ+α+γ−2
2 F1(α,α + γ − 1;α + γ ;u)du

= − λ

α + γ − 1

�(λ + α + γ − 1)

�(λ + α + γ )
lim

z→1− 3 F2
(α,α+γ−1,λ+α+γ−1
α+γ,λ+α+γ ; z),

where the last line follows from [16, 7.512(5)] and 3 F2 is the hypergeometric function of de-
gree (3,2). Note that this later representation holds for 	(α) < 2. We proceed by using a result
of Milgram [28, (11)] regarding the limit of the 3 F2 function which is
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lim
z→1− 3 F2

(α,α+γ−1,λ+α+γ−1
α+γ,λ+α+γ ; z) = −(α + γ − 1)�(α + γ + λ)�(1 − α)

λ�(γ + λ)

+ (α + γ + λ − 1)�(α + γ )�(1 − α)

�(γ )λ
.

It follows that

F = λ�(1 − α)

(γ + α − 1)(λ + γ + α − 1)

(
(γ + α − 1)(λ + γ )α

λ
− (λ + γ + α − 1)(γ )α

λ

)
= �(1 − α)

(
(λ + γ )α

λ + γ + α − 1
− (γ )α

(γ + α − 1)

)
. (2.3)

Finally, we obtain

Fλ,α,γ = �(1 − α)

α

(
− (λ + γ )α(λ + γ + α − 1)

λ + γ + α − 1
+ (γ )α

)
+ λ

α − 1

which completes the proof by recalling that cα = −c
�(1−α)

α
. �

3. Basic properties of the family (ξ,PPP(γ ))

Let us denote by P(γ ) = (P
(γ )
x )x∈R the family of probability measures of the process ξ such

that P
(γ )
x (ξ0 = x) = 1 and recall that the Laplace exponent, denoted by ψ(γ ), of the process

(ξ,P(γ )) has the following form

ψ(γ )(λ) = c
(
(λ + γ )α − (γ )α

)
, λ � 0,

where (λ)α = �(λ+α)
�(λ)

stands for the Pochhammer symbol and c = − 1
α cos( απ

2 )
, and the parameters

α,γ belong to the set

Kα,γ = {1 < α < 2, γ > −α}.
We denote by E

(γ )
x the expectation operator associated to P

(γ )
x and write simply E(γ ) for E

(γ )

0 . In
what follow, we show that it is the Laplace exponent of a spectrally negative Lévy process, we
also provide its characteristic triplet and derive some basic properties.

Proposition 3.1.

(1) For α,γ ∈ Kα,γ , the process (ξ,P(γ )) is a spectrally negative Lévy process with finite
quadratic variation. More specifically, we have, for any λ � 0,

ψ(γ )(λ) = c̃αλ +
0∫

−∞

(
eλy − 1 − λyI{|y|<1}

)
ν(dy),

where

ν(dy) = cα

e(α+γ )y

(1 − ey)α+1
dy, y < 0,

and
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c̃α = cα

∞∑
k=1

1

k(k − α)

(
B

(
e − 1

e
; k + 1 − α,α + γ − 1

)

−
(

e − 1

e

)k−α(
(α + γ − 1)e1−α−γ − 1

))
,

where B(.; .,.) stands for the incomplete Beta function.
(2) The random variable (ξ1,P(γ )) admits negative exponential moments of order lower than

γ + α, i.e. for any λ < γ + α, we have

E(γ )
[
e−λξ1

]
< +∞.

(3) We have the following invariance property by Girsanov transform, i.e. for any γ ∈ Kα,γ ,

dP
(γ )

0 |Ft = eγ ξt−ψ(0)(γ )t dP
(0)
0 |Ft , t > 0. (3.1)

(4) The first moments have the following expressions

E(γ )[ξ1] = c(γ )α
(
Ψ (γ + α) − Ψ (γ )

)
, γ > −α,

E(0)[ξ1] = c�(α), (3.2)

E(1−α)[ξ1] = c
1

�(1 − α)

(−Eγ − Ψ (1 − α)
)
, (3.3)

E(−1)[ξ1] = −c�(α − 1), (3.4)

where Ψ (λ) = �′(λ)
�(λ)

is the digamma function and Eγ stands for Euler–Mascheroni constant.

(5) For any 1 < α < 2, there exists γα , with −α < γα < 0, such that E(γα)[ξ1] = 0. Moreover, for
any γ < γα the Cramér condition holds, i.e. for any γ < γα , there exists λα > 0 such that

E(γ )
[
eλαξ1

] = 1. (3.5)

(6) Consequently, for any fixed 1 < α < 2, the process (ξ,P(γα)) oscillates and otherwise
limt→∞(ξt ,P(γ )) = sgn(γ − γα)∞ a.s.

(7) For γ = 0 or −1, the scale function of (ξ,P(γ )) is given by

W (γ )(x) = 1

�(α)
e−γ x

(
1 − e−x

)α−1
, x > 0.

(8) Finally, we have the following two limits results:

(a) For any γ ∈ Kα,γ , the process (ξ,P(γ )) converges in distribution as α → 2 to a Brown-
ian motion with drift γ + 1

2 .

(b) For any fixed 1 < α < 2, the process (λ
1
α ξλt ,P(0)) converges in distribution as λ → ∞

to a spectrally negative α-stable process.

Proof. (1) First, from (2.2), we deduce that

ψ(γ )(λ) = c
(
(λ + γ )α − (γ )α

)
= cαλ

1 − α
+

1∫ ((
uλ − 1

)
uα+γ−1 − λ(u − 1)

) cα du

(1 − u)α+1
0
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=
(

cα

( 1∫
0

(log(u) − (u − 1))I{|log(u)|<1}
(1 − u)α+1

du +
1
e∫

−∞
(1 − u)−α du

)

+ cα

1∫
0

(uα+γ−1 − 1) log(u)I{|log(u)|<1}
(1 − u)α+1

du

)
λ

+
1∫

0

(
uλ − 1 − λ log(u)I{|log(u)|<1}

)cαuα+γ−1 du

(1 − u)α+1

= c̃αλ +
∞∫

0

(
eλy − 1 − λyI{|y|<1}

)cαe(α+γ )y du

(1 − ey)α+1
,

where we have set

c̃α = cα

( 1∫
0

(log(u) − (u − 1))I{|log(u)|<1}
(1 − u)α+1

du +
1
e∫

−∞
(1 − u)−α du

+
1∫

0

(uα+γ−1 − 1) log(u)I{|log(u)|<1}
(1 − u)α+1

du

)
.

Hence, we recognize the Lévy–Khintchine representation of a one-sided Lévy process. More-
over, the quadratic finite variation property follows from the following asymptotic behavior of
the Pochhammer symbol, see e.g. [23],

(z + γ )−1
α = z−α

[
1 + (−α)(2γ − α − 1)

2z
+ O

(
z−2)], |arg z| < π − δ, δ > 0, (3.6)

and the condition 1 < α < 2. It remains to compute the constant c̃α . Performing the change of
variable v = 1 − u, we get, for the first term on the left-hand side of the previous identity,

e−1
e∫

0

(
log(1 − v) + v

) cα

vα+1
dv = −cα

∞∑
k=2

1

k

e−1
e∫

0

vk−α−1 dv

= −cα

∞∑
k=2

1

k(k − α)

(
e − 1

e

)k−α

.

Moreover, proceeding as above, we have

1∫
0

(uα+γ−1 − 1) log(u)I{|log(u)|<1}
(1 − u)α+1

du

= −cα

∞∑
k=1

1

k

e−1
e∫

vk−α−1((1 − v)α+γ−1 − 1
)
dv
0
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= cα

∞∑
k=1

α + γ − 1

k(k − α)

( e−1
e∫

0

vk−α(1 − v)α+γ−2 dv −
(

e − 1

e

)k−α

e1−α−γ

)

= cα

∞∑
k=1

α + γ − 1

k(k − α)

(
B

(
e − 1

e
; k + 1 − α,α + γ − 1

)
−

(
e − 1

e

)k−α

e1−α−γ

)
.

Putting pieces together, one gets

c̃α = cα

∞∑
k=1

1

k(k − α)

(
B

(
e − 1

e
; k + 1 − α,α + γ − 1

)

−
(

e − 1

e

)k−α(
(α + γ − 1)e1−α−γ − 1

))
which completes the description of the characteristic triplet of (ξ,P(γ )).

(2) This item follows from the fact that the mapping λ → ψ(γ )(λ) is well defined on (−γ +
α,∞).

(3) It is simply the Esscher transform.
(4) The expressions for the first moment of (ξ1,P(γ )) is obtained from the formula

∂

∂λ
(λ + γ )α = (λ + γ )α

(
Ψ (λ + γ + α) − Ψ (λ + γ )

)
.

Moreover, for γ = 0 and γ = −1, we use the recurrence formula for the digamma function,
Ψ (u + 1) = 1

u
+ Ψ (u), see [23, Formula 1.3.3] and for the Gamma function.

(5) Since, for any γ ∈ Kα,γ , the mapping λ �→ ψ(γ )(λ) is convex and continuously differ-
entiable on (α + γ,∞), its derivative is continuous and increasing. Hence, the mapping γ �→
ψ(γ )(0+) is continuous and increasing on Kα,γ . Moreover, noting that E(−1)[ξ1] < 0 < E(0)[ξ1]
for any 1 < α < 2, we deduce that for each 1 < α < 2, there exists a unique −1 < γα < 0 such
that E(γα)[ξ1] = 0. Since for any γ < γα , E(γ )[ξ1] is negative and λ �→ ψ(γ )(λ) is convex with
limλ→∞ ψ(γ )(λ) = ∞, we deduce that there exists λα > 0 such that ψ(γ )(λα) = 0.

(6) The long time behavior of (ξ,P(γ )) follows from the previous item and the strong law of
large numbers.

(7) The expression of the scale function is derived from the following identity, see [16,
3.312, 1], for 	(α),	(λ + γ ) > 0,

∞∫
0

e−(λ+γ )x
(
1 − e−x

)α−1
dx = �(λ + γ )�(α)

�(λ + γ + α)
.

(8) It is enough to show that the random variable (ξ1,P(γ )) converges in law to a normally
distributed random variable with zero mean and variance 1. By continuity of the function ψ(γ )(λ)

in α, we get the result after easy manipulation of the Gamma function. Similarly, for the second
limit, we simply need to show that the random variable (ξ1,P(0)) belongs to the domain of

attraction of a stable distribution, i.e. limη→∞ ηψ(0)(η− 1
α λ) = cλα . The claim follows by means

of the asymptotic of the ratio of Gamma functions, see (3.6). �
Remark 3.2. The choice of the constant cα is motivated by the item (8)(b). Actually, the coef-
ficients of the Laplace exponent of a completely asymmetric stable random variable is given for
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any ι > 0 by c(ι) = − ια

α cos( απ
2 )

> 0, see e.g. [37, Proposition 1.2.12]. Thus, we have made the

choice ια = 1.

Remark 3.3. Note that Caballero and Chaumont [10] show, by characterizing its characteristic
triplet, that the process (ξ,P(0)) is the image via the Lamperti mapping of a spectrally negative
regular α-stable process conditioned to stay positive which we denote by X̂↑. Indeed, they show
that the infinitesimal generator, Q̂(0), of X̂↑, is given, for a smooth function f and any x > 0, by

Q̂(0)f (x) = cαx1−α

α − 1
f ′(x) + x−α

1∫
0

((
f (ux) − f (x)

)
uα−1 − xf ′(x)(u − 1)

) cα du

(1 − u)α+1
.

Thus, writing for x,λ > 0, pλ(x) = xλ, we have Q̂(0)pλ(x) = xλ−αψ(0)(λ). For any γ ∈ Kα,γ ,
the expression of the Laplace exponent appears as an example in [32].

4. Law of some exponential functionals via . . .

In this section, we derive the explicit law of the exponential functional associated to some ele-
ments of the family of Lévy processes introduced in the previous section and to some transforms
of these elements.

We proceed by introducing the Wright hypergeometric function which is defined, see
e.g. Braaksma [9], by

pΨq

(
(A1, a1) . . . (Ap, ap)

(B1, b1) . . . (Bq, bq)

∣∣∣∣ z

)
=

∞∑
n=0

∏p

i=1 �(Ain + ai)∏q

i=1 �(Bin + bi)

zn

n! ,

where p,q are nonnegative integers, ai ∈ C (i = 1 . . . p), bj ∈ C (j = 1 . . . q) and the coefficients
Ai ∈ R+ (i = 1 . . . p) and Bj ∈ R+ (j = 1 . . . q) are such that 1 + ∑q

i=1 Bi − ∑p

i=1 Ai � 0.

Under such conditions, it follows from the asymptotic formula of the ratio of Gamma functions,
see (3.6), that pΨq(z) is an entire function with respect to z. We refer the reader to Section 6 for
a description of this class of functions and for a detail account on their asymptotic behaviors.

4.1. . . . an important continuous state branching process

In this part, we establish a connection between the dual of an element of the family of Lévy
processes introduced in this paper and a self-similar continuous state branching process. As a
byproduct, we derive the explicit law of the exponential functional associated to the dual of this
element.

To this end, we recall that continuous state branching processes form a class of non negative
valued Markov processes which appear as limits of integer valued branching processes. Lam-
perti [21] showed that when the units and the initial state size is allowed to tend to infinity,
the limiting process is necessarily a self-similar continuous state branching process with index
lower than 1. We denote this process by (Y,Q(0)), i.e. Q(0) = (Q

(0)
x )x>0 is a family of probabil-

ity measures such that Q
(0)
x (Y0 = x) = 1. The associated expectation operator is E(0). Moreover,

Lamperti showed that the semi-group of (Y,Q(0)) is characterized by its spatial Laplace trans-
form as follows, for any λ,x � 0,

E(0)
x

[
e−λYt

] = e−x dλ(1+ctλκ )−1/κ

, (4.1)
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for some 0 < κ � 1 and some positive constants d, c. On the other hand, he also observed in [20]
that a continuous state branching process can be obtained from a spectrally positive Lévy process,
ζ , by a time change. More precisely, consider ζ started at x > 0 and write

T
ζ
0 = inf{s � 0; ζs = 0}.

Next, let

Λt =
t∫

0

ζ−1
s ds, t < T

ζ
0 ,

and

Vt = inf{s � 0; Λs > t} ∧ T
ζ
0 .

Then, the time change process ζ ◦ V is a continuous state branching process starting at x and the
Laplace exponent ϕ of ζ is called the branching mechanism. Finally, we recall that the law of the
absorption time

i = inf{s � 0; ζ ◦ Vs = 0}
has been computed explicitly by Grey [17]. More specifically, put φ(0) = inf{s � 0; ϕ(s) > 0}
(with the usual convention that inf∅ = ∞) and assume that

∫ ∞
ϕ−1(s) ds < ∞ and φ(0) < ∞,

then

the law of g(i) for ζ ◦ V starting at x > 0 is exponential with parameter x, (4.2)

where g : (0,∞) → (φ(0),∞) is the inverse mapping of
∫ ∞
t

ϕ−1(s) ds. We are now ready to
state and proof the main result of this part.

Theorem 4.1. For any 0 < κ � 1, we have the identity in distribution( ∞∫
0

e−κξs ds,P
(0)
0

)
(d)= cε−κ ,

where ε is an exponential random variable of parameter 1.

In the case κ = 1, (ξ,P(0)) is a Brownian motion with positive drift 1
2 , see item (8)(a) in

Proposition 3.1, and the result above corresponds to Dufresne’s result [13]. We split the proof in
several lemmas. First, let us denote by X a spectrally positive α-stable Lévy process killed when
it hits zero. It is plain that it is also an α-sspMp. We have the following.

Lemma 4.2. The Lévy process associated, via the Lamperti mapping, to X is the dual, with
respect to the Lebesgue measure, of (ξ,P(0)), i.e. (−ξ,P(0)).

Proof. First, by Hunt switching identity, see e.g. Getoor and Sharpe [15], we have that X is in du-
ality, with respect to the Lebesgue measure, with X̂, the spectrally negative α-stable Lévy process
killed when entering the negative real line. Moreover, it is well known, see e.g. Bertoin [2] that the
spectrally negative α-stable Lévy process conditioned to stay positive, which was denoted by X̂↑
in Remark 3.3, is obtained as h-transform, in the Doob sense, of X̂ with h(x) = xα−1, x > 0.
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Thus, it is plain that X̂↑ is the dual, with respect to the reference measure yα−1 dy, of X. More-
over, the Lévy process associated via the Lamperti mapping to X̂↑ is (ξ,P(0)), see Remark 3.3.
Since X and X̂↑ are sspMp, the conclusion follows from Bertoin and Yor [6, Lemma 2]. �
Lemma 4.3. The spectrally positive Lévy process associated, via the Lamperti mapping, to the
κ-ssMp (Y,Q(0)) is (−ξ,P(0)).

Remark 4.4. As mentioned above, in the case κ = 1, (−ξ,P(0)) corresponds to a Brownian
motion with drift − 1

2 , then (2Y,Q(0)) is a squared Bessel process of dimension 0 and we recover
the well-known formula, see e.g. Revuz and Yor [34],

E(0)
x

[
e−2λYt

] = e−xλ(1+t2λ)−1
, λ, x, t > 0.

Proof. First, we show that the branching mechanism associated to (Y,Q(0)) is the Laplace ex-
ponent of a spectrally positive α-stable process. It is likely that this result is known. Since we did
not find any reference and for sake of completeness we provide an easy proof. It is well know,
see e.g. Li [24], that the semi-group of a continuous state branching process with branching
mechanism ϕ admits as spatial Laplace transform the following expression, for any λ � 0,

e−xϑλ(t),

where ϑ : [0,∞) → [0,∞) solves the following boundary valued differential equation

ϑ ′
λ(t) = ϕ

(
ϑλ(t)

)
, ϑλ(0) = λ.

It is then not difficult to check, in the case ϕ(λ) = − c
κ
λα , that

ϑλ(t) = λ
(
1 + ctλκ

)−1/κ

which is the Laplace exponent of (Y,Q(0)) given in (4.1) with d = 1 and 0 < κ = α − 1 � 1.
Then, we deduce that (Y,Q(0)) is obtained from X by the random time change described above.
Finally, from Lemmas 4.2 and 2.2, by choosing βα such that βα = − βα

α(βα−1)
, i.e. βα = κ

α
, we get

that the image via the Lamperti mapping of (Y βα ,Q(0)) is (βαξ, P(0)). By using Lemma 2.3 and
observing that (Y,Q(0)) is κ-self-similar we complete the proof. �

The proof of Theorem 4.1 follows readily by observing that for ϕ(λ) = − c
κ
λα , g(t) = (ct)

1
1−α

and from the identity (i,Q
(0)
x )

(d)= (xκ
∫ ∞

0 e−κξs ds,P
(0)
0 ). In the following part, we shall provide

the expression of the semi-group of (Y,Q(0)) in terms of a power series.

4.2. . . . a family of continuous state branching processes with immigration

We recall that κ = α − 1, and for any δ ∈ R+ we write P(0,δ) = (P
(0,δ)
x )x∈R for the family of

probability measures of the process ξ , which admits the following Laplace exponent

ψ(0,δ)(λ) = ψ(0)(λ) − αδ

λ + κ
ψ(0)(λ), λ � 0

= c(λ + κ − αδ)
�(λ + κ)

�(λ)
.
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Proposition 4.5. For any δ > 0 and 1 < α < 2, (ξ,P(0,δ)) is a spectrally negative Lévy process.
Its characteristic triplet is given by σ (δ) = 0,

b(δ) = c�(α)

(
1 − αδ

κ

)
,

and

ν(δ)(dy) = cα

eαy

(1 − ey)α+1

(
1 + δ

(
e−y − 1

))
dy, y < 0,

where

log
(
E(0,δ)

[
e−λξ1

]) = b(δ)λ +
0∫

−∞

(
eλy − 1 − λy

)
ν(δ)(dy).

Proof. First, writing simply here ψ for ψ(0), we have from (2.3) by choosing γ = 0 that

αδ

λ + κ
ψ(λ) = cαδ

λ + κ

�(λ + α)

�(λ)

= cαδ

�(1 − α)

1∫
0

(
uλ − 1

)
uα−2(1 − u)−α du

= −δ

0∫
−∞

(
eλy − 1

) cαeκy dy

(1 − ey)α

= −δ

( 0∫
−∞

(
eλy − 1 − λy

) cαeκy dy

(1 − ey)α
+ λ

0∫
−∞

y
cαeκy dy

(1 − ey)α

)

= −δ

0∫
−∞

(
eλy − 1 − λy

) cαeκy dy

(1 − ey)α
+ λc�(α)

αδ

κ
,

where we have used the identities cα = c
�(−α)

> 0 and

0∫
−∞

y
cαeκy dy

(1 − ey)α
= − lim

λ→1

∂

∂λ

0∫
−∞

(
eλy − 1 − λy

) cαeκy dy

(1 − ey)α+1

= − lim
λ→1

∂

∂λ
ψ(−1)(λ) − c

�(α)

κ

= −ψ ′(0) − c
�(α)

κ
.

The proof is completed by putting pieces together. �
Next, set δκ = δ

κ
and Mδ = E(0,δ)[ξ1] and note from the previous proposition that

Mδ = c�(α)(1 − αδκ).
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In particular, we have Mδ < 0 if δ > κ
α

. Under such a condition, we write simply

(
Σ∞,P

(0,δ)
0

) =
( ∞∫

0

eκξs ds,P
(0,δ)
0

)
.

We are now ready to state to the main result of this section.

Theorem 4.6. Let 0 < κ < 1.

(1) For any δ > κ
α

, the law of the positive random variable (Σ∞,P
(0,δ)
0 ) is absolutely continuous

with an infinitely continuously differentiable density on (0,∞), denoted by f
(δ)∞ , and

f (δ)∞ (y) = |Mδ|y−αδκ

∞∑
n=0

(−1)n
�(n + αδκ)

n!�(κn + αδ)
y−n

= |Mδ|y−αδκ
1Ψ1

(
(1, αδκ)

(κ,αδ)

∣∣∣∣ −y−1
)

, y > 0.

Moreover, we have

f (δ)∞ (y) ∼ |Mδ|�(αδκ)

�(αδ)
y−αδκ as y → ∞.

We deduce, from (6.1), the following asymptotic behavior

f (δ)∞ (y) ∼ |Mδ|
∞∑

n=1

(−1)n
�(n + αδκ)

n!�(−κn)
yn as y → 0.

(2) For any δ < κ
α

, we have( ∞∫
0

e−κξs ds,P
(0,δ)
0

)
(d)= cκB−1(1 − αδκ,αδκ)ε−κ ,

where B(δ, γ ) is a Beta random variable with parameter δ, γ > 0 and the random vari-
ables on the right-hand side are taken independent. Thus, the law of (

∫ ∞
0 e−κξs ds,P

(0,δ)
0 ) is

absolutely continuous with a density, denoted by f̂
(δ)∞ , which admits the following integral

representation, for any y > 0,

f̂ (δ)∞ (y) = sin(αδκπ)

cκ2π(y/cκ)
α
κ

1∫
0

e−(
y
cκ

r)−1/κ

r− αδ+1
κ (1 − r)αδκ−1 dr.

Remark 4.7.

(1) For δ > κ
α

, the law of (Σ∞,P(0,δ)) is a generalization of the inverse Gamma distribution.
Indeed, specifying on κ = 1, i.e. α = 2, c = 1

2 and δ > 1
2 , the expression above reduces to

f (δ)∞ (y) = 2
y−2δ

e
− 1

y

�(2δ − 1)
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which corresponds to Dufresne’s result [13], i.e.
∞∫

0

eBs−(δ− 1
2 )s ds

(d)= 1

2G(2δ − 1)
,

where B is a standard Brownian motion. Note that Dufresne’s identity holds also for δ < κ
α

.

(2) Note also that, the densities |M−1
δ |f (δ)∞ converge, as δ → κ

α
to a density probability distribu-

tion given by

f ( κ
α
)(y) = y−1

∞∑
n=0

(−y)−n

�(κ(n + 1))
, y > 0, (4.3)

which is the inverse of a positive Linnik law of parameters (κ, κ), see [25].
(3) We also point out that in a recent paper, Bertoin et al. [4] provides several interesting distribu-

tional properties of the duration of a recurrent Bessel process of dimension d = 2(1−α),0 <

d < 2, straddling an independent exponential time, denoted by Δα . In particular, they show
that the law of Δα is expressed in term of ratios of independent Gamma and Beta random
variables. It would be interesting to establish connections, if any, between the random vari-
ables Δα and (Σ∞,P(0,δ)). We also refer to James et al. [18] for related results.

We start by proving the item (2) of the theorem. It follows readily from the expression, found
by Bertoin and Yor [5], of the negative entire moments of the law of the exponential functional
of a spectrally positive Lévy process with a negative mean. Indeed, the Laplace exponent of
(κξ,P

(0,δ)
0 ) is given by ψ(0,δ)(κλ) = cκ(λ+1−αδκ)

�(κ(λ+1))
�(κλ)

, and its mean by cκ�(α)(1−αδκ).
Thus, from [5, Proposition 2], for δ < κ

α
and any integer n, we get, after some easy computation,

E
(0,δ)
0

[( ∞∫
0

e−κξs ds

)−n]
= cκ�(α)(1 − αδκ)

�(n)

n−1∏
j=1

ψ(0,δ)(κj)

= cnκn�(α)(1 − αδκ)
�(κn)�(n + 1 − αδκ)

�(κ)�(n)�(2 − αδκ)

= κncn �(κn + 1)�(n + 1 − αδκ)

�(n + 1)�(1 − αδκ)
.

The result follows by identification with the moments of a Beta random variable. To obtain the
integral representation of the density, we first recall that

P
(
ε−κ ∈ dy

) = 1

κ
y−(1/κ+1)e−y−1/κ

, y > 0,

and

P
(
B(1 − αδκ,αδκ) ∈ dr

) = 1

�(1 − αδκ)�(αδκ)
r−αδκ (1 − r)αδκ−1 dr, 0 < r < 1.

Thus, we deduce that

P
(
B−1(1 − αδκ,αδκ)ε−κ ∈ dy

) = sin(αδκπ)

κπy
α
κ

1∫
0

e−(yr)−1/κ

r− αδ+1
κ (1 − r)αδκ−1 dr,

where we have used the Euler’s reflection formula �(z)�(1 − z) = π .
sin(πz)
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The proof of the remaining part of the theorem in split in several intermediate results which
we find worth being stated. We start with the following easy result which gives a complete char-
acterization, in terms of their Laplace transforms, of self-similar cbip. To this end, we now recall
the definition of a cbip with parameters [ϕ,χ]. It is well known, see e.g. [24], that the semi-group
of a cbip with branching mechanism ϕ and immigration mechanism χ , where χ is the Laplace
exponent of a positive infinitely divisible random variable, admits as a spatial Laplace transform
the following expression

exp

(
−xϑλ(t) −

t∫
0

χ
(
ϑλ(s)

)
ds

)
, x, t � 0. (4.4)

Lemma 4.8. A cbip is self-similar of index κ if and only if 0 < κ � 1 and it corresponds to the
cbip with parameters [ϕ, δχ] where δ > 0, ϕ(λ) = − c

κ
λκ+1 and χ(λ) = c( κ+1

κ
)λκ . Its Laplace

transform has the following expression, for δ, x,λ > 0,

E(δ)
x

[
e−λYt

] = Λ
(δ)
t (λ, x),

where

Λ
(δ)
t (λ, x) = (

1 + ctλκ
)−αδκ e−xλ(1+ctλκ )−1/κ

.

In particular its entrance law is characterized by

E(δ)

0+
[
e−λYt

] = (
1 + ctλκ

)−αδκ . (4.5)

We denote this family of processes by (Y,Q(δ))δ>0.

Proof. The sufficient part follows readily from the definition of the cbip and by observing that
for any a, t, x > 0, Λ

(δ)
aκ t (λ, ax) = Λ

(δ)
t (aλ, x). The necessary part follows from the fact that

the unique self-similar branching process has its Laplace transform given by (4.1) and thus
the immigration has to satisfy the self-similarity property. Since we have for any a, t > 0,
aϑλ(a

κ t) = ϑaλ(t), we need that

χ
(
aϑaλ(t)

) = aκχ
(
ϑaλ(κt)

)
which is only possible for χ(a) = Caκ for some positive constant C (since χ is the Laplace
exponent of a subordinator). The claim follows. �
Remark 4.9.

(1) We mention that (Y,Q(1)) corresponds to the continuous state branching process (Y,Q(0))

conditioned to never extinct in the terminology of Lambert [19]. Indeed, he showed that the
latter corresponds to the cbpi with immigration ϕ′.

(2) The Laplace transform of the entrance law (4.5) appears in a paper of Pakes [31] where he
studies scaled mixtures of (symmetric) stable laws. More precisely, denoting by Y

(δ)
1 the

entrance law at time 1 of (Y,Q(δ)), we have the following identity in law

Y
(δ)
1

(d)= G(δ)κSκ,

where Sκ is a positive stable law of index κ and the two random variables on the right-hand
side are considered to be independent.
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We proceed by providing the expression of the semi-group of (Y,Q(δ)).

Proposition 4.10. For any δ > 0, the semi-group of (Y,Q(δ)) admits a density, with respect to the
Lebesgue measure, denoted by p

(δ)
t (.,.), which is given for any x, y, t > 0 by

p( κδ
α

)(x, y) = yκδ−1
∞∑

n=0

1Ψ1

(
(1, n

κ
+δ)

(κ,κδ)

∣∣∣ −yκ
)

n!�(n
κ

+ δ)
(−1)nxn,

where by self-similarity we have set p(δ)(xt−1/κ , yt−1/κ ) = (ct)−1/κp
(δ)
t
c

(x, y). Moreover, the

semi-group of the self-similar branching process (Y,Q(0)) admits a density, with respect to the
Lebesgue measure, given, using the same notation as above, for any x, y > 0 by

p(0)(x, y) = y−1
∞∑

n=0

1Ψ1

(
(1, n

κ
)

(κ,0)

∣∣∣ −yκ
)

n!�(n
κ
)

(−1)nxn.

For δ, y > 0, the entrance law of (Y,Q(δ)) is given by

p( κδ
α

)(0, y) = 1

�(δ)
yκδ−1

1Ψ1

(
(1, δ)

(κ, κδ)

∣∣∣∣ −yκ

)
. (4.6)

Proof. In what follows, we simply write δ for αδκ and set c, t = 1. Thus, by means of the
binomial formula, we get, for λκ > 1,

(
1 + λκ

)−δ =
∞∑

n=0

(−1)n
�(δ + n)

n!�(δ)
λκ(−n−δ).

The term-by-term inversion yields

p( κδ
α

)(0, y) = 1

�(δ)
yκδ−1

∞∑
n=0

(−1)n
�(n + δ)

n!�(κ(n + δ))
yκn.

Next, we have

e−λx(1+λκ )− 1
κ
(
1 + λκ

)−δ =
∞∑

n=0

(−1)n
(
1 + λκ

)−( n
κ
+δ) 1

n!λ
nxn

=
∞∑

n=0

(−1)n
(
1 + λ−κ

)−( n
κ
+δ) 1

n!λ
−κδxn.

Once again inverting term and term and using the previous result, we deduce that

p( κδ
α

)(x, y) =
∞∑

n=0

(−1)nF n(y)
1

n!x
n,

where the term Fn(y) is given by
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Fn(y) = yκδ−1

�(n
κ

+ δ)

∞∑
r=0

(−1)r
�(r + n

κ
+ δ)

r!�(κ(r + δ))
yκr

= yκδ−1

�(n
κ

+ δ)
1Ψ1

(
(1, n

κ
+ δ)

(κ, κδ)

∣∣∣∣ −yκ

)
.

Thus, by putting pieces together we get

p( κδ
α

)(x, y) = yκδ−1
∞∑

n=0

(−1)n

n!�(n
κ

+ δ)
1Ψ1

(
(1, n

κ
+ δ)

(κ, κδ)

∣∣∣∣ −yκ

)
xn

which completes the proof. �
Note that in the case κ = 1, we get

p( δ
α
)(x, y) = yδ−1

∞∑
n=0

(−1)n

n!�(n + δ)
1Ψ1

(
(1, n + δ)

(1, δ)

∣∣∣∣ −yκ

)
xn.

To recover the well-known expression of the density of the semi-group of a Bessel squared pro-
cess, see e.g. [8, p. 136], we used the fact that for κ = 1, we have

Λ
(δ)
t (λ, x) = (1 + ctλ)−2δe− x

2t
((1+2tλ)−1−1)

and used the inversion techniques, as above, to get

p
( δ

2 )
t
2

(x, y) =
(

y

t

)δ−1

t−1e− x+y
t

∞∑
n=0

(
xy

t2 )n

n!�(n + δ)

=
(

y

xt

) δ−1
2

t−1e− x+y
t Iδ−1

(
2
√

xy

t

)
,

where we recall that

Iν(x) =
∞∑

n=0

(x/2)ν+2n

n!�(ν + n + 1)

stands for the modified Bessel function of the first kind of index ν, see e.g. [23].
We proceed by characterizing the Lévy processes associated to (Y,Q(δ)) via the Lamperti

mapping.

Proposition 4.11. For any δ � 0, the Lévy process associated to the κ-sspMp (Y,Q(δ)) is the
Lévy process (−ξ,P(0,δ)).

Proof. Let us first consider the case δ = 1. Lambert [19] showed that (Y,Q(1)) corresponds to
the branching process (Y,Q(0)) conditioned to never extinct, which is simply the h-transform
in the Doob’s sense, with h(x) = x, of the minimal process (Y,Q(0)). Let us now compute the
infinitesimal generator of (Y,Q(1)), denoted by Q(1)

+ . To this end, let us recall that since the
process X does not have negative jumps and has a finite mean, its infinitesimal generator, denoted
by Q†

+, is given, see also [10], for a smooth function f on R+ with f (0) = 0 and any x > 0, by
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Q†
+f (x) =

∞∫
0

(
f (x + y) − f (x) − yf ′(x)

) c−
yα+1

dy

= x−α

∞∫
1

(
f (ux) − f (x) − xf ′(x)(u − 1)

) c−
(u − 1)α+1

du,

where we have performed the change of variable y = x(u−1). Thus, by a formula of Volkonskii,
see e.g. Rogers and Williams [36, III.21], we deduce that, for a function f as above and any
x > 0,

Q(0)
+ f (x) = xQ†

+f (x)

= x

∞∫
0

(
f (x + y) − f (x) − yf ′(x)

) c−
yα+1

dy

= x1−α

∞∫
1

(
f (ux) − f (x) − xf ′(x)(u − 1)

) c−
(u − 1)α+1

du.

Recalling that for any x > 0, Q(0)
+ h(x) = 0 with h(x) = x we get, by h-transform and for a

smooth function f on R+, that

Q(1)
+ f (x) = 1

h(x)
Q(0)

+ (hf )(x)

= x1−α

(
Q(0)

+ f (x) +
∞∫

0

(
f (x + y) − f (x)

)c−
yα

)
dy

= x1−α

(
Q(0)

+ f (x) +
∞∫

1

(
f (ux) − f (x)

) c−
(u − 1)α

du

)

= x1−α

(
Q(0)

+ f (x) +
1∫

0

(
f

(
x

u

)
− f (x)

)
c−uα−2

(1 − u)α
du

)
.

We have already shown, see Lemma 4.3, that the Lévy process associated via the Lamperti map-
ping to (Y,Q

(0)
+ ) is (−ξ,P(0)). Next, consider the function pλ(x) = xλ, with λ < 0 and x > 0,

and note that Q1+pλ(x) = xλ−αψ(−λ). Thus, using the integral (2.3) we obtain that

1∫
0

(
u−λ − 1

) cαuα−2

(1 − u)α
du = (−λ)α

cα�(1 − α)

−λ + κ

= −c(−λ)α
1

−λ + κ

Using the recurrence formula of the Gamma function, we deduce that the image, via the Lamperti
mapping, of (Y,Q(1)) is (−ξ,P(0,1)). The general case is deduced from the previous one by
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recalling that for any δ, x,λ > 0, and writing eλ(x) = e−λx , λ � 0, we have, see e.g. [24], for any
x > 0,

Q(δ)
+ eλ(x) = −eλ(x)

(
xϕ(λ) + δχ(λ)

)
,

where Q(δ)
+ stands for the infinitesimal generator of (Y,Q(δ)). �

Remark 4.12. We observe that the process (−ξ,P(0,1)) is equivalent to (−ξ,P(−1)). This is
not really surprising since as mentioned in the proof, the process (Y,Q(1)) is obtained from
(Y,Q(0)) by h-transform with h(x) = x. The corresponding Lévy process is thus the θ = 1-
Esscher transform of (−ξ,P(0)) which is (−ξ,P(−1)).

The theorem is proved by putting pieces together and using the following easy result.

Lemma 4.13. For any v > 0 and δ > κ
α

, we have

f (δ)∞ (v) = ∣∣E(0,δ)[ξ1]
∣∣v− 1

κ p
(δ)
1

(
0, v− 1

κ
)
.

Proof. In [32, Lemma 3.2], the following identity is proved

E(0,δ)
[
e−qyκΣ∞] = ∣∣E(0,δ)[ξ1]

∣∣ ∞∫
0

e−qtp
(δ)
1

(
0, yt−

1
κ
)
y1−κ dy.

Performing the change of variable t = yαv, the proof is completed by invoking the injectivity of
the Laplace transform. �
5. Some concluding remarks

5.1. On the family (Y,Qδ)δ�0

Recalling that for δ > κ
α

we have ψ(0,δ)(θ) = 0 where θ = αδ − κ . We deduce readily, from
Rivero [35], the behavior of (Y,Q(δ)) at the boundary point 0.

Proposition 5.1.

(1) For δ � κ
α

, 0 is unattainable a.s.
(2) For δ < κ

α
, 0 is reached a.s. Moreover, if 0 < δ < κ

α
, the boundary 0 is recurrent and re-

flecting, i.e. there exists a unique recurrent extension of the minimal process which hits and
leaves 0 continuously a.s. and which is κ-self-similar on [0,∞).

(3) For δ = 0, the point 0 is a trap.

Next, we provide the Laplace transform of the first passage time below for the continuous
state branching processes (Y,Q(δ)), δ = 0,1. That is for the stopping time

T Y
a = inf{s � 0; Ys = a}.
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Proposition 5.2. Let x � a � 0, we have, for any q � 0,

E(0)
x

[
e−qT Y

a
] = Î(q

1
κ cκx)

Î(q
1
κ cκa)

,

E(1)
x

[
e−qT Y

a I{T Y
a <∞}

] = aÎ(q
1
κ cκx)

xÎ(q
1
κ cκa)

,

where

Î(x) = x

∞∫
0

e−t−xt− 1
κ
t−

1
κ
−1 dt

=
∞∑

n=0

(−1)n
�(− n

κ
+ 1)

n! xn + κx−κ
1Ψ0

(
(κ, κ)

∣∣ −x−κ
)
.

Proof. First, from (4.2), we deduce readily the identity

E(0)
x

[
e−qT Y

0
] = Î

(
q

1
κ cκx

)
, q � 0.

Thus, the first claim is obtained by an application of the strong Markov property and using the
fact that (Y,Q(0)) has no negative jumps. The second identity follows readily from the first one
by means of h-transform and the optional stopping theorem. To get the expression of the integral
as a power series we follow a line of reasoning similar to Neretin [30]. First, consider the space
L2(R+, dx

x
) and denote by I�,h(x, v) for � < 0 and 	(x),	(v),	(h) > 0 the inner product of

the functions e
�
x (t) = e−xt� and ev,h(t) = the−vt , i.e.

I�,h(x, v) =
∞∫

0

e−vt−xt� th−1 dt.

Then, the Mellin transform of e
�
x is

ẽ
�
x (λ) =

∞∫
0

e−xt� tλ−1 dt

= sgn(�)

�

∞∫
0

e−xuuλ/�−1 du

= sgn(�)�(λ/�)

�xλ/�
.

While the Mellin transform of e
v,h
x is

ẽv,h
x (λ) = v−h+λ�(h).

By the Plancherel formula for the Mellin transform, we have
∞∫

e
�
xe

v,h
x

dx

x
= 1

2π

∞∫
ẽv,h
x (iλ)ẽ

v,h
x (iλ) dλ
0 −∞
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that is

I�,h(x, v) = sgn(�)

2π�vh

∞∫
−∞

�(iλ/�)�(h + iλ)u−iλ/�viλ dλ.

Then we perform the change of variable z = iλ/� and consider an arbitrary contour C coinciding
with the imaginary axis near ±∞ and leaving all the poles of the integrand of the left side. We
get the series expansions by summing the residues and by choosing h = v = 1 and � = − 1

κ
. �

We proceed by characterizing the class of sspMp which enjoy the infinite decomposability
property introduced by Shiga and Watanabe [38]. More specifically, let D

+
M the Skorohod space

of nonnegative valued homogeneous Markov process with càdlàg paths. Let (Qx)x�0, (Q
1
x)x�0

and (Q2
x)x>0 be three systems of probability measures defined on (D+

M,B(D+
M)), where B(D+

M)

be the σ -field on D
+
M generated by the Borel cylinder sets. Then, define

Q = Q1 ∗ Q2

if and only if for every x, y � 0, Qx+y = Φ(Q1
x ×Q2

x) where Φ is the mapping D
+
M ×D

+
M → D

+
M

defined by

Φ(x1, x2) = x1 + x2.

A positive valued Markov process with law Q is infinitely decomposable if for every n � 1 there
exists a Qn such that

Q = Qn ∗ · · · ∗ Qn︸ ︷︷ ︸
n

. (5.1)

They showed that there is one-to-one mapping between cbip and conservative Markov processes
having the property (5.1). Thus, from Propositions 4.11 and 5.1 we get the following result.

Corollary 5.3. There is one-to-one mapping between the family of sspMp satisfying the Shiga–
Watanabe infinite decomposability property (5.1) and the family (Y,Q(δ))δ>0, i.e. the family of
spectrally positive sspMp associated, via the Lamperti mapping, to the family of Lévy processes
(−ξ,P(0,δ))δ>0.

Finally, we provide an extension of the previous result the κ-sspMp Ornstein–Uhlenbeck pro-
cesses. More specifically, for any η ∈ R, let us introduce the family of laws (Qη,(δ))δ�0 of
self-similar Ornstein–Uhlenbeck processes associated to (Y,Q(δ))δ�0 by the following time–
space transform, for any t � 0 and δ � 0,(

Yt ,Qη,(δ)
) = (

e−ηtYτ−η(t),Q(δ)
)
,

where

τη(t) = 1 − e−ηκt

ηκ
.

For any η ∈ R, (Y,Qη,(δ)) is a homogeneous Markov process and for η, δ > 0, it has a unique
stationary measure which is the entrance law of (Y,Q(δ)), see e.g. [33]. Moreover, its semi-group
is characterized by its Laplace transform as follows



378 P. Patie / Bull. Sci. math. 133 (2009) 355–382
Eη,(δ)
x

[
e−λUt

] = (
1 + cτη(t)λ

κ
)−δ/κ

e−xe−ηt λ(1+cτη(t)λκ )−1/κ

.

It is easily shown that the infinitesimal generator of (Y,Qη,(δ)) has the following form, for a
smooth function f on R+,

Qη,(δ)
+ f (x) = Q(δ)

+ f (x) − ηxf ′(x), x > 0.

Hence we deduce from the identity

Q(δ)
+ eλ(x) = −eλ(x)

(
xϕ(λ) + δχ(λ)

)
,

that (Y,Qη,(δ)) is a cbip with branching mechanism ϕη(λ) = ϕλ − ηλ and immigration χ(λ).

Its semi-group is absolutely continuous with a density denoted p
(δ,η)
t (x, y) and given, for any

x, y, t > 0, by

p
(δ,η)
t (x, y) = e−κηtp

(δ)
τ−η(t)

(
x, e−κηty

)
.

5.2. Representations of some pΨq functions

Let us recall that, for κ
α

< δ < 2κ
α

, the Laplace transform of (Σ∞,P(0,δ)) has been computed
by Patie [32] as follows, for any x � 0,

E(0,δ)
[
e−xΣ∞] = Nκ,δ(x), (5.2)

where, by setting 0 < mκ = 2 − αδκ < 1,

Nκ,δ(x) = Iκ,δ(x) − Cmκ x
αδ
κ

−1 Iκ,δ,mκ (x), x � 0,

and

Iκ,δ(cκx) = �(mκ)�(κ)

∞∑
n=0

xn

�(n + mκ)�(κ(n + 1))

= �(mκ)�(κ)1Ψ2

(
(1,1)

(1,mκ)(κ, κ)

∣∣∣∣ x

)
,

Iκ,δ,mκ (cκx) = �(αδ)

∞∑
n=0

xn

n!�(κn + αδ)

= �(αδ)0Ψ1
(
(κ,αδ)

∣∣ x
)
,

and where Cmκ is determined by

Iκ,δ(x) ∼ Cmκ x
αδ
κ

−1 Iκ,δ,mκ (x) as x → ∞. (5.3)

Using the exponentially infinite asymptotic expansions (6.2) and (6.3), we deduce that

Cmκ = �(mκ)�(κ)

�(αδ)
.

As a consequence of Theorem 4.6 we have these representations of the function Nκ,δ .
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Corollary 5.4. For κ
α

< δ < 2κ
α

and x � 0, the following representation

Nκ,δ(x) = |Mδ|
�(αδκ)

∞∫
0

uαδκ−1

x + u
0Ψ1

(
(κ,αδ)

∣∣ −u
)
du

holds. Finally, we have the following asymptotic expansion for large x,

Nκ,δ(x) ∼ exp
(−(

κ−κααx
) 1

α
)
x− δ

κ
− 1

α
+1.

Proof. Note that, for any δ > κ
α

and y > 0, we have

f (δ)∞ (y) = |Mδ|
�(αδκ)

∞∫
0

e−uy
∞∑

n=0

(−1)n

n!�(κn + αδ)
un+αδκ−1 du

= |Mδ|
�(αδκ)

∞∫
0

e−uyuαδκ−1
0Ψ1

(
(κ,αδ)

∣∣ −u
)
du,

where we have used the analyticity of the mapping f
(δ)∞ and an argument of dominated con-

vergence. The first representation is obtained by taking the Laplace transform on both sides on
the previous equation and using (5.2). Finally, the asymptotic behavior of the function Nκ,δ is
deduced from the exponentially infinite asymptotic expansions (6.2) and (6.3). �
6. Asymptotic expansions of the Wright hypergeometric functions

Special classes of the Wright hypergeometric functions have been considered among others
by Mittag-Leffler [29], Barnes [1], Fox [14] while the general case pΨq has been considered by
Wright [39]. We refer to Braaksma [9, Chapter 12] for a detailed account of this function and
its relation to the G-function. In the sequel, we simply indicate special properties, which can be
found in [9, Chapter 12].

We proceed by recalling that the Wright hypergeometric function is defined as

pΨq

(
(A1, a1) . . . (Ap, ap)

(B1, b1) . . . (Bq, bq)

∣∣∣∣ z

)
=

∞∑
n=0

∏p

i=1 �(Ain + ai)∏q

i=1 �(Bin + bi)

zn

n! ,

where p,q are nonnegative integers, ai ∈ C (i = 1 . . . p), bj ∈ C (j = 1 . . . q), the coefficients
Ai ∈ R+ (i = 1 . . . p) and Bj ∈ R+ (j = 1 . . . q) are such that

Ain + ai �= 0,−1,−2, . . . (i = 0,1, . . . , p; n = 0,1, . . .).

In what follows, we will also use the numbers S and T defined respectively by

S = 1 +
q∑

i=1

Bi −
p∑

i=1

Ai,

T =
p∏

A
Ai

i

q∏
B

−Bi

i .
i=1 i=1
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Throughout this part we assume that S is positive. In such a case, the series is convergent for all
values of z and it defines an integral function of z (the case S = 0 is also treated in [9]). Next, for
S positive, the function pΨq admits a contour integral representation. More precisely, we have

pΨq

(
(A1, a1) . . . (Ap, ap)

(B1, b1) . . . (Bq, bq)

∣∣∣∣ z

)
= 1

2πi

∫
C

∏p

i=1 �(Ain + ai)∏q

i=1 �(Bin + bi)
�(−s)(−s)z ds,

where C is a contour in the complex s-plane which runs from s = a − i∞ to s = a + i∞
(a an arbitrary real number) so that the points s = 0,1,2, . . . and s = − ai+n

Ai
(i = 0,1, . . . , p;

n = 0,1, . . .) lie to the right left of C. Next we introduce the following functions

P(z) =
∑
s∈Rp

zs�(−s)Res

(∏p

i=1 �(Ais + ai)∏q

i=1 �(Bis + bi)

)
,

E(z) = exp((T SSz)
1
S )

S

∞∑
k=0

Hk

(
T SSz

) 1−G−k
S ,

where Res stands for residuum, we set Rp = {ri,n = − ai+n
Ai

, i = 0,1, . . . , p; n = 0,1, . . .} and
the constant G is given by

G =
q∑

i=1

bi −
p∑

i=1

ai + p − q

2
+ 1.

The coefficients (Hk)k�0 are determined by∏p

i=1 �(Ais + ai)∏q

i=1 �(Bis + bi)

(
T SS

)−s ∼
∞∑

k=0

Hk

�(k + Ss + G)
.

In particular,

H0 = (2π)
p−q

2 SG− 1
2

p∏
i=1

A
ai− 1

2
i

q∏
i=1

B
1
2 −bi

i .

We have the following asymptotic expansions.

(1) Suppose S > 0 and p > 0. Then, the following algebraic asymptotic expansion

pΨq(z) ∼ P(−z)

holds for |z| → ∞ uniformly on every closed subsector of∣∣arg(−z)
∣∣ <

(
1 − S

2

)
π.

(2) Suppose S > 0. Then, the following exponentially infinite asymptotic expansion

pΨq(z) ∼ E(z)

holds for |z| → ∞ uniformly on every closed sector (vertex in 0) contained in arg(z) <

min(S,2)π .
2
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For the convenience of the reader, we list below the asymptotic expansion corresponding to pΨq

functions which appear in this paper. For y → ∞, recalling that 0 < mκ = 2 − αδκ < 1, we have

1Ψ1

(
(1, αδκ)

(κ,αδ)

∣∣∣∣ −y

)
∼

∞∑
n=1

(−1)n
�(n + αδκ)

�(−κn)

y−αδκ−n

n! , (6.1)

1Ψ2

(
(1,1)

(1,mκ)(κ, κ)

∣∣∣∣ y

)
∼ (2πα)−

1
2 κ

1
2 −δ− κ

2α exp
((

κ−κααy
) 1

α
)
y

δ
κ
+ 1

α
−1, (6.2)

0Ψ1
(
(κ,αδ)

∣∣ y
) ∼ (2πα)−

1
2 κ

1
2 −δ− κ

2α exp
((

κ−κααy
) 1

α
)
y

1
2α

−δ. (6.3)
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