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Consider a linear Brownian motion (Bs, s ≥ 0, B0 = 0), and a given drift µ. Exponential functionals

of the following form

A
(µ)
t =

∫ t

0
ds e−2(Bs + µs) (1)

have recently been a subject of common interest for mathematicians and for physicists.

Some recent mathematical studies have been partly motivated by continuum-time t finance models

in which most stock price dynamics are assumed to be driven by the exponential of a Brownian motion

with drift [12] [14]. In such studies, the representation

e−(Bt + µt) = R

(∫ t

0
ds e−2(Bs + µs)

)

(2)

where (R(u), u ≥ 0) is a Bessel process, i.e. an element of an important class of diffusions, exhibits

the importance of the functional A
(µ)
t . Formula (2) is a particular instance of the Lamperti relation

which expresses ( exp(ξt), t ≥ 0) as

eξt = X

(∫ t

0
ds e2ξs

)

(3)

where (X(u), u ≥ 0) is a semi-stable Markov process (see [9] [10] for some applications, partly in

mathematical finance).

In physics, these exponential functionals play a central role in the context of one dimensional

classical diffusion in a random environment. The random variable A
(µ)
∞ can indeed be interpreted as a

trapping time. Its probability distribution controls the anomalous diffusive behaviors of the particle at

large time in a infinite sample [5] [6] [15]. The distribution of A
(µ)
L occurs when studying the maximum

reached by the Brownian particle in a drifted Brownian potential [17]. The functional A
(µ)
L also arises

in the study of the transport properties of disordered samples of finite length L [23] [24] [21].

In fact, A
(µ)
L represents the continuous space analogue of the random series introduced by Kesten et al.

[19] for the so called ”random random walk”. This random series is generated by a linear recurrence

relation with random coefficients and therefore constitutes a discrete random multiplicative stochastic

process. A
(µ)
t also represents a very simple case of a continuous random multiplicative stochastic

process [11] which may be related to hyperbolic Brownian motion [29] [11].

In this article, we discuss some properties of these functionals, concentrating ourselves mostly on

the mean-value E( lnA
(µ)
t ), in relation with another physical interpretation inspired by the statistical

mechanics of disordered systems. In these systems, the partition function Z is a functional which

depends on a set of ”quenched” random couplings. In order to obtain the thermodynamic properties

of the system, one has to compute the average over the disorder of the free-energy F

E(F ) = E(−kT lnZ) (4)

This calculation can rarely be done exactly. The determination of the probability distribution of F is

a still more difficult task. One of the very few cases for which such a calculation can be done exactly is

the Random Energy Model [13]. It is therefore highly desirable to investigate other explicitly solvable

cases [22] [7] where the usual tools of disordered systems such as replica methods and variational

techniques can be tested [7].
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1 Physical motivation : A toy-model for disordered systems

Let us consider a particle confined on the interval 0 ≤ x ≤ L and submitted to a random force

F (x) distributed as a Gaussian white noise around some mean value −f0. The corresponding random

potential is then simply a Brownian motion with drift which can be written in terms of the Wiener

process Bx as

U(x) = −
∫ x

0
F (y)dy = f0x+

√
σBx (5)

For a given sample, that is for a given realization of the potential U(x), we define the partition function

ZL =

∫ L

0
dxe−βU(x) (6)

where as usual β is the inverse temperature of the system. It is convenient to introduce α = β2σ
2 and

the dimensionless parameter µ = 2f0

βσ to rewrite ZL as

Z
(µ)
L =

∫ L

0
dx e−(αµx+

√
2αBx) (7)

Therefore, for α = 2, Z
(µ)
L and A

(µ)
L coincide. For α 6= 2, using the scaling properties of the Brownian

motion, one obtains

Z
(µ)
L

(law)
=

2

α

∫

αL

2
0

dxe−2(µx +Bx) (8)

Hence

Z
(µ)
L

(law)
=

2

α
A

(µ)
αL
2

(9)

The thermal average of any function g(x) of the position of the particle for a given sample will be

denoted by an upper-bar

g(x) ≡
∫ L
0 dx g(x) e−βU(x)

∫ L
0 dx e−βU(x)

(10)

For instance the thermal average and variance of the position read

x =
1

Z
(µ)
L

(

− 1

α

∂

∂µ
Z

(µ)
L

)

= − 1

α

∂

∂µ
ln(Z

(µ)
L ) (11)

x2 − (x)2 =
1

α2

∂2

∂µ2
ln(Z

(µ)
L ) (12)

More generally, the generating function of the thermal cumulants of the position reads

ln

(

e−px

)

= lnZ
(µ+ p

α
)

L − lnZ
(µ)
L (13)

These relations show that the statistical properties of the position of the particle in the case µ = 0

require in fact the knowledge of the partition function with an arbitrary drift µ.
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The fundamental quantity for the statistical mechanics of this disordered system is the free energy

F
(µ)
L related to the logarithm of the partition function

F
(µ)
L = − 1

β
lnZ

(µ)
L (14)

This paper deals essentially with the statistical properties of the free energy, and particularly with the

mean free energy over the disorder denoted by

E
(

F
(µ)
L

)

= − 1

β
E
(

lnZ
(µ)
L

)

(15)

This work also gives us the opportunity to bring together various results which were scattered both

in the physics and mathematics literature. A comparison between them often yields some interesting

identities with a non trivial probabilistic content.

The paper is organized as follows. In section 2, we consider the case of random potential with

zero-drift µ = 0. We first give the probability distribution of the free energy. We then establish various

formulae for its mean value, using in particular the Bougerol identity, and show that the replica method

gives the correct result. We also discuss the asymptotic behavior of the mean free energy in the limit

of a large sample L → ∞. In section 3, we discuss the properties of the free energy in the case of a

random potential with a positive drift µ > 0. We also establish some relations between E
(

lnZ
(µ)
L

)

and E

(

1

Z
(ν)
L

)

. In section 4, we discuss the case where the length of the sample is an independent

random variable which is exponentially distributed.

For notations and properties of the special functions appearing in this paper, we refer the reader

to Lebedev [20].

2 Case of random potential with zero drift µ = 0

2.1 Distribution of the partition function Z
(0)
L and associated free energy

The expression of the generating function of Z
(0)
L has already been derived in another context through

the resummation of the series of moments [23] and by a path-integral approach [21]

E

(

e−pZ
(0)
L

)

=
2

π

∫ ∞

0
dk cosh

πk

2
Kik

(

2

√

p

α

)

e
−k2αL

4 (16)

We also refer the reader to [1], where it is shown that this result may be derived from the Bougerol

formula (see later 31). To invert the Laplace transform (16), it is convenient to start from the integral

representation

Kik

(

2

√

p

α

)

=

∫ ∞

0
dt cos kt e

−2

√

p

α
cosh t

(17)

and to perform the integration over k in (16) to obtain

E

(

e−pZ
(0)
L

)

=
2√
παL

e

π2

4αL
∫ ∞

0
dt cos

(

πt

αL

)

e
− t2

αL e
−2

√

p

α
cosh t

(18)
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We may then use the following identity

e
−2

√

p

α
cosh t

=
cosh t√
πα

∫ ∞

0

dZ

Z
3
2

e−pZ e
−cosh2 t

αZ (19)

to cast (18) into the form

E

(

e−pZ
(0)
L

)

=

∫ ∞

0
dZ e−pZ ψ

(0)
L (Z) (20)

where

ψ
(0)
L (Z) =

2e
π2

4αL

πα
√
L

1

Z
3
2

∫ ∞

0
dt cosh t cos

(

πt

αL

)

e
− t2

αL e
−cosh2 t

αZ (21)

denotes the probability distribution of the partition function Z
(0)
L . A simple change of variables then

gives the probability distribution P
(0)
L (F ) of the free energy F

(0)
L = − 1

β lnZ
(0)
L

P
(0)
L (F ) =

2βe
π2

4αL

πα
√
L
e

β

2
F
∫ ∞

0
dt cosh t cos

(

πt

αL

)

e
− t2

αL e

−
(

cosh2 t

α

)

eβF

(22)

It is interesting to compare with a similar formula given in [7].

In the limit of large L, the probability density XL(ξ) of the reduced variable ξ = βF−lnα√
2αL

tends to

the Gaussian

XL(ξ) −→
L→∞

1√
2π
e
−ξ

2

2 (23)

This asymptotic result may in fact be directly obtained since from the definition (7)

Z
(0)
L =

∫ L

0
dx e+

√
2αBx

(law)
= L

∫ 1

0
ds e

√
2αLBs (24)

hence
1√
L

lnZ
(0)
L =

lnL√
L

+ ln

(
∫ 1

0
ds e

√
2αLBs

) 1√
L

(25)

Since

ln

(∫ 1

0
dse

√
2αLBs

)
1√
L −→

L→∞
ln e

√
2α sup

s≤1
Bs (law)

=
√

2α|N | (26)

where N is a normalized Gaussian variable, one has

1√
2αL

lnZ
(0)
L

(law)−→
L→∞

|N | (27)

2.2 An expression of E

(

ln Z
(0)
L

)

derived from the generating function

The Frullani identity

lnZ
(0)
L =

∫ ∞

0

dp

p

[

e−p − e−pZ
(0)
L

]

(28)
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may be used to compute the mean of the logarithm of Z
(0)
L from the generating function of equation

(16). Using the intermediate regularization

E

(

ln (Z
(0)
L )

)

= lim
ǫ→0+

[

Γ(ǫ) −
∫ ∞

0
dp pǫ− 1 E

(

e−pZ
(0)
L

)]

(29)

one obtains

E

(

lnZ
(0)
L

)

=
2

π

∫ ∞

0

dk

k2

[

1 − e−αLk
2
πk coth(πk)

]

+ C − lnα (30)

where C = −Γ′(1) is Euler’s constant.

2.3 Bougerol’s identity

Bougerol’s identity [4] is an identity in law relating two independent Brownian motions (Bs, s ≥ 0)

and (γu, u ≥ 0), and involving the exponential functional we are interested in. The statement is that

for fixed t

sinh(Bt)
(law)
= γAt where At =

∫ t

0
ds e−2Bs = A

(0)
t (31)

In the Appendix, we present a simple proof of this identity due to L. Alili, and we refer the reader to

[1] for further details and possible generalizations for the case of a non-vanishing drift µ 6= 0.

Scaling properties of Brownian motion then give

At
(law)
= t

∫ 1

0
du e−2

√
tBu (32)

sinh(Bt)
(law)
=

(

∫ 1
0 du e

−2
√
tBu

) 1
2

γt (33)

(law)
=

(

At

t

) 1
2
γt (34)

It follows that

E

(

lnAt

)

= E

(

ln

(

sinh(Bt)

Bt

)2 )

+ ln t =

∫ +∞

−∞

dx√
2πt

e
−x

2

2t ln

(

sinh(x)

x

)2

+ ln t (35)

Starting from the partition function

Z
(0)
L

(law)
=

2

α
AαL

2

(36)

we thus get a new expression for the mean value of the logarithm

E

(

lnZ
(0)
L

)

=

∫ +∞

−∞

dx√
παL

e
− x2

αL ln

(

sinh(x)

x

)2

+ ln(L) (37)

Comparison with our previous result (30) leads to the identity

2

∫ +∞

−∞

dx√
παL

e
− x2

αL ln

(

sinh(x)

x

)

=
2

π

∫ +∞

−∞

dk

k2

[

1 − e−αLk2
πk coth(πk)

]

+ C − ln(αL) (38)
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In order to understand the meaning of this identity, we differentiate both sides with respect to L and

use the heat equation

∂

∂L

(

1√
παL

e
− x2

αL

)

=
α

4

∂2

∂2x

(

1√
παL

e
− x2

αL

)

(39)

After an easy integration by part we obtain

∫ +∞

−∞

dx√
παL

e
− x2

αL

[

∂2

∂2x
ln

(

sinh(x)

x

) ]

= α

∫ +∞

−∞
dk e−αLk

2
[

k coth(πk) − |k|
]

(40)

This identity is a particular instance of Plancherel’s formula, since the Fourier transform of the function

∂2

∂2x
ln

(

sinh(x)

x

)

=
1

x2
− 1

sinh2(x)
(41)

can be easily obtained after an integration in the complex plane
∫ +∞

−∞
dx eikx

[

1

x2
− 1

sinh2(x)

]

= π

[

k coth

(

π

2
k

)

− |k|
]

(42)

This formula is also encountered as follows in the study [3] of the Hilbert transform of Brownian

motion

Hu = lim
ǫ→0+

∫ u

0

ds

Bs
1(|Bs|≥ǫ) (43)

If n(dǫ) denotes the characteristic measure of Brownian excursions, and ǫ the generic excursion with

lifetime V (ǫ) = inf{t > 0 : ǫ(t) = 0}, then the law of HV ≡
∫ V
0

ds
ǫs

under n is πdx
x2 , and formula (42)

may be interpreted as

π

(

λ coth

(

πλ

θ

)

− |λ|
)

= π

∫ +∞

−∞

dx

x2
eiλx n

(

1 − e
−θ2V

2

∣

∣

∣

∣

HV = x

)

(44)

with

n

(

1 − e
−θ2V

2

∣

∣

∣

∣

HV = x

)

= 1 −




θx
2

sinh
(

θx
2

)





2

(45)

in the particular case θ = 2.

2.4 Mean free energy through Replica method

Let X = Z
(0)
L . The replica method is based on the identity

E[ lnX] = lim
n→0

E[Xn] − 1

n
(46)

In many applications, one proceeds by looking for an analytic continuation n → 0 of the expressions

of integer moments of X. This procedure is in general mathematically ill-founded, but in the present

case non-integer moments can be computed.

The integer moments of the partition function are well-known [12] [29] [23] [21]

E

[

(Z
(0)
L )n

]

=
1

αn

n
∑

k=1

eαLk2
(−1)n−k Γ(n)

Γ(2n)
Ck

n +
(−1)n

n!
(47)
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Since this expression contains a sum of n terms, it has a priori no meaning for non-integer n. However,

the following integral representation for the moment of order n [23]

E

[

(Z
(0)
L )n

]

= 2
Γ(1

2)

Γ(n+ 1
2)

∫ ∞

0

dx√
παL

e
− x2

αL

(

sinh2 x

α

)n

(48)

is valid for any positive real n ≥ 0, as can be shown using the consequence (34) of Bougerol’s identity

(31).

The following expansions in n, as n→ 0

(

sinh2 x

α

)n

= 1 + n ln

(

sinh2 x

α

)

+ o(n) (49)

Γ(1
2)

Γ(n+ 1
2)

= 1 − n
Γ′(1

2 )

Γ(1
2)

+ o(n) = 1 + n(C + 2 ln 2) + o(n) (50)

where C = −Γ′(1) denotes Euler constant, lead to the expression

E

[

ln (Z
(0)
L )

]

= lim
n→0

E

(

(Z
(0)
L )n

)

− 1

n
(51)

= C + 2 ln 2 − lnα+

∫ +∞

−∞

dx√
παL

e
− x2

αL ln (sinh2 x) (52)

This formula is of course directly related to the previous expression (37) obtained using Bougerol’s

identity since

−
∫ +∞

−∞

dx√
παL

e
− x2

αL ln(x2) + ln(L) = C + 2 ln 2 − lnα (53)

2.5 Asymptotic expression of the mean free energy for large L

The various expressions obtained previously (30-37-52) yield the asymptotic behavior

E

[

ln (Z
(0)
L )

]

= 2

√

αL

π
+ C − lnα− π

3
2

3
√
παL

+O

(

1

(αL)
3
2

)

as L→ ∞ (54)

which agrees with [7].

We now show how the first two terms may in fact be recovered through a direct asymptotic analysis

of

Z
(0)
L =

∫ L

0
dx e

√
2αBx (55)

Using the scaling properties of Brownian motion, one has

Z
(0)
L

(law)
=

1

2α

∫ 2αL

0
dx eBx (56)
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It is convenient to set Λ = 2αL and to define

IΛ = E

[

ln

∫ Λ

0
dx eBx

]

(57)

Introducing the one-sided supremum SΛ = sup
x≤Λ

Bx, one has

IΛ = E(SΛ) + E

[

ln

∫ Λ

0
dx e−(SΛ −Bx)

]

(58)

It follows from the scaling properties of Brownian motion that

IΛ =
√

ΛE(S1) + E

[

ln (Λ

∫ 1

0
dx e−

√
Λ(S1 −Bx))

]

(59)

Recall that from the reflection principle S1
(law)
= |B1|. This implies

E(S1) = E(|B1|) =

√

2

π
(60)

For the remaining part of IΛ, theorem 1 of Pitman and Yor [25] gives the convergence in law

Λ

∫ 1

0
dx e−

√
Λ(S1 −Bx) (law)−→

Λ→∞
4(T1 + T̂1) (61)

where T1 and T̂1 are two independent copies of the first hitting time of 1 by a two-dimensional Bessel

process starting from 0. Hence

E

[

ln (Λ

∫ 1

0
dx e−

√
Λ(S1 −Bx))

]

−→
Λ→∞

E

[

ln 4(T1 + T̂1)

]

(62)

The right-hand side of last equation can be evaluated either by direct calculation or by appealing

to recent results related to the ”agreement formula” for Bessel processes [26]. The direct calculation

proceeds as follows : one starts again with the identity

E

[

ln (T1 + T̂1)

]

=

∫ ∞

0

du

u

[

e−u − E

(

e−u(T1 + T̂1)
)]

(63)

and uses the expression of the Laplace transform [18]

E
(

e−uT1
)

=
1

I0(
√

2u)
(64)

After an intermediate regularization, one obtains

E

[

ln (T1 + T̂1)

]

= lim
ǫ→0+

∫ ∞

ǫ

du

u

[

e−u − 1

I2
0 (
√

2u)

]

(65)

= lim
ǫ→0+

[

− C − ln
ǫ2

2
− 2

K0(ǫ)

I0(ǫ)

]

= C − ln 2 (66)

The other method relies on the following consequence of the ”agreement formula” for Bessel processes

( equation (37) of [26])

Eδ

[

(T1 + T̂1)
δ
2
−1
]

=
1

2µΓ(1 + µ)
(67)

9



Here δ = 2(1+µ) is the dimension of the Bessel process, and Eδ denotes the expectation with respect

to the law of this process, starting at 0. ( For δ = 2, or equivalently µ = 0, we simply note E instead

of E2). By differentiating both sides of (67) with respect to µ at µ = 0, one recovers (66)

E

[

ln (T1 + T̂1)

]

= C − ln 2 (68)

Finally, combining (62) and (68), we obtain

IΛ −
√

2Λ

π
−→
Λ→∞

C + ln 2 (69)

We therefore recover the first two terms of (54)

E

[

ln (Z
(0)
L )

]

−
(

2

√

αL

π
+ C − lnα

)

−→
L→∞

0 (70)

3 Case of random potential with drift µ > 0

3.1 Distribution of the partition function Z
(µ)
L and associated free energy

The probability distribution ψ
(µ)
L (Z) of the partition function Z

(µ)
L has already been obtained in

another context as the solution of the Fokker-Planck equation [21] [11]

∂ψ
(µ)
L (Z)

∂L
=

∂

∂Z

[

αZ2 ∂ψ
(µ)
L (Z)

∂Z
+

(

(µ+ 1)αZ − 1

)

ψ
(µ)
L (Z)

]

(71)

satisfying the initial condition ψ
(µ)
L=0(Z) = δ(Z). The eigenfunction expansion of the solution exhibits

the following relaxation spectrum with the length L

ψ
(µ)
L (Z) = α

∑

0≤n< µ

2

e−αLn(µ− n) (−1)n(µ− 2n)

Γ(1 + µ− n)

(

1

αZ

)1+µ−n

Lµ−2n
n

(

1

αZ

)

e
−

1

αZ (72)

+
α

4π2

∫ ∞

0
ds e

−αL
4

(µ2 + s2)
s sinhπs

∣

∣

∣

∣

Γ

(

−µ
2

+ i
s

2

)∣

∣

∣

∣

2 ( 1

αZ

)
1+µ

2

W 1+µ
2

,i s
2

(

1

αZ

)

e
−

1

2αZ (73)

where Lα
n are Laguerre’s polynomials and Wp,ν are Whittaker’s functions. Contrary to the case µ = 0,

there exists for µ > 0 a limit distribution as L→ ∞

ψ(µ)
∞ (Z) =

α

Γ(µ)

(

1

αZ

)1+µ

e
−

1

αZ (74)

In the physics literature, this limit distribution was first obtained in the context of one dimensional

Brownian diffusion in a Brownian drifted potential, where Z
(µ)
∞ plays the role of an effective trapping

10



time [6], and was recently rediscovered in another context [22]. In the mathematics literature, this

limit distribution

A(µ)
∞

(law)
=

1

2Yµ
(75)

where Yµ is a Gamma variable with parameter µ

P

(

Yµ ∈ (y, y + dy)

)

=
dy

Γ(µ)
yµ−1 e−y (76)

was first obtained by Dufresne [12], then shown in [31] to be another expression of the law of last

passage times for transient Bessel processes. It is interesting to point out that equation (71) first

appeared in a paper of Wong [28] (see also [16]). However, the precise connection with our work is

beyond the scope of this paper.

3.2 Mean free energy E

(

ln Z
(µ)
L

)

The Laplace transform of Z
(µ)
L corresponding to the probability distribution (72-73) reads [21]

E

(

e−pZ
(µ)
L

)

=
∑

0≤n< µ

2

e−αLn(µ− n) 2(µ− 2n)

n!Γ(1 + µ− n)

(

p

α

)µ/2

Kµ−2n

(

2

√

p

α

)

(77)

+
1

2π2

∫ ∞

0
ds e

−αL
4

(µ2 + s2)
s sinhπs

∣

∣

∣

∣

Γ

(

−µ
2

+ i
s

2

)∣

∣

∣

∣

2 ( p

α

)µ/2

Kis

(

2

√

p

α

)

(78)

We use again the Frullani identity

E

(

lnZ
(µ)
L

)

=

∫ ∞

0

dp

p

[

e−p − E

(

e−pZ
(µ)
L

)

]

(79)

to obtain after an intermediate regularisation as in (29)

E

(

lnZ
(µ)
L

)

= − lnα− Γ′(µ)

Γ(µ)
−

∑

1≤n< µ
2

µ− 2n

n(µ− n)
e−αLn(µ− n) (80)

−2

∫ ∞

0
ds

s

µ2 + s2
sinhπs

coshπs− cos πµ
e
−αL

4
(µ2 + s2)

(81)

Obviously, the two first terms correspond to the contribution of the limit distribution (74)

E

(

lnZ(µ)
∞

)

= − lnα− Γ′(µ)

Γ(µ)
(82)

Now, it is easily deduced from (3.2) and (82) that

E

(

lnZ(µ)
∞

)

− E

(

lnZ
(µ)
L

)

≃
L→∞







































(

µ− 2

µ− 1

)

e−α(µ− 1)L if µ > 2

1√
παL

e−αL if µ = 2

1

µ2(1 − cosπµ)

(

π

αL

) 3
2

e
−αµ

2

4
L

if µ < 2

(83)
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It is interesting to compare these results to those obtained in [17] for the limiting distribution of the

maximum of a diffusion process in a Brownian drifted environment. The latter may be stated as

E

(

A
(µ)
∞

A
(µ)
∞ + Ã

(−µ)
L

)

≃
L→∞







































(

µ− 2

µ− 1

)

e−2(µ− 1)L if µ > 2

1√
2πL

e−2L if µ = 2

K

(2L)
3
2

e
−µ

2

2
L

if µ < 2

(84)

where A
(µ)
∞ and Ã

(−µ)
L are two independant functionals of type A

(ν)
t defined in (1). The constant K

given in [17] 1 as the following 4-fold integral

K =
21−µ

√
π

1

Γ(µ)

∫ ∞

0
dy yµ

∫ ∞

0
dz e−

z
2
(1+y2)

∫ ∞

0
da aµ−1 z

z + a
e−

a
2

∫ ∞

0
du u sinhu e−zy cosh u (85)

may in fact be explicitely computed to give in the end the simple result

K = π
3
2
Γ(µ

2 )2

Γ(µ)

1

(1 − cos πµ)
(86)

For µ ≥ 2, the result (84) therefore coincide with the result (83), where for the particular value α = 2,

Z
(µ)
L reduces to A

(µ)
L (see (7) and (1)). To understand this coincidence, we write

A(µ)
∞ = A

(µ)
L + e−2(BL + µL) Ã(µ)

∞ (87)

where Ã
(µ)
∞ is a variable distributed as A

(µ)
∞ and independent of A

(µ)
L . Therefore

E

(

lnA(µ)
∞

)

−E

(

lnA
(µ)
L

)

= E

(

ln

[

1 + e−2(BL + µL) Ã
(µ)
∞

A
(µ)
L

]

)

= E

(

ln

[

1 +
Ã

(µ)
∞

A
(−µ)
L

]

)

(88)

The comparison between (83) and (84) therefore leads to

E

(

ln

[

1 +
Ã

(µ)
∞

A
(−µ)
L

]

)

≃
L→∞

E

(

Ã
(µ)
∞

Ã
(µ)
∞ +A

(−µ)
L

)

for µ ≥ 2 (89)

This is likely to be understood as a consequence of the following plausible statement

If Xn
(a.s.)−→ 0, then E

[

ln(1 +Xn)

]

∼ E

[

Xn

1 +Xn

]

(90)

which presumably holds for a large class of random variables {Xn}, but the precise conditions of

validity of (90) elude us. However, (89) does not hold for µ < 2 since, in this case, the prefactors in

(83) and (84) differ.

To go further into the comparison, we have computed exactly the quantity occuring in (84) for

arbitrary L. We start from the identity

E

(

Z
(µ)
∞

Z
(µ)
∞ + Z̃

(−µ)
L

)

=

∫ ∞

0
dp E

(

Z(µ)
∞ e−pZ

(µ)
∞
)

E

(

e−pZ̃
(−µ)
L

)

(91)

1In fact (85) corrects the formula for the constant K found in [17]. The need to divide by
√

π is due to a misprint in
[29], where on page 528, just after formula (6.e), one should read 1

(2π3t)1/2
· · · instead of 1

(2π2t)1/2
· · ·
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Using the following consequences of (78)

E

(

Z(µ)
∞ e−pZ

(µ)
∞

)

=
2

αΓ(µ)

(

p

α

)
µ−1

2

Kµ−1

(

2

√

p

α

)

(92)

and

E

(

e−pZ̃
(−µ)
L

)

=
1

2π2

∫ ∞

0
ds e

−αL
4

(µ2 + s2)
s sinhπs

∣

∣

∣

∣

Γ

(

µ

2
+ i

s

2

)∣

∣

∣

∣

2 ( p

α

)−µ/2

Kis

(

2

√

p

α

)

(93)

we get

E

(

Z
(µ)
∞

Z
(µ)
∞ + Z̃

(−µ)
L

)

=
1

π2Γ(µ)

∫ ∞

0
dxKµ−1(x)

∫ ∞

0
ds e

−αL
4

(µ2 + s2)
s sinhπs

∣

∣

∣

∣

Γ

(

µ

2
+ i

s

2

)∣

∣

∣

∣

2

Kis(x)

(94)

For µ ≤ 2, the order of integrations may be exchanged to give

E

(

Z
(µ)
∞

Z
(µ)
∞ + Z̃

(−µ)
L

)

=
1

2Γ(µ)

∫ ∞

0
ds e

−αL
4

(µ2 + s2) s sinhπs

coshπs− cos πµ

∣

∣

∣

∣

Γ

(

µ

2
+ i

s

2

)∣

∣

∣

∣

2

(95)

which reduces for µ = 2 to

E

(

Z
(2)
∞

Z
(2)
∞ + Z̃

(−2)
L

)

=
1

2

∫ ∞

0
ds e

−αL
4

(4 + s2) πs2 cosh πs
2

sinh2 πs
2

(96)

For µ > 2, one cannot exchange the order of integrations in (94). However, one may start from a

series representation ( eq (5.9) in [21]) of the generating function (93) to obtain, after some algebra

involving deformation of a contour integral in the complex plane (see [21] for a similar approach) the

general result for arbitrary µ > 0

E

(

Z
(µ)
∞

Z
(µ)
∞ +Z̃

(−µ)
L

)

=
∑

1≤n< µ
2

(µ− 2n)
Γ(n)Γ(µ− n)

Γ(µ)
e−αLn(µ− n) (97)

+
1

2Γ(µ)

∫ ∞

0
ds e

−αL
4

(µ2 + s2) s sinhπs

coshπs− cos πµ

∣

∣

∣

∣

Γ

(

µ

2
+ i

s

2

)∣

∣

∣

∣

2

(98)

From (95-96-98), one easily recovers the corresponding asymptotic results of (84), which were obtained

in [17] by a quite different method, relying on the computations made in [29]. The presence of discrete

terms for µ > 2 again explains the transition at µ = 2 of the asymptotic behavior.

3.3 Some relations between E

(

ln Z
(µ)
L

)

and mean inverse E

(

1

Z
(ν)
L

)

The first negative moment can be obtained from the generating function (78) written above ([21])

E

(

1

Z
(µ)
L

)

=

∫ ∞

0
dp E

(

e−pZ
(µ)
L

)

(99)

= α
∑

0≤n< µ
2

(µ− 2n) e−αLn(µ− n) +
α

2

∫ ∞

0
ds

s sinhπs

coshπs− cos πµ
e
−αL

4
(µ2 + s2)

(100)
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The previous explicit expressions therefore lead to the very simple identity for any µ ≥ 0

∂

∂L
E

(

lnZ
(µ)
L

)

= E

(

1

Z
(µ)
L

)

− αµ (101)

Can it be derived directly using only basic properties of Brownian motion ? Trying to do so gives

in fact two other identities of the same kind, but not (101). The first one relates the exponential

functionals for two opposite drifts (+µ) and (−µ)

∂

∂L
E

(

lnZ
(µ)
L

)

= E

(

1

Z
(−µ)
L

)

(102)

This identity can be obtained from a simple reparametrisation x′ = L− x in the denominator of the

left handside of expression

∂

∂L
E

(

ln

∫ L

0
dx e−(αµx+

√
2αBx)

)

= E





e−(αµL+
√

2αBL)

∫ L
0 dx e−(αµx+

√
2αBx)



 (103)

The second one relates the exponential functionals for two dimensionless drifts differing by two

∂

∂L
E

(

lnZ
(µ)
L

)

= e−αL(µ− 1) E

(

1

Z
(µ−2)
L

)

(104)

This identity follows from Cameron-Martin or Girsanov relations. In fact these relations lead to a

more general relation between the two characteristic functions of the exponential functionals for (µ)

and (µ− 2)
∂

∂L
E

(

e−pZ
(µ)
L

)

= −p e−αL(µ− 1) E

(

e−pZ
(µ−2)
L

)

(105)

4 Expressions of E
(

ln (Z
(µ)
Lλ

)
)

with an independent exponential length

Lλ

It is well known that the laws of additive functionals of Brownian motion with drift µ

Af
t

(def)
=

∫ t

0
ds f(Bs + µs) (106)

may be easier to compute when the fixed time t is replaced by an independent exponential time Tλ of

parameter λ

P

(

Tλ ∈ [t, t+ dt]

)

= λe−λtdt (107)

This is indeed the case for Af
t = A

(µ)
t i.e. f(x) = e−2x. It was shown in [30] [33] that

A
(µ)
Tλ

(law)
=

X1,a

2Yb
where a =

√

2λ+ µ2 − µ

2
, b =

√

2λ+ µ2 + µ

2
, (108)
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Xα,β denotes a Beta-variable with parameters (α, β)

P

(

Xα,β ∈ [x, x+ dx]

)

=
xα−1(1 − x)β−1

B(α, β)
dx (0 < x < 1) (109)

and Yγ denotes a Gamma-variable of parameter (γ) (76). Consequently, one has

E

(

(

A
(µ)
Tλ

)n
)

=
Γ(1 + n)Γ(1 + a)Γ(b− n)

2nΓ(1 + a+ n)Γ(b)
(110)

and

− E

(

lnA
(µ)
Tλ

)

= C + ln 2 + ψ(1 + a) + ψ(b) (111)

where C = −Γ′(1) is Euler’s constant, and ψ(x) = Γ′(x)
Γ(x) . Classical integral representation of the

function ψ allows to invert the Laplace transform in λ implicit in (111), hence to recover E

(

lnA
(µ)
t

)

;

however the formulae we have obtained in this way are not simple.

To transpose the result (111) for the partition function Z
(µ)
Lλ

describing the case where the length

of the disordered sample is exponentially distributed, one only needs to use the identity derived from

(9)

Z
(µ)
Lλ

(law)
=

2

α
A

(µ)
T 2

α λ
(112)

Appendix : A simple proof of Bougerol’s identity

As Bougerol’s identity (31) may appear quite mysterious at first sight, we find useful to reproduce

here a simple proof of this identity due to L. Alili and D. Dufresne. We refer the reader to [1] and [2]

for further details and possible generalizations for the case of a non-vanishing drift µ 6= 0.

Consider the Markov process

Xt = eBt

∫ t

0
e−Bs dγs (113)

where Bt and γt are two independent Brownian motions. Itô formula yields the stochastic differential

equation

dXt =
1

2
Xt dt + (Xt dBt + dγt) (114)

We introduce a new Brownian motion βt by setting

Xt dBt + dγt =
√

X2
t + 1 dβt (115)

from which it follows that

dXt =
1

2
Xt dt+

(

X2
t + 1

)
1
2
dβt (116)

The comparison with

d[ sinh(βt)] =
1

2
[ sinh(βt)]dt +

(

sinh2(βt) + 1
) 1

2
dβt (117)
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shows that

sinh(βt)
(law)
= Xt = eBt

∫ t

0
e−Bs dγs (118)

The use of scaling properties of Brownian motion finally gives

sinh(βt)
(law)
= γ̂

A
(0)
t

with A
(0)
t =

∫ t

0
e2Bs ds (119)

where γ̂ denotes a Brownian motion, which is independent of Bs.
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[27] A. de Schepper, M. Goovaerts and F. Delbaen, “The Laplace transform of annuities certain with

exponential time distribution” Ins.: Math. and Eco. 11 (1992) 291.

[28] E. Wong, “The construction of a class of stationary Markov processes”, Am. Math. Soc. Proc. of

the 16th Symposium of Appl. Math. (1964) 264.

[29] M. Yor, “On some exponential functionals of Brownian motion”, Adv. Appl. Prob. 24 (1992) 509.

[30] M. Yor, “Sur les lois des fonctionnelles exponentielles du mouvement Brownien, considérées en
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