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1 Introduction

We wish in these notes to further advance our knowledge of exponential
inequalities for U–statistics of order two. These types of inequalities are
already present in Hoeffding seminal papers [6], [7] and have seen further
development since then. For example, exponential bounds were obtained by
Hanson and Wright [5] (and the references therein), Bretagnolle [1], and most
recently by Giné, Latala, and Zinn [4]. As indicated in [4], the exponential
bound there is optimal since it involves a mixture of exponents corresponding
to a Gaussian chaos of order two behavior, and (up to logarithmic factors) to
the product of a normal and of a Poisson random variable and to the product
of two independent Poisson random variables. These various behaviors can
be obtained as limits in law of triangular arrays of canonical U -statistics of
degree two (with possibly non varying kernels).

The methods of proof of [4] rely on precise moment inequalities of Rosen-
thal type which are of independent interest (and which are valid for U–
statistics of arbitrary order). In case of order two, these moment inequal-
ities together with Talagrand inequality for empirical processes provided
the exponential bound. Here, we present a different proof of their result
which also provide information about the constants which is often needed
in statistical applications. Our approach still rely on Talagrand inequality
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but replaces the moment estimates by martingales types inequalities. As
also indicated [4] the moment estimates and the exponential inequality are
equivalent and so our approach also provides sharp moment estimates. The
methods presented here are robust enough that they can be adapted to pro-
vide exponential inequalities for double integrals with respect to Poisson
processes.

2 Background

Let us recall some known facts about U-statistics of order two. Throughout
these notes, let T1, ..., Tn be independent real random variables defined on a
probability space (Ω,F , P).

A canonical U-statistics of order two is generally defined for all positive
integer n as

n
∑

i=1

n
∑

j=1

fi,j(Ti, Tj), (2.1)

where the fi,j : R × R → R are Borel measurable functions.
We will not be concerned in this work with the diagonal part

n
∑

i=1

gi,i(Ti, Ti),

nor with the part of (2.1) made of sums of independent random variables.
Indeed for these parts, exponential tail inequalities are well known and an
x/2 argument, combined with our results, provides exponential bounds for
canonical U–statistics (of order two). Hence we will deal with degenerate
U-statistics of order two, defined for all integer n ≥ 2, by

Un =

n
∑

i=1

∑

j 6=i

[

fi,j(Ti, Tj) − E(fi,j(Ti, Tj)|Tj) − (2.2)

−E(fi,j(Ti, Tj)|Ti) + E(fi,j(Ti, Tj))

]

.

This is equivalent to consider for all integer n ≥ 2,

Un =

n
∑

i=2

i−1
∑

j=1

gi,j(Ti, Tj), (2.3)
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where the gi,j : R × R → R are Borel measurable functions verifying

E(gi,j(Ti, Tj)|Ti) = 0 and E(gi,j(Ti, Tj)|Tj) = 0, (2.4)

and where E is the expectation with respect to P. Indeed it is sufficient to
take gi,j(Ti, Tj) = fi,j(Ti, Tj) + fj,i(Tj , Ti)− E(fi,j(Ti, Tj) + fj,i(Tj , Ti)|Ti)−
E(fi,j(Ti, Tj) + fj,i(Tj , Ti)|Tj) + E(fi,j(Ti, Tj) + fj,i(Tj , Ti)).

Throughout these notes, Un is now given by (2.3) and satisfies (2.4).
For any n ≥ 1, let Fn be the σ-field generated by {T1, ..., Tn}, F0 = {Ω, ∅}
and for any n ≥ 2, let

Xn =
n−1
∑

j=1

gn,j(Tn, Tj).

As in (2.3), Un is only defined for n ≥ 2, we set U1 = 0 and also X1 = 0.
The following is an easy, known, but important lemma:

Lemma 2.1 (Un, n ∈ N) is a discrete time martingale with respect to the
filtration (Fn, n ∈ N) and for all n, E(Xn|Fn−1) = 0.

Proof. Let n ≥ 2. Then clearly, Xn is Fn-measurable. Moreover

E(Xn|Fn−1) =

n−1
∑

j=1

E(gn,j(Tn, Tj)|Fn−1) =

n−1
∑

j=1

E(gn,j(Tn, Tj)|Tj) = 0,

since the T ’s are independent random variables and by (2.4). Finally, since
Un =

∑n
i=1 Xi, E(Un|Fn−1) = Un−1 + E(Xn|Fn−1) = Un−1. �

Throughout the sequel, and for all i and j, we use the notation

E(i)(gi,j(Ti, Tj)) = E(gi,j(Ti, Tj)|Tj)

and
E

(j)(gi,j(Ti, Tj)) = E(gi,j(Ti, Tj)|Ti).

3 Exponential Inequalities

Let Vn be the angle bracket ([12],p 148) of Un, i.e. let Vn =
∑n

i=1 E(X2
i |Fi−1)

and let also Bn = supi≤n |Xi|. Let us present a first result which is not quite
the one obtained in [4] (because of the extra term F present below) but
which already provides some knowledge of constants.
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Theorem 3.1 Let u > 0, ε > 0 and let |gi,j | ≤ A for all i, j. Then

P

[

Un ≥ (1 + ε)C
√

2u +

(

2
√

κD +
1 + ε

3
F

)

u

+

(√
2κ(ε) +

2
√

κ

3

)

Bu3/2 +
κ(ε)

3
Au2

]

≤ 3e−u ∧ 1, (3.1)

where

C2 =
n
∑

i=2

i−1
∑

j=1

E(gi,j(Ti, Tj)
2), (3.2)

D = sup

{

E





n
∑

i=2

i−1
∑

j=1

gi,j(Ti, Tj)ai(Ti)bj(Tj)



 : (3.3)

E

(

n
∑

i=2

ai(Ti)
2

)

≤ 1, E





n−1
∑

j=1

bj(Tj)
2



 ≤ 1

}

,

F = E



sup
i,t

∣

∣

∣

∣

∣

i−1
∑

j=1

gi,j(t, Tj)

∣

∣

∣

∣

∣



 , (3.4)

and

B2 = max







sup
t,i





i−1
∑

j=1

E
(j)(gi,j(t, Tj)

2)



 , sup
t,j





n
∑

i=j+1

E(i)(gi,j(Ti, t)
2)











.

(3.5)
(κ and κ(ε) can be chosen to be respectively equal to 4 and (2.5 + 32ε−1)).

As a preparation for the proof, we first obtain bounds on Vn and Bn.

Lemma 3.2 Let u > 0 and let ε > 0. With probability larger than 1−2e−u,

√

Vn ≤ (1 + ε)C + D
√

2κu + κ(ε)Bu

and
Bn ≤ (1 + ε)F + B

√
2κu + κ(ε)Au,

where κ and κ(ε) can be chosen to be respectively equal to 4 and (2.5+32ε−1).
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To prove this lemma, we apply Massart’s version [11] of Talagrand’s inequal-
ity [16], (see also Ledoux [10]), for empirical processes.

(Talagrand’s inequality) Let X1 = (X1
1 , ...,XN

1 ), ...,Xn = (X1
n, ...,XN

n )
be independent random variables with values in [−b, b]N , for some positive
real b. Let

Z = sup
1≤t≤N

∣

∣

∣

∣

∣

n
∑

i=1

(

Xt
i − E(Xt

i )
)

∣

∣

∣

∣

∣

, (3.6)

and let

v = sup
1≤t≤N

n
∑

i=1

Var(Xt
i ). (3.7)

Then for all ε > 0, z > 0

P[Z ≥ (1 + ε)E(Z) +
√

2κvz + κ(ε)bz] ≤ e−z, (3.8)

where κ and κ(ε) can respectively be taken equal to 4 and 2.5 + 32/ε.

Proof.[Lemma 3.2] It is easy to see by the independence property of the
variables that

Vn =
n
∑

i=2

E(i)









i−1
∑

j=1

gi,j(Ti, Tj)







 .

Therefore, by duality, we have that:

√

Vn = sup
∑n

i=2 E(ai(Ti)2)=1

∣

∣

∣

∣

∣

n
∑

i=2

E(i)



ai(Ti)

i−1
∑

j=1

gi,j(Ti, Tj)





∣

∣

∣

∣

∣

= sup
∑n

i=2 E(ai(Ti)2)=1

∣

∣

∣

∣

∣

n−1
∑

j=1

n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, Tj))

∣

∣

∣

∣

∣

,

and

Bn = sup
i

|Xi| ≤ sup
i,t

∣

∣

∣

∣

∣

i−1
∑

j=1

gi,j((t, Tj)

∣

∣

∣

∣

∣

= Bn.

By density, we can restrict the previous suprema to a countable deter-
ministic dense subset of parameters. By monotone limit, we can restrict our-
selves to take a finite subset of parameters and then pass to the limit. These
suprema can then be interpreted as suprema of the form supt∈T

∑n
i=1 Xt

i ,
where T is finite and the (Xt

i , t ∈ T )’s are centered, independent and
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bounded. Therefore, applying Theorem 3, and passing to the limit give
the following results:

Let u > 0 and let ε > 0. With probability larger than 1 − e−u,

√

Vn ≤ (1 + ε)E(
√

Vn) +
√

2κv1u + κ(ε)b1u, (3.9)

where

v1 = sup
∑n

i=2 E(ai(Ti)2)=1

n−1
∑

j=1

Var(j)





n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, Tj))





and

b1 = sup
t,j,
∑n

i=2 E(ai(Ti)2)=1

∣

∣

∣

∣

∣

n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, Tj))

∣

∣

∣

∣

∣

.

For Bn we have with probability larger than 1 − e−u,

Bn ≤ (1 + ε)E(Bn) +
√

2κv2u + κ(ε)b2u, (3.10)

where

v2 = sup
i,t

i−1
∑

j=1

Var(j) (gi,j(Ti, Tj))

and

b1 = sup
t,j,x,i

∣

∣

∣

∣

∣

gi,j(x, t)

∣

∣

∣

∣

∣

.

So (3.9) and (3.10) are true together on an event with probability larger
than 1 − 2e−u. Using (2.4), we have E(

√
Vn) ≤

√

E(Vn) = C, v1 = D2,
b1 ≤ B, E(Bn) = F , v2 ≤ B2 and b2 = A. The result follows. �

Proof.[Theorem 3.1] First, define b and v by

√
v = (1 + ε)C + D

√
2κu + κ(ε)Bu

and
b = (1 + ε)F + B

√
2κu + κ(ε)Au.

Next, let us now return to Un. More precisely, let us define the stopping
time T by T + 1 = inf{k ∈ N, Vk > v or Bk > b}. Then UT

n , the martingale
Un stopped in T , is also a martingale with respect to the same filtration.
As Vk and Bk are nondecreasing, the angle bracket and the jumps of this
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new martingale are respectively bounded by v and b. Therefore, (see [12,
Lemma VII-2-8, p 154]), for all λ > 0,

(

eλUT
n −φc(λ)v , n ∈ N

)

(3.11)

is a super-martingale where φc(λ) = (eλc − λc − 1)/c2. Finally, performing
some classical computation on the Laplace transform of UT

n , we get via the
Bienaymé-Tchebicheff’s inequality

P

(

UT
n ≥

√
2vu +

b

3
u

)

≤ e−u.

Hence

P

(

Un ≥
√

2vu +
b

3
u

)

≤ P

(

UT
n ≥

√
2vu +

b

3
u

)

+ P(T + 1 ≤ n)

≤ 3e−u

by Lemma 3.2. �

As already indicated, Theorem 3.1 does not quite recover the exponential
bound of [4] because of the extra term F . With a little more work, F can
be removed. At first, we need the following simple lemma.

Lemma 3.3 Let (Yn, n ∈ N) be a martingale. For all k ≥ 2, let

Ak
n =

n
∑

i=1

E

(

(Yi − Yi−1)
k|Fi−1

)

.

Then for all integer n ≥ 1 and for all λ,

En = exp



λYn −
∑

k≥2

λk

k!
Ak

n



 (3.12)

is a super-martingale.

Proof. For all integer n ≥ 1,

E(En|Fn−1) = En−1E(eλ(Yn−Yn−1)|Fn−1)

exp



−
∑

k≥2

λk

k!
E

(

(Yn − Yn−1)
k|Fn−1

)



 ,
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But

E(eλ(Yn−Yn−1)|Fn−1) = 1 + E





∑

k≥2

λk

k!
(Yn − Yn−1)

k|Fn−1



 .

Splitting between the cases Yn − Yn−1 ≥ 0 and Yn − Yn−1 < 0, using alter-
nating series and Fatou Lemma, we obtain

E

(

eλ(Yn−Yn−1)|Fn−1

)

≤ 1 +
∑

k≥2

λk

k!
E

(

(Yn − Yn−1)
k|Fn−1

)

≤ exp





∑

k≥2

λk

k!
E

(

(Yn − Yn−1)
k|Fn−1

)



 ,

giving the result. �

A2
n is the classical angle bracket. Assume Y0 = 0. If the Ak

n are bounded by
wk

n ≥ 0, we have for all λ > 0,

E(eλYn) ≤ exp





∑

k≥2

λk

k!
wk

n



 , (3.13)

since E(En) ≤ E(E0) = 1. This result is due to Pinelis [13, Theorem 8.5].

We now state our main result which recovers the exponential bound of
[4] with estimates on the constants.

Theorem 3.4 Let A,B,C,D be as in Theorem 3.1. For all ε, u > 0,

P(Un ≥ 2(1+ε)3/2C
√

u+2η(ε)Du+β(ε)Bu3/2+γ(ε)Au2) ≤ 2.77e−u (3.14)

where

• η(ε) = 1.42
√

κ(2 + ε + ε−1),

• β(ε) = e(1 + ε−1)2κ(ε) +
[

(1.42
√

κ(2 + ε + ε−1)) ∧ (1+ε)2√
2

]

,

• γ(ε) = (e(1 + ε−1)2κ(ε)) ∧ (1+ε)2

3 ,
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• κ = 4,

• κ(ε) = 2.5 + 32ε−1.

Proof. The Ak
n corresponding to the martingale Un are

n
∑

i=2

E(i)











i−1
∑

j=1

gi,j(Ti, Tj)





k





≤ V k

n =

n
∑

i=2

E(i)





∣

∣

∣

∣

∣

i−1
∑

j=1

gi,j(Ti, Tj)

∣

∣

∣

∣

∣

k


 .

We now wish to estimate the V k
n and this is the purpose of:

Lemma 3.5 Let ε > 0 and u > 0. One has with probability larger than
1 − 1.77e−u, for all k ≥ 2

(V k
n )1/k ≤ (1 + ε)(E(V k

n ))1/k + σk

√
2κku + κ(ε)bkku,

where

σ2
k = sup

∑n
i=2 E(|ai(Ti)|k/(k−1))=1







n−1
∑

j=1

E









n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, Tj)





2









,

bk = sup
∑n

i=2 E(|ai(Ti)|k/(k−1))=1,j≤n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=j+1

E(i) [gi,j(Ti, Tj)ai(Ti)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

and where κ and κ(ε) can respectively be taken equal to 4 and 2.5 + 32/ε.

Proof.[Lemma 3.5] By Hölder’s inequality, we have:

(V k
n )1/k = sup

∑n
i=1 E(|ai(Ti)|k/(k−1))=1







n−1
∑

j=1

n
∑

i=j+1

E(i) (gi,j(Ti, Tj)ai(Ti))







.

Using the same method as before, we can view the V k
n ’s as a limit of suprema

of the form

sup
t∈T

n
∑

i=1

Xt
i

where T is finite and where the (Xt
i , t ∈ T )’s are independent centered and

bounded real random variables. We can therefore apply again Talagrand’s
inequality (3.8): for all k ≥ 2, all z > 0 and all ε > 0

P

(

(V k
n )1/k ≥ (1 + ε)E((V k

n )1/k) + σk

√
2κz + κ(ε)bkz

)

≤ e−z. (3.15)
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Applying (3.15) to z = ku and summing over k, it follows that:

P

(

∀k ≥ 2, (V k
n )1/k ≥ (1 + ε)E((V k

n )1/k) + σk

√
2κku + κ(ε)bkku

)

≤
∑

k≥2

e−ku.

In fact the above left hand side is more precisely dominated by

1 ∧
∑

k≥2

e−ku ≤ 1 ∧ e−u/u ≤ 1.77e−u.

Finally, E((V k
n )1/k) ≤ (E(V k

n ))1/k and the result follows. �

We now bound the σk’s and the bk’s. The easiest to bound are the bk’s:
by Hölder’s inequality,

bk ≤ sup
j,t





n
∑

i=j+1

E(i)(|gi,j(Ti, t)|k)





1/k

≤ (B2Ak−2)1/k,

where again B is given by (3.5) and since the gi,j’s are bounded by A. The
variance term is a bit more intricate.

σ2
k = sup

∑n
i=2 E(|ai(Ti)|k/(k−1)) = 1
∑n−1

j=1 E(|bj(Tj)|2) = 1

n−1
∑

j=1

E
(j)





n
∑

i=j+1

E(i)(gi,j(Ti, Tj)ai(Ti)bj(Tj))





= sup
∑n

i=2 E(|ai(Ti)|k/(k−1)) = 1
∑n−1

j=1 E(|bj(Tj)|2) = 1

n
∑

i=2

E(i)





i−1
∑

j=1

E
(j)(gi,j(Ti, Tj)bj(Tj))ai(Ti)





= sup
∑n−1

j=1 E(|bj(Tj)|2)=1







n
∑

i=2

E(i)





i−1
∑

j=1

E
(j) (gi,j(Ti, Tj)bj(Tj))





k






1/k

≤ (Bk−2D2)1/k,

with D given by (3.3). For awhile, we keep the expectation of V k
n . Using

the simple,

∀k > 1, θ, ε > 0, (1 + θ)k ≤ (1 + ε)k−1 + (1 + ε−1)k−1θk, (3.16)
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with probability larger than 1 − 1.77e−u, for all k ≥ 2, V k
n is bounded by

wk
n, where wk

n is given by

wk
n = (1 + ε)2k−1

E(V k
n ) + (2 + ε + ε−1)k−1D2Bk−2(

√
2κku)k

+ (1 + ε−1)2k−2B2Ak−2κ(ε)k(ku)k.

As in the proof of Theorem 3.1, let T + 1 = inf{p ∈ N,∃k, V k
p ≥ ak

n}
and note that since the V k

n are nondecreasing, P(T < n) ≤ 1.77e−u. Then
stopping Un at T , gives

E(eλUT
n ) ≤ exp





∑

k≥2

λk

k!
wk

n



 .

It remains to simplify this last bound and to use the Bienaymé-Tchebicheff
inequality.

wn =
∑

k≥2

λk

k!
wk

n

≤
∑

k≥2

λk

k!
(1 + ε)2k−1

E(V k
n ) +

+
∑

k≥2

λk

k!
(2 + ε + ε−1)k−1D2Bk−2

√
2κku

k
+

+
∑

k≥2

λk

k!
(1 + ε−1)2k−2B2Ak−2κ(ε)k(ku)k.

Let us respectively denote by α, β and γ, each one of the three previous
sums. For the last sum, setting δ(ε) = e(1 + ε−1)2κ(ε), we get

γ ≤
∑

k≥2

(δ(ε))kB2Ak−2(λu)k =
λ2(Bδ(ε)u)2

1 − (Aδ(ε)u)λ
,

for λ < (Aδ(ε)u)−1.
For the middle sum, setting η(ε) = 1.0007

√
2κ(2+ ε+ ε−1), we similarly

get

β ≤ λ2(Dη(ε)
√

u)2

1 − (Bη(ε)
√

u)λ
,

for λ < (Bη(ε)
√

u)−1.
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The estimation of the first sum is more intricate:

α =
1

1 + ε

n
∑

i=1

E(i) (E(exp(µ|Ci|)|Ti) − µE(|Ci||Ti) − 1) , (3.17)

where Ci =
∑i−1

j=1 gi,j(Ti, Tj) and µ = λ(1 + ε)2. As eθ − θ − 1 > 0, for all θ,
adding E(exp(−µ|Ci|)|Ti) + µE(|Ci||Ti) − 1 to (3.17), we get

α ≤ 1

1 + ε

n
∑

i=1

E(i) (E(exp(µCi)|Ti) − 1 + E(exp(−µCi)|Ti) − 1) .

As Ci is a sum of centered bounded i.i.d. quantities, it follows from Bern-
stein’s inequality that

α ≤ 2

1 + ε

n
∑

i=1

E(i)



e

µ2vi,Ti
2−2µ A

3 − 1



 , (3.18)

where vi,Ti =
∑i−1

j=1 E
(j)(gi,j(Ti, Tj)

2). But vi,Ti ≤ B2, thus
∑n

i=1 E(i)(v
k
i,Ti

) ≤
C2B2(k−1), where C is given by (3.2). Using these facts in (3.18) leads to

α ≤ (1 + ε)3C2λ2

1 − λ(1 + ε)2A/3 − λ2(1 + ε)4B2/2
.

The last expression can be upper bounded by:

α ≤ (1 + ε)3C2λ2

1 − (1 + ε)2λ(A/3 + B/
√

2)
,

for λ ≤ [(1 + ε)2(A/3 + B/
√

2)]−1. Finally one has,

E(eλUT
n ) ≤ exp

(

λ2W

1 − λc

)

,

where
W = (1 + ε)3/2C + η(ε)D

√
u + δ(ε)Bu,

and
c = max

(

(1 + ε)2(A/3 + B/
√

2), η(ε)B
√

u, δ(ε)Au
)

.

This implies:
P(UT

n ≥ 2W
√

u + cu) ≤ e−u.
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Proceeding as in the end of the proof of Theorem 3.1, one gets the bound

P(Un ≥ 2W
√

u + cu) ≤ 2.77e−u.

Moreover if u ≤ 1, 2.77 exp(−u) > 1, and this finishes the proof of the
theorem. �

The results of Theorem 3.1 and of Theorem 3.4 are both of interest. The
quadratic term in the first one is, as ε tends to 0, of the form

√
2Cu which

is the optimal rate for the Central Limit Theorem since the variance term
C represents the true variance of the process.

The quadratic term in the second theorem is larger: it is of the form
2
√

Cu, the extra factor
√

2 coming from the use of symmetrization in the
proof. This theorem gives precise constants which are not available in the
result of [4]. Moreover Theorem 3.4 has better order of magnitude than
Theorem 3.1 as can be seen in the following example originating in statistics
(see[9]).

Let T1, ..., Tn be uniformly distributed on [0, 1). Let m be a regular
partition of [0, 1), i.e. [0, 1) = ∪d

i=1[
i−1
d , i

d).
We set

∀(x, y) ∈ [0, 1)2, g(x, y) = d
∑

I∈m

(1II(x) − 1/d)(1II (y) − 1/d).

Let Un be the corresponding U-statistics (see the appendix of [9]). One
has

A ≤ 4d, B2 ≤ 2nd, C2 ≤ n(n − 1)

2
d, D ≤ (n − 1)

2
.

F can also be computed (using Laplace transform) and is of the order of
d ln n + n.

For all ε and u positive, the following concentration inequalities hold
true

• by applying Theorem 3.1: with probability smaller than 3e−u one has

1

n(n − 1)

∑

i6=j

g(Ti, Tj) =
2Un

n(n − 1)
≤

2(1 + ε)

√

d

n(n − 1)
u + �

(

1

n
+

d ln n

n2

)

u+

+ �

√

d/n

n − 1
u3/2 + �

d

n(n − 1)
u2.
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• by applying Theorem 3.4: with probability smaller than 2.77e−u one
has

2Un

n(n − 1)
≤ 2(1+ε)3

√

2d

n(n − 1)
u+�

1

n
u+�

√

d/n

n − 1
u3/2+�

d

n(n − 1)
u2.

(The squares represent known but intricate constants.) The second inequal-
ity is sharper in the second term. In particular if d is of order n2, the second
one remains bounded while the first one tends to infinity with n.

4 The Poisson framework

The methodology of the previous sections can be easily adapted to obtain
similar results for double integrals of Poisson processes. Let N be a time
Poisson process with compensator Λ, and let (Mt = Nt − Λt, t ≥ 0) be the
corresponding martingale.

The U-statistic or the double integral for the Poisson process is defined
by

Zt =

∫ t

0

∫ y−

0
f(x, y)dMxdMy

for f : R × R → R a Borel function.
Then we can easily obtain the corresponding version of Theorem 3.1.

Theorem 4.1 Let u, ε > 0. If f is bounded by A, then

P

[

Zt ≥ (1 + ε)C
√

2u +

(

2
√

κD +
1 + ε

3
F

)

u+

+

(√
2κ(ε) +

2
√

κ

3

)

Bu3/2 +
κ(ε)

3
Au2

]

≤ 3e−u,

where

C2 =

∫ t

0

∫ y

0
f(x, y)2dΛx dΛy,

D = sup
∫ t
0

a2
xdΛy=1,

∫ t
0

b2ydΛx=1

∫ t

0
ax

∫ t

x
byf(x, y)dΛydΛx,

F = E

(

sup
y≤t

∣

∣

∣

∣

∣

∫ t

0
1Ix<yf(x, y)dMx

∣

∣

∣

∣

∣

)

,
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and

B2 = max

{

sup
y≤t

∫ y

0
f(x, y)2dΛx, sup

x≤t

∫ t

x
f(x, y)2dΛy

}

.

where κ = 6 and κ(ε) = 1.25 + 32/ε are given by [14, Corollary 1].

Proof. Perform similar computations in continuous time, replacing Ta-
lagrand’s inequality by [14, Corollary 1] and (3.11) by the corresponding
Lemma derived by van de Geer in [17] or in [8, Theorem 23.17]. �

To conclude, we also state the Poisson version of Theorem 3.4.

Theorem 4.2 For all ε, u > 0,

P(Zt ≥ 2(1 + ε)3/2C
√

u + 2η(ε)Du + β(ε)Bu3/2 + γ(ε)Au2) ≤ 2.77e−u

where

• η(ε) = 1.42
√

κ(2 + ε + ε−1),

• β(ε) = e(1 + ε−1)2κ(ε) + (1.42
√

κ(2 + ε + ε−1)) ∧ (1+ε)2√
2

,

• γ(ε) = (e(1 + ε−1)2κ(ε)) ∧ (1+ε)2

3 ,

• κ = 6,

• κ(ε) = 1.25 + 32/ε.

Proof. Perform similar computations in continuous time, replacing Ta-
lagrand’s inequality by [14, Corollary 1] and replacing Lemma 3.3 by its
corresponding continuous time version [15, Proposition 4]. �

Potential applications of the two previous theorems would be to construct
tests as in [3], but for the Poisson intensity.

5 Concluding Remarks

In [4], the exponential bound is obtained for decoupled U-statistics, i.e. of
the form

n
∑

i=1

n
∑

j=1

fi,j(Ti, T
′
j), (5.1)
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where T1, ..., Tn, T ′
1, ..., T

′
n are independent random variables. The decou-

pling inequality of de la Peña and Montgomery-Smith [2] states that, for all
z > 0,

P



|
n
∑

i=1

n
∑

j=1

fi,j(Ti, Tj)| ≥ z



 ≤ C2P



C2|
n
∑

i=1

n
∑

j=1

fi,j(Ti, T
′
j)| ≥ z



 , (5.2)

for some presently unknown C2 > 0.
Our methods provide an exponential upper bound for the left hand side

of (5.2) while [4] provides an exponential upper bound for its right hand side.
Simple modifications such as replacing E(i)(gi,j(Ti, Tj)) by E(gi,j(Ti, T

′
j)|T ′

j)

and similarly E
(j)(gi,j(Ti, Tj)) by E(gi,j(Ti, T

′
j)|Ti) and also changing Fn to

the σ-field generated by {T1, ..., Tn, T ′
1, ..., T

′
n}, give an upper bound for the

right hand side similar to (3.14). Moreover this implies that in (5.2), C2 = 1
works.

The martingale part of the approach presented in these notes adapts eas-
ily to higher order U-statistics. However, we are lacking the corresponding
version of (3.8). Even for suprema of U-statistics of order two, which will
then imply results on U-statistics of order three, (3.8) is unknown. This
problem deserves a closer attention.
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