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We remark that Krylov subspace approximations to '(�A)v converge about as fast asthose for exp(�A)v, see [13].Potential advantages for exponential integrators can thus originate from two dif-ferent sources: Computing '(�A)v can be less expensive than solving (I � �A)x = v,and the exponential integration method itself may behave more favorably than stan-dard integrators. The latter case occurs in particular for mildly nonlinear di�eren-tial equations whose Jacobian has large imaginary eigenvalues, e.g., wave equations,Schr�odinger equations, exible mechanical systems, and oscillatory electric circuits.Standard sti� integrators either damp high frequencies or map them to one and thesame frequency (or nearly so) in the discretization, neither of which may be desirable.In Section 2 we give some simple methods of order 2 that are exact for (1.2) orfor linear second-order di�erential equations. They include new symmetric methods,which appear useful for long-time integration of conservative, time-reversible problems.In Section 3 we consider a class of methods that would reduce to explicit Runge-Kutta methods if '(z) = (ez � 1)=z were replaced by '(z) � 1, and to Rosenbrock-Wanner methods for '(z) = 1=(1� z). We give order conditions, both for exact andinexact Jacobian, and derive su�cient and necessary conditions to ensure that (1.2)is solved exactly.In Section 4 we extend the methods to di�erential-algebraic systems. We deriveorder conditions up to order 3 for such problems and for singularly perturbed systems.In Section 5 we construct methods of classical order 4 which are exact for (1.2)and have further favorable properties when applied to sti� problems. In particular,we use a reformulation that reduces the computational work for the Krylov processes.Section 6 deals with implementation issues. Important topics are how to take intoaccount the computational work and storage requirements of the Krylov process inthe step size control, and when to stop the Krylov process.Based on the considerations of Sections 5 and 6, we have written a code exp4,which can be obtained via anonymous ftp from na.uni-tuebingen.de in the directorypub/codes/exp4.In Section 7 we describe numerical experiments with this code for reaction-di�usionproblems and for a Schr�odinger equation with time-dependent Hamiltonian, whichshow both the scope and the limitations of using Krylov approximations in exponen-tial integrators.In a �nal section we discuss conclusions and perspectives for the methods proposedin this article.We will describe the methods only for autonomous di�erential equations (1.1). Fornon-autonomous problems y0 = f(t; y), the methods should be applied to the extendedformally autonomous system obtained by adding the trivial di�erential equation t0 = 1.The methods are then exact for linear di�erential equations whose inhomogeneity islinear in t.2. Simple methods of order 2.2.1. The exponentially �tted Euler method. The prototype exponentialmethod, which seems to have appeared repeatedly in the literature under variousdisguises, is y1 = y0 + h'(hA)f(y0) ;(2.1) 2



where h is the step size, A = f 0(y0), and'(z) = ez � 1z :(2.2)The method is of order 2, and exact for linear di�erential equations (1.2).2.2. A symmetric exponential method. For long-time integration of conser-vative problems, time reversibility is an important property. A symmetric method oforder 2 is given by the two-step formulayn+1 � yn = ehA(yn�1 � yn) + 2h'(hA)f(yn);(2.3)with A = f 0(yn) and ' given by (2.2). The method is exact for linear problems (1.2)provided that the starting values y0 and y1 are exact. The method can be viewedas a generalization of the explicit midpoint rule, to which it reduces for A = 0. Thecharacteristic roots of the method applied to y0 = �y are eh� and �1 which shows thatthe method is A-stable. The oscillatory error component (�1)n can be eliminated bytaking the average of two successive values, (yn + yn+1)=2, as an approximation toy(tn + h=2).2.3. A cosine method for second-order di�erential equations. We nowconsider y00 = f(y); y(0) = y0; y0(0) = y00 :(2.4)For the linear problem y00 = Ay + b(2.5)the exact solution satis�esy(t+ h)� 2y(t) + y(t� h) = h2 (h2A)(Ay(t) + b) ;(2.6)with the entire function  (z) = cosp�z � 1z=2 :This motivates the schemeyn+1 � 2yn + yn�1 = h2 (h2A)f(yn) ;(2.7)with A = f 0(yn), which is a symmetric method of order 2 for (2.4). Because of (2.6),the scheme is exact for linear problems (2.5).Derivative approximations that are exact for (2.5) are obtained viay0n+1 � y0n�1 = 2h�(h2A)f(yn);(2.8)where �(z) = sinp�zp�z :3



3. Higher-order exponential one-step methods: Order conditions andstability. In this section we study a general class of exponential integration methodsintroduced in [13]. Starting with y0 as an approximation to y(t0), an approximationto y(t0 + h) is computed viaki = '(hA)0@f(ui) + hA i�1Xj=1 ijkj1A ; i = 1; : : : ; s(3.1) ui = y0 + h i�1Xj=1�ijkj(3.2) y1 = y0 + h sXi=1 biki :(3.3)Here A = f 0(y0), and ; ij; �ij ; bi, with ij = �ij = 0 for i � j, are the coe�cients thatdetermine the method. The internal stages u1; : : : ; us can be computed one after theother, with one multiplication by '(hA) and a function evaluation at each stage. Thescheme would become an explicit Runge-Kutta method for '(z) � 1 (and ij � 0), anda Rosenbrock-Wanner method for the choice '(z) = 1=(1� z). As in the exponentialEuler method (2.1), we choose instead the function (2.2).3.1. Order conditions when using the exact Jacobian. Our aim now is toconstruct higher-order methods. The order conditions for the exponential methodscan be derived similarly to Rosenbrock-Wanner methods, see, e.g., [12, Section IV.7].Therefore, we only state the conditions here. For abbreviation we de�ne�ij := �ij + ij :(3.4)Theorem 3.1. An exponential method (3:1){(3:3) with A = f 0(y0) is of order pi� sXj=1 bj�j(�) = P� ()for elementary di�erentials � up to order p. Here, �j(�) and the polynomials P� ()are listed in Table 3:1 for p � 5.The only di�erence to the order conditions for Rosenbrock-Wanner methods is inthe polynomials P� ().Theorem 3.2. The method (3:1){(3:3) is exact for linear di�erential equations(1:2), i� for all n = 1; 2; 3; : : :X bj1�j1;j2�j2;j3 : : :�jn�1;jn = 1n � 1n�1 � �� 1n�2 � � � � ��12 � � (1� ):(3.5)These conditions can be ful�lled if  is the reciprocal of an integer. Then only a �nitenumber of these conditions are needed. The others are satis�ed automatically becausefor su�ciently large n, both sides of (3.5) then vanish.Proof. For the linear problem (1.2), both the exact and the numerical solutiondepend analytically on h. Since only the elementary di�erentials f , f 0f , f 0f 0f , f 0f 0f 0f ,: : :are nonvanishing for (1.2), it thus su�ces to show that their order conditions aregiven by (3.5). Like for Rosenbrock methods, one obtains that they are of the formX bj1�j1;j2�j2;j3 : : : �jn�1;jn = Pn�1();(3.6) 4



Elementary �j(�) P� ()di�erential �f 1 1f 0f Pk �jk 1=2(1� )f 00(f; f) Pk;l �jk�jl 1=3f 0f 0f Pk;l �jk�kl 1=3(1=2� )(1� )f 000(f; f; f) Pk;l;m �jk�jl�jm 1=4f 00(f 0f; f) Pk;l;m �jk�kl�jm 1=8� =6f 0f 00(f; f) Pk;l;m �jk�kl�km 1=12� =6f 0f 0f 0f Pk;l;m �jk�kl�lm 1=4(1=3� )(1=2� )(1� )f (4)(f; f; f; f) P�jk�jl�jm�jp 1=5f 000(f 0f; f; f) P�jk�kl�jm�jp 1=10� =8f 00(f; f 00(f; f)) P�jk�kl�km�jp 1=15f 00(f 0f 0f; f) P�jk�kl�lm�jp 1=30� =8+ 2=9f 00(f 0f; f 0f) P�jk�kl�jm�mp 1=20� =8+ 2=12f 0f 000(f; f; f) P �jk�kl�km�kp 1=20� =8f 0f 00(f 0f; f) P �jk�kl�lm�kp 1=40� 5=48+ 2=12f 0f 0f 00(f; f) P �jk�kl�lm�lp 1=60� =12+ 2=9f 0f 0f 0f 0f P �jk�kl�lm�mp 1=5(1=4� )(1=3� )(1=2� )(1� )Table 3.1Order conditions for exponential methods up to order 5where Pn�1 is a polynomial of degree at most n � 1 which depends on the choice of' but not on the method coe�cients. It remains to show that Pn�1() is given bythe right-hand side of (3.5). If  = 0, then the method applied to (1.2) is just aRunge-Kutta method with coe�cients �jk and weights bi. From the order conditionsfor Runge-Kutta methods, we thus havePn�1(0) = 1=n! :The exponential Euler method (2.1) is a one-stage method (3:1){(3:3) with b1 = 1,�11 = 0, and with  = 1. Obviously,X bj1�j1;j2�j2;j3 : : :�jn�1;jn = 0(3.7)for n > 1 for this method. Since we already know that the exponential Euler methodis exact for (1.2) we conclude from (3.6) thatPn�1(1) = 0 for n > 1 :Similarly, two consecutive steps of the exponential Euler method with step size h=2can be viewed as one step of a two-stage method (3:1){(3:3) with  = 1=2. For sucha method, (3.7) is valid for n > 2. As before, we conclude from (3.6) thatPn�1(1=2) = 0 for n > 2 :Continuing this argument for 3; 4; : : : steps of the exponential Euler method with stepsizes h=3; h=4; : : :, we obtainPn�1(1=j) = 0 for j < n :5



Elementary �j(�) P� ()di�erential �f 1 1f 0f Pk �jk 1=2Af Pk jk �=2f 00(f; f) Pk;l �jk�jl 1=3f 0f 0f Pk;l �jk�kl 1=6f 0Af Pk;l �jkkl �=4Af 0f Pk;l jk�kl �=4AAf Pk;l jkkl 2=3Table 3.2Order conditions for exponential W-methods up to order 3It follows that Pn�1() is given by the right-hand side of (3.5).3.2. Order conditions for inexact Jacobians. One may also want to use themethod with an approximate Jacobian A. This requires further restrictions on themethod parameters. For order 3 the conditions are given in Table 3.2. They are thesame as for W-methods, see [12, p. 124], except for di�erent polynomials in .If the �rst �ve conditions of Table 3.2 are satis�ed, then the method is of order 3when A� f 0(y0) = O(h), cf. [15] for the analogous situation in W-methods.3.3. Stability. When the method is exact for linear di�erential equations, it istrivially A-stable. Much more can then in fact be shown about stability, includingthe practical situation where '(hA)v is computed only approximately. Consider aperturbed method (3.1){(3.3) applied to the linear problem (1.2):eki = '(hA) �Aey0 + b+ hAPi�1j=1 �ijekj�+ �iey1 = ey0 + hPsi=1 bieki :Here, �i is a perturbation at the ith stage, and ey0 is a perturbed starting value.Subtracting from the unperturbed scheme yields for the error "1 = ey1 � y1`i = '(hA) �A"0 + hAPi�1j=1 �ij`j�+ �i"1 = "0 + hPsi=1 bi`i ;where `j = ekj � kj and "0 = ey0 � y0. It is easy to see that"1 = ehA"0 + h sXi=1 bi ps�i(ehA � I) �i ;where pk(z) is a polynomial of degree k with pk(0) = 1, whose coe�cients are productsof �ij=. In particular, when the numerical range of A is contained in the left half-plane, then we have the stable error recurrencek"1k � k"0k+ Ch sXi=1 k�ik :6



The stability analysis could be extended to nonlinear problems y0 = Ay + g(y) withLipschitz-bounded g, to singularly perturbed problems, and to nonlinear parabolicproblems in a similar way to what has been done for Rosenbrock methods, cf. [10, 18,30]. 4. Exponential methods for di�erential-algebraic and singularly per-turbed problems. As with Rosenbrock-Wanner methods [12, Section VI.3], themethod (3.1){(3.3) can be extended to di�erential-algebraic equationsy0 = f(y; z)0 = g(y; z); gz invertible(4.1)by applying it formally to the singularly perturbed di�erential equationy0 = f(y; z)�z0 = g(y; z)(4.2)and letting �! 0 in the scheme. This will give us the following method: kili ! = " I 0�g�1z gy I # " '(hB) 00 �(hgz)�1 # " I �fzg�1z0 I # �8<: f(ui; vi)g(ui; vi) !+ h " fy fzgy gz # i�1Xj=1 ij  kili !9=; ;(4.3)where B = fy � fzg�1z gy , where the Jacobians are evaluated at (y0; z0), and where uiand vi are de�ned by  uivi ! =  y0z0 !+ h i�1Xj=1�ij  kjlj ! :(4.4)Finally we set  y1z1 ! =  y0z0 !+ h sXi=1 bi kili ! :(4.5)The derivation uses the auxiliary assumption that the eigenvalues of gz have negativereal part. The Jacobian of (4.2) is block diagonalized byX = " I +O(�) �fzg�1z +O(�2)�g�1z gy +O(�) I +O(�) # ;viz., " fy fz1� gy 1� gz # = X " B +O(�) 00 1�gz +O(1) #X�1 :Since '(h� gz) = � �hg�1z +O(( �h)2) ;7



the method (3.1){(3.3) applied to (4.2) reads kili ! = X " '(hB) +O(h�) 00 � �hg�1z +O(( �h)2) #X�18<: f(ui; vi)1� g(ui; vi) !+ h " fy fz1� gy 1�gz # i�1Xj=1 ij  kili !9=; :We note that " I 00 �I #X�1 " I 00 1� I # = " I �fzg�1z0 I # +O(�) :For �! 0, these formulas lead to the above method (4.3).Remark. The matrix B need not be computed when one uses Krylov methodsto approximate '(hB)u. Matrix vector multiplications with B are cheap when theaction of g�1z is inexpensive to compute. For example, this is the case in constrainedmechanical systems, cf. [12, p. 542], q0 = vv0 = a" M G(q)TG(q) 0 # a� ! =  �(q; v) (q; v) ! :Here, q and v are position and velocity variables, respectively, a is acceleration and �represents the Lagrange multipliers. In this system, gz corresponds to " M GTG 0 #.In suitable multibody formulations, linear equations with this matrix can be solved inan amount of work proportional to the dimension.When the exponential method is exact for linear di�erential equations with con-stant inhomogeneity, then method (4.3){(4.5) is exact for linear di�erential-algebraicequations y0 = Fyy + Fzz + b0 = Gyy + Gzz + cwith constant matrices Fy ; Fz; Gy; Gz (Gz invertible) and constant vectors b; c. Apartfrom a direct calculation, this may be seen as follows: When the eigenvalues of Gzhave negative real part, the exactness is again obtained by letting �! 0 in the singu-larly perturbed problem, which is solved exactly by the method. From this case, theexactness in the general situation of invertible Gz follows by analytical continuation.In general, the application of this scheme to di�erential-algebraic equations resultsin an order reduction to order 2, unless the method coe�cients satisfy additionalconditions.Theorem 4.1. The method (4:3){(4:5) is convergent of order 3 for the di�erential-algebraic equation (4:1) if it satis�es the order conditions of Table 3:1 up to order 3,(3:5), and in addition Xj;k;l;m bj!jk�kl�km = 1(4.6)where [!jk ] = (� + I)�1 with � = [�jk]. 8



The additional order condition is the same as for Rosenbrock methods applied to(4.1) [12, p. 446]. Instead of giving a cumbersome formal proof of the theorem, we makethe reappearance of condition (4.6) for exponential methods plausible as follows: Likethe order conditions of Section 3, also the di�erential-algebraic order conditions are ofthe same form as for Rosenbrock methods, but possibly with di�erent right-hand sidesinvolving . We know that the theorem is valid for '(z) = 1=(1� z). The appearanceof the !jk is related only to the term (hgz)�1 in (4.3), which is independent of '.The terms �jk are also unrelated to '(hB). Therefore, the condition remains thesame as for Rosenbrock methods.The di�erential-algebraic order condition (4.6) is important not only for di�erential-algebraic systems but also for sti� di�erential equations. For example, the third-ordererror bound of Rosenbrock methods for singularly perturbed problems (4.2) in Theo-rem 1 (case r = 3) of [10] can be shown to be valid also for exponential methods.5. Construction of fourth-order methods.5.1. Reduced methods. We recall that one step of the exponential methodevaluated in the form (3.1){(3.3) contains s multiplications of '(hA) with a vector.Since this vector is di�erent in each of these s steps, the approximation with a Krylovsubspace method requires the construction of bases of s Krylov spaces with respectto the same matrix A but with di�erent vectors. This turns out to be prohibitivelyexpensive. One may think of exploiting techniques for solving linear systems withmultiple right-hand sides [25, 27], but in our experiments the savings achieved wereminor. Therefore, we will present an alternative formulation of the method.A key point for the construction of e�cient methods is that one can compute'(jz), j = 2; 3; : : :, recursively from '(z):'(2z) = �12z'(z) + 1�'(z)'(3z) = 23 (z'(z) + 1)'(2z) + 13'(z)(5.1) '(4z) = : : :Once we have computed '(hA), we can thus compute '(jhA)v for any integer j > 1with the expense of matrix vector multiplications.The recurrence (5.1) is equally useful for the more interesting case where '(jhA)vis approximated by Krylov methods. The Krylov subspace approximation is of theform '(�A)v � Vm'(�Hm)e1 � kvk2(5.2)where Vm = [v1; : : : ; vm] is the matrix containing the Arnoldi (or Lanczos) basis of themth Krylov subspace with respect to A and v, and Hm is the orthogonal (oblique)projection of A to the mth Krylov subspace, which is an m � m upper Hessenberg(block tridiagonal, respectively) matrix. Further, e1 is the �rst m-dimensional unitvector.The iteration number m is typically very small compared to the dimension ofthe matrix A, so that the matrix '(hHm) can be computed quite cheaply (see x6 fordetails). Then the recurrence (5.1) can be used to compute '(jhHm)e1 by performingmatrix vector multiplications with the small matrices Hm and '(hHm). If we denote9



the identity matrix of dimension m by Im, then'(2�A)v � Vm'(2�Hm)e1kvk2= Vm�12�Hm'(�Hm) + Im�'(�Hm)e1kvk2'(3�A)v � Vm �23 (�Hm'(�Hm) + Im)'(2�Hm) + 13'(�Hm)� e1kvk2 :We can exploit the recurrences (5.1) by reformulating the method. For this weintroduce auxiliary vectorsdi = f(ui)� f(y0)� hA sXj=1�ijkj :(5.3)Note that for A = f 0(y0), this corresponds to a �rst-degree Taylor expansion of faround y0. Hence the vectors di are usually small in norm and would vanish for linearf . With (3.4) and (5.3) we haveki = k1 + '(hA)di+ '(hA)hA sXj=1 �ijkj :Because of (5.1) we can choose �kl such that for  = 1=n and i = 1; : : : ; nki = '(ihA)f(y0);knj+i = k1 + '(ihA)dnj+i; j � 1:(5.4)All the coe�cients �kl are uniquely determined by (5.4). In order to apply the recur-rence formulas (5.1) in (5.4) we further choose�nj+i;l = �nj+1;l; i = 1; : : : ; n; j; l � 1which gives unj+i = unj+1;dnj+i = dnj+1; i = 1; : : : ; n; j � 1:This reduces the number of f -evaluations and of evaluations of '(hA) by a factor ofn compared to the general scheme (3.1){(3.3). This is particularly important whenthis reduced method is combined with a Krylov process for approximating '(hA)vsince in this case we need to compute a basis of a new Krylov space only at everynth intermediate step. Moreover, since the vectors di are usually small in norm, theKrylov approximation of '(ihA)dnj+1 (j � 1) typically takes only few iterations toachieve the required accuracy. The cost for building up the Krylov space of A withrespect to the vector f(y0) thus dominates the computational cost.We note �nally that we can reorganize the computations in (5.4) as~ki = ki = '( inhA)f(y0)~knj+i = knj+i � k1 = '( inhA)dnj+1(5.5)for i = 1; : : : ; n and j � 1, and we can use the values ~kl in (3.2) and (3.3), withappropriately modi�ed weights:~�k;l = ( �k;l +Pm>n �k;m l = 1�k;l l > 110



and ~bl = ( bl +Pm>n bm l = 1bl l > 1 :(5.6)5.2. Methods of order 4. Next we show that the reduced scheme proposedabove still allows the construction of higher-order methods. Here, we concentrate on = 1=2 and  = 1=3 and start with a 3-stage method for  = 1=2 that uses 2 functionevaluations per step. The parameters �kl satisfying (5.4) are given by� = 264 0 0 01=4 0 00 0 0 375 :To ful�ll the conditions for order 4, there remain two free parameters �3;1; �3;2, and theweights bj , j = 1; : : : ; 4. The order conditions from Table 3.1 have a unique solution� = 264 0 0 00 0 03=8 3=8 0 375 ; bT = (�16=27; 1; 16=27) :This yields the scheme k1 = '(12hA)f(y0)k2 = '(hA)f(y0)w3 = 38(k1 + k2)u3 = y0 + hw3d3 = f(u3)� f(y0)� hAw3k3 = '(12hA)d3y1 = y0 + h(k2 + 1627k3) :(5.7)On k3 we have omitted the tilde corresponding to (5.5). This method is of order 4,and exact for linear di�erential equations (1.2). However, it is only of �rst order whenused with inexact Jacobian and of second order when applied to DAEs. Moreover,it is impossible to construct an embedded method of order 3, which makes it hardto perform a reliable estimation of local errors for step size control. The only cheapvariant is to use the exponential Euler method (2.1), which is only of order 2 and thustends to overestimate the local error.The method (5.7) with embedded (2.1) is however of interest as a very economicalmethod in situations where the time step is not restricted by accuracy, but only bythe convergence of the Krylov process for computing '(hA)f(y0). We note that k3is usually well approximated in a low dimensional Krylov space, because d3 is oftenmuch smaller in norm than f(y0).A more sophisticated method can be constructed with  = 1=3 and s = 7, using11



3 function evaluations per step. The parameters for (5.4) are given by� = 266666666664 0 01=6 01=9 2=9 00 0 0 0�1=6 0 0 1=6 0�1=3 0 0 1=9 2=9 00 0 0 0 0 0 0 377777777775 :With these parameters �kl, all the order conditions (3.5) for linear problems are sat-is�ed automatically for n � 4.For our method we choose to evaluate the function f at both end points and atthe middle of the time interval, i.e.,3Xj=1�4;j := 12 ; 6Xj=1�7;j := 1 :The solution is obtained by �rst solving the order condition up to order 4 from Ta-ble 3.1. The equations for f 00(f; f) and f 0f immediately yield b3 = 1 and b2 = 0. Nextthe conditions for f 0f 0f , f 000(f; f; f), f 0f 00(f; f) and (4.6) result in a linear system withfour equations for the unknowns bj , j = 4; : : : ; 7. This system has the unique solutionb4 = b6 = 1, b5 = �4=3, b7 = 1=6, which also satis�es the second order W-condition.From the equation for f we obtain b1 = �5=6. It remains to ful�ll the equation forf 00(f 0f; f), and further we satisfy the third-order W-condition for f 0f 0f in order toobtain order 3 when the approximation to the Jacobian is O(h) close to the true Ja-cobian. This yields �4;2 = 5=4� �4;3� 1=2�7;2��7;3 and �7;4 = ��7;5��7;6+ 2. Westill have some freedom so that we can solve the �fth-order conditions for f 000(f 0f; f; f)and f 00(f 0f 0f; f). This gives �7;2 = 2=5 + 4�4;3 and �7;3 = �2�4;3 + 13=20. Since noother �fth-order conditions can be satis�ed, we now minimize3Xj=1�24;j + 6Xj=1�27;jwhich yields �4;3 = �37=300 and �7;5 = �7;6 = 2=3.This construction gives us the following method:k1 = '(13hA)f(y0)k2 = '(23hA)f(y0)k3 = '(hA)f(y0)w4 = � 7300k1 + 97150k2 � 37300k3u4 = y0 + hw4d4 = f(u4)� f(y0)� hAw4k4 = '(13hA)d4(5.8) k5 = '(23hA)d4k6 = '(hA)d4w7 = 59300k1 � 775k2 + 269300k3 + 23(k4 + k5 + k6)12



u7 = y0 + hw7d7 = f(u7)� f(y0)� hAw7k7 = '(13hA)d7y1 = y0 + h(k3 + k4 � 43k5 + k6 + 16k7)Again, we have omitted the tilde on k4; : : : ; k7 as used in (5.5). We summarize theproperties of this method in a theorem.Theorem 5.1. The scheme (5:8) is of order 4 for di�erential equations (1:1),and exact for linear di�erential equations (1:2). It converges of order 3 for di�erential-algebraic equations (4:1) and to smooth solutions of singularly perturbed problems (4:2)uniformly for � � h2. For di�erential equations (1:1), it is of second order when usedwith inexact Jacobian, and of order 3 when the approximation to the Jacobian is O(h)close to the true Jacobian.The method satis�es three of the order-5 conditions. The residuals of the otherorder-5 conditions appear to be rather small, the largest one being 0:1.Although the scheme (5.8) is a 7-stage method, it requires only three functionevaluations. When using Krylov approximations, the computational cost is dominatedby computing k1. As discussed before, the reason is that k2, k3, k5, and k6 can becomputed recursively from (5.1) or the more stable recurrence (6.2) below, and thatk4 to k7 are typically well approximated in very low dimensional Krylov subspaces,because d4 and d7 are usually much smaller in norm than f(y0). For these reasons, andbecause of its superior theoretical properties, we prefer (5.8) to a \standard" 3-stagefourth-order scheme of type (3.1){(3.3).5.3. Embedded methods. We have constructed two embedded methods withdi�erent properties for the scheme (5.8). The �rst one is of order 3 for di�erentialequations (1.1) and di�erential-algebraic equations (4.1), and exact for linear equations(1.2). Solving the third-order conditions of Table 3.1 and condition (4.6), and choosingb6 = b7 = 1=2 gives the embedded schemeby1 = y0 + h(k3 � 12k4 � 23k5 + 12k6 + 12k7) :(5.9)This method does not satisfy the fourth-order conditions, except that for f 0f 0f 0f . Itis however only of order 1 as a W-method, i.e., when used with inexact Jacobian.The second embedded method is of order two as a W-method. It is not exact forlinear di�erential equations (1.2), and it does not satisfy the third-order conditions ofTable 3.1. It reads ey1 = y0 + h(�k1 + 2k2 � k4 + k7):(5.10)5.4. Dense output. Like for Runge-Kutta and Rosenbrock methods, a contin-uous numerical solution y(t0 + �h) is de�ned viay1(�) = y0 + h sXi=1 bi(�)kiwith polynomials bi satisfying bi(0) = 0 and bi(1) = bi. This approximation is of orderp, i. e., y(t0 + �h) � y1(�) = O(hp+1) ;13



i� sXi=1 bi(�)�i(�) = ��P� ()for all elementary di�erentials � of order � � p, see [12, p. 452].For the 3-stage method (5.7) a continuous numerical solution of order 3 is givenby b1(�) = �(1 � � � 1627�2);b2(�) = �2;b3(�) = 1627�3:For the 7-stage method (5.8) a continuous numerical solution of order 3, which is alsoof order 3 for di�erential-algebraic equations and of order 2 when used with inexactJacobian, is given by b1(�) = �(1� 72� + 53�2);b2(�) = 2�(1� �);b3(�) = �3;b4(�) = �2(2� 43� + 13�2);b5(�) = �43�4;b6(�) = �4;b7(�) = �2(�12 + 23�):The actual computation uses y1(�) = y0 + h sXi=1 ~bi(�)~kiwhere ~bi(�) are de�ned as in (5.6) and ~ki are the ki from (5.8).6. Implementation issues.6.1. Step size control. The step size control for the scheme (5.8) uses the twoembedded methods proposed in Section 5.3. As an estimate for the local error, wechoose the minimum of the local error estimates of these two methods. A step sizeselection strategy due to Gustafsson, see [12, p. 31{35] and the Radau5 code [12,p. 550�], then yields a new step size proposal herr.However, if Krylov subspace methods are used to approximate the matrix expo-nential operator, then in addition to the local error estimate it is necessary to take thework and storage requirements of the Krylov process into account. We propose thefollowing strategy: First choose a suitable \window" [�;M ] for the number of Krylovsteps m required in the approximation of k1; k2; k3 (recall that in reduced methods,the overall work of the Krylov processes is dominated by this �rst Krylov process).In this window we choose a desirable number of Krylov steps mopt. We preserve theactual step size h of the integration method whenever m 2 [�;M ]. If m > M the new14



Krylov step size is reduced until the required accuracy is achieved with an m 2 [�;M ].If m < � in two consecutive steps, we sethkry = h�moptm �� ;where we have found � = 1=3 as a reasonable value in our numerical experiments. Italso turned out that a more drastical enlargement of the step size is possible if m isvery small for more than two consecutive steps. For example we usedhkry = 2j�1hif m < 4 in the last j time steps.Finally we choose the new step size ashnew = minfherr; hkryg :6.2. Savings from previous steps. The scheme may reuse the Jacobian of aprevious time step as an approximation to the actual Jacobian. This is done if thelocal error of the embedded method (5.10) is acceptable and in addition hkry � herr,i.e., the step size is determined by the Krylov process.Further savings can be achieved if the Jacobian A and the step size h are the sameas in the previous time step. We then writekj(tn) = kj(tn�1) + '(jhA) (f(yn)� f(yn�1)) ; j = 1; 2; 3 :If f(yn) is close to f(yn�1), then the initial vector for the Krylov process is small innorm and thus the Krylov process becomes less expensive.6.3. Stopping criterion for the Krylov method. We need to decide whenthe Krylov approximation (5.2) is to be considered su�ciently accurate. Since exacterrors are inaccessible, the stopping criterion in the iterative solution of linear systems(�I � �A)x = v is usually based on the residualrm(�) = v � (�I � �A)xminstead of the error of the mth iterateem(�) = xm � x :For Galerkin-type methods like FOM and BiCG, the residual vectors can be computedfrom rm(�) = kvk2 � �hm+1;m [(�I � �Hm)�1]m;1 � vm+1 ;where hm+1;m is the (m+1; m) entry of Hm+1, and [ � ]m;1 denotes the (m; 1)-entry of amatrix. Using Cauchy's integral formula, the error of the mth Krylov approximationto '(�A)v can be written as�m = Vm'(�Hm)e1 � kvk2 � '(�A)v = 12�i Z� '(�) em(�) d� ;15



where � is a contour enclosing the eigenvalues of �A and �Hm, cf. [13]. Thus, theerror �m can be interpreted as a linear combination of errors em(�) of linear systems.Replacing em(�) by rm(�) in this formula, we get a generalized residual�m = 12�i Z� '(�) rm(�) d�= kvk2 � �hm+1;m ['(�Hm)]m;1 vm+1 ;which can be computed at no additional cost. This suggests to use �m instead of theunknown error �m in the stopping criterion. The use of �m was also proposed by Saad[26], who used a di�erent derivation that is plausible only for small k�Ak.In the scheme (5.8), the Krylov approximations to kj are multiplied by the stepsize h. It is therefore reasonable to stop the iteration ifh k�mktol < 1 ;(6.1)where k � ktol is the weighted norm used in the integrator:kdktol =  1N NXi=1(di=wi)2!1=2with wi = atoli+max(jyn;ij; jyn�1;ij) � rtol, where atoli and rtol are the given absoluteand relative error tolerances.In our numerical experiments we found that (6.1) is on the safe side, but sometimesrather pessimistic. Then it may pay o� to apply an idea attributed to Shampine in [12,p. 134], which consists in using a smoothed residual (I � �A)�1�m instead of the trueresidual. Since solving a linear system with coe�cient matrix (I��A) is prohibitivelyexpensive when A is large, one can perform a smoothing in them-dimensional subspaceand use h � kvk2 � �hm+1;m j[(I � �Hm)�1'(�Hm)]m;1j � kvm+1ktol < 0:1instead of (6.1) for m � 5, say. For smaller m, this criterion may be overly optimisticwhen �A has large norm.6.4. Computation of '(�Hm). To reduce the computational costs, we evaluate'(�Hm) only when m �gures in an index sequence, e.g., m 2 f1; 2; 3; 4; 6; 8; 11; 15; 20;27; 36; 48g. This sequence is chosen such that the computation of '(�Hm) is about asexpensive as the total of the previously computed '(�Hj), since the computation of'(�Hm) requires O(m3) arithmetic operations.If A is Hermitian, then Hm is Hermitian tridiagonal. In this case, one can simplydiagonalize Hm.In the non-Hermitian case, we suggest to use Pad�e approximation similarly to thethird method described in [19] to compute the matrix exponential. Here, the matrixis �rst scaled by a factor of 2�k such that k2�k�Hmk < 1=2. Then we evaluate the(6; 6) Pad�e approximation to '(z) for the scaled matrix:'(z) = 1 + 126z + 5156z2 + 1858z3 + 15720z4 + 1205920z5 + 18648640z61� 613z + 552z2 � 5429z3 + 11144z4 � 125740z5 + 11235520z6 + O(z13) :16



Next, '(�Hm) is computed recursively from '(2�k�Hm) by applying the followingcoupled recurrences: '(2z) = 12(ez + 1)'(z)e2z = ezez :(6.2)This recurrence is stable for all z in the left half-plane, whereas (5.1) becomes unstablefor large jzj because of the multiplication with z.Alternatively, in the non-Hermitian case, one can use a formula due to Saad [26,Section 2.3]: exp " �Hm e10 0 # = " exp(�Hm) '(�Hm)e10 1 # :This appears favorable when the dimension m is not too small.7. Numerical experiments. We have implemented the method (5.8) with (andwithout) Krylov approximations in a Matlab code exp4. The program is written inthe format used in the Matlab ODE suite [28], which is available via anonymous ftpon ftp.mathworks.com in the pub/mathworks/toolbox/matlab/funfun directory. Thecode exp4 can be obtained from na.uni-tuebingen.de in the pub/codes/exp4 directory.A C version of exp4 is also available from this ftp site.7.1. A reaction-di�usion equation with nonsti� chemical reaction: theBrusselator. To illustrate the behavior of the exponential integrator with Krylovapproximations to '(hA)v in the transition from a nonsti� to a sti� problem, wehave chosen the two-dimensional Brusselator [11, pp. 248�]:@u@t = 1 + u2v � 4u+ ��u@v@t = 3u� u2v + ��vfor 0 � x; y � 1 together with Neumann boundary conditions@u@n = 0; @v@n = 0and initial conditionsu(x; y; 0) = 0:5 + y; v(x; y; 0) = 1 + 5x :The Laplacian is discretized on a uniform 100 � 100 grid by central di�erences, sothat the dimension of the resulting ODE problem is 20; 000. The eigenvalues of thediscretized Laplacian lie between �80; 000 and zero. We present numerical experi-ments with three di�erent values of the di�usion coe�cient � = 2 � 10�4, 2 � 10�3,2 � 10�2, which mark the transition from a nonsti� to a sti� problem. The solution ofthe problem for � = 2 � 10�3 is shown in the movie on pp. 250� in [11].In Figs. 7.1{7.3 we show work-precision diagrams for our exponential integratorexp4, and for the explicit Runge-Kutta integrator ode45 from the Matlab ODEsuite [28], which is based on a �fth-order method of Dormand and Prince [3]. Thevertical axis shows the error at the end point t = 1, the horizontal axis gives the17
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number of ops. The markers � for exp4 and � for ode45 correspond to the errortolerances atol=rtol= 10�3, 10�3:5, : : : , 10�7:5. While the computational work of thenonsti� integrator increases drastically with growing �, the performance of exp4 isconsiderably less a�ected.7.2. A reaction-di�usion equation with sti� chemistry: the Robertsonexample. The following example shows the behavior of the exponential integratorfor a very sti� problem. We consider the Robertson reaction [12, pp. 3f] with one-dimensional di�usion: ut = �0:04u+ 104vw + �uxxvt = 0:04u� 104vw� 3 � 107v2 + �vxxwt = 3 � 107v2 + �wxxfor 0 � x � 1, 0 � t � 400 together with Neumann boundary conditions ux = vx =wx = 0 at x = 0; 1, and initial valuesu(x; 0) = 1 + sin(2�x); v(x; 0) = w(x; 0) = 0 :The di�usion coe�cient is chosen as � = 2 � 10�2. The second spatial derivativeis discretized on a uniform grid with 30 grid points. In this problem, the sti�nessoriginates from the reaction terms. We have chosen such a small problem becausewe intend to illustrate the inuence of the Krylov approximation procedure to theperformance of the integrator. In Fig. 7.4 we show the step sizes as a function of timein a double logarithmic scale with and without Krylov approximation of '(hA)v. Asthis example has only dimension 90, '(hA) can here be computed by diagonalization.For comparison, we also show the step size of the explicit integrator ode45 and thesti� integrator ode15s from the Matlab ODE suite [28], which uses a variant of aBDF method. All the methods have been run with the same tolerances atol=rtol=10�6. It is seen that in this example the step size is always limited by the Krylovprocess. The step size restriction does not appear very severe on the consideredtime interval. Similar step size sequences are obtained for the Krylov-approximatedexponential method for higher-dimensional versions of the problem. However, thelimits of the Krylov approach show up when the integration is continued to very longtimes. There, the step size remains essentially on the level seen at the right-most partof Fig. 7.4. It has been observed that this behavior is largely due to roundo� errore�ects.7.3. A Schr�odinger equation with time-dependent potential. As an ex-ample of a problem whose Jacobian has large imaginary eigenvalues we consider, fol-lowing [23], the one-dimensional Schr�odinger equation for  =  (x; t)i @ @t = H(x; t) with the Hamiltonian H(x; t) = �12 @2@x2 + �x22 + � sin2(t)x :This equation models an atom/molecule interacting with a high intensity CW laser.The parameter values used were � = 10 and � = 100. The initial value was  (x; 0) =19
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successful. Here, the theory in [5, 13] and [31] tells us that the number of necessarymatrix-vector multiplications with the Jacobian in Krylov iterations for exponentialmethods and the number of function evaluations in Runge-Kutta-Chebyshev methodsneeded to attain stability are both of the magnitude of phkAk. However, the Krylovmethods take advantage of clustered eigenvalues and of vectors with small componentsin some eigendirections. There is no restriction to problems with eigenvalues near thereal axis for the exponential methods with Krylov approximations, and much largertime steps than with standard explicit Runge-Kutta methods (such as the Dormand-Prince methods) can be taken.Sti� problems (e.g., reaction-di�usion problems with sti� reaction terms): Forhigh-dimensional systems, the standard approach is to use implicit methods (such asBDF or Radau) where the linear systems are solved iteratively with the help of ahopefully good and cheap preconditioner. If { and only if { an e�cient preconditioneris available, those methods are clearly favorable over the exponential methods pro-posed here, since it is not known how to precondition the iterative computation ofthe matrix exponential operator. Due to the superlinear error reduction of the Krylovapproximations to the matrix exponential, exponential methods are often competitiveeven without a preconditioner. We hope that future developments will allow to e�ec-tively use ideas of preconditioning in the computation of the exponentials and hencefurther enlarge the range of sti� problems on which exponential methods are e�cientlyapplicable.Highly oscillatory problems (e.g., wave equations, Schr�odinger equations, elasto-dynamics, and oscillatory electric circuits): Here, the proposed exponential methodsare able to resolve high frequencies to the required error tolerance without the severetime step restrictions of standard schemes. Time step restrictions of an often mildertype still occur because of nonlinear e�ects and because of limitations of the itera-tion number in the Krylov process. The latter are less severe when the eigenvalues ofthe Jacobian are clustered. The good resolution of high frequencies with exponentialmethods is in contrast to usual implicit integrators used with large time steps, whicheither damp high frequencies or map them to one and the same frequency (or nearlyso) in the discretization.It will be interesting to see how the new methods perform in real-life scienti�cproblems. REFERENCES[1] J. Carroll, Su�cient conditions for uniformly second-order convergent schemes for sti� initial-value problems, Computers Math. Applic. 24 (1992), 105{116.[2] G. Denk, A new e�cient numerical integration scheme for highly oscillatory electric circuits,Mathematical modeling and simulation of electrical circuits and semiconductor devices(Oberwolfach, 1992), Internat. Ser. Numer. Math., 117, Birkh�auser, Basel, 1994, 1{15.[3] J.R. Dormand and P.J. Prince, A family of embedded Runge-Kutta formulae, J. Comp. Appl.Math. 6 (1980), 19{26.[4] V.L. Druskin and L.A. Knizhnerman, Error bounds in the simple Lanczos procedure forcomputing functions of symmetric matrices and eigenvalues, Comput. Maths. Math. Phys.7 (1991), 20{30.[5] V.L. Druskin and L.A. Knizhnerman, Krylov subspace approximations of eigenpairs andmatrix functions in exact and computer arithmetic, Numer. Lin. Alg. Appl. 2 (1995), 205{217.[6] W.S. Edwards, L.S. Tuckerman, R.A. Friesner, and D.C. Sorensen, Krylov methods forthe incompressible Navier-Stokes equations, J. Comp. Phys. 110 (1994), 82{102.22
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