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Abstract Statistical distributions play a major role in
analyzing experimental data, and finding an appropriate one
for the data at hand is not an easy task. Extending a known
family of distribution to construct a new one is a long honored
technique in this regard. The T-X[Y] methodology is utilized
to construct a new distribution as described in this study.
The T-inverse exponential family of distributions, which
was previously introduced by the same authors, is used to
examine the exponential-inverse exponential[Weibull] dis-
tribution (Exp-IE[Weibull]). Several fundamental properties
are explored, including survival function, hazard function,
quantile function, median, skewness, kurtosis, moments,
Shannon’s entropy, and order statistics. Our distribution
exhibits a wide range of shapes with varying skewness and
assume most possible forms of hazard rate function. The
unknown parameters of the Exp-IE [Weibull] distribution
are estimated via the maximum likelihood method for a
complete and type II censored samples. We performed two
applications on real data. The first one is vinyle chloride data,
which is explained by [1] and the second is cancer patients
data, which is explained by [2]. The significance of the
Exp-IE[Weibull] model in relation to alternative distributions
(Fréchet, Weibull-exponential, logistic-exponential, logistic
modified Weibull, Weibull-Lomax [log-logistic] and inverse
power logistic exponential) is demonstrated. When using
the applied real data, the new distribution (Exp-IE[Weibull])
achieved better results for the AIC and BIC criterion compared
to other listed distributions.

Keywords Quantile Function, Shannon’s Entropy, T-X[Y]
Framework, T-IE Family

1 Introduction

To accommodate the massive increase in the variety of data cre-
ated in real life, there has been a rise in interest in constructing
new and more flexible statistical distributions. Recently, nu-
merous academicians have indicated an interest in expanding
the generating family in an effort to improve data analysis.

A number of well-known generating families are; beta-G [3]
used the beta distribution as a generator function. The beta
generated distribution’s cumulative function is represented by

G(x) =

∫ F (x)

0

b(τ) dτ, (1)

where F is the CDF of any random variable, say X , and b(τ)
is the beta distribution pdf. The beta-generated distribution’s
PDF is provided by;

g(x) =
f(x)

B(α, β)
Fα−1(x)

(1− F (x))β−1, α;β > 0,

(2)

where B(α, β) denotes the beta function. Several studies
employed various F in (2) to generate beta distributions,
Kumaraswamy-G [4]-[5] replaced the beta distribution with the
kumaraswamy distribution as a generator function, The trans-
formed transformers family (T-X) family [6] presented a gener-
alized method of producing families of distributions, allowing
the use of any continuous pdf as a generator as an alternative
to the beta or Kumaraswamy distribution. This method is built
on three functions (FT (x), FX(x), and W ), with FT (x) and
FX(x) acting as the cdfs of two random variables (T and X).
W (.) is a real value function from [0,1] onto the support of T ,
where T is a random variable with support from [a,b]. The cdf
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and pdf of T -X family of distributions is given as, respectively;

G(x) =

∫ W (FX(x))

a

fT (x) dT

= FT (W (FX(x))),

(3)

where, FT (x) is the cdf of the generated random variable T
and fT (x) is the pdf of T .

g(x) = [
d

dx
W (FX(x))][fT (x)(W (FX(x)))]. (4)

, and [7] introduced the T -X[Y ] family of distributions. re-
placing W (.) in the T -X family with the quantile function of a
random variable Y . The T-X[Y] approach is based on 3 func-
tions F (T ), F (X) and Q(Y ), with F (T ) and F (X) serving as
the cdfs of two random variables T and X , QY is the quantile
function of some variable Y . The cdf and pdf of T-X[Y] family
of distributions is provided respectively as;

G(x) =

∫ QY (FX(x))

a

fT (t) dt = FT (QY (FX(x))), (5)

and

g(x) = fT [QY (FX(x))] ·Q′
Y (FX(x)) · fX(x). (6)

This equation can be written as

g(x) = fX(x) · fT (QY (FX(x)))

fY (QY (FX(x)))
.

Mahmoud et al. [8] proposed the T-IE family of distributions
applying the T-X[Y] framework, with X following the inverse
exponential distribution. The cdf and pdf of T-IE family of
distributions are given as follows:

G(x) =

∫ QY (e−
θ
x )

a

fT (t) dt = FT [QY (e
− θ

x )], (7)

and

g(x) =
θ

x2
e−

θ
x
fT [QY (e

− θ
x )]

fY [QY (e−
θ
x )]

. (8)

In this article, we will look at a new four-parameter distribu-
tion based on the T-IE [Y] family. The paper is structured as
follows: in Section 2, the new distribution is presented. In
Section 3, some basic characteristics of the Exp-IE[Weibull]
distribution are investigated. Parameter estimates are provided
in Section 4. Some applications are considered in Section 5.
Section 6 concludes with some final comments on our study .

2 Exponential-Inverse Exponen-
tial[Weibull] Distribution (Exp-
IE[Weibull])

Mahmoud et al used T-X[Y] Method to generate T-IE[Y]
family of distributions and introduced many sub families let-
ting random variable Y follows different distributions. So

with Y following the Weibull distribution and T following the
exponential distribution, the exponential-inverse exponential
[Weibull] distribution is generated, and its cdf and pdf are pre-
sented respectively as;

G(x) = 1− exp

[
−λα

(
− ln[1− e−θ/x]

) 1
k

]
, (9)

and

g(x) =
λαθ

kx2

e−θ/x

1− e−θ/x

(
− ln[1− e−θ/x]

) 1
k−1

exp

[
−λα

(
− ln[1− e−θ/x]

) 1
k

]
.

(10)

There is no reason to deffreniate between α and λ in the new
distribution, so we shall put γ = λα. The new formed Exp-
IE[Weibull] cdf and pdf takes the forms as follows respectively;

G(x) = 1− exp

[
−γ

(
− ln[1− e−θ/x]

) 1
k

]
, (11)

and

g(x) =
γθ

kx2

e−θ/x

1− e−θ/x

(
− ln[1− e−θ/x]

) 1
k−1

exp

[
−γ

(
− ln[1− e−θ/x]

) 1
k

]
.

(12)

Figure 1. CDFs of Exp-IE[Weibull] distribution for different parameter values.

Figure 2. PDFs of Exp-IE[Weibull] distribution for different parameter values.
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Reliability function and hazard function of Exp-IE[Weibull]
distribution are provided respectively as;

Ḡ(x) = exp

[
−γ

(
− ln[1− e−θ/x]

) 1
k

]
, (13)

and

h(x) =
γ θ

kx2

e−θ/x

1− e−θ/x

(
− ln[1− e−θ/x]

) 1
k−1

. (14)

Figure 3. Hazard function of Exp-IE[Weibull] distribution for different pa-
rameters values.

Plots of the cdf, pdf and hazard function for some values of
γ, k and θ are given in Figures 1–3 respectivly. The hazard
function can be monotonically decreasing, increasing and an
upside-down bathtub depending on the values of its parame-
ters.

3 Exp-IE[Weibull] Distribution
Properities

In this section a number of basic properities of Exp-
IE[Weibull] distribution are computed, like moments, Shan-
non’s entropy, mode, quantile function, median, skewness, kur-
tosis and order statistics.

3.1 Quantile Function and Median
Quantile function of any random variable’s is simply the in-
verse of its distribution function. Exp-IE[Weibull] distribution
quantile function can be obtained from the distribution cdf as
follows:

Qx(u) =
−θ

ln

[
1− e−(

− ln[1−u]
γ )

k
] . (15)

Special quartiles and octiles of interest are given by;

Qx(1/8) =
−θ

ln

[
1− e−(

− ln[.875]
γ )

k
] , (16)

Qx(1/4) =
−θ

ln

[
1− e−(

− ln[.75]
γ )

k
] , (17)

Qx(3/8) =
−θ

ln

[
1− e−(

− ln[.625]
γ )

k
] , (18)

Qx(1/2) =
−θ

ln

[
1− e−(

− ln[.5]
γ )

k
] , (19)

where, Qx(1/2) is the median of Exp-IE[Weibull] distribution.

Qx(5/8) =
−θ

ln

[
1− e−(

− ln[.375]
γ )

k
] . (20)

Qx(3/4) =
−θ

ln

[
1− e−(

− ln[.25]
γ )

k
] . (21)

Qx(7/8) =
−θ

ln

[
1− e−(

− ln[.125]
γ )

k
] . (22)

3.2 The Skewness and Kurtosis
Quartile function can be used as an alternative to moments if
one does not have enough information about the mean, mode,
and standard deviation to compute skewness and kurtosis (see
[9]). The Bowley skewness (SB) and Moors kurtosis (KM )
definitions are given consecutively as;

SB =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
,

and

KM =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(3/4)−Q(1/4)
.

Skweness and kurtosis are calculated for γ= 1.5, k=3 and θ= 4
and the results are given as; SB= 0.695 and KM= 7.424.

3.3 The Mode
Mode of Exp-IE[Weibull] distribution can be obtained from the
solution of this equation;

x =
θ(1− e−θ/x) + θe−θ/x

2(1− e−θ/x)
+(

1
k − 1

) (
θe−θ/x

− ln[1−e−θ/x]

)
2(1− e−θ/x)

−

γθe−θ/x

k

(
ln[1− e−θ/x]

) 1
k−1

2(1− e−θ/x)
.

(23)

3.4 Moments
Moments of Exp-IE[Weibull] distribution is computed using
[8] proposition 1 (i,iii) i.X

d
= QX(FY (T )), iii. E(Xr) =



Mathematics and Statistics 11(2): 308-314, 2023 311

E[(QX(FY (T )))
r], so for Exp-IE[Weibull] X and E(Xr) are

given by;

X =
−θ

ln[1− e−Tk ]
(24)

E(Xr) = θrE

[(
− ln[1− e−Tk

]
)−r

]
(25)

Applying the expansion of the expression(
−ln[1− e−Tk

]
)−r

can be given by using the formula
see ([10]);

(− ln[1− z])
a
=a

∞∑
j=0

(
j − a
j

) i∑
i=0

(−1)j+i

a− j(
j
i

)
Pi,jZ

a+j ,

(26)

where Pi,j is a constant and can be computed like that;

Pi,j = 1
j

∑j
m=1

(im−j+m)(−1)m

m+1 Pi,j−m, for j = 1, 2, 3, ...,
and Pi,0 = 1.

E(Xr) =− θrr

∞∑
j=0

(
j + r
j

) j∑
i=0

(−1)j+i

−r − i

(
j
i

)
·

Pi,j
γ

kr − kj − γ
,

(27)

3.5 Shannon’s Entropy
In economics and signal processing, entropy is a commonly
used term as a measure of uncertainty. Shannon’s entropy with
pdf f(z) is defined as ηZ = E (−ln [f(z)]). Exp-IE-Weibull
distribution Shannon’s entropy is formed as follows:

ηX =E(− ln[θx]) + E(ln[k])+

2E(ln[x]) + θE(
1

x
) + E

(
ln[1− e−θ/x]

)
−

− (
1

k
− 1)E

(
ln[− ln[1− e−θ/x]]

)
+

γE
(
(− ln[1− e−θ/x])1/k

)
.

(28)

3.6 Order Statistics
For v = 1, ..., n from iid random variables X1, X2, ..., Xn. the
density of the rth order statistics is indicated by;

gxr
(x) =

1

β(r, n− r + 1)
g(x) [G(x)]r−1 [1−G(x)]n−r.

(29)
Applying Equation 9, and Equation 10 in Equation 29 , then we
have the PDF of Exp-IE[Weibull] distribution order statistics as

follows:

gxr(x) =
1

β(r, n− r + 1)

γθ

kx2

e−θ/x

1− e−θ/x
×(

− ln[1− e−θ/x]
) 1

k−1

exp

[
−γ (− ln

[
1− e−θ/x]

) 1
k

]
×(

1− exp

[
−γ

(
− ln[1− e−θ/x]

) 1
k

])r−1

×(
exp

[
−γ

(
− ln[1− e−θ/x]

) 1
k

])n−r

.

(30)

4 Exp-IE[Weibull] Parameters Estima-
tion

4.1 Complete Sample

The maximum likelihood method is employed to estimate the
unknown parameters of the Exp-IE[Weibull] distribution.

Let x1, x2, ..., xn be a random sample from Exp-IE[Weibull]
distribution. The likelihood function it will be as follows:

L(x) =

n∏
i=1

g(x)

=
γnθn

kn
∏n

i=1 x
2
i

e−θ/
∑n

i=1 xi

1− e−θ/
∑n

i=1 xi
×(

− ln
[
1− e−θ/

∑n
i=1 xi

]) 1
k−1

×

exp

[
−γ

(
− ln[1− e−θ/

∑n
i=1 xi ]

) 1
k

]
.

(31)

The log likelihood function ℓ(x), which is the natural logarithm
of the likelihood function takes the form

ℓ(x) =n ln[γθ]− n ln[k]−
n∑

i=1

ln[x2
i ]−

θ∑n
i=1 xi

−

ln
[
1− e−θ/

∑n
i=1 xi

]
+

(
1

k
− 1

)
×

ln
[
− ln[1− e−θ/

∑n
i=1 xi ]

]
−

γ
(
− ln[1− e−θ/

∑n
i=1 xi ]

) 1
k

.

(32)

Equation 32 can be used to obtain maximum likelihood esti-
mates of the parameters γ, k and θ by solving the following
equations:

∂ℓ(x)

∂γ
=
n

γ
−

(
− ln[1− e−θ/

∑n
i=1 ]

)1/k

, (33)
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∂ℓ(x)

∂k
=− n

k
− 1

k2
ln[− ln[1− e−θ/

∑n
i=1 xi ]]+

γ

k2
ln
[
− ln[1− e−θ/

∑n
i=1 xi ]

]
×[

− ln[1− e−θ/
∑n

i=1 xi ]
]1/k

,

(34)

and

∂ℓ(x)

∂θ
=
n

θ
− 1∑n

i=1 xi
− e−θ/

∑n
i=1 xi

(1− e−θ/
∑n

i=1 xi)
∑n

i=1 xi

[1− 1

k

1

ln[1− e−θ/
∑n

i=1 xi ]
+

1

ln[1− e−θ/
∑n

i=1 xi ]
−

γ

k

(
− ln[1− e−θ/

∑n
i=1 xi ]

) 1
k−1

] = 0.

(35)

4.2 Type II Censoring Sample

Suppose now, a total of n items is placed on test, but we did
not wait until all n items have failed. The experiment will be
terminated after obtain rth item failure. If X1, X2,...,Xn

are iid
and have pdf (12) and survival function Ḡ(x) (13), the joint pdf
of X1, X2, ..., Xr is;

g(x) =
n!

(n− r)!
×

r∏
i=1

g(xi)× (Ḡ(xr))
n−r. (36)

The log likelihood function ℓ(x) can be written as;

ℓ(x) =
n!

(n− r)!
+ r ln[γθ]− r ln[k]−

r∑
i=1

ln[x2
i ]−

θ∑r
i=1 xi

− ln
[
1− e−θ/

∑r
i=1 xi

]
+

(
1

k
− 1

)
×

ln
[
− ln[1− e−θ/

∑r
i=1 xi ]

]
− γ×(

− ln[1− e−θ/
∑n

i=1 xi ]
) 1

k − γ (n− r)×

− ln
[
1− e−θ/

∑r
i=1 xi

]
(37)

By solving the following equations, one can derive maximum
likelihood estimates of the parameters γ, k, and θ using equa-
tion 37:

∂ℓ(x)

∂γ
=
r

γ
−
(
− ln[1− e−θ/

∑r
i=1 xi ]

)1/k

−

(n− r)
(
− ln[1− e−θ/

∑r
i=1 xi ]

)
,

(38)

∂ℓ(x)

∂k
=− r

k
+

1

k2
ln

[
− ln[1− e−θ/

∑r
i=1 ]

]
+

γ

k2

(
− ln[1− e−θ/

∑r
i=1 ]

)1/k

×

ln
[
− ln[1− e−θ/

∑r
i=1 ]

] (39)

∂ℓ(x)

∂θ
=
r

θ
− 1∑r

i=1 xi
− e−θ/

∑r
i=1 xi

(1− e−θ/
∑r

i=1 xi)
∑r

i=1 xi

[1− 1

k

1

ln[1− e−θ/
∑r

i=1 xi ]
+

1

ln[1− e−θ/
∑r

i=1 xi ]
−

γ

k

(
− ln[1− e−θ/

∑r
i=1 xi ]

) 1
k−1

+

γ(n− r)].

(40)

5 Applications

Using real data sets to illustrate the flexibility of Exp-
IE[Weibull] distribution, we applied the new distribution to
vinyl chloride data set and cancer patient data.

The Akaike information criterion (AIC), the Bayesian infor-
mation criterion (BIC), and the log-likelihood value were used
to distinguish the Exp-IE[Weibull] distribution from a variety
of other distributions. Maximum likelihood estimation method
is applied to estimate distribution parameters. The best model
among them has the lowest log-likelihood, AIC, and BIC val-
ues.

5.1 Vinyl Chloride Data

A sample of 34 observations of vinyl chloride data provided
by [1] in mg/L gathered from clean up gradient ground-water
monitoring wells is used. Parameters estimates for γ, k and θ
are provided as follows: γ̂ = 1.39, k̂ = 1.26 and θ̂ = 1.15.

Exp-IE[Weibull] distribution is compared to some distribu-
tions including (Fréchet, Weibull-exponential [11], logistic-
exponential [12] and Weibull-Lomax [log-logistic]) [13]).

AIC, BIC, and log-likelihood values are presented in Table 1.
The Exp-IE[Weibull] distribution best fits the data, according
to Table 1’s results, out of all the models mentioned.
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Table 1. AIC, BIC and Log-Likelihood Measures
for The Vinyl Chloride Data

Distribution AIC BIC Log-likelihood

Exp-IE[Weibull] 18.486 23.066 -6.243
Fréchet 450.407 458.223 -222.204
Logistic-exponential 528.280 533.490 -262.140
Weibull-exponential 532.280 542.701 -262.140
Weibull-Lomax[log-logistic] 530.280 538.096 -262.140

Table 2. AIC, BIC and Log-Likelihood Measures
for The Cancer Patients Data

Distribution AIC BIC Log-likelihood

Exp-IE[Weibull] 903.768 912.324 -448.884
logistic modified Weibull 1155.040 1166.450 -573.522
Weibull- exponential 2405.600 2417.010 -1198.800
IPLE 1006.800 1015.350 -500.398
logistic-exponential 2401.600 2407.300 -1198.800

Figure 4. The vinyl chloride dataset’s histogram and fitted PDFs

5.2 Cancer Patients Data

A sample of 128 bladder cancer patients’ remission durations
(measured in months) are included in the data set provided by
[2]. Parameters estimates for γ, k and θ are provided as fol-
lows: γ̂ = 2.39, k̂ = 0.89 and θ̂ = 4.08.

Exp-IE[Weibull] distribution is compared to some distributios
including (logistic modified Weibull [14], Weibull-exponential
[11], inverse power logistic exponential (IPLE) [15] and
logistic-exponential [12] ). AIC, BIC, and log-likelihood val-
ues are presented in Table 2.

The Exp-IE[Weibull] distribution best fits the data, according
to Table 2’s results, out of all the models mentioned. This sec-
tion’s results were generated using the Mathematica 12 soft-
weare backage on my personal dell computer.

Figure 5. The cancer patients dataset’s histogram and fitted PDFs

6 Summary and Conclusion
The three-parameter exponential-IE [Weibull] distribution is
defined in this paper as a member of the T-IE family of distri-
butions. A number of properties are introduced, such as mode,
quantile function, median, hazard function, survival function,
moments, order statistics, and Shannon’s entropy. The parame-
ters of the new distribution were estimated using the maximum
likelihood method.

The exponential-IE [Weibull] distribution proved to be useful
in analyzing some types of data and gives a better fit to such
data than some other common distributions.
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