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Abstract

We prove an asymptotic coupling theorem for the 2-dimensional Allen–Cahn equation

perturbed by a small space-time white noise. We show that with overwhelming proba-

bility two profiles that start close to the minimisers of the potential of the deterministic

system contract exponentially fast in a suitable topology. In the 1-dimensional case a

similar result was shown in Martinelli et al. (Commun Math Phys 120(1):25–69, 1988;

J Stat Phys 55(3–4):477–504, 1989). It is well-known that in two or more dimensions

solutions of this equation are distribution-valued, and the equation has to be inter-

preted in a renormalised sense. Formally, this renormalisation corresponds to moving

the minima of the potential infinitely far apart and making them infinitely deep. We

show that despite this renormalisation, solutions behave like perturbations of the deter-

ministic system without renormalisation: they spend large stretches of time close to

the minimisers of the (un-renormalised) potential and the exponential contraction rate

of different profiles is given by the second derivative of the potential in these points.

As an application we prove an Eyring–Kramers law for the transition times between

the stable solutions of the deterministic system for fixed initial conditions.
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1 Introduction

We are interested in the behaviour of solutions to the Allen–Cahn equation, perturbed

by a small noise term. The deterministic equation is given by

(∂t −�)X = −X3 + X , (1.1)

and it is well-known that (1.1) is a gradient flow with respect to the potential

V (X) :=
∫ (

1

2
|∇X(z)|2 − 1

2
X(z)2 + 1

4
X(z)4

)

dz. (1.2)

The fluctuation-dissipation theorem suggests an additive Gaussian space-time white

noise ξ as a natural random perturbation of (1.1); so we consider

(∂t −�)X = −X3 + X +
√

2εξ, (1.3)

for a small parameter ε > 0.

In the 1-dimensional case, i.e. the case where the solution X depends on time and a 1-

dimensional spatial argument, the behaviour of solutions to (1.3) is well-understood.

Solutions exhibit the phenomenon of metastability, i.e. they typically spend large

stretches of time close to the minimisers of the potential (1.2) with rare and relatively
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Exponential loss of memory for the 2-dimensional… 259

quick noise-induced transitions between them. Early contributions go back to the 80s

where Farris and Jona–Lasinio [9] studied the system on the level of large deviations.

We are particularly interested in the “exponential loss of memory property” first

observed by Martinelli, Olivieri and Scoppola in [17,18]. They studied the flow map

induced by (1.3), i.e. the random map x �→ X(t; x) which associates to any initial

condition the corresponding solution at time t , and showed that for large t the map

becomes essentially constant. They also showed that with overwhelming probability,

solutions that start within the basin of attraction of the same minimiser of V contract

exponentially fast, with exponential rate given by the smallest eigenvalue of the lineari-

sation of V in this minimiser. This implies for example that the law of such solutions

at large times is essentially insensitive to the precise location at which they are started.

It is very natural to consider higher dimensional analogues of (1.3), but unfor-

tunately for space dimension d ≥ 2, Eq. (1.3) is ill-posed. In fact, for d ≥ 2 the

space-time white noise becomes so irregular, that solutions have to be interpreted in

the sense of Schwartz distributions, and the interpretation of the nonlinear term is a

priori unclear. These kind of singular stochastic partial differential equations (SPDEs)

have received a lot of attention recently (see e.g. [6,10,12]). The solution proposed in

these works is to renormalise the equation, by removing some infinite terms, formally

leading to the equation

(∂t −�)X = −X3 + (1 + 3ε∞)X +
√

2εξ. (1.4)

Note that formally, this renormalisation corresponds to moving the minima of the

double-well potential out to ±∞ and making them infinitely deep at the same time.

So at first glance, it seems unclear why these renormalised distribution-valued solu-

tions should exhibit similar behaviour to the 1-dimensional function-valued solutions

of (1.3).

In [14] Hairer and the second named author studied the small ε asymptotics for

(1.4) for space dimension d = 2 and 3 on the level of Freidlin–Wentzell type large

deviations. They obtained a large deviation principle with rate function I given by

I(X) := 1

4

∫ T

0

∫ (

∂t X(t, z)−
(

�X(t, z)−
(

X(t, z)3 − X(t, z)
)))2

dz dt .

(1.5)

In fact, a result in a similar spirit had already appeared in the 90s [15]. The striking

fact is that this rate function is exactly the 2-dimensional version of the rate function

obtained in the 1-dimensional case [9]. The infinite renormalisation constant does not

affect the rate functional. This result implies that for small ε solutions of the renor-

malised SPDE (1.4) stay close to solutions of the deterministic PDE (1.1) suggesting

that (1.4) may indeed be the natural small noise perturbation of (1.1).

In this article we consider (1.4) over a 2-dimensional torus T
2 = R

2/LZ
2 for

L < 2π . It is known that under this assumption on the torus size L , the deterministic

equation (1.1) has exactly three stationary solutions, namely the constant profiles

−1, 0, 1 (see [16, Appendix B.1]). Here ±1 are stable minimisers of V and 0 is

unstable. We prove that in the small noise regime with overwhelming probability

solutions that start close to the same stable minimiser ±1 contract exponentially fast.

The exponential contraction rate is arbitrarily close to 2, the second derivative of the
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double-well x �→ 1
4

x4 − 1
2

x2 in ±1. This is precisely the 2-dimensional version of

[17, Corollary 3.1].

On a technical level we work with the Da Prato–Debussche decomposition (see

Sect. 2 for more details). An immediate observation is that differences of any two

profiles have much better regularity than the solutions themselves. We split the time

axis into random “good” and “bad” intervals depending on whether a reference profile

is close to±1 or not. The key idea is that on “good” intervals solutions should contract

exponentially, while they should not diverge too fast on “bad” intervals. Furthermore,

“good” intervals should be much longer than “bad” intervals.

The control on the “good” intervals is relatively straightforward: the exponential

contraction follows by linearising the equation and the fact that these intervals are

typically long follows from exponential moment bounds on the explicit stochastic

objects appearing in the Da Prato–Debussche approach. The control on the “bad”

intervals is much more involved: in the 1-dimensional case two profiles cannot diverge

too fast, because the second derivative of the double-well potential is bounded from

below. But in the 2-dimensional case, where solutions are distribution-valued, there

is no obvious counterpart of this property. Instead we use a strong a priori estimate

obtained in our previous work [24] and the local Lipschitz continuity of the non-

linearity. Ultimately this yields an exponential growth bound where the exponential

rate is given by a polynomial in the explicit stochastic objects. We use a large deviation

estimate to prove that these intervals cannot be too long. In the final step we show

that the exponential contraction holds for all t if a certain random walk with positive

drift stays positive for all times. This random walk is then analysed using techniques

developed for the classical Cramér–Lunberg model in risk theory.

The original motivation for our work was to prove an Eyring–Kramers law for the

transition times of X . In [2] Berglund, Di Gesú and the second named author studied

spectral Galerkin approximations X N of (1.4) and obtained explicit estimates on the

expected first transition times from a neighbourhood of −1 to a neighbourhood of 1.

These estimates give a precise asymptotic as ε → 0 and hold uniformly in the dis-

cretisation parameter N . Their method was based on the potential theoretic approach

developed in the finite-dimensional context by Bovier et al. in [3]. This approach

relies heavily on the reversibility of the dynamics and provides explicit formulas for

the expected transition times in terms of certain integrals of the reversible measure. The

key observation in [2] was that in the context of (1.3) these integrals can be analysed

uniformly in the parameter N using the classical Nelson’s estimate [22] from construc-

tive Quantum Field Theory. However, the result in [2] was not optimal for the following

two reasons: First, it does not allow to pass to the limit as N →∞ to retrieve the esti-

mate for the transition times of X . Second, and more important, the bounds could only

be obtained for a certain N -dependent choice of initial distribution on the neighbour-

hood of −1. This problem is inherent to the potential theoretic approach, which only

yields an exact formula for the diffusion started in this so-called normalised equilib-

rium measure. In fact, a large part of the original work [3] was dedicated to removing

this problem using regularity theory for the finite-dimensional transition probabilities.

In this paper we overcome these two barriers. We first justify the passage to the

limit N →∞ based on our previous work [24]: we use the strong a priori estimates

on the level of the approximation X N and the support theorem obtained there to prove
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uniform integrability of the transition times of X N . The only difficulty here comes

from the action of the Galerkin projection on the non-linearity which does not allow

to test the equation with powers greater than 1. To remove the unnatural assumption

on the initial distribution we make use of our main result, the exponential contraction

estimate. This estimate allows us to couple the solution started with an arbitrary but

fixed initial condition with the solution started in the normalised equilibrium measure.

1.1 Outline

In Sect. 2 we briefly review the solution theory of (1.4). In Sect. 3 we state our

main results, that is, the exponential loss of memory, Theorem 3.1, and the Eyring–

Kramers law, Theorem 3.5. In Sect. 4 we prove Theorem 3.1 based on some auxiliary

propositions. These propositions are proved in Sects. 5 and 6. Finally, in Sect. 7 we

prove the Eyring–Kramers law, Theorem 3.5, generalising [2, Theorem 2.3]. Several

known results that are used throughout this article as well as some additional technical

statements can be found in the Appendix.

1.2 Notation

We fix a torus T
2 = R

2/LZ
2 of size 0 < L < 2π . All function spaces are defined

over T
2. We write C∞ for the space of smooth functions and L p, p ∈ [1,∞], for the

space of p-integrable periodic functions endowed with the usual norm ‖ · ‖L p and the

usual interpretation if p = ∞.

We denote by Bα
p,q the (inhomogeneous) Besov space of regularity α and exponents

p, q ∈ [1,∞] with norm ‖ · ‖Bα
p,q

(see Definition A.1). We write Cα and ‖ · ‖Cα to

denote the space Bα
∞,∞ and the corresponding norm. Many useful results about Besov

spaces that we repeatedly use throughout the article can be found in Appendix A.

For any Banach space (V , ‖ · ‖V ) we denote by BV (x0; δ) the open ball {x ∈ V :
‖x − x0‖V < δ} and by B̄V (x0; δ) its closure.

Throughout this article we write C for a positive constant which might change from

line to line. In proofs we sometimes write � instead of ≤ C . We also write a ∨ b and

a ∧ b to denote the maximum and the minimum of a and b.

In several statements we write±1 to signify that the statement holds true for either

choice of +1 or −1.

2 Preliminaries

Fix a probability space (	,F , P) and let ξ be a space-time white noise defined over

	. More precisely, ξ is a family {ξ(φ)}φ∈L2((0,∞)×T2) of centred Gaussian random

variables such that

Eξ(φ)ξ(ψ) = 〈φ,ψ〉L2((0,∞)×T2).

A natural filtration {Ft }t≥0 is given by the usual augmentation (as in [23, Chapter 1.4])

of
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262 P. Tsatsoulis, H. Weber

F̃t = σ
(

{ξ(φ) : φ|(t,∞)×T2 ≡ 0}
)

, t ≥ 0.

We interpret solutions of (1.4) following [6] and [20]. We write X(·; x) for the solution

started in x and use the decomposition X(·; x) = v(·; x)+ ε
1
2 (·) where solves the

stochastic heat equation

(∂t − (�− 1)
)

=
√

2ξ
∣
∣
t=0

= 0. (2.1)

The remainder term v solves

(∂t −�) v = −v3 + v −
(

3v2ε
1
2 + 3vε + ε

3
2 − 2ε

1
2

)

v
∣
∣
t=0

= x (2.2)

where , are the 2nd and 3rd Wick powers of the solution to the stochastic heat

equation . The random distributions and can be constructed as limits of 2
N −ℜN

and 3
N −3ℜN N , where N is a spatial Galerkin approximation of , andℜN is a renor-

malisation constant which diverges logarithmically in the regularisation parameter N .

The value of ℜN is given by

ℜN := lim
t→∞

E N (t, z)2 = 1

L2

∑

|k|≤N

1

(2π |k|/L)2 + 1
. (2.3)

Note that N (t, z) is stationary in the space variable z, hence the expectation is inde-

pendent of z. We refer the reader to [6, Lemma 3.2], [24, Section 2] for more details

on the construction of the Wick powers. We recall that , and can be realised

as continuous (in time) processes taking values in C−α for α > 0 and that P-almost

surely for every T > 0, and α′ > 0

max

{

sup
t≤T

‖ (t)‖C−α , sup
t≤T

(t ∧ 1)α
′‖ (t)‖C−α , sup

t≤T

(t ∧ 1)2α′‖ (t)‖C−α

}

< ∞.

(2.4)

The blow-up of ‖ (t)‖C−α and ‖ (t)‖C−α for t close to 0 is due to the fact that we

define the stochastic objects and with zero initial condition, but we work with a

time-independent renormalisation constant ℜN (see (2.3)). We define the stochastic

heat equation with a Laplacian with mass 1 because this allows us to prove exponential

moment bounds of , and which hold uniformly in time (see Proposition D.1).

Throughout the paper we use
n

to refer to all the stochastic objects , and

simultaneously. In this notation (2.4) turns into

sup
t≤T

(t ∧ 1)(n−1)α′‖ n
(t)‖C−α < ∞.

We fix α0 ∈ (0, 1
3
) (to measure the regularity of the initial condition x in C−α0 ),

β > 0 (to measure the regularity of v in Cβ ) and γ > 0 (to measure the blow-up of

‖v(t; x)‖Cβ for t close to 0) such that
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γ <
1

3
,

α0 + β

2
< γ. (2.5)

We also assume that α′ > 0 and α > 0 in (2.4) satisfy

α′ < γ, α < α0,
α + β

2
+ 2γ < 1. (2.6)

In [24, Theorems 3.3 and 3.9]) it was shown that for every x ∈ C−α0 there exist a

unique solution v ∈ C
(

(0,∞); Cβ
)

of (2.2) such that for every T > 0

sup
t≤T

(t ∧ 1)γ ‖v(t; x)‖Cβ < ∞.

Remark 2.1 In Condition (2.5) β has to be strictly less than 2
3

. This is necessary if one

wants to treat all of the terms arising in a fixed point problem for (2.2) with the same

norm for v. A simple post-processing of [24, Theorems 3.3 and 3.9] shows that in fact

v is continuous in time taking values in C2−λ for any λ > α.

Equations (2.1), (2.2) suggest that indeed X can be seen as a perturbation of the

Allen–Cahn equation (1.1), because the terms , and in (2.2) all appear with a

positive power of ε. It is important to note that v is much more regular than X . The

irregular part of X(·; x) is ε
1
2 . Therefore differences of solutions are much more

regular than solutions themselves.

We repeatedly work with restarted stochastic terms: we define s as the solution of

(∂t − (�− 1)
)

s =
√

2ξ, t > s,

s

∣
∣
t=s

= 0,

and let s and s be its Wick powers. By [24, Proposition 2.3] for every s > 0,
n

s(s + ·) are independent of Fs and equal in law to
n

(·). For t ≥ s we can define

a restarted remainder vs(t; X(s; x)) through the identity X(t; x) = vs(t; X(s; x)) +
ε

1
2 s(t). Rearranging (2.2) and using the pathwise identities in [24, Corollary 2.4] one

can see that vs solves

(∂t −�) vs = −v3
s + vs −

(

3v2
s ε

1
2 s + 3vsε s + ε

3
2 s − 2ε

1
2 s

)

vs

∣
∣
t=s

= X(s; x). (2.7)

In [24, Theorem 4.2] this is used to prove the Markov property for X(·; x).

3 Main results

In this article we prove the following main theorem.
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Theorem 3.1 For every κ > 0 there exist δ0, a0, C > 0 and ε0 ∈ (0, 1) such that for

every ε ≤ ε0

inf
‖x−(±1)‖

C
−α0≤δ0

P

(

sup
‖y−x‖

C
−α0≤δ0

‖X(t; y)− X(t; x)‖Cβ

‖y − x‖C−α0

≤ Ce−(2−κ)t for every t ≥ 1

)

≥ 1 − e−a0/ε.

Proof See Sect. 4.2. ⊓⊔

This theorem is a variant of [17, Corollary 3.1] in space dimension d = 2, but in

that work the supremum is taken over both x and y inside the probability measure.

We also obtain this version of the theorem as a corollary.

Corollary 3.2 For every κ > 0 there exist δ0, a0, C > 0 and ε0 ∈ (0, 1) such that for

every ε ≤ ε0

P

⎛

⎝ sup
x,y∈B̄

C
−α0 (±1;δ0)

‖X(t; y)− X(t; x)‖Cβ

‖y − x‖C−α0

≤ Ce−(2−κ)t for every t ≥ 1

⎞

⎠

≥ 1 − e−a0/ε.

Proof See Sect. 4.2. ⊓⊔

Remark 3.3 The restriction t ≥ 1 in Theorem 3.1 appears only because we measure

y − x in a lower regularity norm than X(t; y) − X(t; x). To prove the theorem we

first prove Theorem 4.9 were we assume that y − x ∈ Cβ and in this case we prove a

bound which holds for every t > 0.

Remark 3.4 Theorem 3.1 is an asymptotic coupling of solutions that start close to the

same minimiser. In [17, Proposition 3.4] it was shown that in the 1-dimensional case,

solutions which start with initial conditions x and y close to different minimisers also

contract exponentially fast, but only after time Tε ∝ e[(V (0)−V (±1))+η]/ε for any η > 0.

This is the “typical” time needed for one of the two profiles to jump close to the other

minimiser. We expect that Theorem 3.1 and the large deviation theory developed in

[14] could be combined to prove a similar result in the case d = 2.

As an application of Theorem 3.1 we prove an Eyring–Kramers law for the transition

times of X . Before we state our main result in this direction let us briefly introduce

some extra notation.

For δ ∈ (0, 1/2) and α > 0 we define the symmetric subsets A(α; δ) and B(α; δ)
of C−α by

A(α; δ) :=
{

f ∈ C
−α : f̄ ∈ [−1 − δ,−1 + δ], f − f̄ ∈ D⊥

}

(3.1)

B(α; δ) :=
{

f ∈ C
−α : f̄ ∈ [1 − δ, 1 + δ], f − f̄ ∈ D⊥

}

(3.2)
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Exponential loss of memory for the 2-dimensional… 265

where D⊥ is the closed ball of radius δ in C−α and f̄ = L−2〈 f , 1〉. For x ∈ A(α; δ)
we define the transition time

τB(α;δ)(X(·; x)) := inf {t > 0 : X(t; x) ∈ B(α; δ)} .

Last, for k ∈ Z
2 we let

λk :=
(

2π |k|
L

)2

− 1 and νk :=
(

2π |k|
L

)2

+ 2 = λk + 3. (3.3)

The sequences {λk}k∈Z2 and {νk}k∈Z2 are the eigenvalues of the operators−�−1 and

−�+ 2 endowed with periodic boundary conditions.

With this notation at hand the Eyring–Kramers law can be expressed as follows.

Notice that by symmetry the same result holds if we swap the neighbourhoods of −1

and 1 below.

Theorem 3.5 There exist δ0 > 0 such that the following holds. For every α ∈ (0, α0)

and δ ∈ (0, δ0) there exist c+, c− > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
x∈A(α0;δ)

EτB(α;δ)(X(·; x))

≤ 2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}

e(V (0)−V (−1))/ε
(

1 + c+
√

ε
)

inf
x∈A(α0;δ)

EτB(α;δ)(X(·; x))

≥ 2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}

e(V (0)−V (−1))/ε (1 − c−ε) . (3.4)

Proof See Sect. 7.3. ⊓⊔

4 Proof of the exponential loss of memory

In this section we prove the exponential loss of memory. In Sect. 4.1 we present the

basic ingredients needed in the proof and in Sect. 4.2 we give the proofs of Theorem 3.1

and Corollary 3.2.

4.1 Methodology

We define two sequences {νi (x)}i≥1 and {ρi (x)}i≥1 of stopping times which partition

our time axis and allow us to keep track of the time spent close to and away from the

minimisers ±1 (see Fig. 1 for a sketch). On the “good” intervals [ρi−1(x), νi (x)] we

require both the restarted diagrams
n

ρi−1(x) to be small and the restarted remainder
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Fig. 1 A partition of the time axis with respect to the times νi (x) and ρi (x). The “good” intervals are

“typically” much larger than the “bad” intervals

vρi−1(x) to be close to ±1. The “bad” intervals [νi (x), ρi (x)] end when X(·; x) re-

enters a small neighbourhood of the minimisers. The stopping times ρi (x) are defined

in terms of the C−α0 norm for X(·; x), while we define good intervals in terms of the

stronger Cβ topology for vρi−1(x). To connect the two, we need to allow for a blow-up

close to the starting point of the “good” intervals.

Definition 4.1 For x ∈ C−α0 we define the sequence of stopping times {ρi (x)}i≥0,

{νi (x)}i≥1 recursively by ρ0(x) = 0 and

νi (x) := inf
{

t > ρi−1(x) : min
x∗∈{−1,1}

((t − ρi−1(x)) ∧ 1)γ ‖vρi−1(x)(t; X(ρi (x); x))

− x∗‖Cβ ≥ δ1

or ((t − ρi−1(x)) ∧ 1)(n−1)α′‖ε n
2

n

ρi−1(x)(t)‖C−α ≥ δn
2

}

ρi (x) := inf{t > νi (x) : min
x∗∈{−1,1}

‖X(t; x)− x∗‖C−α0 ≤ δ0}.

We now define the time increments

τi (x) = νi (x)− ρi−1(x)

σi (x) = ρi (x)− νi (x). (4.1)

The process X(·; x) is expected to spend long time intervals close to the minimisers

±1, which corresponds to large values of τi (x). Large values of σi (x) are “atypical”.

This behaviour is established Propositions 6.3 and 6.6.

The following proposition shows contraction on the “good” intervals. We distin-

guish between the cases (4.2) and (4.3) for y − x that lie in Cβ and C−α0 respectively.

The Da Prato–Debussche decomposition shows that differences of any two profiles lie

in Cβ for any t > 0 but at t = 0 they maintain the irregularity of the initial conditions.

Hence we only use (4.3) on the first “good” interval.

Proposition 4.2 For every κ > 0 there exist δ0, δ1, δ2 > 0 and C > 0 such that if

‖x − (±1)‖C−α0 ≤ δ0 and y − x ∈ Cβ , ‖y − x‖Cβ ≤ δ0 then

‖X(t; y)− X(t; x)‖Cβ ≤ C exp
{

−
(

2 − κ

2

)

t
}

‖y − x‖Cβ , (4.2)

for every t ≤ τ1(x) defined with respect to δ1 and δ2. If we only assume that ‖y −
x‖C−α0 ≤ δ0 then

(t ∧ 1)γ ‖X(t; y)− X(t; x)‖Cβ ≤ C exp
{

−
(

2 − κ

2

)

t
}

‖y − x‖C−α0 , (4.3)

123



Exponential loss of memory for the 2-dimensional… 267

for every t ≤ τ1(x).

Proof See Sect. 5.1. ⊓⊔

Our next aim is to control the growth of the differences on the “bad” intervals

in terms of the stochastic objects
n

. This is done by partitioning the intervals

[νi (x), ρi (x)] into tiles of length one. To achieve independence we restart the stochastic

objects at the starting point of each tile.

Definition 4.3 For k ≥ 0 and ρ ≥ ν ≥ 0 let tk = ν+ k. For k ≥ 1 we define a random

variable Lk(ν, ρ) by

Lk(ν, ρ) :=
(

sup
t∈[tk−1,tk∧ρ]

(t − tk−1)
(n−1)α′‖ε n

2
n

tk−1
(t)‖C−α

) 2
n

. (4.4)

In our analysis we use a second tiling defined by setting sk = tk + 1
2

, i.e. the tiles

[tk, tk+1] and [sk, sk+1] overlap. In order to bound X(t; y)− X(t; x) on a time inter-

val [tk, sk] we restart the stochastic objects at sk−1 and write X(t; y) − X(t; x) =
vsk−1

(t; X(sk−1; y)) − vsk−1
(t; X(sk−1; x)). In Lemma 5.1 we upgrade the strong a

priori bound obtained in [24, Proposition 3.7] to get a control on the Cβ norm of both

remainders. This bound holds uniformly over all possible values of X(sk−1; y) and

X(sk−1; x) and while the bound allows for a blow-up for times t close to sk−1 it holds

uniformly over all times in [tk, sk]. Ultimately, the bound only depends on Lk(ν+ 1
2
, ρ)

in a polynomial way as shown in Fig. 2. Then we can use the local Lipschitz property

of the non-linearity in (2.2) to bound the exponential growth rate of X(t; y)− X(t; x).

For the first interval [t0, t1] we do not use this trick, because we want to avoid bounds

that depend on the realisation of the white noise outside of [ν, ρ]. On this interval, we

make use of an a priori assumption that we have some control on ‖X(ν; y)‖C−α0 and

‖X(ν; x)‖C−α0 .

Proposition 4.4 Let R > 0. Then there exists a constant C ≡ C(R) > 0 such that for

every ‖X(ν; x)‖C−α0 , ‖X(ν; y)‖C−α0 ≤ R, ρ > ν ≥ 0 and t ∈ [ν, ρ]

‖X(t; y)− X(t; x)‖Cβ ≤ C exp {L(ν, ρ; t − ν)} ‖X(ν; y)− X(ν; x)‖Cβ , (4.5)

where

L(ν, ρ; t − ν) = c0

2

⌊t−ν⌋
∑

k=1

∑

l=0, 1
2

(1 ∨ Lk(ν + l, ρ))p0 + L0(t − ν), (4.6)

for Lk as in (4.4), and for some constants p0 ≥ 1 and c0 ≡ c0(R), L0 ≡ L0(R) ≥ 0.

Proof See Sect. 5.2. ⊓⊔
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Fig. 2 Bounds on the Cβ norm of the restarted remainder v on the overlapping tiles of the partition of [ν, ρ].
On a time interval [tk , sk ] we restart the stochastic objects at time sk−1 and bound vsk−1

by a polynomial

function of Lk

(

ν + 1
2 , ρ

)

. On a time interval [sk , tk+1] we restart the stochastic objects at time tk and

bound vtk by a polynomial function of Lk (ν, ρ)

If we assume that y − x ∈ Cβ , combining the estimates in Propositions 4.2 and 4.4

suggest the bound

‖X(ρN (x); y)− X(ρN (x); x)‖Cβ

≤ exp

⎧

⎨

⎩

∑

i≤N

[

−
(

2 − κ

2

)

τi + L(νi (x), ρi (x); σi (x))+ 2 log C
]

⎫

⎬

⎭
‖y − x‖Cβ ,

(4.7)

for any N ≥ 1. If we can show that the exponents satisfy

∑

i≤N

[

−
(

2 − κ

2

)

τi + L(νi (x), ρi (x); σi (x))+ 2 log C
]

≤ −(2 − κ)ρN (x),

then (4.7) yields exponential contraction at time ρN (x) with rate 2−κ . The difference

of the right hand side and the left hand side of the last inequality is given by the random

walk SN (x) in the next definition.
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Fig. 3 “Typical” realisations of a random walk SN =
∑

i≤N ( fi − gi ) for fi ∼ e0.5/ε exp(1), gi ∼
e0.1/εWeibull(0.5, 1), N = 50 and ε = 0.01. The choice of a Weibull distribution here captures the fact

that the random variables L(νi (x), ρi (x); σi (x)) + (2 − κ)σi (x) + M0 in Definition 4.5 have stretched

exponential tails as shown in Proposition 6.7

Definition 4.5 Let ‖x − (±1)‖C−α0 ≤ δ0. We define the random walk (SN (x))N≥1 by

SN (x) :=
∑

i≤N

[κ

2
τi (x)−

(

L(νi (x), ρi (x); σi (x))+ (2 − κ)σi (x)+ M0

)
]

,

where M0 = 2 log C for C > 0 as in Propositions 4.2 and 4.4 .

The next proposition shows that the random walk SN (x) stays positive for every

N ≥ 1 with overwhelming probability (see Fig. 3 for an illustration). The proof is

based on a variant of the classical Cramér–Lundberg model in risk theory (see [8,

Chapter 1.2]). In this classical model a random walk SN =
∑

i≤N ( fi − gi ) with

i.i.d. exponential random variables fi and i.i.d. non-negative random variables gi is

considered. The probability for SN to stay positive for every N ≥ 1 can be calculated

explicitly in terms of the expectations of fi and gi using a renewal equation. In our

case we use the Markov property and Propositions 6.3 and Proposition 6.7 to compare

the random walk SN (x) in Definition 4.5 to this classical case.

Remark 4.6 If the family {L(νi (x), ρi (x); σi (x))+(2−κ)σi (x)+M0}i≥1 had exponen-

tial moments, a simple exponential Chebyshev argument would imply the following

proposition without any reference to the Cramér–Lundberg model. However, by (4.4)

and (4.6) one sees that L(νi (x), ρi (x); σi (x)) is a polynomial of potentially high degree

in the explicit stochastic objects (which are themselves polynomials of the Gaussian

noise ξ ). Hence, we cannot expect more than stretched exponential moments, and

indeed, such bounds are established in Proposition 6.7. In the proof of the next propo-

sition we also use an exponential Chebyshev argument, but only to compare κ
2
τi (x)

with a suitable exponential random variable which does not depend on x .
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Proposition 4.7 For every κ > 0 there exist a0 > 0 and ε0 ∈ (0, 1) such that for every

ε ≤ ε0

inf
‖x−(±1)‖

C
−α0≤δ0

P(SN (x) ≥ 0 for every N ≥ 1) ≥ 1 − e−a0/ε. (4.8)

Proof See Sect. 6.3. ⊓⊔

4.2 Proofs of Theorem 3.1 and Corollary 3.2

We first treat the case where y− x ∈ Cβ : let x ∈ C−α0 such that ‖x − (±1)‖C−α0 ≤ δ0

and let y be such that y − x ∈ Cβ and ‖y − x‖Cβ ≤ δ0. We also write Y (t) =
X(t; y)− X(t; x). We consider the event

S(x) = {SN (x) ≥ 0 for every N ≥ 1} , (4.9)

for SN (x) as in Definition 4.5.

We first prove the following proposition which provides explicit estimates on the

differences at the stopping times νN (x) and ρN (x) for every N ≥ 1 and ω ∈ S(x)

by iterating Propositions 4.2 and 4.4. To shorten the notation we drop the explicit

dependence on the starting point x in the stopping times νN and ρN and the random

walk SN . We also drop the dependence on the realisation ω but we assume throughout

that ω ∈ S(x).

Proposition 4.8 For any κ > 0 let C > 0 be as in Proposition 4.2. Then for every

ω ∈ S(x) and N ≥ 1

‖Y (νN )‖Cβ ≤ C exp {−SN−1} exp
{

−κ

2
τN

}

exp {−(2 − κ)νN } ‖Y (0)‖Cβ (4.10)

‖Y (ρN )‖Cβ ≤ exp {−SN } exp {−(2 − κ)ρN } ‖Y (0)‖Cβ . (4.11)

Proof We prove our claim by induction on N ≥ 1, observing that it is obvious for

N = 0.

To prove (4.10) for N + 1 we first notice that by the definition of ρN we have that

‖Xε(ρN ; x)− (±1)‖C−α0 ≤ δ0 and since ω ∈ S(x) (4.11) implies that ‖Y (ρN )‖Cβ ≤
δ0. Hence we can use (4.2) to get

‖Y (νN+1)‖Cβ � exp
{

−κ

2
τN+1

}

exp {−(2 − κ)τN+1} ‖Y (ρN )‖Cβ .

Combining with the estimate on ‖Y (ρN )‖Cβ the above implies (4.10) for N + 1.

To prove (4.11) for N+1 we first notice that by Proposition 6.2‖X(νN+1; x)‖C−α0 ≤
2δ1 + 1. This bound, (4.10) for N + 1 and the triangle inequality imply that

‖X(νN+1; y)‖C−α0 ≤ δ0 + 2δ1 + 1. Hence we can use Proposition 4.4 for ν =
νN+1, ρ = ρN+1 and R = δ0 + 2δ1 + 1 to obtain

‖Y (ρN+1)‖Cβ � exp {L(νN+1, ρN+1; σN+1)} ‖Y (νN+1)‖Cβ .
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If we combine with (4.10) for N + 1 we have that

‖Y (ρN+1)‖Cβ ≤ exp {L(νN+1, ρN+1; σN+1)+ M0} exp {−SN }

× exp
{

−κ

2
τN+1

}

exp {−(2 − κ)νN+1} ‖Y (0)‖Cβ .

We then rearrange the terms to obtain (4.11), which completes the proof. ⊓⊔

We are ready to prove the following version of Theorem 3.1 for sufficiently smooth

initial conditions.

Theorem 4.9 For every κ > 0 there exist δ0, a0, C > 0 and ε0 ∈ (0, 1) such that for

every ε ≤ ε0

inf
‖x−(±1)‖

C
−α0≤δ0

P

⎛

⎜
⎜
⎝

sup
y−x∈Cβ

‖y−x‖
Cβ≤δ0

‖X(t; y)− X(t; x)‖Cβ

‖y − x‖Cβ

≤ Ce−(2−κ)t for every t ≥ 0

⎞

⎟
⎟
⎠

≥ 1 − e−a0/ε.

Proof Let ω ∈ S(x) as in (4.9). For any t > 0 there exists N ≡ N (ω) ≥ 0 such that

t ∈ [ρN , νN+1) or t ∈ [νN+1, ρN+1).

If t ∈ [ρN , νN+1) then

‖X(t; y)− X(t; x)‖Cβ

(4.2),(4.11)

� exp
{

−
(

2 − κ

2

)

(t − ρN )
}

‖X(ρN ; y))− X(ρN ; x)‖Cβ

= exp
{

−κ

2
(t − ρN )

}

exp {−(2 − κ)(t − ρN )} ‖X(ρN ; y))− X(ρN ; y)‖Cβ

(4.11)

� exp {−(2 − κ)t} ‖y − x‖Cβ .

If t ∈ [νN+1, ρN+1) then

‖X(t; y)− X(t; x)‖Cβ

(4.5)

� exp{L(νN+1, ρN+1; t − νN+1)}‖X(νN+1; y)− X(νN+1; x)‖Cβ

= exp{L(νN+1, ρN+1; t − νN+1)+ (2 − κ)(t − νN+1)}
× exp{−(2 − κ)(t − νN+1)}‖X(νN+1; y)− X(νN+1; x)‖Cβ

(4.10),ω∈S(x)

� exp{−(2 − κ)t}‖y − x‖Cβ .
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By Proposition 4.7 there exist a0 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

inf
‖x−(±1)‖

C
−α0≤δ0

P(S(x)) ≥ 1 − e−a0/ε,

which completes the proof. ⊓⊔

We are now ready to prove Theorem 3.1 and Corollary 3.2.

Proof of Theorem 3.1 This is a consequence of (4.3), Proposition 6.3 and Theorem 4.9.

Let δ1, δ2 > 0 sufficiently small such that δ1 + δ2 < δ0 and assume that τ1(x) ≥ 1.

By the definition of τ1(x)

‖X(1; x)− (±1)‖C−α0 ≤ ‖v(1; x)− (±1)‖Cβ + ‖ε 1
2 (1)‖C−α0 < δ1 + δ2 < δ0.

If we also choose δ′0 < δ0 by (4.3) we have that for every ‖y − x‖C−α0 ≤ δ′0

‖X(1; y)− X(1; x)‖Cβ � ‖y − x‖C−α0 .

The probability of the event {τ1(x) ≥ 1} can be estimated from below by Proposi-

tion 6.3 uniformly in ‖x − (±1)‖C−α0 ≤ δ′0. Combining with Theorem 4.9 completes

the proof. ⊓⊔

Proof of Corollary 3.2 We only prove the case where initial conditions are close to the

minimiser 1. We fix δ′0, δ
′
1 > 0 such that 2δ′0 < δ0 and δ′0 + δ′1 < δ1. By Proposition

6.2 if we chose δ2 sufficiently small then

• supt≤1 t (n−1)α′‖ n
(t)‖C−α ≤ δ2 ⇒ supt≤1 tγ ‖v(t; y)−1‖Cβ ≤ δ1 uniformly for

‖y − 1‖C−α0 ≤ δ′0.

This together with (4.3) implies that for every x, y ∈ BC−α0 (1; δ′0)

‖X(1; y)− X(1; x)‖Cβ � ‖y − x‖C−α0 � δ′0.

Let

ω ∈ S
′ :=

⎧

⎨

⎩
sup

‖y−1‖
C
−α0≤δ′0

‖X(t; y)− X(t; 1)‖Cβ

‖y − 1‖C−α0

≤ Ce−(2−κ)t for every t ≥ 1

⎫

⎬

⎭
,

t ≥ 1 and y ∈ BC−α0 (−1; δ′0). Then

• sups≤t≤T (t − s)γ ‖vs(t; X(s; 1)) − (±1)‖Cβ ≤ δ′1 ⇒ sups≤t≤T (t − s)γ ‖
vs(t; X(s; y))− (±1)‖Cβ ≤ δ1 for T , s ≥ 1.

• ‖X(t; 1)− (±1)‖C−α0 ≤ δ′0 ⇒ ‖X(t; y)− (±1)‖C−α0 ≤ δ0.

This implies that if we consider the process X(t; y) for t ≥ 1, the times νi (X(1; y)) and

ρi (X(1; y)) of Definition 4.1 for δ0, δ1 and δ2 can be replaced by the times νi (X(1; 1))

and ρi (X(1; 1)) for δ′0, δ
′
1 and the same δ2. Hence the corresponding random walk

SN (X(1; y)) in Definition 4.5 can be replaced by SN (X(1; 1)).
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We can now repeat the proof of Theorem 4.9 for the difference X(t; y)−X(t; x), t ≥
1, step by step, replacing the event in (4.9) by

S
′ ∩

{

sup
t≤1

t (n−1)α′‖ n
(t)‖C−α ≤ δ2, SN (X(1; 1)) ≥ 0 for every N ≥ 1

}

. (4.12)

This allows us to prove that

‖X(t; y)− X(t; x)‖Cβ ≤ Ce−(2−κ)(t−1)‖X(1; y)− X(1; x)‖Cβ

≤ Ce−(2−κ)t‖y − x‖C−α0 ,

uniformly in y, x ∈ BC−α0 (1; δ′0).
To estimate the event in (4.12) we use Theorem 3.1 and Propositions 6.1 and 4.7.

This completes the proof. ⊓⊔

5 Pathwise estimates on the difference of two profiles

In this section we prove Propositions 4.2 and Propositions 4.4. Our analysis here is

pathwise and uses no probabilistic tools.

5.1 Proof of Proposition 4.2

Proof of Proposition 4.2 We only prove (4.3). To prove (4.2) we follow the same strat-

egy as below. However in this case we do not need to encounter the blow-up of

‖Y (t)‖Cβ close to 0 and hence we omit the proof since it poses no extra difficulties.

Let Y (t) = X(t; y)− X(t; x) and notice that from (2.2) we get

(∂t −�)Y = −
(

v(·; y)3 − v(·; x)3
)

+ Y − 3(v(·; y)+ v(·; x))ε
1
2 Y − 3ε Y .

We use the identity v(·; y) = v(·; x)+ Y to rewrite this equation in the form

(∂t − (�− 2)) Y = −3
(

v(·; x)2 − 1
)

Y + Error(v(·; x); Y )

−3(Y + 2v(·; x))ε
1
2 Y − 3ε Y

where Error(v(·; x); Y ) = −Y 3−3v(·; x)Y 2 collects all the terms which are higher

order in Y . Then

Y (t) = e−2t e�t Y (0)+
∫ t

0

e−2(t−s)e�(t−s)

[

− 3
(

v(s; x)2 − 1
)

Y (s)+ Error(v(s; x); Y (s))

− 3(Y (s)+ 2v(s; x))ε
1
2 (s)Y (s)− 3ε (s)Y (s)

]

ds. (5.1)
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We set

κ̃ = sup
t≤τ1(x)

(t ∧ 1)2γ ‖ − 3
(

v(t; x)2 − 1
)

‖Cβ .

Let ι = inf{t > 0 : (t ∧ 1)γ ‖Y (t)‖Cβ > ζ } for 1 ≥ ζ > δ0 and notice that for

t ≤ τ1(x) ∧ ι using (5.1) we get

‖Y (t)‖Cβ

(A.6),(A.7),(A.8)
≤ e−2t C(t ∧ 1)−

α0+β

2 ‖Y (0)‖C−α0

+ κ̃

∫ t

0

e−2(t−s)(s ∧ 1)−2γ ‖Y (s)‖Cβ ds

+ ζ C1

∫ t

0

e−2(t−s)(s ∧ 1)−2γ ‖Y (s)‖Cβ ds

+ δ2 C2

∫ t

0

e−2(t−s)(t − s)−
α+β

2 (s ∧ 1)−γ ‖Y (s)‖Cβ ds

+ δ2 C3

∫ t

0

e−2(t−s)(t − s)−
α+β

2 (s ∧ 1)−α′‖Y (s)‖Cβ ds,

where we also use that for s ≤ t

‖Error(v(s; x); Y (s))‖Cβ � ζ s−2γ ‖Y (s)‖Cβ .

Choosing ζ ≤ κ̃/C1 and δ2 ≤ κ̃/C2 ∨ C3 we have

‖Y (t)‖Cβ ≤ e−2t C(t ∧ 1)−
α+β

2 ‖Y (0)‖C−α0

+κ̃

∫ t

0

e−2(t−s)(t − s)−
α+β

2 (s ∧ 1)−2γ ‖Y (s)‖Cβ ds.

Then, for t ≤ τ1(x) ∧ ι, by the generalised Gronwall inequality, Lemma B.1, on

f (t) = (t ∧ 1)γ ‖Y (t)‖Cβ there exist c > 0 such that

(t ∧ 1)γ ‖Y (t)‖Cβ ≤ C exp
{

− 2t + cκ̃

1

1− α+β
2

−3γ t + M
}

‖Y (0)‖C−α0 .

We now fix δ1 > 0 such that cκ̃

1

1− α+β
2

−3γ ≤ κ
2

. This implies that for t ≤ τ1(x) ∧ ι

(t ∧ 1)γ ‖Y (t)‖Cβ ≤ C exp
{

−
(

2 − κ

2

)

t
}

‖Y (0)‖C−α0 .

Finally choosing δ0 sufficiently small we furthermore notice that τ1(x) ∧ ι = τ1(x),

which completes the proof of (4.3). ⊓⊔
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5.2 Proof of Proposition 4.4

Before we proceed to the proof of Proposition 4.4 we need the following lemma

which upgrades the a priori estimates in [24, Proposition 3.7]. Here and below we let

S(t) = e�t .

Lemma 5.1 There exist α, γ ′, C > 0 and p0 ≥ 1 such that if supt≤1 t (n−1)α′

‖ε n
2

n
(t)‖C−α ≤ Ln then

sup
x∈C−α0

sup
t≤1

tγ
′‖v(t; x)‖Cβ ≤ C(1 ∨ L)p0 .

Proof Throughout this proof we simply write v(t) to denote v(t; x). We first need

bounds on ‖v(t)‖L p , for p sufficiently large, and
∫ t

s
‖∇v(r)‖2

L2 dr . These bounds can

be obtained by classical energy estimates. A bound on ‖v(t)‖L p has already been

obtained in [24, Proposition 3.7], which states that for every p ≥ 2 even

sup
x∈C−α0

sup
t≤1

t
1
2 ‖v(t)‖L p ≤ C

(

1 ∨ sup
t≤1

t (n−1)α′ pn‖ε n
2

n
(t)‖pn

C−α

)

, (5.2)

for some exponents pn ≥ 1. To bound
∫ t

s
‖∇v(r)‖2

L2 dr we need to slightly modify

the strategy used in the proof of [24, Proposition 3.7]. In particular, combining [24,

Equations (3.13) and (3.22)] and integrating from s to t we obtain the energy inequality,

‖v(t)‖2
L2 − ‖v(s)‖2

L2 +
∫ t

s

‖∇v(r)‖2
L2 dr ≤ C

∫ t

s

(

1 +
∑

n≤3

‖ε n
2

n
(r)‖pn

C−α

)

dr ,

which implies that

∫ t

s

‖∇v(r)‖2
L2 dr ≤ C

∫ t

s

(

1 +
∑

n≤3

‖ε n
2

n
(r)‖pn

C−α

)

dr + ‖v(s)‖2
L2 . (5.3)

We now upgrade these bounds to bounds on ‖v(t)‖Cβ . Using the mild form of (2.2)

we have for 1 ≥ t > s > 0

‖v(t)‖Cβ � ‖S(t − s)v(s)‖Cβ
︸ ︷︷ ︸

=:I1

+
∫ t

s

‖S(t − r)v(r)3‖Cβ dr

︸ ︷︷ ︸

=:I2

+
∫ t

s

‖S(t − r)
(

v(r)2ε
1
2 (r)

)

‖Cβ dr

︸ ︷︷ ︸

=:I3

+
∫ t

s

‖S(t − r)
(

v(r)ε (r)
)

‖Cβ dr

︸ ︷︷ ︸

=:I4

+
∫ t

s

‖S(t − r)ε
3
2 (r)‖Cβ dr

︸ ︷︷ ︸

=:I5
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+
∫ t

s

‖S(t − r)ε
1
2 (r)‖Cβ dr

︸ ︷︷ ︸

=:I6

+
∫ t

s

‖S(t − r)v(r)‖Cβ dr

︸ ︷︷ ︸

=:I7

. (5.4)

To estimate ‖v(t)‖Cβ we use the L p bound (5.2), the energy inequality (5.3) and

the embedding B1
2,∞ to bound the terms appearing on the right hand side of the last

inequality as shown below.

We treat each term in (5.4) separately. Below p may change from term to term and

α, λ can be taken arbitrarily small. We write p1 and p2 for conjugate exponents of p,

i.e. 1
p
= 1

p1
+ 1

p2
. We also denote by (1∨ L)p0 a polynomial of degree p0 ≥ 1 in the

variable 1 ∨ L where the value of p0 may change from line to line.

Term I1:

I1

(A.5),(A.6)

� (t − s)−
β+ 2

p
2 ‖v(s)‖L p

(5.2)

� (t − s)−
β+ 2

p
2 s−

1
2 (1 ∨ L)p0 .

Term I2:

I2

(A.5),(A.6)

�

∫ t

s

(t − r)−
β+ 2

p
2 ‖v(r)3‖L p dr

(5.2)

� (1 ∨ L)p0

∫ t

s

(t − r)−
β+ 2

p
2 r−

3
2 dr

� (1 ∨ L)p0 s−
3
2

∫ t

s

(t − r)−
β+ 2

p
2 dr .

Term I3:

I3

(A.5),(A.6),(A.8),λ>0

�

∫ t

s

(t − r)−
2α+λ+ 2

p
2 ‖v(r)2‖

B
α+λ
p,∞
‖ε 1

2 (r)‖C−α dr

(A.9)

�

∫ t

s

(t − r)−
2α+λ+ 2

p
2 ‖v(r)‖L p1 ‖v(r)‖

B
α+λ
p2,∞

‖ε 1
2 (r)‖C−α dr

(A.5),(5.2)

�

∫ t

s

(t − r)−
2α+λ+ 2

p
2 r−

1
2 ‖v(r)‖

B
α+λ+1− 2

p2
2,∞

‖ε 1
2 (r)‖C−α dr

(5.2), 2
p2
=α+λ

� (1 ∨ L)p0 s−
1
2

∫ t

s

(t − r)−
2α+λ+ 2

p
2 ‖v(r)‖B1

2,∞
dr

Cauchy–Schwarz

� (1 ∨ L)p0 s−
1
2

(∫ t

s

(t − r)
−
(

2α+λ+ 2
p

)

dr

) 1
2
(∫ t

s

‖v(r)‖2

B1
2,∞

dr

) 1
2

.

Term I4:

I4

(A.5),(A.6),(A.8),λ>0

�

∫ t

s

(t − r)−
2α+λ+ 2

p
2 ‖v(r)‖

B
α+λ
p,∞
‖ε (r)‖C−α dr

(A.5)

�

∫ t

s

(t − r)−
2α+λ+ 2

p
2 ‖v(r)‖

B
α+λ+1− 2

p
2,∞

‖ε (r)‖C−α dr
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2
p
=α+λ

� (1 ∨ L)p0 s−α′
∫ t

s

(t − r)−
2α+λ+ 2

p
2 ‖v(r)‖B1

2,∞
dr

Cauchy–Schwarz

� (1 ∨ L)p0 s−α′
(∫ t

s

(t − r)
−
(

2α+λ+ 2
p

)

dr

) 1
2

(∫ t

s

‖v(r)‖2

B1
2,∞

dr

) 1
2

.

Term I5:

I5

(A.6)

�

∫ t

s

(t − r)−
α+β

2 ‖ε 3
2 (r)‖C−α dr � (1 ∨ L)p0

∫ t

s

(t − r)−
α+β

2 r−2α′ dr

� (1 ∨ L)p0 s−2α′
∫ t

s

(t − r)−
α+β

2 dr .

Term I6:

I6

(A.6)

�

∫ t

s

(t − r)−
α+β

2 ‖ε 1
2 (r)‖C−α dr � (1 ∨ L)p0

∫ t

s

(t − r)−
α+β

2 dr .

Term I7:

I7

(A.5),(A.6)

�

∫ t

s

(t − r)−
β+ 2

p
2 ‖v(r)‖L p dr

(5.2)

� (1 ∨ L)p0

∫ t

s

(t − r)−
β+ 2

p
2 r−

1
2 dr

� (1 ∨ L)p0 s−
1
2

∫ t

s

(t − r)−
β+ 2

p
2 dr .

Using Proposition A.9, (5.2) and (5.3) we notice that

(∫ t

s

‖v(r)‖2

B1
2,∞

dr

) 1
2

�

(∫ t

s

‖∇v(r)‖2
L2 dr

) 1
2

+
(∫ t

s

‖v(r)‖2
L2 dr

) 1
2

� (1 ∨ L)p0 s−
1
2 .

Combining the above and choosing s = t/2 we find γ ′ > 0 such that

tγ
′‖v(t)‖Cβ � (1 ∨ L)p0

which completes the proof. ⊓⊔

Proof of Proposition 4.4 We denote by (1∨ L)p0 a polynomial of degree p0 ≥ 1 in the

variable 1 ∨ L where the value of p0 may change from line to line.

For k ≥ 0 recall that tk = ν + k and sk = tk + 1
2

. As before, we write Y (t) =
X(t; y)− X(t; x).
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Let t ∈ (tk, sk], k ≥ 1. We restart the stochastic terms at time sk−1 and write Y (t) =
vsk−1

(t; ỹ) − vsk−1
(t; x̃) where for simplicity ỹ = X(sk−1; y) and x̃ = X(sk−1; x).

Together with (2.7), this implies that

(∂t −�)Y = −
(

vsk−1
(·; ỹ)3 − vsk−1

(·; x̃)3
)

+ Y − 3(vsk−1
(·; ỹ)+ vsk−1

(·; x̃))ε
1
2 sk−1

Y − 3ε sk−1
Y .

Using the mild form of the above equation, now starting at tk = sk−1 + 1
2

, we get

‖Y (t)‖Cβ

(A.6),(A.7),(A.8)

� ‖Y (tk)‖Cβ +
∫ t

tk

‖vsk−1
(r; ỹ)3 − vsk−1

(r; x̃)3‖Cβ dr

+
∫ t

tk

(t − r)−
α+β

2 ‖vsk−1
(r; ỹ)2 − vsk−1

(r; x̃)2‖Cβ‖ε
1
2 sk−1

(r)‖C−α dr

+
∫ t

tk

(t − r)−
α+β

2 ‖Y (r)‖Cβ‖ε sk−1
(r)‖C−α dr +

∫ t

tk

‖Y (r)‖Cβ dr .

By Lemma 5.1 there exist γ ′ > 0 such that

sup
x∈C−α0

sup
t∈[sk−1,sk ]

(t − sk−1)
γ ′ ‖vsk−1

(t; x)‖Cβ �

(

1 ∨ Lk

(

ν + 1

2
, ρ

))p0

.

Combining the above we get

‖Y (t)‖Cβ � ‖Y (tk)‖Cβ +
(

1 ∨ Lk

(

ν + 1

2
, ρ

))p0
∫ t

tk

(t − r)−
α+β

2 ‖Y (r)‖Cβ dr .

By the generalised Gronwall inequality, Lemma B.1, there exists c0 > 0 such that

‖Y (t)‖Cβ � exp

{

c0

(

1 ∨ Lk

(

ν + 1

2
, ρ

))p0

(t − s)

}

‖Y (tk)‖Cβ . (5.5)

Following the same strategy we prove that for t ∈ [sk, tk+1], k ≥ 1,

‖Y (t)‖Cβ � exp
{

c0 (1 ∨ Lk+1 (ν, ρ))p0 (t − s)
}

‖Y (sk)‖Cβ . (5.6)

Finally, we also need a bound for t ∈ [t0, t1]. To obtain an estimate which does

not depend on any information before time t0 we use local solution theory. By [24,

Theorem 3.3] there exists t∗ ∈ (t0, t1) such that

sup
‖x‖

C
−α0≤R

sup
r∈[t0,t∗]

(r − t0)
γ ‖vt0(r; x)‖Cβ ≤ 1
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and furthermore we can take

t∗ =
(

1

C(R ∨ L1(ν, ρ))

)p0

.

By Lemma 5.1 we also have that

sup
x∈C−α0

sup
r∈(t0,t1]

(r − t0)
γ ′‖vt0(r; x)‖Cβ � (1 ∨ L1(ν, ρ))p0 .

Combining these two bounds we get

sup
‖x‖

C
−α0≤R

sup
r∈[t0,t1]

(r − t0)
γ ‖vt0(r; x)‖Cβ � (1 ∨ L1(ν, ρ))p0 , (5.7)

where the implicit constant depends on R. Note that γ < 1
3

whereas γ ′ is much larger.

We write Y (t) = vt0(t; y)− vt0(t; x) and use the mild form starting at t0. We then use

(5.7) to bound ‖vt0(t; ·)‖Cβ on [t0, t1] which implies the estimate

‖Y (t)‖Cβ � ‖Y (t0)‖Cβ + (1 ∨ L1 (ν, ρ))p0

∫ t

t0

(t − r)−
α+β

2 (r − t0)
−2γ ‖Y (r)‖Cβ dr .

The extra term (r − t0)
−2γ in the last inequality appears because of the blow-up of

vt0(t; ·) and
n

t0(t) for t close to t0. By the generalised Gronwall inequality, Lemma

B.1, we obtain that

‖Y (t)‖Cβ � exp
{

c0 (1 ∨ L1 (ν, ρ))p0 (t − s)
}

‖Y (s)‖Cβ . (5.8)

For arbitrary t ∈ [ν, ρ] we glue together (5.5), (5.6) and (5.8) to get

‖Y (t)‖Cβ � exp

⎧

⎪
⎨

⎪
⎩

c0

2

⌊t−ν⌋
∑

k=1

∑

l=0, 1
2

(1 ∨ Lk(ν + l, ρ))p0 + L0(t − ν)

⎫

⎪
⎬

⎪
⎭

‖Y (ν)‖Cβ ,

for some L0 > 0 which collects the implicit constants in the inequalities. ⊓⊔

6 Randomwalk estimates

In this section we prove Proposition 4.7 based mainly on probabilistic arguments.

In Sects. 6.1 and 6.2 we provide estimates on κ
2
τi (x) and L(νi (x), ρi (x); σi (x)) +

(2 − κ)σi (x) + M0 from Definition 4.5. In Sect. 6.3 we use these estimates to prove

Proposition 4.7.
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6.1 Estimates on the exit times

Proposition 6.1 Let δ > 0 and τtree = inf{t > 0 : (t∧1)(n−1)α′‖ε n
2

n
(t)‖C−α ≥ δn}.

Then there exist a0 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

P

(

τtree ≤ e3a0/ε
)

≤ e−3a0/ε.

Proof First notice that for N ≥ 1

P(τtree ≤ N ) ≤
N−1
∑

k=0

P(τtree ∈ (k, k + 1))

≤
N−1
∑

k=0

P

(

sup
t∈(k,k+1]

(t ∧ 1)(n−1)α′‖ε n
2

n
(t)‖C−α ≥ δn

)

.

By Proposition D.1 and the exponential Chebyshev inequality there exists a0 > 0 such

that for every k ≥ 0

P

(

sup
t∈(k,k+1]

(t ∧ 1)(n−1)α′‖ε n
2

n
(t)‖C−α ≥ δn

)

≤ e−6a0/ε.

Hence

P(τtree ≤ N ) ≤ Ne−6a0/ε

and choosing N = e3a0/ε completes the proof. ⊓⊔

Proposition 6.2 For δ1 > 0 sufficiently small there exist δ0, δ2 > 0 such that if

sup
t≤T

(t ∧ 1)(n−1)α′‖ε n
2

n
(t)‖C−α < δn

2 , (6.1)

then for every ‖x − (±1)‖C−α0 ≤ δ0

sup
t≤T

(t ∧ 1)γ ‖v(t; x)− (±1)‖Cβ < δ1

and

sup
t≤T

‖X(t; x)− (±1)‖C−α0 ≤ 2δ1.

Proof Let u(t) = v(t; x) − (±1). By an exact expansion of −v3 + v around ±1 we

have that

(∂t − (�− 2))u = Error(u)−
(

3v2ε
1
2 + 3vε + ε

3
2

)

+ 2ε
1
2 , (6.2)
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where Error(u) = −u3 ± 3u2 and ‖Error(u)‖Cβ � ‖u‖3
Cβ + ‖u‖2

Cβ . Let T > 0

and ι = inf{t > 0 : (t ∧ 1)γ ‖u(t)‖Cβ ≥ δ1} for some δ1 > 0 which we fix below.

Using the mild form of (6.2) we get

(t ∧ 1)γ ‖u(t)‖Cβ

(A.6),(A.7),(A.8)

� e−2t‖x − (±1)‖C−α0

+
∫ t

0

e−2(t−s)
(

‖u(s)‖3
Cβ + ‖u(s)‖2

Cβ

)

ds

+
∫ t

0

e−2(t−s)(t − s)−
α+β

2

(

‖v(s)‖2
Cβ‖ε

1
2 (s)‖C−α

+ ‖v(s)‖Cβ‖ε (s)‖C−α

+ ‖ε 3
2 (s)‖C−α + ‖ε 1

2 (s)‖C−α

)

ds.

If we furthermore assume (6.1) for t ≤ T ∧ ι we obtain that

(t ∧ 1)γ ‖u(t)‖Cβ

� δ0e−2t + δ3
1

∫ t

0

e−2(t−s)(s ∧ 1)−3γ ds + δ2
1

∫ t

0

e−2(t−s)(s ∧ 1)−2γ ds

+ δ2

∫ t

0

e−2(t−s)(t − s)−
α+β

2

(

(s ∧ 1)−2γ + (s ∧ 1)−γ (s ∧ 1)−α′

+(s ∧ 1)−2α′ + 1
)

ds.

Then Lemma B.2 implies the bound

sup
t≤T∧ι

(t ∧ 1)γ ‖u(t)‖Cβ � δ0 + δ3
1 + δ2

1 + δ2.

Choosing δ0 < δ1
4C

, δ1 < 1
4C

and δ2 < δ1
4C

this implies that supt≤T∧ι(t ∧
1)γ ‖u(t)‖Cβ < δ1 which in turn implies that ι ≤ T and proves the first bound.

To prove the second bound we notice that for every t ≤ T

‖X(t; x)− (±1)‖C−α0 ≤ ‖u(t)‖C−α0 + ‖ (t)‖C−α0 ≤ ‖u(t)‖C−α0 + δ2.

Hence it suffices to prove that supt≤T ‖u(t)‖C−α0 ≤ δ1. Using again the mild form of

(6.2) we get

‖u(t)‖C−α0

(A.6),(A.2),(A.7),(A.8)

� e−2t‖x − (±1)‖C−α0

+
∫ t

0

e−2(t−s)
(

‖u(s)‖3
Cβ + ‖u(s)‖2

Cβ

)

ds

+
∫ t

0

e−2(t−s)
(

‖v(s)‖2
Cβ‖ε

1
2 (s)‖C−α + ‖v(s)‖Cβ‖ε (s)‖C−α
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+ ‖ε 3
2 (s)‖C−α + ‖ε 1

2 (s)‖C−α

)

ds,

for every t ≤ T . Plugging in (6.1) and the bound supt≤T (t ∧ 1)γ ‖u(t)‖Cβ ≤ δ1 the

last inequality implies

‖u(t)‖Cβ � δ0e−2t + δ3
1

∫ t

0

e−2(t−s)(s ∧ 1)−3γ ds + δ2
1

∫ t

0

e−2(t−s)(s ∧ 1)−2γ ds

+ δ2

∫ t

0

e−2(t−s)
(

(s ∧ 1)−2γ + (s ∧ 1)−γ (s ∧ 1)−α′

+(s ∧ 1)−2α′ + 1
)

ds.

Using again Lemma B.2 we obtain that supt≤T ‖u(t)‖C−α0 < δ1, which completes the

proof.

Proposition 6.3 For everyκ > 0 and δ1 > 0 sufficiently small there exist a0, δ0, δ2 > 0

and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
‖x−(±1)‖

C
−α0≤δ0

P

(κ

2
τ1(x) ≤ e2a0/ε

)

≤ e−3a0/ε,

where τ1(x) is given by (4.1).

Proof We first notice that there exists ε0 > 0 such that for every ε ≤ ε0

P

(κ

2
τ1(x) ≤ e2a0/ε

)

≤ P

(

τ1(x) ≤ e3a0/ε
)

.

The last probability can be estimated by Propositions 6.2 and 6.1 for δ = δ2. ⊓⊔

6.2 Estimates on the entry times

In this section we use large deviation theory and in particular a lower bound of the

form

lim inf
εց0

log ε inf
x∈ℵ

P(X(·; x) ∈ A(T ; x))

≥ − sup
x∈ℵ

inf
f ∈A(T ;x)

f (0)=x

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1

4

∫ T

0

‖(∂t −�) f (t)+ f (t)3 − f (t)‖2
L2 dt

︸ ︷︷ ︸

=:I ( f )

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

, (6.3)

where ℵ is a compact subset of C−α and A(T ; x) ⊂ { f : (0, T ) → C−α} is open.

This bound is an immediate consequence of [14] and the remark that the solution map
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C
−α0 ×

(

C
−α

)3 ∋
(

x,
{

ε
n
2

n

}

n≤3

)

�→ X(·; x) ∈ C
−α

is jointly continuous on compact time intervals. This estimate implies a “nice” lower

bound for the probabilities P(X(·; x) ∈ A(T ; x)) if a suitable path f ∈ A(T ; x) is

chosen.

In the next proposition we use the lower bound (6.3) for suitable setsℵ and A(T ; x)

to estimate probabilities of the entry time of X in a neighbourhood of±1. In particular,

we construct a path f (·; x) and obtain bounds on I ( f (·; x)) uniformly in x ∈ ℵ. This

construction is similar in spirit to the one used in [9, proof of Theorem 9.1] for the

1-dimensional analogue of (1.4), although here we consider a slightly different event

and the initial conditions are not regular functions since they lie in C−α0 . For this

reason we make use of the smoothing properties of the deterministic flow given by

Proposition C.3.

Proposition 6.4 Let δ0 > 0 and σ(x) = inf
{

t > 0 : minx∗∈{−1,1} ‖X(t; x) −
x∗‖C−α0 ≤ δ0

}

. For every R, b > 0 there exists T0 > 0 such that

sup
‖x‖

C
−α0≤R

P(σ (x) ≥ T0) ≤ 1 − e−b/ε.

Proof First notice that

P(σ (x) ≤ T0) = P(‖X(T∗; x)− (±1)‖C−α0 < δ0 for some T∗ ≤ T0
︸ ︷︷ ︸

=:A(T0;x)

).

By the large deviation estimate (6.3) it suffices to bound

sup
‖x‖

C
−α0≤R

inf
f ∈A(T0;x)

f (0)=x

I ( f (·; x)).

We construct a suitable path g ∈ A(T0; x) and we use the trivial inequality

sup
‖x‖

C
−α0≤R

inf
f ∈A(T0;x)

f (0)=x

I ( f (·; x)) ≤ sup
‖x‖

C
−α0≤R

I (g(·; x)).

We now give the construction of g which involves five different steps. In Steps 1, 3

and 5, g follows the deterministic flow. The contribution of these steps to the energy

functional I is zero. In Steps 2 and 4, g is constructed by linear interpolation. The

contribution of these steps is estimated by Lemma 6.5. Below we write Xdet (·; x)

to denote the solution of (1.1) with initial condition x . We also pass through the

space B1
2,2 to use convergence results for Xdet (·; x) which hold in this topology (see

Propositions C.1 and C.2).

Step 1 (Smoothness of initial condition via the deterministic flow):

Let τ1 = 1. For t ∈ [0, τ1] we set g(t; x) = Xdet (t; x). By Proposition C.3 there

exist C ≡ C(r) > 0 and λ > 0 such that
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sup
‖x‖

C
−α0≤R

‖Xdet (1; x)‖C2+λ ≤ C .

Step 2 (Reach points that lead to a stationary solution):

By Step 1 g(τ1; x) ∈ BC2+λ(0;C) uniformly for ‖x‖C−α0 ≤ R. Let δ > 0 to be

fixed below. By compactness there exists {yi }1≤i≤N such that BC2+λ(0;C) is covered

by ∪1≤i≤N BB1
2,2

(yi ; δ). Here we use that C2+λ is compactly embedded in B1
2,2 (see

Proposition A.8).

Without loss of generality we assume that {yi }1≤i≤N is such that yi ∈ C∞ and

Xdet (t; yi ) converges to a stationary solution −1, 0, 1 in B1
2,2. Otherwise we choose

{y∗i }1≤i≤N ∈ BB1
2,2

(yi ; δ) such that y∗i ∈ C∞ and relabel them. This is possible because

of Proposition C.1.

Let τ2 = τ1 + τ , for τ > 0 which we fix below. For t ∈ [τ1, τ2] we set g(t; x) =
g(τ1; x)+ t−τ1

τ2−τ1
(yi − g(τ1; x)), where yi is such that g(τ1; x) ∈ BB1

2,2
(yi ; δ).

Step 3 (Follow the deterministic flow to reach a stationary solution):

Let T ∗
i be such that Xdet (t; yi ) ∈ BB1

2,2
(x∗; δ) for every t ≥ T ∗

i , where x∗ ∈
{−1, 0, 1} is the limit of Xdet (t; yi ) in B1

2,2, for {yi }1≤i≤N as in Step 2. Let τ3 =
τ2+max1≤i≤N T ∗

i ∨1. For t ∈ [τ2, τ3]we set g(t; x) = Xdet (t−τ2; yi ). If Xdet (τ3−
τ2; yi ) ∈ BB1

2,2
(±1; δ) we stop here. Otherwise Xdet (τ3 − τ2; yi ) ∈ BB1

2,2
(0; δ) ∩

BC2+λ(0;C) (here we use again Proposition C.3 to ensure that Xdet (τ3 − τ2; yi ) ∈
BC2+λ(0;C)) and we proceed to Steps 4 and 5.

Step 4 (If an unstable solution is reached move to a point nearby which leads to a

stable solution):

We choose y0 ∈ BB1
2,2

(0; δ) such that y0 ∈ C∞ and Xdet (t; y0) converges to either

1 or −1 in B1
2,2. This is possible because of Proposition C.2.

Let τ4 = τ3 + τ for τ > 0 as in Step 2 which we fix below. For t ∈ [τ3, τ4] we set

g(t; x) = g(τ3; x)+ t−τ3
τ4−τ3

(y0 − g(τ3; x)).

Step 5 (Follow the deterministic flow again to finally reach a stable solution):

Let T ∗
0 be such that Xdet (t; y0) ∈ BB1

2,2
(±1; δ) for every t ≥ T ∗

0 , where y0 is as in

Step 4. Let τ5 = τ4 + T ∗
0 ∨ 1. For t ∈ [τ4, τ5] we set g(t; x) = Xdet (t − τ4; y0).

For the path g(·; x) constructed above we see that after time t ≥ τ5, g(t; x) ∈
BB1

2,2
(±1; δ) for every ‖x‖−C−α0 ≤ R. This implies that ‖g(t; x)−(±1)‖C−α0 < Cδ

since by (A.5), B1
2,2 ⊂ C−α0 . We now choose δ > 0 such that Cδ < δ0 and let

T0 = τ5 + 1. Then g ∈ A(T0; x).

To bound I (g(·; x)) we split our time interval based on the construction of g i.e.

Ik = [τk−1, τk] for k = 1, . . . , 4 and I5 = [τ5, T0]. We first notice that for k = 1, 3, 5

1

4

∫

Ik

‖(∂t −�)g(t; x)+ g(t; x)3 − g(t; x)‖2
L2 dt = 0

since on these intervals we follow the deterministic flow. For the remaining two inter-

vals, i.e. k = 2, 4, we first notice that by construction‖g(τk−1; x)‖C2+λ , ‖g(τk; x)‖C2+λ

≤ C . By (A.3), C2+λ ⊂ B2
∞,2 for every λ > 0, hence we also have that

‖g(τk−1; x)‖B2
∞,2

, ‖g(τk; x)‖B2
∞,2

≤ C . We can now choose τ in Steps 2 and 4 accord-

ing to Lemma 6.5, which implies that
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1

4

∫

Ik

‖(∂t −�)g(t; x)+ g(t; x)3 − g(t; x)‖2
L2 dt ≤ Cδ.

Hence

sup
‖x‖

C
−α0≤R

1

4

∫ T0

0

‖(∂t −�)g(t; x)+ g(t; x)3 − g(t; x))‖2
L2 dt ≤ Cδ.

For b > 0 we choose δ even smaller to ensure that Cδ < b. Finally, by (6.3) there

exists ε0 ∈ (0, 1) such that for every ε ≤ ε0

inf
‖x‖

C
−α0≤R

P(σ (x) ≤ T0) ≥ e−b/ε,

which completes the proof. ⊓⊔

Lemma 6.5 ([9, Lemma 9.2]) Let f (t) = x+ t
τ
(y−x) such that ‖x‖B2

2,2
, ‖y‖B2

2,2
≤ R

and ‖x − y‖L2 ≤ δ. There exist τ > 0 and C ≡ C(R) such that

1

4

∫ τ

0

‖(∂t −�) f (t)+ f (t)3 − f (t)‖2
L2 dt ≤ Cδ.

Proof We first notice that ∂t f (t) = 1
τ
(y − x), hence ‖∂t f (t)‖L2 ≤ 1

τ
δ. For the term

� f (t) we have

‖� f (t)‖L2 ≤ ‖�x‖L2 + ‖�y‖L2 � ‖x‖B2
2,2
+ ‖y‖B2

2,2
� R,

where we use that the Besov space B2
2,2 is equivalent with the Sobolev space H1.

This is immediate from Definition A.1 for p = q = 2 if we write ‖ f ∗ ηk‖L2 using

Plancherel’s identity. For the term f (t)3 − f (t) we have

‖ f (t)3 − f (t)‖L2 � ‖ f (t)‖3
L6 + ‖ f (t)‖L2

(A.4)

� ‖ f (t)‖3

B0
6,1

+ ‖ f (t)‖B0
2,1

(A.5),λ>0

� ‖ f (t)‖3

B

2
3
+λ

2,2

+ ‖ f (t)‖Bλ
2,2

(A.2),λ< 1
3

� ‖ f (t)‖3

B2
2,2

+ ‖ f (t)‖B2
2,2

.

Hence for C ≡ C(R)

1

2

∫ τ

0

‖(∂t −�) f (t)+ f (t)3 − f (t)‖2
L2 dt ≤ 1

τ
δ2 + Cτ.

Choosing τ = δ completes the proof. ⊓⊔
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In the next proposition we estimate the tails of the entry time of X in a neighbour-

hood of ±1 uniformly in the initial condition x . This is achieved by Proposition 6.4

and the Markov property combined with [24, Corollary 3.10] which implies that after

time t = 1 the process X(·; x) enters a compact subset of the state space with positive

probability uniformly in x .

Proposition 6.6 Let δ0 > 0 and σ(x) = inf
{

t > 0 : minx∗∈{−1,1} ‖X(t; x) −
x∗‖C−α0 ≤ δ0

}

. For every b > 0 there exist T0 > 0 and ε0 ∈ (0, 1) such that for

every ε ≤ ε0

sup
x∈C−α0

P(σ (x) ≥ mT0) ≤
(

1 − e−b/ε
)m

,

for every m ≥ 1.

Proof By [24, Corollary 3.10] we know that supx∈C−α0 supt∈(0,1] t
p
2 E‖X(t; x)‖p

L p <

∞, for every p ≥ 2, and the bound is uniform in ε ∈ (0, 1] since it only depends

polynomially on
√

ε. Hence by a simple application of Markov’s inequality there exist

R0 > 0 such that

sup
x∈C−α0

sup
ε∈(0,1]

P(‖X(1; x)‖C−α > R0) ≤
1

2
. (6.4)

By Proposition 6.4 for every b > 0 there exists T0 > 0 and ε0 ∈ (0, 1) such that for

every ε ≤ ε0

sup
‖x‖

C
−α0≤R0

P(σ (x) ≥ T0) ≤ 1 − e−b/ε. (6.5)

Then for every x ∈ C−α0 and ε ≤ ε0

P(σ (x) ≥ T0 + 1) ≤ E

(

1{‖X(1;x)‖
C
−α0≤R0}P(σ (X(1; x)) ≥ T0)

)

+ P(‖X(1; x)‖C−α0 > R0)

(6.4),(6.5)
≤ 1 − 1

2
e−b/ε. (6.6)

Using the Markov property successively implies for every m ≥ 1 and x ∈ C−α0

P(σ (x) ≥ m(T0 + 1)) ≤ sup
y∈C−α0

P(σ (y) ≥ (T0 + 1)) P(σ (x) ≥ (m − 1)(T0 + 1)).

(6.7)

Combining (6.6) and (6.7) we obtain that

sup
x∈C−α0

P(σ (x) ≥ m(T0 + 1)) ≤
(

1 − 1

2
e−b/ε

)m

.

The last inequality completes the proof if we relabel b and T0. ⊓⊔
Proposition 6.7 Let δ0 > 0, ν1(x), ρ1(x) as in Definition 4.1, σ1(x) as in (4.1) and

L(ν1(x), ρ1(x); σ1(x)) as in (4.6). For every κ, M0, b > 0 there exist T0 > 0 and

ε0 ∈ (0, 1) such that for every ε ≤ ε0
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sup
‖x−(±1)‖

C
−α0≤δ0

P

(

[L(ν1(x), ρ1(x); σ1(x))+ (2 − κ)σ1(x)+ M0]
1
p0 ≥ mT0

)

≤
(

1 − e−b/ε
)m

,

for every m ≥ 1 and p0 ≥ 1 as in (4.6).

Proof We first condition on ν1(x) to obtain the bound

sup
‖x−(±1)‖

C
−α0≤δ0

P

(

[L(ν1(x), ρ1(x); σ1(x))+ (2 − κ)σ1(x)+ M0]
1
p0 ≥ mT0

)

≤ sup
x∈C−α0

P

(

[L(0, σ (x); σ(x))+ (2 − κ)σ (x)+ M0]
1
p0 ≥ mT0

)

︸ ︷︷ ︸

=:P
(

g(σ (x))
1
p0 ≥mT0

)

,

where σ(x) = inf
{

t > 0 : minx∗∈{−1,1} ‖X(t; x)− x∗‖C−α0 ≤ δ0

}

. Let T0 ≥ 1 to be

fixed below and notice that for any T1 > 0

P

(

g(σ (x))
1
p0 ≥ mT0

)

≤ P

(

g(σ (x))
1
p0 ≥ mT0, σ (x) ≤ mT1

)

+ P(σ (x) ≥ mT1)

≤ P

⎛

⎜
⎝

⌊mT1⌋∑

k=1

∑

l=0, 1
2

Lk(l, mT1) ≥ m(T0 − C)

⎞

⎟
⎠

+ P(σ (x) ≥ mT1),

for some C > 0, where in the second inequality we use convexity of the mapping g �→
g

1
p0 and the fact that Lk(l, σ ) is increasing in σ by Definition 4.3. By Proposition 6.6

we can choose T1 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
x∈C−α0

P(σ (x) ≥ mT1) ≤
(

1 − e−b/ε
)m

.

We also notice that

P

⎛

⎜
⎝

⌊mT1⌋∑

k=1

∑

l=0, 1
2

Lk(l, mT1) ≥ m(T0 − C)

⎞

⎟
⎠

≤
∑

l=0, 1
2

P

⎛

⎝

⌊mT1⌋∑

k=1

Lk(l, l + k) ≥ m

(
T0 − C

2

)
⎞

⎠

≤
∑

l=0, 1
2

exp

{

−cm

(
T0 − C

2ε

)}
(

EecL1(l,1)/ε
)mT1

,

123



288 P. Tsatsoulis, H. Weber

where in the first inequality we use that Lk(l, mT1) ≤ Lk(l, l + k), for every 1 ≤ k ≤
⌊mT1⌋, and in the second we use an exponential Chebyshev inequality, independence

and equality in law of the Lk(l, l + k)’s. For any T > 0 we choose c ≡ c(n) > 0

according to Proposition D.1, T0 sufficiently large and ε0 ∈ (0, 1) sufficiently small

such that for every ε ≤ ε0

∑

l=0, 1
2

exp

{

−cm

(
T0 − C

2ε

)}
(

EecL1(l,1)/ε
)mT1

≤ e−mT /ε.

Combining all the previous inequalities imply that

sup
‖x−(±1)‖

C
−α0≤δ0

P

(

[L(ν1(x), ρ1(x); σ1(x))+ (2 − κ)σ1(x)+ M0]
1
p0 ≥ mT0

)

≤ e−mT /ε +
(

1 − e−b/ε
)m

.

This completes the proof if we relabel b since T is arbitrary. ⊓⊔

6.3 Proof of Proposition 4.7

In this section we set

fi (x) := κ

2
τi (x)

gi (x) := L(νi (x), ρi (x); σi (x))+ (2 − κ)σi (x)+ M0.

In this notation the random walk SN (x) in Definition 4.5 is given by
∑

i≤N ( fi (x) −
gi (x)).

To prove Proposition 4.7 we first consider a sequence of i.i.d. random variables

{ f̃i }i≥1 such that f̃1 ∼ exp(1). We furthermore assume that the family { f̃i }i≥1 is

independent from both { fi (x)}i≥1 and {gi (x)}i≥1. For λ > 0 which we fix later on,

we set

S̃N (x) := λ
∑

i≤N

f̃i −
∑

i≤N

gi (x).

In the proof of Proposition 4.7 below we compare the random walk SN (x) with S̃N (x).

The idea is that
∑

i≤N fi (x) behaves like λ
∑

i≤N f̃i for suitable λ > 0.

In the next proposition we estimate the new random walk S̃N (x) using stochastic

dominance. In particular we assume that the family of random variables {gi (x)}i≥1 is

stochastically dominated by a family of i.i.d. random variables {g̃i }i≥1 which does not

depend on x and obtain a lower bound on P(−S̃N (x) ≤ u for every N ≥ 1).

From now on we denote by μZ the law of a random variable Z .

Proposition 6.8 Assume that there exists a family of i.i.d. random variables {g̃i }i≥1,

independent from both {gi (x)}i≥1 and { f̃i }i≥1, such that
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sup
‖x−(±1)‖

C
−α0≤δ0

P(gi (x) ≥ g) ≤ P(g̃i ≥ g),

for every g ≥ 0. Let S̃N = λ
∑

i≤N f̃i −
∑

i≤N g̃i . Then

inf
‖x−(±1)‖

C
−α0≤δ0

P(−S̃N (x) ≤ u for every N ≥ 1) ≥ P(−S̃N ≤ u for every N ≥ 1).

Proof Let

G N (x, u) = P(−S̃M (x) ≤ u for every N ≥ M ≥ 1)

G N (u) = P(−S̃M ≤ u for every N ≥ M ≥ 1).

We first prove that for every N ≥ 1 and every x

G N (x, u) ≥ G N (u). (6.8)

For N = 1 we have that

G1(x, u) = P(−λ f̃1 + g1(x) ≤ u) =
∫ ∞

0

P(g1(x) ≤ u + λ f ) μ
f̃1
( d f )

≥
∫ ∞

0

P(g̃1 ≤ u + λ f ) μ
f̃1
( d f ) = P(−λ f̃1 + g̃1 ≤ u) = G1(u).

Let us assume that (6.8) holds for N . Let ∂ B0 = {y : ‖y − (±1)‖C−α0 = δ0}.
Conditioning on

(

f̃1, g1(x), X(ν2(x); x)
)

and using independence of f̃1 from the

joint law of (g1(x), X(ν2(x); x)) we notice that

G N+1(x, u)

=
∫ ∞

0

∫

[0,u+λ f ]×∂ B0

G N (y, u + λ f − g) μ(g1(x),X(ν2(x);x))( dg, dy) μ
f̃1
( d f )

(6.8)
≥

∫ ∞

0

∫

[0,u+λ f ]×∂ B0

G N (u + λ f − g) μ(g1(x),X(ν2(x);x))( dg, dy) μ
f̃1
( d f )

=
∫ ∞

0

∫

[0,u+λ f ]
G N (u + λ f − g) μg1(x)( dg) μ

f̃1
( d f ). (6.9)

In the last equality above we use that G N (u + λ f − g) does not depend on y, hence

we can drop the integral with respect to y. Let

H(g) = 1{g≤u+λ f }G N (u + λ f − g).

Then for fixed u, f ≥ 0, H is decreasing with respect to g. By Lemma E.1
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∫

[0,u+λ f ]
G N (u + λ f − g) μg1(x)( dg) =

∫

H(g)μg1(x)( dg) ≥
∫

H(g)μg̃1
( dg)

=
∫

[0,u+λ f ]
G N (u + λ f − g) μg̃1

( dg).

Integrating the last inequality with respect to f with μ
f̃1

and combining with (6.9) we

obtain

G N+1(x, u) ≥
∫ ∞

0

∫

[0,u+λ f ]
G N (u + λ f − g) μg̃1

( dg) μ
f̃1
( d f ) = G N+1(u),

which proves (6.8). If we now take N →∞ in (6.8) we get for arbitrary x

G(x, u) ≥ G(u),

which completes the proof. ⊓⊔

In the next proposition we prove existence of a family of random variables {g̃i }i≥1

that satisfy the assumption of Proposition 6.8 and estimate their first moment.

Proposition 6.9 There exists a family of i.i.d. random variables {g̃i }i≥1, independent

from both {gi (x)}i≥1 and { f̃i }i≥1, such that

sup
‖x−(±1)‖

C
−α0≤δ0

P(gi (x) ≥ g) ≤ P(g̃i ≥ g),

and furthermore for every b > 0 there exist ε0 ∈ (0, 1) and C > 0 such that for every

ε ≤ ε0

Eg̃1 ≤ Ceb/ε.

Proof We first notice that by the Markov property

sup
‖x−(±1)‖

C
−α0≤δ0

P(gi (x) ≥ g) ≤ sup
‖x−(±1)‖

C
−α0≤δ0

P(g1(x) ≥ g).

Let F(g) be the right continuous version of the increasing function 1 − supx∈C−α0

P(g1(x) ≥ g). We consider a family of i.i.d. random variables such {g̃i }i≥1 indepen-

dent from both {gi (x)}i≥1 and { f̃i }i≥1 such that P(g̃i ≤ g) = F(g). To estimate Eg̃1

let cε > 0 to be fixed below. We notice that

Eg̃1 ≤ sup
g≥0

ge−cεg
1
p0

E exp

{

cε g̃

1
p0

1

}

≤
(

p0e−1

cε

)p0

E exp

{

cε g̃

1
p0

1

}

. (6.10)

For b > 0 we choose T0 > 0 and ε0 ∈ (0, 1) as in Proposition 6.7. Then for every

ε ≤ ε0

E exp

{

cε g̃

1
p0

1

}

= 1 +
∫ ∞

0

cεecεg
P

(

g̃

1
p0

1 ≥ g

)

dg
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≤ 1 +
∑

m≥0

P

(

g̃

1
p0

1 ≥ mT0

)∫ (m+1)T0

mT0

cεecεg dg

= 1 +
∑

m≥0

sup
‖x−(±1)‖

C
−α0≤δ0

P

(

g1(x)
1
p0 ≥ mT0

)∫ (m+1)T0

mT0

cεecεg dg

≤ 1 + ecεT0
∑

m≥0

emcεT0

(

1 − e−b/ε
)m

,

where in the last inequality we use Proposition 6.7 to estimate P

(

g1(x)
1
p0 ≥ mT0

)

.

We now choose cε > 0 such that cεT0 = log
(

1 + e−b/ε
)

. Then

E exp

{

cε g̃

1
p0

1

}

≤ 1 +
(

1 + e−b/ε
) ∑

m≥0

(

1 + e−b/ε
)m (

1 − e−b/ε
)m

≤ 1 + 2
∑

m≥0

(

1 − e−2b/ε
)m

= 1 + 2e2b/ε.

Finally, by (6.10) we obtain that

Eg̃1 ≤
(

p0e−1T0

log
(

1 + e−b/ε
)

)p0 (

1 + 2e2b/ε
)

,

which completes the proof if we relabel b. ⊓⊔
Remark 6.10 In the proof of Proposition 6.9 we use stretched exponential moments of

g̃1, although we only need 1st moments (see Lemma 6.12 below). This simplifies our

calculations.

From now on we let S̃N = λ
∑

i≤N f̃i −
∑

i≤N g̃i for {g̃i }i≥1 as in Proposition 6.9.

In the next proposition we explicitly compute the probability P(−S̃N ≤
0 for every N ≥ 1). The proof is essentially the same as the classical Cramér–

Lundberg estimate (see [8, Chapter 1.2]). We present it here for the reader’s

convenience.

Proposition 6.11 For the random walk S̃N the following estimate holds,

P(−S̃N ≤ 0 for every N ≥ 1) = 1 − 1

λ
Eg̃1.

Proof Let G(u) = P(−S̃N ≤ u for every N ≥ 1). Conditioning on ( f̃1, g̃1) and using

independence we notice that

G(u) = P

(

−λ

N
∑

i=2

f̃i +
N
∑

i=2

g̃i ≤ u + λ f̃1 − g̃1 for every N ≥ 2, −λ f̃1 + g̃1 ≤ u

)
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=
∫ ∞

0

∫ u+λ f

0

G(u + λ f − g) μg̃1
( dg) μ

f̃1
( d f )

= 1

λ
eu/λ

∫ ∞

u

e− f̄ /λ

∫ f̄

0

G( f̄ − g) μg̃1
( dg) d f̄ , (6.11)

where in the last equality we use that f̃1 ∼ exp(1) and we also make the change of

variables f̄ = u + λ f . This implies that G(u) is differentiable with respect to u and

in particular

∂ūG(ū) = 1

λ
G(ū)− 1

λ

∫ ū

0

G(ū − g) μg̃1
( dg).

Integrating the last equation form 0 to u we obtain that

G(u) = G(x, 0)+ 1

λ

∫ u

0

G(u − ū) dū − 1

λ

∫ u

0

∫ ū

0

G(ū − g) μg̃1
( dg) dū. (6.12)

Let F(g) := μg̃1
([0, g]). A simple integration by parts implies

∫ u

0

∫ ū

0

G(ū − g) μg̃1
( dg) dū

=
∫ u

0

(

[G(ū − g)]ū
g=0 +

∫ ū

0

∂gG(ū − g)F(g) dg

)

dū

=
∫ u

0

G(0)F(ū) dū +
∫ u

0

∫ u

g

∂gG(ū − g) dūF(g) dg

=
∫ u

0

G(0)F(ū) dū −
∫ u

0

[−G(ū − g)]u
g F(g) dg

=
∫ u

0

G(u − g)F(g) dg. (6.13)

Combining (6.12) and (6.13) we get

G(u) = G(0)+ 1

λ

∫ u

0

G(u − ū) dū − 1

λ

∫ u

0

G(u − ū)F(ū) dū.

By taking u →∞ in the last equation and using the dominated convergence theorem

and the law of large numbers we finally obtain

1 = G(0)+ 1

λ
Eg̃1,

which completes the proof. ⊓⊔

Combining Propositions 6.8, 6.9 and 6.11 we obtain the following lemma.

123



Exponential loss of memory for the 2-dimensional… 293

Lemma 6.12 For any b > 0 there exist ε0 ∈ (0, 1) and C > 0 such that for every

ε ≤ ε0

inf
‖x−(±1)‖

C
−α0≤δ0

P(−S̃N (x) ≤ 0 for every N ≥ 1) ≥ 1 − C
eb/ε

λ
.

Proof By Propositions 6.8, 6.9 and 6.11 and

inf
‖x−(±1)‖

C
−α0≤δ0

P(−S̃N (x) ≤ 0 for every N ≥ 1)

≥ P(−S̃N ≤ 0 for every N ≥ 1) = 1 − 1

λ
Eg̃1.

Moreover, by Proposition 6.9 for every b > 0 there exist ε0 ∈ (0, 1) and C > 0 such

that for every ε ≤ ε0, Eg̃1 ≤ Ceb/ε which completes the proof. ⊓⊔

We are now ready to prove Proposition 4.7 which is the main goal of this section.

Proof of Proposition 4.7 We estimate P(SN (x) ≤ 0 for some N ≥ 1) in the following

way,

P(−SN (x) ≥ 0 for some N ≥ 1)

≤ P

⎛

⎝−
∑

i≤N

fi (x)+ λ
∑

i≤N

f̃i ≥ 0 for some N ≥ 1

⎞

⎠

+ P(−S̃N (x) ≥ 0 for some N ≥ 1). (6.14)

The second term on the right hand side can be estimated by Lemma 6.12 which

provides a bound of the form

sup
‖x−(±1)‖

C
−α0≤δ0

P(−S̃N (x) ≥ 0 for some N ≥ 1) ≤ C
eb/ε

λ
. (6.15)

For the first term we notice that

P

⎛

⎝−
∑

i≤N

fi (x)+ λ
∑

i≤N

f̃i ≥ 0 for some N ≥ 1

⎞

⎠

≤
∑

N≥1

P

⎛

⎝−
∑

i≤N

fi (x)+ λ
∑

i≤N

f̃i ≥ 0

⎞

⎠

≤
∑

N≥1

P

⎛

⎝exp

⎧

⎨

⎩
− 1

2λ

∑

i≤N

fi (x)+ 1

2

∑

i≤N

f̃i

⎫

⎬

⎭
≥ 1

⎞

⎠ .
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By Markov’s inequality, independence of { fi (x)}i≥1 and { f̃i }i≥1 and equality in law

of the f̃i ’s the last inequality implies that

P

⎛

⎝−
∑

i≤N

fi (x)+ λ
∑

i≤N

f̃i ≥ 0 for some N ≥ 1

⎞

⎠

≤
∑

N≥1

E exp

⎧

⎨

⎩
− 1

2λ

∑

i≤N

fi (x)

⎫

⎬

⎭

︸ ︷︷ ︸

=:IN (x)

(

E exp

{

f̃1

2

})N

︸ ︷︷ ︸

≤2N since f̃1∼exp(1)

. (6.16)

Let ε0 ∈ (0, 1) as in Proposition 6.3. For the term IN (x) we notice that for every

ε ≤ ε0

IN (x) ≤
(

sup
‖x−(±1)‖

C
−α0≤δ0

E exp

{

− 1

2λ
f1(x)

}
)N

≤
(

sup
‖x−(±1)‖

C
−α0≤δ0

[

E exp

{

− 1

2λ
f1(x)

}

1{ f1(x)≥e2a0/ε}

+P

(

f1(x) ≤ e2a0/ε
)
])N

≤
(

e−e2a0/ε/2λ + e−3a0/ε
)N

,

where in the first inequality we use the Markov property and in the last we use Propo-

sition 6.3. If we choose 1
2λ
= e−(2a0−b)/ε and choose ε0 ∈ (0, 1) even smaller the last

inequality implies that for every ε ≤ ε0

sup
‖x−(±1)‖

C
−α0≤δ0

IN (x) ≤
(

e−eb/ε + e−3a0/ε
)N

≤ e−5a0 N/2ε.

Combining with (6.16) we find ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
‖x−(±1)‖

C
−α0≤δ0

P

⎛

⎝−
∑

i≤N

fi (x)+ λ
∑

i≤N

f̃i ≥ 0 for some N ≥ 1

⎞

⎠

≤
∑

N≥1

e−5a0 N/2ε2N ≤
∑

N≥1

e−2a0 N/ε = e−2a0/ε

1 − e−2a0/ε
. (6.17)

Finally (6.14), (6.15) and (6.17) imply that

sup
‖x−(±1)‖

C
−α0≤δ0

P(−SN (x) ≥ 0 for some N ≥ 1) ≤ C
eb/ε

e(2a0−b)/ε
+ e−2a0/ε

1 − e−2a0/ε
,
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which completes the proof since b is arbitrary. ⊓⊔

7 Proof of the Eyring–Kramers law

In this section we prove the Eyring–Kramers law Theorem 3.5. We first need to intro-

duce some additional tools.

We consider the spatial Galerkin approximation X N (·; x) of X(·; x) given by

(∂t −�)X N = −�N

(

X3
N − X N − 3εℜN X N

)

+
√

2εξN

X N

∣
∣
t=0

= xN (7.1)

where �N is the projection on { f ∈ L2 : f (z) =
∑

|k|≤N f̂ (k)L−2e2π ik·z/L}, ξN =
�N ξ, xN = �N x and ℜN is as in (2.3). Here for k ∈ Z

2 we set |k| = |k1| ∨ |k2|. In

this notation we have that �N f = f ∗ DN , where DN is the 2-dimensional square

Dirichlet kernel given by DN (z) =
∑

|k|≤N L−2e2π ik·z/L .

To treat (7.1) we write X N (·; x) = vN (·; x)+ ε
1
2 N (·; x) for

(∂t − (�− 1)) N =
√

2ξN

N (0) = 0.

Then vN (·; x) solves

(∂t −�) vN = −�N v3
N + vN −�N

(

3v2
N ε

1
2 N + 3vN ε N + ε

3
2 N

)

+ 2ε
1
2 N

vN

∣
∣
t=0

= xN (7.2)

where N = 2
N −ℜN and N = 3

N − 3ℜN N .

As in (3.1) and (3.2), for δ ∈ (0, 1/2) and α > 0 we define the symmetric subsets

A and B of C−α by

A :=
{

f ∈ C
−α : f̄ ∈ [−1 − δ,−1 + δ], f − f̄ ∈ D⊥

}

(7.3)

B :=
{

f ∈ C
−α : f̄ ∈ [1 − δ, 1 + δ], f − f̄ ∈ D⊥

}

(7.4)

where D⊥ is the closed ball of radius δ in C−α and f̄ = L−2〈 f , 1〉. To simplify the

notation in this section, we have dropped the dependence of A and B on the parameters

α and δ. We will only write A(α; δ) and B(α; δ) if we need to specify the values of

these parameters. For x ∈ A we define

τB(X N (·; x)) := inf {t > 0 : X N (t; x) ∈ B}

and

τB(X(·; x)) := inf {t > 0 : X(t; x) ∈ B} .
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Last, recall that for k ∈ Z
2 (see (3.3)),

λk =
(

2π |k|
L

)2

− 1 and νk =
(

2π |k|
L

)2

+ 2 = λk + 3.

The next theorem is essentially [2, Theorem 2.3].

Theorem 7.1 ([2, Theorem 2.3]) Let 0 < L < 2π . For every α > 0, δ ∈ (0, 1/2) and

ε ∈ (0, 1) there exists a sequence {με,N }N≥1 of probability measures concentrated on

∂ A such that

lim sup
N→∞

∫

EτB(X N (·; x)) με,N ( dx)

≤ 2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}

e(V (0)−V (−1))/ε
(

1 + c+
√

ε
)

lim inf
N→∞

∫

EτB(X N (·; x)) με,N ( dx)

≥ 2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}

e(V (0)−V (−1))/ε (1 − c−ε) (7.5)

where the constants c+ and c− are uniform in ε.

Proof The proof of (7.5) is given in [2, Sections 4 and 5], but the following should be

modified.

• In [2], the sets A and B are defined as in (7.3) and (7.4) with D⊥ replaced by a

ball in H s for s < 0. The explicit form of D⊥ is only used in [2, Lemma 5.9].

There the authors consider the 0-mean Gaussian measure γ⊥0 with quadratic form

1
2ε

(

‖∇ f ‖2
L2 − ‖ f − f̄ ‖2

L2

)

, and prove that D⊥ has probability bounded from

below by 1 − cε2. Here we assume that D⊥ is a ball in C−α . To obtain the same

estimate for this set, we first notice that the random field f associated with the

measure γ⊥0 satisfies

E〈 f , L−2e2iπk·/L〉 �
ε log ε−1 log λk

1 + λk

,

for every k ∈ Z
2, where the explicit constant depends on L . This decay of the

Fourier modes of f and [21, Proposition 3.6] imply that the measure γ⊥0 is con-

centrated in C−α , for every α > 0, which in turn implies [2, Lemma 5.9] for the

set D⊥ considered here.

• In [2], the authors consider (7.1) with ℜN replaced by

CN = 1

L2

∑

|k|≤N

1

|λk |
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and obtain (7.5) with the pre-factor given by

2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk

}

= lim
N→∞

2π

|λ0|

√
√
√
√

∏

|k|≤N

|λk |
νk

exp

{
3L2CN

2

}

.

In our case one can check by (2.3) that ℜN is given by

ℜN = 1

L2

∑

|k|≤N

1

|λk + 2| .

According to [2, Remark 2.5] this choice of renormalisation constant modifies [2,

Theorem 2.3] by multiplying the pre-factor there with

exp

{

−3L2 lim
N→∞

(ℜN − CN )/2λ0

}

.

⊓⊔

Remark 7.2 The finite dimensional measure με,N in (7.5) is given by

με,N ( d f ) = 1

capA(B)
e−V (�N f )/ερA,B( d f ),

where ρA,B is a probability measure concentrated on ∂ A, called the equilibrium mea-

sure, and capA(B) is a normalisation constant. Under this measure and the assumption

that the sets A and B are symmetric, the integrals appearing in (7.5) can be rewritten

using potential theory as

∫

EτB(X N (·; x)) με,N ( dx) = 1

2capA(B)

∫

R(2N+1)2
e−V (�N f )/ε d f .

This formula is derived in [2, Section 3] and it is then analysed to obtain (7.5).

Theorem 3.5 generalises (7.5) for the limiting process X(·; x) for fixed initial condi-

tion x in a suitable neighbourhood of−1. To prove this theorem, we first fix α ∈ (0, α0)

and pass to the limit as N →∞ in (7.5) to prove a version of (3.4) where the initial

condition x is averaged with respect to a measure με concentrated on a closed ball

with respect to the weaker topology C−α0 (see Proposition 7.7). This measure is the

weak limit, up to a subsequence, of the measures με,N in Theorem 7.1. We then use the

exponential loss of memory, Theorem 3.1, to pass from averages of initial conditions

with respect to the limiting measure με to fixed initial conditions.

The rest of this section is structured as follows. In Sect. 7.1 we prove convergence

of the Galerkin approximations X N (·; xN ) and obtain estimates uniform in the initial

condition x and the regularisation parameter N . In Sect. 7.2 we prove uniform inte-

grability of the stopping times τB(X(·; x)) and pass to the limit as N →∞ in (7.5).

Finally in Sect. 7.3 we prove Theorem 3.5.
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7.1 Convergence of the Galerkin scheme and a priori estimates

In the next proposition we prove convergence of X N (·; x) to X(·; xN ) in C([0, T ]; C−α)

using convergence of the stochastic objects
n

N which is proven in [24, Proposition

2.3]. This is a technical result and the proof is given in the Appendix.

Proposition 7.3 Let ℵ ⊂ C−α0 be bounded and assume that for every x ∈ ℵ, there

exists a sequence {xN }N≥1 such that xN → x uniformly in x. Then for every α ∈
(0, α0) and 0 < s < T

lim
N→∞

sup
x∈ℵ

sup
t∈[s,T ]

‖X N (t; xN )− X(t; x)‖C−α = 0

in probability.

Proof See Appendix F. ⊓⊔

The next proposition provides a bound for X N (·; x) uniformly in the initial condition

x and the regularisation parameter N in the B
−α
2,2 norm, for 0 < α < α0. This result has

been already established in [24, Corollary 3.10] for the limiting process X(·; x) in the

C−α norm. There (2.2) is tested with v(·; x)p−1, for p ≥ 2 even, to bound ‖v(·; x)‖L p

by using the “good” sign of the non-linear term−v3. In the case of (7.2) this argument

allows us to bound ‖vN (·; x)‖L p for p = 2 only, because of the projection �N in

front of the non-linearity.

Proposition 7.4 For every α ∈ (0, α0] and p ≥ 1 we have that

sup
N≥1

sup
x∈C−α0

sup
t≤1

t
p
2 E‖X N (s; x)‖p

B
−α
2,2

< ∞. (7.6)

Proof Proceeding exactly as in the proof of [24, Proposition 3.7] we first show that

there exist α ∈ (0, 1) and pn ≥ 1 such that for every t ∈ (0, 1)

‖vN (t; x)‖2
L2 � t−1 ∨

(
3

∑

n=1

t−α′(n−1)pn sup
s≤t

sα′(n−1)pn‖ε n
2

n

N (s)‖pn

C−α

) 1
2

, (7.7)

for every α′ ∈ (0, 1), uniformly in x ∈ C−α0 . We then proceed as in the proof of [24,

Corollary 3.10] and use (7.7) to prove (7.6). The only difference is that here we use

the norm ‖ · ‖
B
−α
2,2

and the embedding L2 →֒ B
−α
2,2 on the level of vN (·; x) together

with the fact that

sup
N≥1

E

(

sup
t≤1

t (n−1)α′‖ n

N (t)‖C−α

)p

< ∞,

for every α, α′ > 0 and p ≥ 1, which is immediate from [24, Proposition 2.2,

Proposition 2.3]. ⊓⊔
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7.2 Passing to the limit

In this section we pass to the limit as N →∞ in (7.5) using uniform integrability of

the stopping time τB(X N (·; x)). To obtain uniform integrability we prove exponential

moment bounds for τB(X N (·; x)) uniformly in the initial condition x ∈ C−α0 and

the regularisation parameter N . We first bound P (τB(X N (·; x)) ≥ 1) using a support

theorem and a strong a priori bound for X N (·; x) in C−α . A support theorem for the

limiting process X(·; x) has been already established in [24, Corollary 6.4]. To use it

for X N (·; x) we combine it with the convergence result in Proposition 7.3. To obtain

a strong a priori bound for X N (·; x) in C−α we first use Proposition 7.4 which implies

the bound in B
−α
2,2 and then use Proposition G.2 to pass from the B

−α
2,2 norm to the C−α

norm.

Proposition 7.5 For every α ∈ (0, α0), δ ∈ (0, 1/2) and ε ∈ (0, 1) there exist c0 ∈
(0, 1) and N0 ≥ 1 such that for every N ≥ N0

sup
x∈C−α0

P (τB(X N (·; x)) ≥ 1) ≤ c0.

Proof Let α ∈ (0, α0) and let ℵ be a compact subset of C−α0 which we fix below.

Using the Markov property

P(τB(X N (·; x)) ≥ 1) ≤ sup
y∈ℵ

P(τB(X N (·; y)) ≥ 1/2) P(X N (1/2; x) ∈ ℵ)

+P(X N (1/2; x) /∈ ℵ).

The proof is complete if for every N ≥ N0

sup
y∈ℵ

P(τB(X N (·; y)) ≥ 1/2) < 1, sup
x∈C−α0

P(X N (1/2; x) /∈ ℵ) < 1. (7.8)

We notice that there exists δ′ > 0 such that for any y ∈ ℵ

P(τB(X N (·; y)) ≤ 1/2) ≥ P(X N (1/2; y) ∈ B) ≥ P
(

X(1/2; y) ∈ BC−α (1; δ′)
)

− P
(

‖X N (1/2; y)− X(1/2; y)‖C−α ≥ δ′
)

. (7.9)

Here we use that if ‖X(1/2; y) − 1‖C−α , ‖X N (1/2; y) − X(1/2; y)‖C−α ≤ δ′, then

X N (1/2; y) ∈ B for δ′ sufficiently small. By the support theorem [24, Corollary 6.4]

there exists c1 ≡ c1(δ, ε) > 0 such that

inf
y∈ℵ

P
(

X(1/2; y) ∈ BC−α (1; δ′)
)

≥ c1. (7.10)

On the other hand Proposition 7.3 implies convergence in probability of X N (1/2; y)

to X(1/2; y) in C−α uniformly in y ∈ ℵ. Hence there exists N0 ≥ 1 such that for

every N ≥ N0
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sup
y∈ℵ

P (‖X N (1/2; y)− X(1/2; y)‖C−α ≥ δ/2) ≤ c1/2. (7.11)

Plugging (7.10) and (7.11) in (7.9) implies the first bound in (7.8).

We now prove the second bound in (7.8). By the Markov inequality for every R > 0

P

(

‖X N (1/4; x)‖
B
−α
2,2
≥ R

)

≤ 1

R
E‖X N (1/4; x)‖

B
−α
2,2

.

By (7.6) the expectation on the right hand side of the last inequality is uniformly

bounded over x ∈ C−α0 and N ≥ 1. Thus choosing R > 0 large enough

sup
x∈C−α0

P

(

‖X N (1/4; x)‖
B
−α
2,2
≥ R

)

≤ 1

2
. (7.12)

By Proposition G.2 for every K , R > 0 there exist C ≡ C(K , R) such that

sup
‖y‖

B
−α
2,2
≤R

P (‖X N (1/4; y)‖C−α ≥ C) ≤ P

(

sup
t≤1

t (n−1)α′‖ε n
2

n

N (t)‖C−α ≥ K

)

.

Choosing K sufficiently large, combining the last inequality with [24, Propositions

2.2 and 2.3] and using the Markov inequality imply that

sup
‖y‖

B
−α
2,2
≤R

P (‖X N (1/4; y)‖C−α ≥ C) ≤ 1

2
. (7.13)

Using the Markov property and (7.12) and (7.13) we get for arbitrary x ∈ C−α0

P (‖X N (1/2; x)‖C−α ≥ C)

≤ P

(

‖X N (1/4; x)‖
B
−α
2,2
≤ R

)

sup
y∈B

−α
2,2

P(‖X N (1/4; y)‖C−α ≥ C)

+ P

(

‖X N (1/4; x)‖
B
−α
2,2
≥ R

)

≤ 3

4
.

We finally notice that for every α < α0 the set ℵ = { f ∈ C−α0 : ‖ f ‖C−α ≤ C} is

compact in C−α0 which implies the second bound in (7.8). ⊓⊔

In the next corollary we use Proposition 7.5 to prove exponential moments for the

stopping time τB(X N (·; x)).

Corollary 7.6 For every δ > 0 and ε ∈ (0, 1) there exist η0 > 0 and N0 ≥ 1 such that

sup
N≥N0

sup
x∈C−α0

E exp{η0τB(X N (·; x))} < ∞.
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Proof By the Markov property we have that

P(τB(X N (·; x)) ≥ k + 1) ≤ sup
y∈C−α0

P(τB(X N (·; y)) ≥ 1) P(τB(X N (·; x)) ≥ k).

Iterating this inequality and using Proposition 7.5 we obtain that

sup
x∈C−α0

P(τB(X N (·; x)) ≥ k + 1) ≤ ck+1
0 .

Then

E exp{η0τB(X N (·; x))} = 1 +
∫ ∞

0

η0eη0t
P(τB(X N (·; x)) ≥ t) dt

≤ 1 +
∞
∑

k=0

P(τB(X N (·; x)) ≥ k)

∫ k+1

k

η0eη0t dt

≤ 1 + eη0

∞
∑

k=0

eη0kck
0

and the proof is complete if we choose η0 < log c−1
0 . ⊓⊔

In the next proposition we pass to the limit as N → ∞ in (7.5). Here we use

Corollary 7.6, which implies uniform integrability of τB(X N (·; x)), and the weak

convergence of the measures με,N .

Proposition 7.7 For every α ∈ (0, α0), δ ∈ (0, 1/2) except possibly a countable

subset, and ε ∈ (0, 1) there exists a probability measure με ∈ M1 (A(α0; δ)) such

that

∫

EτB(α;δ)(X(·; x)) με( dx)

≤ 2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}

e(V (0)−V (−1))/ε
(

1 + c+
√

ε
)

∫

EτB(α;δ)(X(·; x)) με( dx)

≥ 2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}

e(V (0)−V (−1))/ε (1 − c−ε) (7.14)

where the constants c+ and c− are uniform in ε.

Proof We only prove the upper bound in 7.14. The lower bound follows similarly.

Let α ∈ (0, α0) and δ ∈ (0, 1/2). Using the compact embedding C−α →֒ C−α0 (see

Proposition A.8), for any α < α0, we have that A(α; δ) ⊂ A(α0; δ). Let {με,N }N≥1
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be the family of probability measures in (7.5). Using again the compact embedding

C−α →֒ C−α0 , for any α < α0, this family is trivially tight since it is concentrated

on ∂ A(α; δ). Hence there exists με ∈ M1 (A(α0; δ)) such that με,N
weak→ με up to a

subsequence.

By Skorokhod’s represantation theorem (see [7, Theorem 2.4]) there exist a prob-

ability space (	μ,Fμ, Pμ) and random variables {xN }N≥1 and x taking values in

A(α0; δ) such that xN
law= μN , x

law= με and xN → x Pμε -almost surely in C−α0 . If we

denote by EP⊗Pμε
the expectation of the probability measure P⊗ Pμε , we have that

EP⊗Pμε
τB(α;δ)(X N (·; xN )) =

∫

EτB(α;δ)(X N (·; x)) μN ( dx)

EP⊗Pμε
τB(α;δ)(X(·; x)) =

∫

EτB(α;δ)(X(·; x)) με( dx). (7.15)

By Proposition 7.3 X N (·; xN ) converges to X(·; x) P⊗Pμε -almost surely on compact

time intervals of (0,∞) up to a subsequence. Let

L =
{

δ ∈ (0, 1/2) : P
(

τB(α;δ)(·) is discontinuous on X(·; x)
)

> 0
}

and notice that for x(t) = L−2〈X(t; x), 1〉

L ⊂ {δ ∈ (0, 1/2) : P (t �→ |x(t)− 1| ∨ ‖X(t; x)− x(t)‖C−α

has a local minimum at height δ) > 0} .

As in [20, Proof of Theorem 6.1] the last set is at most countable, hence

τB(α;δ)(X N (·; xN )) → τB(α;δ)(X(·; x)) P ⊗ Pμε -almost surely up to a subsequence,

except possibly a countable number of δ ∈ (0, 1/2).

By Corollary 7.6 the family {τB(α;δ)(X N (·; x))}N≥N0 is uniformly integrable.

Hence by Vitali’s convergence theorem (see [5, Theorem 4.5.4]) we obtain that

EP⊗Pμε
τB(α;δ)(X N (·; xN )) → EP⊗Pμε

τB(α;δ)(X(·; x)).

Combining with (7.5) and (7.15) the proof of the upper bound is complete. ⊓⊔

7.3 Proof of Theorem 3.5

In this section we combine Proposition 7.7 and Theorem 3.1 to prove Theorem 3.5.

The idea we use here was first implemented in the 1-dimensional case in [4]. Gen-

erally speaking, if we restrict ourselves on the event where the first transition from a

neighbourhood of −1 to a neighbourhood of 1 happens after the exponential loss of

memory, τB(α;δ)(X(·; x)) behaves like
∫

τB(α;δ)(X(·; x)) με( dx) for x ∈ A(α0; δ).
The probability of this event is quantified by Theorem 3.1 and Proposition 7.8. On

the complement of this event the transition time τB(α;δ)(X(·; x)) is estimated using

Proposition 7.9.
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In the next proposition we prove that the first transition from a neighbourhood of

−1 to a neighbourhood of 1 happens only after some time T0 > 0 with overwhelming

probability. This is a large deviation event which can be estimated using continuity of

X with respect to the initial condition x and the stochastic objects
{

ε
n
2

n

}

n≤3
. We

sketch the proof for completeness.

Proposition 7.8 For every α ∈ (0, α0) and δ ∈ (0, 1/2) there exist a0, δ0, T0 > 0 and

ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
‖x−(−1)‖

C
−α0≤δ0

P(τB(α;δ)(X(·; x)) ≤ T0) ≤ e−a0/ε.

Proof We first notice that for ‖x − (−1)‖C−α0 ≤ δ0

P(τB(α;δ)(X(·; x)) ≥ T0) ≥ P

(

sup
t≤T0

‖X(t; x)− (−1)‖C−α0 ≤ δ1

)

,

for some δ1 > 0. Using continuity of X with respect to x and the stochastic objects
{

ε
n
2

n

}

n≤3
, the last probability can be estimated from below uniformly in ‖x −

(−1)‖C−α0 ≤ δ0, for δ0 sufficiently small, by

P

(

sup
t≤T0

‖X(t; x)− (−1)‖C−α0 ≤ δ1

)

≥ P

(

sup
t≤T0

(t ∧ 1)−(n−1)α′‖ε n
2

n
(t)‖C−α ≤ δ2

)

,

for some δ2 > 0. Last by Proposition D.1 we find a0 > 0 and ε0 ∈ (0, 1) such that for

ever ε ≤ ε0

P

(

sup
t≤T0

(t ∧ 1)−(n−1)α′‖ε n
2

n
(t)‖C−α ≤ δ2

)

≥ 1 − e−a0/ε,

which completes the proof. ⊓⊔

In the next proposition we estimate the second moment of the transition time

τB(α;δ)(X(·; x)) using the large deviation estimate (6.3). The proof combines the ideas

in Propositions 6.4 and 6.6. However here we construct a path g which is different from

the one in the proof of Proposition 6.4 to ensure that the process X(·; x) returns to a

neighbourhood of −1. The same proof implies exponential moments of the transition

time τB(α;δ)(X(·; x)), but we only need to estimate the second moment in the proof

of Theorem 3.5.

Proposition 7.9 Let α ∈ (0, α0) and δ ∈ (0, 1/2). For every η > 0 there exists

ε0 ∈ (0, 1) such that for every ε ≤ ε0

123



304 P. Tsatsoulis, H. Weber

sup
x∈C−α0

EτB(α;δ)(X(·; x))2 ≤ Ce2[(V (0)−V (−1))+η]/ε,

for some C > 0 independent of η and ε.

Proof We first prove that for every R, η > 0 there exists T0 > 0 and ε0 ∈ (0, 1) such

that for every ε ≤ ε0

sup
‖x‖

C
−α0≤R

P(τB(α;δ)(X(·; x)) ≥ T0) ≤ 1 − e−[(V (0)−V (−1))+η]/ε.

We notice that there exists δ′ > 0 such that

P(τB(α;δ)(X(·; x)) ≤ T0) ≥ P(‖X(T∗; x)− 1‖C−α ≤ δ′ for some T∗ ≤ T0
︸ ︷︷ ︸

=:A(T0;x)

).

Here we use that if ‖X(T∗; x)− 1‖C−α ≤ δ′, for δ′ sufficiently small then X(T∗; x) ∈
B(α; δ). By the large deviation estimate (6.3) we need to bound

sup
‖x‖

C
−α0≤R

sup
f ∈A(T0;x)

f (0)=x

I ( f (·; x)).

To do so we proceed as in the proof of Proposition 6.4 by constructing a suitable path

g ∈ A(T0; x). The construction here is similar but some of the steps differ since we

need to ensure that g returns to a neighbourhood of 1. To avoid repeating ourselves

we give a sketch of the proof highlighting the different steps of the construction.

Steps 1, 2 and 3 are exactly as in the proof of Proposition 6.4. However we need to

distinguish the value of δ there from the value of δ in the statement of the proposition.

If g(τ3; x) ∈ BB1
2,2

(1; δ) ∩ BC2+λ(0;C) we stop at Step 3. If not then g(τ3; x) ∈
BB1

2,2
(−1; δ) ∩ BC2+λ(0;C) or BB1

2,2
(0; δ) ∩ BC2+λ(0;C). We only explain how to

proceed in the first case since it also covers the other.

Before we describe the remaining steps we recall that by Proposition C.2 there

exist y0,−, y0,+ ∈ BB1
2,2

(0; δ) such that y0,−, y0,+ ∈ C∞ and Xdet (t; y0,±) → ±1

in B1
2,2. In particular there exists T ∗

0 > 0 such that Xdet (T
∗
0 ; y0,±) ∈ BB1

2,2
(±1; δ) ∩

BC2+λ(0;C).

Step 4 (Jump to Xdet (T
∗
0 ; y0,−)):

Let τ4 = τ3+τ , for τ > 0 as in Step 2 which we fix below according to Lemma 6.5.

For t ∈ [τ3, τ4] we set g(t; x) = g(τ3; x)+ t−τ3
τ4−τ3

(Xdet (T
∗
0 ; y0,−)− g(τ3; x)).

Step 5 (Follow the deterministic flow backward to reach 0):

Let τ5 = τ4 + T ∗
0 . For t ∈ [τ4, τ5] we set g(t; x) = Xdet (τ5 − t; y0,−).

Step 6 (Jump to y0,+):

Let τ6 = τ5 + τ , for τ as in Step 4. For t ∈ [τ5, τ6] we set g(t; x) = g(τ5; x) +
t−τ5
τ6−τ5

(y0,+ − g(τ5; x)).
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Step 7 (Follow the deterministic flow forward to reach 1):

Let τ7 = τ6 + T ∗
0 . For t ∈ [τ6, τ7] we set g(t; x) = Xdet (t − τ6; y0,+).

For the path g constructed above we notice that for every ‖x‖C−α0 ≤ R, if t ≥ τ7

then g(t; x) ∈ BB1
2,2

(1; δ). By (A.5), B1
2,2 ⊂ C−α , for every α > 0, hence if we choose

δ sufficiently small and set T0 = τ7 + 1 then g ∈ A(T0; x).

To bound I (g(·; x)) we proceed exactly as in the proof of Proposition 6.4 using

Lemma 6.5. But when considering the contribution from Step 5 we get

1

4

∫ τ5

τ4

‖(∂t −�)g(t; x)+ g(t; x)3 − g(t; x)‖2
L2 dt

= 2

∫ T ∗
0

0

〈

∂t Xdet (t; y0,+),�Xdet (t; y0,+)− Xdet (t; y0,+)3 + Xdet (t; y0,+)
〉

dt

= −2
(

V (Xdet (T
∗
0 ; y0))− V (y0,+)

)

≤ 2 (V (0)− V (−1)) .

In total we obtain the bound

sup
‖x‖

C
−α0≤R

I (g(·; x)) ≤ 2 (V (0)− V (−1))+ Cδ.

For η > 0 we choose δ even smaller to ensure that Cδ < η. Then by (6.3) we find

ε0 ∈ (0, 1) such that for every ε ≤ ε0

inf
‖x‖

C
−α0≤R

P(τB(α;δ)(X(·; x)) ≤ T0) ≥ e−[(V (0)−V (−1))+η]/ε.

The next step is to use the this estimate to show that for any η > 0 there exists

ε0 ∈ (0, 1) and possibly a different T0 > 0 such that for every ε ≤ ε0

sup
x∈C−α0

P(τB(α;δ)(X(·; x)) ≥ mT0) ≤
(

1 − e−[(V (0)−V (−1))+η]/ε
)m

.

We omit the proof since it is the same as the one of Proposition 6.6.

Finally we notice that

EτB(α;δ)(X(·; x))2 =
∫ ∞

0

2t P(τB(α;δ)(X(·; x)) ≥ t) dt

≤
∞
∑

m=0

P(τB(α;δ)(X(·; x)) ≥ mT0)

∫ (m+1)T0

mT0

2t dt

≤ 2T 2
0

∞
∑

m=0

(m + 1)
(

1 − e−[(V (0)−V (−1))+η]/ε
)m

= 2T 2
0 e2[(V (0)−V (−1))+η]/ε,

which completes the proof. ⊓⊔

123



306 P. Tsatsoulis, H. Weber

Proof of Theorem 3.5 Let

Pr(ε) = 2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}

e(V (0)−V (−1))/ε

and δ ∈ (0, δ0), for δ0 ∈ (0, 1/2) which we fix below.

To prove the upper bound in (3.4) let δ− < δ and T > 0 which we also fix below.

For x ∈ A(α0; δ−) we define the set

AT (x) =
{

τB(α;δ−)(X(·; x)) > T , sup
‖ȳ−x‖

C
−α0≤δ0

‖X(t; ȳ)− X(t; x)‖Cβ

‖ȳ − x‖C−α0

≤ Ce−(2−κ)t for every t ≥ T

}

,

where δ0 and C are as in Theorem 3.1. For y ∈ A(α0; δ) and x ∈ A(α0; δ−) we

have that ‖y − x‖C−α0 , ‖x − (−1)‖C−α0 ≤ δ0, if we choose δ0 sufficiently small.

Furthermore for y ∈ A(α0; δ), x ∈ A(α0; δ−) and ω ∈ AT (x)

τB(α;δ)(X(·; y)) ≤ τB(α;δ−)(X(·; x)),

if we choose T sufficiently large. By Proposition 7.8 and Theorem 3.1 there exist

a1 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
x∈A(α0;δ−)

P(AT (x)c) ≤ sup
‖x−(−1)‖

C
−α0≤δ0

P(AT (x)c) ≤ e−a1/ε.

Then for every y ∈ A(α0; δ), x ∈ A(α0; δ−) and η > 0, which we fix below, there

exists ε0 ∈ (0, 1) such that for every ε ≤ ε0

EτB(α;δ)(X(·; y))

≤ EτB(α;δ−)(X(·; x))+ EτB(α;δ)(X(·; y))1AT (x)c

Cauchy–Schwarz
≤ EτB(α;δ−)(X(·; x))+

(

EτB(α;δ)(X(·; y))2
) 1

2
P(AT (x)c)

1
2

Prop. 7.9
≤ EτB(α;δ−)(X(·; x))+ Ce

(

(V (0)−V (−1))+η− a1
2

)

/ε, (7.16)

for some C > 0 independent of ε. By Proposition 7.7 there exist δ− ∈ (0, δ), c+ > 0

and με ∈ M1 (A(α0; δ−)) such that for every ε ∈ (0, 1)

∫

EτB(α;δ−)(X(·; x)) με( dx) ≤ Pr(ε)(1 + c+
√

ε).

Integrating (7.16) over x with respect to με implies that
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sup
y∈A(α0;δ)

EτB(α;δ)(X(·; y))

≤ Pr(ε)

⎛

⎜
⎝(1 + c+

√
ε)+ e

(

η− a1
2

)

/εC

⎛

⎝
2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}
⎞

⎠

−1
⎞

⎟
⎠ .

Let ζ > 0. Choosing η < a1
2

we can find ε0 ∈ (0, 1) such that for every ε ≤ ε0

e
(

η− a1
2

)

/εC

⎛

⎝
2π

|λ0|

√
√
√
√

∏

k∈Z2

|λk |
νk

exp

{
νk − λk

λk + 2

}
⎞

⎠

−1

≤ ζ
√

ε,

which in turn implies that

sup
y∈A(α0;δ)

EτB(α;δ)(X(·; y)) ≤ Pr(ε)
(

1 + (c+ + ζ )
√

ε
)

and proves the upper bound in (3.4).

To prove the lower bound, we let δ+ ∈ (δ, δ0) which we fix below and for y ∈
A(α0; δ) and x ∈ A(α0; δ+) we define the set

BT (y, x) =
{

τB(α;δ)(X(·; y)) ≥ T , sup
‖ȳ−x‖

C
−α0≤δ0

‖X(t; ȳ)− X(t; x)‖Cβ

‖ȳ − x‖C−α0

≤ Ce−(2−κ)t for every t ≥ T

}

.

For y ∈ A(α0; δ) and x ∈ A(α0; δ+) we have that ‖y−x‖C−α0 , ‖y−(−1)‖C−α0 , ‖x−
(−1)‖C−α0 ≤ δ0, if we choose δ0 sufficiently small. We also notice that for y ∈
A(α0; δ), x ∈ A(α0; δ+) and ω ∈ BT (y, x)

τB(α;δ+)(X(·; x)) ≤ τB(α;δ)(X(·; y)),

if we choose T sufficiently large. By Proposition 7.8 and Theorem 3.1 there exists

a1 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
y∈A(α0;δ)

x∈A(α0;δ+)

P(BT (y, x)c) ≤ sup
‖y−(−1)‖

C
−α0≤δ0

‖x−(−1)‖
C
−α0≤δ0

P(BT (y, x)c) ≤ e−a1/ε.

Then for every y ∈ A(α0; δ), x ∈ A(α0; δ+) and ε ≤ ε0

EτB(α;δ)(X(·; y)) ≥ EτB(α;δ+)(X(·; x))1BT (y,x)

= EτB(α;δ+)(X(·; x))− EτB(α;δ+)(X(·; x))1BT (y,x)c

Cauchy–Schwarz
≥ EτB(α;δ+)(X(·; x))
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−
(

EτB(α;δ+)(X(·; x))2
) 1

2
P
(

BT (y, x)c
) 1

2

≥ EτB(α;δ+)(X(·; x))−
(

EτB(α;δ+)(X(·; x))2
) 1

2
e−a1/2ε

and we proceed as in the case of the upper bound, using Proposition 7.9 for

EτB(α;δ+)(X(·; x))2 and Proposition 7.7 to find δ+ ∈ (δ, δ0), c− > 0 and με ∈
M1 (A(α0; δ+)) such that for every ε ∈ (0, 1)

∫

EτB(α;δ+)(X(·; x)) με( dx) ≥ Pr(ε)(1 − c−ε).

⊓⊔
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A Besov spaces

Definition A.1 Let α ∈ R and p, q ∈ [1,∞]. The Besov norm ‖ · ‖Bα
p,q

is defined as

‖ f ‖Bα
p,q
:=

∥
∥
∥

(

2ακ‖ f ∗ ηκ‖L p

)

κ≥−1

∥
∥
∥

ℓq
. (A.1)

Here the family of functions {ηκ}κ≥−1 is given by η̂κ = χκ in Fourier space for

{χκ}κ≥−1 a suitable dyadic partition of unity as in [1, Proposition 2.10]. The Besov

space space Bα
p,q is defined as the completion of C∞ with respect to (A.1).

In this appendix we present several useful results from [19,20] about Besov spaces

that we repeatedly use in this article. For a complete survey of the full-space analogues

of these results we refer the reader to [1]. A discussion on the validity of these results

in the periodic case can be found in [20, Section 4.2].

The following estimate is immediate from the definition of the Besov norm (A.1),

‖ f ‖Bα
p,q
≤ C‖ f ‖

B
β
p,q

, if β > α. (A.2)

Proposition A.2 ([20, Remark 9]) Let α ∈ R and p, q1, q2 ∈ [1,∞] such that q2 > q1.

For every λ > 0

‖ f ‖Bα
p,q2

≤ C‖ f ‖
B

α+λ
p,q1

. (A.3)
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Proposition A.3 ([20, Remarks 10 and 11]) For every p ∈ [1,∞]

C−1‖ f ‖B0
p,∞

≤ ‖ f ‖L p ≤ C‖ f ‖B0
p,1

. (A.4)

Proposition A.4 ([20, Proposition 2]) Let α, β ∈ R and p, q ≥ 1 such that p ≥ q

and β = α + d
(

1
q
− 1

p

)

. Then

‖ f ‖Bα
p,∞ ≤ C‖ f ‖

B
β
q,∞

. (A.5)

Proposition A.5 ([20, Proposition 5]) For every β ≥ α

‖et� f ‖
B

β
p,q
≤ C(t ∧ 1)

α−β
2 ‖ f ‖Bα

p,q
. (A.6)

Proposition A.6 ([20, Corollary 1]) Let α ≥ 0 and p, q ∈ [1,∞]. Then

‖ f g‖Bα
p,q
≤ C‖ f ‖Bα

p1,q1
‖g‖Bα

p2,q2
, (A.7)

where p = 1
p1
+ 1

p2
and p = 1

q1
+ 1

q2
.

Proposition A.7 ([20, Corollary 2]) Let α < 0, β > 0 such that α + β > 0 and

p, q ∈ [1,∞]. Then

‖ f g‖Bα
p,q
≤ C‖ f ‖Bα

p1,q1
‖g‖

B
β
p2,q2

, (A.8)

where p = 1
p1
+ 1

p2
and p = 1

q1
+ 1

q2
.

Proposition A.8 ([20, Proposition 10]) For every α < α′ the embedding Cα′ →֒ Bα
∞,1

is compact.

Proposition A.9 ([19, Proposition A.6]) For every p ∈ [1,∞)

‖ f ‖B1
p,∞

≤ C(‖∇ f ‖L p + ‖ f ‖L p ).

Proposition A.10 ([19, Corollary A.8]) Let α > 0 and p, q ∈ [1,∞]. Then

‖ f 2‖Bα
p,q
≤ C‖ f ‖L p1 ‖ f ‖Bα

p2,q
, (A.9)

where p = 1
p1
+ 1

p2
.

In the next proposition we prove convergence of the Galerkin approximations �N f

to f in Besov spaces. Here we use that the projection �N f is defined as the convolution

of f with the 2-dimensional square Dirichlet kernel, which satisfies a logarithmic

growth bound in the L1 norm.
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Proposition A.11 Let �N : L2 → L2 be the projection on { f ∈ L2 : f (z) =
∑

|k|≤N f̂ (k)L−2e2iπk·z/L}. Then for every α ∈ R, p, q ∈ [1,∞] and λ > 0

‖�N f − f ‖Bα
p,q
≤ C(log N )2

Nλ
‖ f ‖

B
α+λ
p,q

(A.10)

‖�N f ‖Bα
p,q
≤ C‖ f ‖

B
α+λ
p,q

. (A.11)

If we furthermore assume that p = 2 then

‖�N f − f ‖Bα
2,q
≤ C

Nλ
‖ f ‖

B
α+λ
2,q

(A.12)

‖�N f ‖Bα
2,q
≤ ‖ f ‖Bα

2,q
. (A.13)

Proof We first notice that for c2 > c1 > 0

δκ (�N f − f ) =
{

0, if 2κ ≤ c1 N

δκ f , if 2κ > c2 N
.

Let DN (z) =
∑

|k|≤N L−2e−2iπk·z/L be the square Dirichlet kernel. Then �N f =
f ∗ DN . Using the triangle inequality and Young’s inequality for convolution we have

that

‖δκ (�N f − f ) ‖L p ≤ (‖DN‖L1 + 1)‖δκ f ‖L p .

Thus

‖δκ(�N f − f )‖L p ≤

⎧

⎪
⎨

⎪
⎩

0, if 2κ ≤ c1 N

C(log N )2‖δκ f ‖L p , if c1 N ≤ 2κ < c2 N ,

‖δκ f ‖L p , if 2κ > c2 N

where in the second case we use that ‖DN‖L1 � (log N )2. This bound immediate

form the fact that the 2-dimensional square Dirichlet kernel is the product of two 1-

dimensional Dirichlet kernels (see [11, Section 3.1.3]). The last implies (A.10) and

(A.11). For p = 2 we notice that

‖δκ�N f ‖L2 ≤ ‖δκ f ‖L2 ,

which implies (A.12) and (A.13). ⊓⊔

B Generalised Gronwall inequality

Lemma B.1 (Generalised Gronwall inequality) Let f : [0, T ] → R be a measurable

function and σ1 + σ2 < 1 such that

f (t) ≤ e−c0t a + b

∫ t

0

e−c0(t−s)(t − s)−σ1 s−σ2 f (s) ds.
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Then there exists c, C > 0 such that

f (t) ≤ C exp

{

−c0t + cb
1

1−σ1−σ2 t

}

a.

Proof The lemma is essentially [13, Lemma 5.7] if we set x(t) = ec0t f (t) with their

notation. ⊓⊔

Lemma B.2 Let α + β < 1 and c > 0. Then

sup
t≥0

∫ t

0

(t − s)−α(s ∧ 1)−βe−c(t−s) ds < ∞.

Proof Assume t ≥ 1. Then

∫ 1

0

(t − s)−α(s ∧ 1)−βe−c(t−s) ds � e−ct

∫ t

0

(t − s)−α(s ∧ 1)−β ds � t1−α−βe−ct

and

∫ t

1

(t − s)−α(s ∧ 1)−βe−c(t−s) ds ≤
∫ t

0

s−αe−cs ds � 1 +
∫ t

1

s−αe−cs ds

� 1 +
∫ t

1

e−cs ds.

The above implies that

sup
t≥1

∫ t

0

(t − s)−α(s ∧ 1)−βe−c(t−s) ds < ∞.

The bound for t ≤ 1 follows easily. ⊓⊔

C Deterministic dynamics

Propositions C.1 and C.2 are a consequence of [9, Section 8] and [16, Appendix B.1].

Although the results in [9, Section 8] concern 1 space-dimension they can be easily

generalised in 2 space-dimensions. For consistency we have also replaced the space

H1 appearing in [9, Section 8] by B1
2,2. The fact that these spaces coincide is immediate

from Definition A.1 for p = q = 2 if we rewrite ‖ f ∗ηk‖L2 using Plancherel’s identity.

Proposition C.1 For every x ∈ B1
2,2 there exists x∗ ∈ {−1, 0, 1} such that

Xdet (t; x)
B1

2,2→ x∗.

Proposition C.2 For every δ > 0 there exists x± ∈ BB1
2,2

(0; δ) such that

Xdet (t; x±)
B1

2,2→ ±1.
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Proposition C.3 Let R > 0. Then there exists C ≡ C(R) > 0 such that for every

λ > 0 sufficiently small

sup
‖x‖

C
−α0≤R

‖Xdet (1; x)‖C2+λ ≤ C .

Proof By [24, Theorem 3.3, Theorem 3.9] there exists C ≡ C(R) > 0 such that

sup
‖x‖

C
−α0≤R

sup
t≤1

tγ ‖Xdet(t; x)‖Cβ ≤ C .

Let S(t) = e�t . Using the mild form we write

Xdet (1; x) = S(1/2)Xdet (1/2; x)−
∫ 1

1/2

S(1 − s)
(

Xdet (s; x)3 + Xdet (s; x)
)

ds.

Then

‖Xdet (1; x)‖C2+λ

� ‖Xdet (1/2; x) ‖Cβ +
∫ 1

1/2

(1 − s)−
2+λ−β

2

(

‖Xdet (s; x)‖3
Cβ + ‖Xdet (s; x)‖Cβ

)

and if we choose λ < β the above implies that

sup
‖x‖

C
−α0≤R

‖Xdet (1; x)‖C2+λ � sup
‖x‖

C
−α0≤R

sup
t≤1

t3γ ‖Xdet(t; x)‖3
Cβ

+ sup
‖x‖

C
−α0≤R

sup
t≤1

tγ ‖Xdet(t; x)‖Cβ .

⊓⊔

D Stretched exponential moments for the stochastic objects

Proposition D.1 For every n ≥ 1 there exists c ≡ c(n) > 0 such that

sup
k≥0

E exp

⎧

⎨

⎩
c

(

sup
t∈[k,k+1]

(t ∧ 1)(n−1)α′‖ n
(t)‖C−α

) 2
n

⎫

⎬

⎭
< ∞.

Proof Following step by step the proof of [24, Theorem 2.1] but using the explicit

bound in Nelson’s estimate [24, Equation (B.3)] (see also [5, Section 1.6]), we have

that for every p ≥ 1

sup
k≥0

E

(

sup
t∈[k,k+1]

(t ∧ 1)(n−1)α′‖ n
(t)‖C−α

)p

≤ (p − 1)
n
2 pC

p
2

n ,
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for some Cn > 0. Then for any c > 0

E exp

⎧

⎨

⎩
c

(

sup
t∈[k,k+1]

(t ∧ 1)(n−1)α′‖ n
(t)‖C−α

) 2
n

⎫

⎬

⎭

=
∑

k≥0

cp
E

(

supt∈[k,k+1](t ∧ 1)(n−1)α′‖ n

−∞(t)‖C−α

) 2
n

p

p!

≤
∑

p≥0

cp(p − 1)p(Cn)
p
n

p!

and by choosing c ≡ c(n) > 0 sufficiently small the series converges. ⊓⊔

E An estimate for stochastically dominated random variables

Lemma E.1 Let g1, g̃1 be positive random variables such that

P(g1 ≥ g) ≤ P(g̃1 ≥ g),

for every g ≥ 0 and let F be a positive decreasing measurable function on [0,∞).

Then ∫ ∞

0

F(g) μg1( dg) ≥
∫ ∞

0

F(g) μg̃1
( dg),

where μg1 and μg̃1
is the law of g1 and g̃1.

Proof We first assume that F is smooth. Then d
dg

F(g) ≤ 0 for every g ≥ 0. Hence

∫ ∞

0

F(g) μg1( dg) = F(0)+
∫ ∞

0

d

dg
F(g) P(g1 ≥ g) dg ≥ F(0)

+
∫ ∞

0

d

dg
F(g) P(g̃1 ≥ g) dg

=
∫ ∞

0

F(g) μg̃1
( dg),

which proves the estimate for F differentiable. To prove the estimate for a general

decreasing function F we define Fδ = F ∗ ηδ for some positive mollifier ηδ to pre-

serve monotonicity and use the last estimate together with the dominated convergence

theorem. ⊓⊔
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F Proof of Proposition 7.3

Proof of Proposition 7.3 By [24, Proposition 2.3] for every α > 0, p ≥ 1 and T > 0

lim
N→∞

E

(

sup
t≤T

(t ∧ 1)(n−1)α′‖ n

N (t)− n
(t)‖C−α

)p

= 0.

Hence supt≤T (t ∧ 1)(n−1)α′‖ n

N (t)− n
(t)‖C−α convergences to 0 in probability.

It is enough to prove that

lim
N→∞

sup
x∈ℵ

sup
t≤T

(t ∧ 1)γ ‖vN (t; xN )− v(t; x)‖Cβ = 0.

This, convergence in probability of supt≤T ‖ N (t)− (t)‖C−α to 0 and the embedding

Cβ ⊂ C−α (see (A.2)) imply the result.

Let S(t) = e�t . For simplicity we write vN (t) and v(t) to denote vN (t; xN ) and

v(t; x). Using the mild forms of (7.2) and (2.2) we get

‖vN (t)− v(t)‖Cβ ≤ ‖S(t)(xN − x)‖Cβ
︸ ︷︷ ︸

=:I1

+
∫ t

0
‖S(t − s)[�N (vN (s)3)− v(s)3]‖Cβ ds

︸ ︷︷ ︸

=:I2

+ 3

∫ t

0
‖S(t − s)

[

�N

(

vN (s)2ε
1
2 N (s)

)

− v(s)2ε
1
2 (s)

]

‖Cβ ds

︸ ︷︷ ︸

=:I3

+ 3

∫ t

0
‖S(t − s)[�N (vN (s)ε N (s))− v(s)ε (s)]‖Cβ ds

︸ ︷︷ ︸

=:I4

+
∫ t

0
‖S(t − s)

(

�N ε
3
2 N (s)− ε

3
2 (s)

)

‖Cβ ds

︸ ︷︷ ︸

=:I5

+ 2

∫ t

0
‖S(t − s)

(

ε
1
2 N (s)− ε

1
2 (s)

)

‖Cβ ds

︸ ︷︷ ︸

=:I6

+
∫ t

0
‖S(t − s)(vN (s)− v(s))‖Cβ ds

︸ ︷︷ ︸

=:I7

. (F.1)

Let ι = inf{t > 0 : (t ∧ 1)γ ‖vN (t) − v(t)‖Cβ ≥ 1} and t ≤ T ∧ ι. We treat each of

the terms in (F.1) separately. Below the parameters α and λ can be taken arbitrarily

small and all the implicit constants depend on supt≤T (t ∧ 1)(n−1)α′‖ n
(t)‖C−α , and

supx∈ℵ supt≤T (t ∧ 1)γ ‖v(t)‖Cβ .
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Term I1:

I1

(A.6)

� (t ∧ 1)−
α0+β

2 sup
x∈ℵ

‖xN − x‖C−α0

Term I2:

I2

(A.6)

�

∫ t

0

(

(t − s)−
λ
2 ‖�N (vN (s)3)− vN (s)3‖Cβ−λ + ‖vN (s)3 − v(s)3‖Cβ

)

ds

(A.10)

�

∫ t

0

(t − s)−
λ
2

(
(log N )2

Nλ
‖vN (s)3‖Cβ + ‖vN (s)3 − v(s)3‖Cβ−λ

)

ds

(A.7)

�

∫ t

0

[

(t − s)−
λ
2
(log N )2

Nλ
‖vN (s)‖3

Cβ + ‖vN (s)− v(s)‖Cβ

×
(

‖vN (s)‖2
Cβ + ‖vN (s)‖Cβ‖v(s)‖Cβ + ‖v(s)‖2

Cβ

)
]

ds

�

∫ t

0

(

(t − s)−
β+ 2

p −1

2
(log N )2

Nλ
(s ∧ 1)−3γ + (s ∧ 1)−2γ ‖vN (s)− v(s)‖Cβ

)

ds.

Term I3:

I3

(A.6)

�

∫ t

0
(t − s)−

α+β+λ
2 ‖�N (vN (s)2

N (s))− v(s)2 (s)‖C−α−λ ds

(A.10)

�

∫ t

0
(t − s)−

α+β+λ
2

(
(log N )2

Nλ
‖vN (s)2

N (s)‖C−α + ‖vN (s)2( N (s)− (s))‖C−α

+ ‖ (s)(vN (s)2 − v(s)2)‖C−α

)

ds

(A.8),(A.7)

�

∫ t

0
(t − s)−

α+β+λ
2

[
(log N )2

Nλ
‖vN (s)‖2

Cβ ‖ N (s)‖C−α + ‖vN (s)‖2
Cβ ‖ N (s)

− (s)‖C−α +
(

‖vN (s)‖Cβ + ‖v(s)‖Cβ

)

‖vN (s)− v(s)‖Cβ ‖ (s)‖C−α

]

ds

�

∫ t

0
(t − s)−

α+β+λ
2

(
(log N )2

Nλ
(s ∧ 1)−2γ + (s ∧ 1)−2γ ‖ N (s)− (s)‖C−α

+ (s ∧ 1)−γ ‖vN (s)− v(s)‖Cβ

)

ds.

Term I4: Similarly to I3,

I4 �

∫ t

0

(t − s)−
α+β+λ

2

(
(log N )2

Nλ
(s ∧ 1)−γ−α′ + (s ∧ 1)−γ ‖ N (s)− (s)‖C−α

+ (s ∧ 1)−α′‖vN (s)− v(s)‖Cβ

)

ds.
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Term I5:

I5

(A.6)

�

∫ t

0

(t − s)−
α+β+λ

2 ‖�N N (s)− (s)‖C−α−λ ds

(A.10)

�

∫ t

0

(t − s)−
α+β+λ

2

(
(log N )2

Nλ
(s ∧ 1)−2α′ + ‖ N (s)− (s)‖C−α

)

ds.

Terms I6, I7:

I6

(A.6)

�

∫ t

0

(t − s)−
α+β

2 ‖ N (s)− (s)‖C−α ds.

I7

(A.6)

�

∫ t

0

‖vN (s)− v(s)‖Cβ ds.

Combining the above estimates we obtain that for t ≤ T ∧ ι

‖vN (t)− v(t)‖Cβ � (t ∧ 1)−
α0+β

2 sup
x∈ℵ

‖xN − x‖C−α0

+ T 1− α+β+λ
2 −3γ

(

(log N )2

N
+ sup

t≤T

(t ∧ 1)(n−1)α′‖ n

N (t)− n
(t)‖C−α

)

+
∫ t

0

(t − s)−
α+β+λ

2 (s ∧ 1)−2γ ‖vN (s)− v(s)‖Cβ ds.

By the generalised Gronwall inequality, Lemma B.1, on f (t) = (t ∧ 1)γ ‖vN (t) −
v(t)‖Cβ we find C ≡ C(T ) > 0 such that

sup
t≤T∧ι

(t ∧ 1)γ ‖vN (t)− v(t)‖Cβ

≤ C

(

sup
x∈ℵ

‖xN − x‖C−α0 +
(log N )2

N

+ sup
t≤T

(t ∧ 1)(n−1)α′‖ n

N (t)− n
(t)‖C−α

)

.

This and convergence of supt≤T ‖ n

N (t)− n
(t)‖C−α to 0 in probability imply the

result. ⊓⊔

G Local existence in L
2-based Besov spaces

In this section we fix β ∈
(

1
3
, 2

3

)

, γ ∈
(

β
2
, 1

3

)

and p ∈ (1, 2) such that

1 − 2

3p
< β and 1 −

β + 2
p
− 1

2
− 2γ > 0.
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The next proposition provides local existence of (7.2) in B
β
2,2 up to some time

T∗ > 0 which is uniform in the regularisation parameter N .

Proposition G.1 Let K , R, T > 0 such that ‖x‖
B
−α0
2,2

≤ R and supt≤T (t ∧
1)(n−1)α′‖ n

N (t)‖
B
−α
∞,2

≤ K . Then there exist T∗ ≡ T∗(K , R) ≤ T and C ≡
C(K , R) > 0 such that (7.2) has a unique solution v ∈ C((0, T∗];Bβ

2,2) satisfying

sup
t≤T∗

(t ∧ 1)γ ‖vN (t; x)‖
B

β
2,2

≤ C .

Proof Let S(t) = e�t . We define

T (v)(t) := S(t)x

−
∫ t

0

S(t − s)�N

(

v(s)3 + 3v(s)2ε
1
2 N (s)+ 3v(s)ε N (s)+ ε

3
2 N (s)

)

ds

+ 2

∫ t

0

S(t − s)
(

ε
1
2 N (s)+ v(s)

)

ds.

It is enough to prove that there exists T∗ > 0 such that T is a contraction on

BT∗ :=
{

v : sup
t≤T∗

(t ∧ 1)γ ‖v(t; x)‖
B

β
2,2

≤ 1

}

.

We first prove that for T∗ > 0 sufficiently small T maps BT∗ to itself. To do so we

notice that

‖T (v)(t)‖
B

β
2,2

� ‖S(t)x‖
B

β
2,2

︸ ︷︷ ︸

=:I1

+
∫ t

0

‖S(t − s)v(s)3‖
B

β
2,2

ds

︸ ︷︷ ︸

=:I2

+
∫ t

0

‖S(t − s)(v(s)2
N (s))‖

B
β
2,2

ds

︸ ︷︷ ︸

=:I3

+
∫ t

0

‖S(t − s)(v(s) N (s))‖
B

β
2,2

ds

︸ ︷︷ ︸

=:I4

+
∫ t

0

‖S(t − s) N (s)‖
B

β
2,2

ds

︸ ︷︷ ︸

=:I5

+
∫ t

0

‖S(t − s) N (s)‖
B

β
2,2

ds

︸ ︷︷ ︸

=:I6

+
∫ t

0

‖S(t − s)v(s)‖
B

β
2,2

ds

︸ ︷︷ ︸

=:I7

,

where we use (A.13) together with the relation S(·)�N = �N S(·) to drop �N . We

treat each term separately.
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Term I1:

I1

(A.6)

� (t ∧ 1)−
α0+β

2 ‖x‖
B
−α0
2,2

� (t ∧ 1)−
α0+β

2 R.

Term I2:

I2

(A.5)

�

∫ t

0

‖S(t − s)v(s)3‖
B

β+ 2
p −1

p,2

ds
(A.6)

�

∫ t

0

(t − s)−
β+ 2

p −1

2 ‖v(s)3‖B0
p,2

ds

(A.7)

�

∫ t

0

(t − s)−
β+ 2

p −1

2 ‖v(s)‖3

B0
3p,2

ds
(A.5)

�

∫ t

0

(t − s)−
β+ 2

p −1

2 ‖v(s)‖3

B
1− 2

3p
2,2

ds

1− 2
3p

<β

�

∫ t

0

(t − s)−
β+ 2

p −1

2 ‖v(s)‖3

B
β
2,2

ds �

∫ t

0

(t − s)−
β+ 2

p −1

2 (s ∧ 1)−3γ ds.

Term I3:

I3

(A.5),(A.6)

�

∫ t

0

(t − s)−
β+ 2

p −1+α

2 ‖v(s)2
N (s)‖

B
−α
p,2

ds

(A.8),(A.7)

� K

∫ t

0

(t − s)−
β+ 2

p −1+α

2 ‖v(s)‖2

B
α+λ
2p,2

ds

(A.5)

� K

∫ t

0

(t − s)−
β+ 2

p −1+α

2 ‖v(s)‖2

B
α+λ+1− 1

p
2,2

ds

1− 2
3p

<β

� K

∫ t

0

(t − s)−
β+ 2

p −1+α

2 ‖v(s)‖2

B
β
2,2

ds

� K

∫ t

0

(t − s)−
β+ 2

p −1+α

2 (s ∧ 1)−2γ ds.

Term I4:

I4

(A.5),(A.6)

�

∫ t

0

(t − s)−
β+ 2

p −1+α

2 ‖v(s) N (s)‖
B
−α
p,2

ds

(A.8),(A.5)

� K

∫ t

0

(t − s)−
β+ 2

p −1+α

2 (s ∧ 1)−α′‖v(s)‖
B

α+λ+1− 2
p

2,2

ds

1− 2
3p

<β

� K

∫ t

0

(t − s)−
β+ 2

p −1+α

2 (s ∧ 1)−α′‖v(s)‖
B

β
2,2

ds

� K

∫ t

0

(t − s)−
β+ 2

p −1+α

2 (s ∧ 1)−γ−α′ ds.

Terms I5, I6, I7:

I5

(A.6)

�

∫ t

0

(t − s)−
β+α

2 ‖ N (s)‖
B
−α
2,2

ds � K

∫ t

0

(t − s)−
β+α

2 (s ∧ 1)−2α′ ds.
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I6

(A.6)

�

∫ t

0

(t − s)−
β+α

2 ‖ N (s)‖
B
−α
2,2

ds � K

∫ t

0

(t − s)−
β+α

2 ds.

I7

(A.6)

�

∫ t

0

‖v(s)‖
B

β
2,2

ds �

∫ t

0

(s ∧ 1)−γ ds.

Combining all the above we find C ≡ C(K , R) > 0 such that

sup
t≤T∗

(t ∧ 1)γ ‖T (v)(t)‖
B

β
2,2

≤ CT θ
∗ ,

for some θ ≡ θ(α, α′, α0, β, γ ) ∈ (0, 1). Choosing T∗ > 0 sufficiently small the

above implies that

sup
t≤T∗

(t ∧ 1)γ ‖T (v)(t)‖
B

β
2,2

≤ 1.

Hence for this choice of T∗,T maps BT∗ to itself. In a similar way, but by possibly

choosing a smaller value of T∗, we prove that T is a contraction on BT∗ . For sim-

plicity we omit the proof. That way we obtain a unique solution v ∈ C((0, T∗];Bβ
2,2).

We can furthermore assume that T∗ is maximal in the sense that either T∗ = T or

limtրT∗ ‖v(t; x)‖
B

β
2,2

= ∞. ⊓⊔

Proposition G.2 For every t0 ∈ (0, 1), and K , R > 0 there exists C ≡ C(t0, K , R) >

0 such that if ‖x‖
B
−α
2,2
≤ R and supt≤1 t (n−1)α′‖ε n

2
n

N (t)‖C−α ≤ K then

sup
‖x‖

B
−α
2,2
≤R

‖X N (t0; x)‖C−α ≤ C .

Proof Using the a priori estimate in Proposition 7.4 we can assume that T∗ = 1 in

Proposition G.1. This implies that

sup
‖x‖

B
−α
2,2
≤R

sup
t≤1

tγ ‖vN (t; x)‖
B

β
2,2

≤ C . (G.1)

For simplicity we assume that t0 = 1. Let S(t) = e�t . Using the mild form of (7.2)

we obtain that

‖vN (1)‖C−α

� ‖S(1/2)vN (1/2)‖C−α
︸ ︷︷ ︸

=:I1

+
∫ 1

1/2

‖S(1 − s)�N (vN (s))3‖C−α ds

︸ ︷︷ ︸

=:I2

+
∫ 1

1/2

‖S(1 − s)�N

(

vN (s)2ε
1
2 N (s)

)

‖C−α ds

︸ ︷︷ ︸

=:I3
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+
∫ 1

1/2

‖S(1 − s)�N

(

vN (s)ε N (s)
)

‖C−α ds

︸ ︷︷ ︸

=:I4

+
∫ 1

1/2

‖S(1 − s)�N ε
3
2 N (s)‖C−α ds

︸ ︷︷ ︸

=:I5

+
∫ 1

1/2

‖S(1 − s)ε
1
2 N (s)‖C−α ds

︸ ︷︷ ︸

=:I6

+
∫ 1

1/2

‖S(1 − s)vN (s)‖C−α ds

︸ ︷︷ ︸

=:I7

.

We treat each term separately.

Term I1:

I1

(A.5)

� ‖S(1/2)vN (1/2)‖
B
−α+1
2,∞

(A.6)

� ‖vN (1/2)‖
B
−α
2,∞

� ‖vN (1/2)‖
B
−α
2,2

Term I2:

I2

(A.5)

�

∫ 1

1/2

‖S(1 − s)�N (vN (s)3)‖
B
−α+ 2

p
p,∞

ds

(A.6)

�

∫ 1

1/2

(1 − s)−
−α+ 2

p +λ

2 ‖�N (vN (s)3)‖
B
−λ
p,∞

ds

(A.11),(A.7)

�

∫ 1

1/2

(1 − s)−
−α+ 2

p +λ

2 ‖vN (s)‖3

B0
3p,∞

ds

(A.5)

�

∫ 1

1/2

(1 − s)−
−α+ 2

p +λ

2 ‖vN (s)‖3

B
1− 2

3p
2,∞

ds

1− 2
3p

<β

�

∫ 1

1/2

(1 − s)−
−α+ 2

p +λ

2 ‖vN (s)‖3

B
β
2,2

ds.

Term I3:

I3

(A.5)

�

∫ 1

1/2

‖S(1 − s)�N

(

vN (s)2ε
1
2 N (s)

)

‖
B
−α+ 2

p
p,∞

ds

(A.6)

�

∫ 1

1/2

(1 − s)−
2
p +λ

2 ‖�N

(

vN (s)2ε
1
2 N (s)

)

‖
B
−α−λ
p,∞

ds

(A.11),(A.8),(A.7)

�

∫ 1

1/2

(1 − s)−
2
p +λ

2 ‖vN (s)‖2

B
α+λ
2p,∞

‖ε 1
2 N (s)‖C−α ds

(A.5)

�

∫ 1

1/2

(1 − s)−
2
p +λ

2 ‖vN (s)‖2

B
α+λ+1− 1

p
2,∞

‖ε 1
2 N (s)‖C−α ds
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1− 2
3p

<β

�

∫ 1

1/2

(1 − s)−
2
p +λ

2 ‖vN (s)‖2

B
β
2,2

‖ε 1
2 N (s)‖C−α ds.

Term I4: Similarly to I3,

I4 �

∫ 1

1/2

(1 − s)−
2
p +λ

2 ‖vN (s)‖
B

β
2,2

‖ε N (s)‖C−α ds.

Terms I5, I6, I7:

I5

(A.6)

�

∫ 1

1/2

(1 − s)−
λ
2 ‖�N ε

3
2 N (s)‖C−α−λ ds

(A.11)

�

∫ 1

1/2

(1 − s)−
λ
2 ‖ε 3

2 N (s)‖C−α−λ ds.

I6

(A.6)

�

∫ 1

1/2

(1 − s)−
λ
2 ‖ε 1

2 N (s)‖C−α−λ ds.

I7

(A.5)

�

∫ 1

1/2

‖S(1 − s)vN (s)‖
B
−α+1
2,2

ds
(A.6)

�

∫ 1

1/2

(1 − s)−
−α+1−β

2 ‖vN (s)‖
B

β
2,2

ds.

The proof is complete if we combine these estimates with (G.1). ⊓⊔
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