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ABSTRACT

We study the dynamics of the Teichmüller flow in the moduli space of Abelian differentials (and more generally,
its restriction to any connected component of a stratum). We show that the (Masur-Veech) absolutely continuous invariant
probability measure is exponentially mixing for the class of Hölder observables. A geometric consequence is that the
SL(2, R) action in the moduli space has a spectral gap.

1. Introduction

Let Mg be the moduli space of non-zero Abelian differentials on a compact
Riemann surface of genus g ≥ 1. Alternatively, Mg can be seen as the moduli space
of translation surfaces of genus g: outside the zero set of an Abelian differential ω

there are preferred local charts where ω = dz, and the coordinate changes of
those charts are translations. Let M (1)

g ⊂ Mg denote the subspace of surfaces with
normalized area

∫ |ω|2 = 1.
By postcomposing the preferred charts with an element of GL(2, R) one

obtains another translation structure: this gives a natural GL(2, R) action on Mg .
The SL(2, R) action preserves M (1)

g . The Teichmüller flow on Mg is defined as

the diagonal action of SL(2, R): TFt =
(

et 0
0 e−t

)

: Mg → Mg.

The space Mg is naturally stratified: given a list κ = (κ1, ..., κs) of positive
integers with

∑
(κi − 1) = 2g − 2, we let Mg,κ be the space of Abelian differentials

whose zeroes have order κ1 − 1, ..., κs − 1. The strata are obviously invariant by
the GL(2, R) action.

The strata Mg,κ are not necessarily connected (a classification of connected
components is given in [KZ]). Let C be a connected component of some stra-
tum Mg,κ , and let C (1) = C ∩ M (1)

g . It has a natural structure of an analytic
variety, and hence a natural Lebesgue measure class. By the fundamental work of
Masur [Ma] and Veech [Ve1], there exists a unique probability measure νC (1) on
C (1) which is equivalent to Lebesgue measure, invariant by the Teichmüller flow,
and ergodic. Veech later showed in [Ve2] that νC (1) is actually mixing, meaning
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that for any observables f , g ∈ L2(νC (1) ) one has
∫

C (1)

f ◦ TFt(x)g(x) dνC (1) (x) −
∫

C (1)

f dνC (1)

∫

C (1)

g dνC (1) → 0.(1.1)

In this paper we are concerned with the speed of mixing of the Teichmüller flow,
that is, the rate of the convergence in (1.1), for a suitable class of observables.

Main Theorem. — The Teichmüller flow (restricted to any connected component of

any stratum of the moduli space of Abelian differentials) is exponentially mixing for Hölder

observables.

The complete formulation of this result, specifying in particular what is un-
derstood by a Hölder observable in this non-compact setting, is given in Theo-
rem 2.14.

Previously it had been shown by Bufetov [Bu] that the Central Limit Theo-
rem holds for the Teichmüller flow (for suitable classes of observables). Though
he did not obtain rates of mixing for the Teichmüller flow itself, he did obtain
stretched exponential estimates for a related discrete time transformation (the Zorich
renormalization algorithm for interval exchange transformations). In this paper we
will also work with a discrete time transformation, though not directly with the
Zorich renormalization.

This paper has two main parts: first we obtain exponential recurrence es-
timates, and then, using ideas first introduced by Dolgopyat [Do] and developed
in [BV], we obtain exponential mixing. The proof of exponential recurrence uses
an “induction on the complexity” scheme. Intuitively, the dynamics at “infinity” of
the Teichmüller flow can be partially described by the dynamics in simpler (lower
dimensional) connected components of strata, and we obtain estimates by induction
all the way from the simplest of the cases. A simpler version of this scheme was
used to show some combinatorial richness of the Teichmüller flow in the proof
of the Zorich–Kontsevich conjecture [AV]. The recurrence estimates thus obtained
are close to optimal.

It should be noted that our work does not use the SL(2, R) action for the
estimates, and can be used to obtain new proofs of some previously known results
which used to depend on the SL(2, R) action. In the other direction, however,
it was pointed out to us by Bufetov that our main theorem has an important
new corollary for the SL(2, R) action. It regards the nature of the correspond-
ing unitary representation of SL(2, R) on the space L2

0(νC (1) ) of L2 zero-average
functions.

Corollary 1.1. — The action of SL(2, R) on L2
0(νC (1) ) has a spectral gap.
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The notion of spectral gap and the derivation of the corollary from the
Main Theorem are discussed in Appendix B.

Remark. — Using Corollary 1.1 and the results of Ratner [Rt], it is possible
to extend the main theorem to a larger class of functions, namely, the functions
which are Hölder continuous in the direction of the SO(2, R) action. This point
of view even makes unnecessary the discussion of the metric on the Teichmüller
space in Section 2.2.2, or the smoothing arguments in Lemma 4.7. However, we
nevertheless include these arguments to keep the presentation completely indepen-
dent of the SL(2, R) action.

Remark. — Exponential recurrence estimates for the Teichmüller flow were
first obtained by Athreya [At], who used the SL(2, R) action to prove them for
some large compact sets (which are, in particular, SO(2, R) invariant). Our work
allows us to obtain exponential recurrence for certain smaller compact sets, for
which the first return map has good hyperbolic and distortion properties. Bufetov
has independently obtained a proof of exponential recurrence estimates for such
small compact sets, using the method of [Bu]. Those estimates, while non-optimal,
are enough to obtain exponential mixing using the remainder of our argument.

We should also point out that recurrence estimates are often useful in statis-
tical arguments in a very practical sense. For instance, the proof of typical weak
mixing in [AF] can be made more transparent using such estimates.

2. Statements of the results

2.1. Exponential mixing for excellent hyperbolic semiflows. — To prove exponential
decay of correlations for the Teichmüller flow, we will show that this flow can be
reduced to an abstract flow with good hyperbolic properties. In this paragraph,
we describe some assumptions under which such a flow is exponentially mixing.

By definition, a Finsler manifold is a smooth manifold endowed with a norm
on each tangent space, which varies continuously with the base point.

Definition 2.1. — A John domain ∆ is a finite dimensional connected Finsler mani-

fold, together with a measure Leb on ∆, with the following properties:

1. For x, x ′ ∈ ∆, let d(x, x ′) be the infimum of the length of a C1 path contained in

∆ and joining x and x ′. For this distance, ∆ is bounded and there exist constants

C0 and ε0 such that, for all ε < ε0, for all x ∈ ∆, there exists x ′ ∈ ∆ such that

d(x, x ′) ≤ C0ε and such that the ball B(x ′, ε) is compactly contained in ∆.

2. The measure Leb is a fully supported finite measure on ∆, satisfying the following

inequality: for all C > 1, there exists A > 1 such that, whenever a ball B(x, r) is

compactly contained in ∆, Leb(B(x, Cr)) ≤ ALeb(B(x, r)).
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For example, if ∆ is an open subset of a larger manifold, with compact clo-
sure, whose boundary is a finite union of smooth hypersurfaces in general position,
and Leb is obtained by restricting to ∆ a smooth measure defined in a neighbor-
hood of ∆, then (∆, Leb) is a John domain.

Definition 2.2. — Let L be a finite or countable set, let ∆ be a John domain, and let

{∆(l )}l∈L be a partition into open sets of a full measure subset of ∆. A map T : ⋃
l ∆

(l ) →
∆ is a uniformly expanding Markov map if

1. For each l, T is a C1 diffeomorphism between ∆(l ) and ∆, and there exist constants

κ > 1 (independent of l) and C(l ) such that, for all x ∈ ∆(l ) and all v ∈ Tx∆,

κ‖v‖ ≤ ‖DT(x) · v‖ ≤ C(l )‖v‖.

2. Let J(x) be the inverse of the Jacobian of T with respect to Leb. Denote by H the

set of inverse branches of T. The function log J is C1 on each set ∆(l ) and there

exists C > 0 such that, for all h ∈ H , ‖D((log J) ◦ h)‖C0(∆) ≤ C.

Such a map T preserves a unique absolutely continuous measure µ. Its dens-
ity is bounded from above and from below and is C1. This measure is ergodic
and even mixing (see e.g. [Aar]). Notice that Leb is not assumed to be abso-
lutely continuous with respect to Lebesgue measure. Although this will be the
case in most applications, this definition covers also e.g. the case of maximum
entropy measures when L is finite (in which case log J is constant, which yields
D((log J) ◦ h) = 0).

Definition 2.3. — Let T : ⋃
l ∆

(l ) → ∆ be a uniformly expanding Markov map on

a John domain. A function r : ⋃
∆(l ) → R+ is a good roof function if

1. There exists ε1 > 0 such that r ≥ ε1.

2. There exists C > 0 such that, for all h ∈ H , ‖D(r ◦ h)‖C0 ≤ C.

3. It is not possible to write r = ψ + φ ◦ T − φ on
⋃

∆(l ), where ψ : ∆ → R is

constant on each set ∆(l ) and φ : ∆ → R is C1.

If r is a good roof function for T, we will write r (n)(x) = ∑n−1
k=0 r(Tkx).

Definition 2.4. — A good roof function r as above has exponential tails if there

exists σ0 > 0 such that
∫

∆
eσ0r dLeb < ∞.

If ∆̂ is a Finsler manifold, we will denote by C1(∆̂) the set of functions
u : ∆̂ → R which are bounded, continuously differentiable, and such that
supx∈∆̂ ‖Du(x)‖ < ∞. Let

‖u‖C1(∆̂) = sup
x∈∆̂

|u(x)| + sup
x∈∆̂

‖Du(x)‖(2.1)

be the corresponding norm.
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Definition 2.5. — Let T : ⋃
l ∆

(l ) → ∆ be a uniformly expanding Markov map,

preserving an absolutely continuous measure µ. An hyperbolic skew-product over T is a map

T̂ from a dense open subset of a bounded connected Finsler manifold ∆̂, to ∆̂, satisfying the

following properties:

1. There exists a continuous map π : ∆̂ → ∆ such that T ◦ π = π ◦ T̂ whenever both

members of this equality are defined.

2. There exists a probability measure ν on ∆̂, giving full mass to the domain of definition

of T̂, which is invariant under T̂.

3. There exists a family of probability measures {νx}x∈∆ on ∆̂ which is a disintegration

of ν over µ in the following sense: x �→ νx is measurable, νx is supported on π−1(x)
and, for any measurable set A ⊂ ∆̂, ν(A) = ∫

νx(A) dµ(x).
Moreover, this disintegration satisfies the following property: there exists a constant

C > 0 such that, for any open subset O ⊂ ⋃
∆(l ), for any u ∈ C1(π−1(O)),

the function ū : O → R given by ū(x) = ∫
u( y) dνx( y) belongs to C1(O) and

satisfies the inequality

sup
x∈O

‖Dū(x)‖ ≤ C sup
y∈π−1(O)

‖Du( y)‖.(2.2)

4. There exists κ > 1 such that, for all y1, y2 ∈ ∆̂ with π( y1) = π( y2), holds

d(T̂y1, T̂y2) ≤ κ−1d( y1, y2).(2.3)

Let T̂ be an hyperbolic skew-product over a uniformly expanding Markov
map T. Let r be a good roof function for T, with exponential tails. It is then
possible to define a space ∆̂r and a semiflow T̂t over T̂ on ∆̂, using the roof
function r ◦ π, in the following way. Let ∆̂r = {( y, s) : y ∈ π−1

(⋃
l ∆̂l

)
, 0 ≤ s <

r(πy)}. For almost all y ∈ ∆̂, all 0 ≤ s < r(πy) and all t ≥ 0, there exists a unique
n ∈ N such that r (n)(πy) ≤ t + s < r (n+1)(πy). Set T̂t( y, s) = (T̂ny, s + t − r (n)(πy)).
This is a semiflow defined almost everywhere on ∆̂r . It preserves the probability
measure νr = ν ⊗ Leb/(ν ⊗ Leb)(∆̂r). Using the canonical Finsler metric on ∆̂r ,
namely the product metric given by ‖(u, v)‖ := ‖u‖ + ‖v‖, we define the space
C1(∆̂r) as in (2.1). Notice that ∆̂r is not connected, and the distance between
points in different connected components is infinite.

Definition 2.6. — A semiflow T̂t as above is called an excellent hyperbolic semi-
flow.

The main motivations for this definition are that the Teichmüller flow is
isomorphic to an excellent hyperbolic semiflow – the proof of this isomorphism
will take a large part of this article – and that such a flow has exponential decay
of correlations:
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Theorem 2.7. — Let T̂t be an excellent hyperbolic semi-flow on a space ∆̂r , preserving

the probability measure νr . There exist constants C > 0 and δ > 0 such that, for all functions

U, V ∈ C1(∆̂r), for all t ≥ 0,

∣
∣
∣
∣

∫
U · V ◦ T̂t dνr −

(∫
U dνr

)(∫
V dνr

)∣
∣
∣
∣ ≤ C‖U‖C1‖V‖C1e−δt.(2.4)

We will see the consequences of this theorem in the next sections. The proof
of Theorem 2.7 will be deferred to Sections 7 and 8.

2.2. The Teichmüller flow

2.2.1. Teichmüller space, moduli space and the Teichmüller flow. — Let g ∈ N∗ and
s ∈ N∗ be positive integers. Take M a compact orientable C∞ surface of genus g,
and let Σ = {A1, ..., As} be a subset of M. Let κ = (κ1, ..., κs) ∈ (N∗)s be such
that

∑
(κi − 1) = 2g − 2.

A translation structure on (M,Σ) with singularities type κ is an atlas on M\Σ
for which the coordinate changes are translations, and such that each singularity Ai

has a neighborhood which is isomorphic to the κi-fold covering of a neighborhood
of 0 in R2\{0}. The Teichmüller space Qg,κ = Q(M,Σ, κ) is the set of such
structures modulo isotopy rel. Σ. It has a canonical structure of manifold.

Let us describe this manifold structure by introducing charts through the
period map Θ. Let ξ be a translation structure on (M,Σ). If γ ∈ C0([0, T], M) is
a path on M, then it is possible to lift it in R2, starting from 0: this lifting is
possible locally outside of the singularities, and the local form of the translation
structure close to the singularities implies that this lifting is also possible at the
singularities. Taking the value of the lifting at T, we get a developing map

Dξ : C0([0, T], M) → R2.(2.5)

This yields a linear map H1(M,Σ; Z) → R2, i.e., an element of H1(M,Σ; R2).
It is invariant under isotopy rel. Σ. Hence, it defines a map Θ : Q(M,Σ, κ) →
H1(M,Σ; R2).

This map is a local diffeomorphism for the canonical manifold structure of
Q(M,Σ, κ), and gives in particular local coordinates. It even endows Q(M,Σ, κ)

with a complex affine manifold structure.
A translation structure on (M,Σ) defines a volume form on M\Σ (the pull-

back of the standard volume form on R2 by any translation chart). The manifold
M has finite area for this volume form. Let Q(1)(M,Σ, κ) be the smooth hyper-
surface of Q(M,Σ, κ) given by area 1 translation structures.

The space H1(M,Σ; R2) has a standard volume form (the Lebesgue form
giving covolume 1 to the integer lattice). Pulling it back locally with Θ, we obtain
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a smooth measure µ on Q(M,Σ, κ). It induces a smooth measure µ(1) on the
hypersurface Q(1)(M,Σ, κ).

The group SL(2, R) acts on Q(M,Σ, κ) by postcomposition in the charts.
It preserves the hypersurface Q(1)(M,Σ, κ) and leaves invariant the measures µ

and µ(1). In particular, the action of TFt :=
(

et 0
0 e−t

)

is a measure preserving

flow, called the Teichmüller flow.
The modular group of (M,Σ) is the group of diffeomorphisms of M fix-

ing Σ, modulo isotopy rel. Σ. It acts on the Teichmüller space Q(M,Σ, κ). The
quotient is denoted by Mg,κ = M (M,Σ, κ) and is called the moduli space. The
action of the modular group on Q(M,Σ, κ) is proper and faithful, but it is not
free. Hence, M (M,Σ, κ) has a complex affine orbifold structure.

Since the action of the modular group preserves the measure µ and the
hypersurface Q(1), we also obtain a measure ν on the moduli space, as well as
a codimension 1 hypersurface M (1)(M,Σ, κ) of area 1 translation structures, and
a measure ν(1) on it. Moreover, the action of SL(2, R) commutes with the action of
the modular group, whence SL(2, R) still acts on M (M,Σ, κ) and M (1)(M,Σ, κ),
preserving respectively ν and ν(1). In particular, the action of TFt defines a flow
on M (M,Σ, κ), that we still call the Teichmüller flow.

Theorem 2.8 (Masur, Veech). — The measure ν(1) has finite mass. Moreover, on each

connected component of M (1)(M,Σ, κ), the Teichmüller flow is ergodic, and even mixing.

Our goal in this paper is to estimate the speed of mixing of the Teichmüller
flow. Our estimates will in particular give a new proof of Theorem 2.8.

2.2.2. A Finsler metric on the Teichmüller space. — For a general dynamical sys-
tem, the exponential decay of correlations usually only holds at best for sufficiently
regular functions. In our case, “regular” will mean Hölder continuous, for some
natural metric. This metric will be a Finsler metric on the Teichmüller space,
invariant under the action of the modular group.

Let ξ be a translation structure on (M,Σ) with singularities type κ. The
saddle connections of ξ are the unit speed geodesic paths γ : [0, T] → M such that
γ−1(Σ) = {0, T}. Equivalently, these are straight lines (for the translation struc-
ture) connecting two singularities, and without singularity in their interiors. If γ is
a saddle connection, then Dξ(γ) is a complex number measuring the holonomy
of the translation structure along γ . If [γ ] is the class of γ in H1(M,Σ; Z), then
Dξ(γ) = Θ(ξ)([γ ]) by definition of Θ.

The saddle connections define in particular elements of H1(M,Σ; Z). They
are invariant under isotopy, and depend only on the class of ξ in Q(M,Σ, κ).
The following lemma is well known (see e.g. [EM]).
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Lemma 2.9. — Any translation surface ξ admits a triangulation whose vertices are

the singularities Σ and whose edges are saddle connections. In particular, the saddle connections

generate the homology H1(M,Σ; R).

Proposition 2.10. — Let q ∈ Q(M,Σ, κ), and let ξ be a translation surface represent-

ing q. Let {γn} be the set of its saddle connections. Define a function ‖ · ‖q on H1(M,Σ; C)

by

‖ω‖q = sup
n∈N

∣
∣
∣
∣

ω([γn])
Θ(q)([γn])

∣
∣
∣
∣ .(2.6)

This function defines a norm on H1(M,Σ; C).

Proof. — Let ‖·‖ be any norm on H1(M,Σ; R). We will prove the existence
of C > 0 such that, for any saddle connection γ , C−1‖[γ ]‖ ≤ |Θ(q)([γ ])| ≤ C‖[γ ]‖.
Since the saddle connections generate the homology, this will easily imply the result
of the proposition.

Since γ �→ Θ(q)([γ ]) is linear, the inequality |Θ(q)([γ ])| ≤ C‖[γ ]‖ is trivial.
For the converse inequality, let L > 0 be such that any point of M can be joined to
a point of Σ by a path of length at most L. The inequality C−1‖γ‖ ≤ |Θ(q)([γ ])|
is trivial for the (finite number of ) saddle connections of length ≤ L. Consider
now a saddle connection γ with length ≥ L, and let n ≥ 2 be such that (n/2)L ≤
|Θ(q)([γ ])| ≤ nL. We can subdivide γ in n segments [xi, xi+1] of length at most L.
Joining each xi to a singularity, we obtain a decomposition in homology [γ ] =∑n

i=1[γi], where γi is a path of length at most 3L. There exists a constant C
such that any such path γi satisfies ‖[γi]‖ ≤ C, and we obtain ‖[γ ]‖ ≤ nC ≤
2C
L |Θ(q)([γ ])|. ��

Proposition 2.11. — The map from Q(M,Σ, κ) to the set of norms on H1(M,Σ; C)

given by q �→ ‖ · ‖q is continuous.

Proof. — Let ε > 0. By compactness of the unit ball, there exists a finite
number of saddle connections γ1, ..., γN such that, for any ω ∈ H1(M,Σ; C),

‖ω‖q ≤ (1 + ε) sup
1≤n≤N

∣
∣
∣
∣

ω([γn])
Θ(q)([γn])

∣
∣
∣
∣ .(2.7)

If q ′ is close enough to q, the saddle connections γi survive in q ′, and we get

‖ω‖q ′ ≥ sup
1≤n≤N

∣
∣
∣
∣

ω([γn])
Θ(q ′)([γn])

∣
∣
∣
∣ ≥ (1 − ε) sup

1≤n≤N

∣
∣
∣
∣

ω([γn])
Θ(q)([γn])

∣
∣
∣
∣ ≥ 1 − ε

1 + ε
‖ω‖q.(2.8)
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For the converse inequality, we have to prove that the new saddle connections ap-
pearing in q ′ do not increase the norm too much. Let ξ be a translation surface
representing q. By Lemma 2.9, ξ is obtained by gluing a finite number of trian-
gles along some parallel edges. A translation surface ξ ′ close to ξ is obtained by
modifying slightly the sides of these triangles in R2 and then gluing them along
the same pattern. Hence, we get a map φξξ ′ : ξ → ξ ′ which is affine in each
triangle of the triangulation. Moreover, if ξ ′ is close enough to ξ , the differential
of φξξ ′ is ε-close to the identity

Let γ ′ be a saddle connection in ξ ′. The path φ−1
ξξ ′ (γ ′) is a union of a fi-

nite number of segments in ξ , and its length is at most (1 + ε)|Dξ ′(γ ′)|. It is
homotopic to a unique geodesic path γ in ξ . This path is a union of a finite
number of saddle connections γ1, ..., γN, with

∑ |Dξ(γi)| ≤ (1 + ε)|Dξ ′(γ ′)|. For
ω ∈ H1(M,Σ; C), we get

∣
∣
∣
∣

ω([γ ′])
Θ(q ′)([γ ′])

∣
∣
∣
∣ =

∣
∣ ∑N

i=1 ω([γi])
∣
∣

|Dξ ′(γ ′)| ≤ (1 + ε)

∑N
i=1 |ω([γi])|

∑N
i=1 |Dξ(γi)|

≤ (1 + ε) sup
1≤i≤N

|ω([γi])|
|Dξ(γi)| ≤ (1 + ε)‖ω‖q.

Hence, we obtain ‖ω‖q ′ ≤ (1 + ε)‖ω‖q. ��

Since the tangent space of Q(M,Σ, κ) is everywhere identified through Θ

with H1(M,Σ; C), the norm ‖ · ‖q gives a Finsler metric on Q(M,Σ, κ). It de-
fines a distance (which is infinite for points in different connected components) on
Q(M,Σ, κ) as follows: the distance between two points x, x ′ is the infimum of the
length (measured with the Finsler metric) of a C1 path joining x and x ′.

Let sys : Q(M,Σ, κ) → R+ be the systole function, i.e., the shortest length
of a saddle connection. It is bounded on Q(1)(M,Σ, κ).

Lemma 2.12. — The function q �→ log(sys(q)) is 1-Lipschitz on the space

Q(M,Σ, κ).

Proof. — We will prove that, for any C1 path ρ : (−1, 1) → Q(M,Σ, κ) with
ρ(0) = q and ρ′(0) = ω ∈ H1(M,Σ; C) holds

lim sup
t→0

| log sys(ρ(t)) − log sys(q)|
|t| ≤ ‖ω‖q.(2.9)

This will easily imply the result.
In a translation surface representing q, there is a finite number of saddle

connections γ1, ..., γN with minimal length. For small enough t, sys(ρ(t)) =
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min1≤i≤N |Θ(ρ(t))([γi])|. Moreover,

log |Θ(ρ(t))([γi])| − log(sys(q)) = log

∣
∣
∣
∣
Θ(q)([γi]) + tω([γi]) + o(t)

Θ(q)([γi])
∣
∣
∣
∣

= t�
(

ω([γi])
Θ(q)([γi])

)

+ o(t).

Hence,

| log sys(ρ(t)) − log sys(q)| ≤ |t| max
1≤i≤N

∣
∣
∣
∣

ω([γi])
Θ(q)([γi])

∣
∣
∣
∣ + o(t)

≤ |t|‖ω‖q + o(t). ��
By construction, the norm ‖ · ‖q is invariant under the action of the modu-

lar group. As a consequence, the modular group acts by isometries on Q(M,Σ, κ).
Hence, the distance on Q(M,Σ, κ) induces a distance on the quotient
M (M,Σ, κ). It is Finsler outside of the singularities of this orbifold. Notice that
the systole is also invariant under the modular group, and passes to the quo-
tient. We will still denote by sys this new function. The function log ◦ sys is still
1-Lipschitz on M (M,Σ, κ).

The systole plays an important role in the topology of M (1)(M,Σ, κ) since,
for all ε > 0, the set {q ∈ M (1)(M,Σ, κ) : sys(q) ≥ ε} is compact. To say
it differently, a sequence qn ∈ M (1)(M,Σ, κ) diverges to infinity if and only if
sys(qn) → 0.

Corollary 2.13. — The distance on Q(1)(M,Σ, κ) is complete.

Proof. — It is sufficient to prove the same statement in the quotient
M (1)(M,Σ, κ). If qn is a Cauchy sequence in M (1)(M,Σ, κ), the sequence
log sys(qn) is also Cauchy by Lemma 2.12. Hence, sys(qn) is bounded away from 0.
In particular, the sequence qn remains in a compact subset of the moduli space
M (1)(M,Σ, κ), and converges to any of its cluster values. ��

Any element ω ∈ H1(M,Σ; C) can be written uniquely as ω = a + ib where
a, b ∈ H1(M,Σ; R). Let ω = a − ib. In this notation, the differential of the action
of the Teichmüller flow is given by

dTFt(q)
dt

∣
∣
∣
∣

t=0

= Θ(q).(2.10)

Hence,
∥
∥ dTFt (q)

dt

∣
∣
t=0

∥
∥

q
≤ 1. In particular, the Teichmüller flow satisfies

d(TFt(q), q) ≤ |t|.(2.11)

The same inequality holds in the quotient space M (M,Σ, κ).
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If q ∈ Q(M,Σ, κ) and ω = a + ib ∈ H1(M,Σ; C) (identified through Θ with
the tangent space of Q(M,Σ, κ) at q), then the differential of the Teichmüller
flow is given by

DTFt(q) · ω = eta + ie−tb.(2.12)

This implies the inequality

e−2|t|‖ω‖q ≤ ‖DTFt(q) · ω‖TFt(q) ≤ e2|t|‖ω‖q,(2.13)

which corresponds to the classical fact that the extreme Lyapunov exponents of
the Teichmüller flow are −2 and 2.

2.2.3. Exponential decay of correlations. — Let C (1) be a connected component
of M (1)(M,Σ, κ). It is an orbifold, and is endowed with a finite mass measure
νC (1) (which we will assume to be normalized so that it is a probability measure),
and a distance dC (1) . The Teichmüller diagonal flow TFt acts ergodically on C (1)

and preserves the measure νC (1) .
For 0 < α ≤ 1 and f : C (1) → R, we will denote by ωα( f , x) the local

Hölder constant of f at x, i.e.

ωα( f , x) = sup
y∈B(x,1)

y�=x

| f ( y) − f (x)|
dC (1) ( y, x)α

.(2.14)

For k ∈ N and 0 < α ≤ 1, let Dk,α be the set of functions f : C (1) → R such that
the norm

‖ f ‖Dk,α := sup
x∈C (1)

| f (x)| sys(x)k + sup
x∈C (1)

ωα( f , x) sys(x)k(2.15)

is finite. This is the set of functions which are locally α-Hölder at each point and
do not behave worse than sys(x)−k at infinity. When f is compactly supported, this
condition reduces to the fact that f is α-Hölder, but it is much more permissive
in general.

For example, if a function f : C (1) → R is compactly supported and C1

(meaning that its lift to the manifold Q(1)(M,Σ, κ) is C1), then it belongs to all
spaces Dk,α.

The main result of this article is the following theorem:

Theorem 2.14. — Let k ∈ N and 0 < α ≤ 1. Let p, q ∈ R+ be such that

1/p + 1/q < 1. Then there exist constants δ > 0 and C > 0 (depending on k, α, p, q) such
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that, for all functions f : C (1) → R belonging to Dk,α ∩ Lp(νC (1) ) and g : C (1) → R
belonging to Dk,α ∩ Lq(νC (1) ), for all t ≥ 0, holds

∣
∣
∣
∣

∫
f · g ◦ TFt dνC (1) −

(∫
f dνC (1)

)(∫
g dνC (1)

)∣
∣
∣
∣

≤ C
(‖ f ‖Dk,α + ‖ f ‖Lp

)(‖g‖Dk,α + ‖g‖Lq

)
e−δt.

An important ingredient in the course of the proof will be recurrence es-
timates to a given compact set. We give here a consequence of these estimates,
which is of independent interest:

Theorem 2.15. — Let δ > 0. Then there exist a compact set K ⊂ C (1) and a constant

C > 0 such that, for all t ≥ 0,

νC (1){x ∈ C (1) : ∀s ∈ [0, t], TFs(x) �∈ K} ≤ Ce−(1−δ)t.(2.16)

This result easily implies the following corollary:

Corollary 2.16. — For all δ > 0, there exists C > 0 such that, ∀ε ≥ 0,

νC (1){x ∈ C (1) : sys(x) < ε} ≤ Cε2−δ.(2.17)

Proof. — Let K be a compact subset as in Theorem 2.15. On K, the systole
is larger than a constant ε0. If sys(x) < ε < ε0, then TFtx �∈ K for |t| ≤ log(ε0/ε)

since log ◦ sys is 1-Lipschitz and d(TFtx, x) ≤ |t|. Hence,

νC (1)

{
x ∈ C (1) : sys(x) < ε

}

≤ νC (1)

{
x ∈ C (1) : ∀s ∈ [− log(ε0/ε), log(ε0/ε)],TFs(x) �∈ K

}

= νC (1)

{
x ∈ C (1) : ∀s ∈ [0, 2 log(ε0/ε)],TFs(x) �∈ K

} ≤ C
(

ε

ε0

)2(1−δ)

.

��
This estimate is known not to be optimal: by the Siegel–Veech formula (see

e.g. [EM]), there exists a constant C > 0 such that

νC (1){x ∈ C (1) : sys(x) < ε} ∼ Cε2.(2.18)

Notice however that the proof of this result relies heavily on the SL(2, R) action,
while our estimates involve only the Teichmüller flow. Since the loss between (2.18)
and (2.17) is arbitrarily small, Theorem 2.15 is quite sharp. In particular, the com-
binatorial estimates we will develop in Section 5 for the proofs of Theorems 2.14
and 2.15 are quasi-optimal.

Remark. — As a consequence of Corollary 2.16 (or of Equation (2.18)), the
function φ : x �→ 1/ sys(x) belongs to Lp for all p < 2. Moreover, Lemma 2.12
shows that φ ∈ D1,1.
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3. The Veech flow

In this section we introduce the Veech flow, and discuss its basic combi-
natorics, related to interval exchange transformations. The Veech flow is a finite
cover of the Teichmüller flow, and it will be shown in the next section that our
results for the Teichmüller flow follow from corresponding results for the Veech
flow.

We follow the presentation of [MMY].

3.1. Rauzy classes and interval exchange transformations

3.1.1. Interval exchange transformations. — An interval exchange transformation
is defined as follows. Let A be some fixed alphabet on d ≥ 2 letters.

1. Take an interval I ⊂ R (all intervals will be assumed to be closed at the
left and open at the right),

2. Break it into d ≥ 2 intervals {Iα}α∈A ,
3. Rearrange the intervals in a new order (via translations) inside I.

Modulo translations, we may always assume that the left endpoint of I is 0.
Thus the interval exchange transformation is entirely defined by the following data:

1. The lengths of the intervals {Iα}α∈A ,
2. Their orders before and after rearranging.

The first are called length data, and are given by a vector λ ∈ RA
+ (here and

henceforth R+ = (0,∞)). The second are called combinatorial data, and are given
by a pair of bijections π = (πt, πb) from A to {1, ..., d} (we will sometimes call
such a pair of bijections a permutation). We denote the set of all such pairs of
bijections by S(A ). The bijections πε : A → {1, ..., d} can be viewed as rows
where the elements of A are displayed in the order (π−1

ε (1), ..., π−1
ε (d )). Thus

we can see an element of S(A ) as a pair of rows, the top (corresponding to πt )
and the bottom (corresponding to πb) of π. The interval exchange transformation
associated to these data will be denoted f = f (λ, π).

Notice that if the combinatorial data are such that the set of the first k
elements in the top and bottom of π coincide for some 1 ≤ k < d then, irrespective
of the length data, the interval exchange transformation splits into two simpler
transformations. We are mostly interested in combinatorial data for which this
does not happen, which we will call irreducible. Let S0(A ) ⊂ S(A ) be the set
of irreducible combinatorial data.

3.1.2. Rauzy classes. — A diagram (or directed graph) consists of two kinds of
objects, vertices and (oriented) arrows joining two vertices. Thus, an arrow has
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a start and an end. A path of length m ≥ 0 in the diagram is a finite se-
quence v0, ..., vm of vertices and a sequence of arrows a1, ..., am such that ai starts
at vi−1 and ends in vi. A path is said to start at v0, end in vm, and pass through
v1, ..., vm−1. If γ1 and γ2 are paths such that the end of γ1 is the start of γ2, their
concatenation is also a path, denoted by γ1γ2. We can identify paths of length
zero with vertices and paths of length one with arrows. Paths of length zero are
called trivial. We introduce a partial order on paths: γs ≤ γ if and only if γ starts
by γs.

Given π ∈ S0(A ) we consider two operations. Let α and β be the last
elements of the top and bottom rows. The top operation keeps the top row un-
changed, and it changes the bottom row by moving β to the position immediately
to the right of the position occupied by α. When applying this operation to π,
we will say that α wins and β loses. The bottom operation is defined in a similar
way, just interchanging the words top and bottom, and the roles of α and β. In
this case we say that β wins and α loses. Notice that both operations preserve
the first elements of both the top and the bottom row.

It is easy to see that each of these operations gives a bijection of S0(A ).
A Rauzy class R is a minimal non-empty subset of S0(A ) which is invariant
under the top and bottom operations. Given a Rauzy class R, we define a dia-
gram, called Rauzy diagram. Its vertices are the elements of R and for each vertex
π ∈ R and each of the operations considered above, we define an arrow joining
π to the image of π by the corresponding operation. Notice that every vertex
is the start and end of two arrows, one top and one bottom. Every arrow has
a start, an end, a type (top or bottom), a winner and a loser. The set of all paths
is denoted by Π(R).

3.1.3. Linear action. — Let R ⊂ S0(A ) be a Rauzy class. To each path
γ ∈ Π(R), we associate a linear map Bγ ∈ SL(A , Z) as follows. If γ is trivial,
then Bγ = id. If γ is an arrow with winner α and loser β then Bγ · eξ = eξ for
ξ ∈ A \ {α} and Bγ · eα = eα + eβ, where {eξ}ξ∈A is the canonical basis of RA . We
extend the definition to paths so that Bγ1γ2 = Bγ2 · Bγ1 .

3.2. Rauzy induction. — Let R ⊂ S0(A ) be a Rauzy class, and define ∆0
R

=
RA

+ ×R. Given (λ, π) in ∆0
R

, we say that we can apply Rauzy induction to (λ, π)

if λα �= λβ, where α, β ∈ A are the last elements of the top and bottom rows
of π, respectively. Then we define (λ′, π ′) as follows:

1. Let γ = γ(λ, π) be a top or bottom arrow on the Rauzy diagram starting
at π, according to whether λα > λβ or λβ > λα.

2. Let λ′
ξ = λξ if ξ is not the winner of γ , and λ′

ξ = |λα − λβ| if ξ is the
winner of γ .

3. Let π ′ be the end of γ .
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We say that (λ′, π ′) is obtained from (λ, π) by applying Rauzy induction, of type
top or bottom depending on whether the type of γ is top or bottom. We have
that π ′ ∈ R and λ′ ∈ RA

+ . The interval exchange transformations f : I → I and
f ′ : I′ → I′ specified by the data (λ, π) and (λ′, π ′) are related as follows. The
map f ′ is the first return map of f to a subinterval of I, obtained by cutting
from I a subinterval with the same right endpoint and of length λξ , where ξ is
the loser of γ . The map Q : (λ, π) �→ (λ′, π ′) is called Rauzy induction map. Its
domain of definition, the set of all (λ, π) ∈ ∆0

R
such that λα �= λβ (where α and

β are the last letters in the top and bottom rows of π), will be denoted by ∆1
R

.
The connected components ∆π = RA

+ × {π} of ∆0
R

are naturally labeled by
the elements of R, or equivalently, by paths in Π(R) of length 0. The connected
components ∆γ of ∆1

R
are naturally labeled by arrows, that is, paths in Π(R)

of length 1. One easily checks that each connected component of ∆1
R

is mapped
homeomorphically to some connected component of ∆0

R
.

Let ∆n
R

be the domain of Q n, n ≥ 2. The connected components of ∆n
R

are naturally labeled by paths in Π(R) of length n: if γ is obtained by following
a sequence of arrows γ1, ..., γn, then ∆γ = {x ∈ ∆0

R
: Q k−1(x) ∈ ∆γk , 1 ≤ k ≤ n}.

If γ starts at π and ends at π ′, then for any x = (λ, π) ∈ ∆γ ,

Q n(x) = (
(B∗

γ )
−1λ, π ′)(3.1)

(here and in the following we will use A∗ to denote the transpose of a matrix A).
Indeed for arrows this follows from the definitions, and the extension to paths is
then immediate. Moreover, ∆γ = (B∗

γ · RA
+ ) × {π}.

If γ is a path in Π(R) of length n ending at π ′ ∈ R, let

Q γ = Q n : ∆γ → ∆π ′.(3.2)

This map is a homeomorphism.
Let ∆∞

R
= ⋂

n≥0 ∆n
R

. A sufficient condition for (λ, π) to belong to ∆∞
R

is for
the coordinates of λ to be independent over Q .

3.2.1. Complete and positive paths

Definition 3.1. — Let R ⊂ S0(A ) be a Rauzy class. A path γ ∈ Π(R) is called

complete if every α ∈ A is the winner of some arrow composing γ .

Lemma 3.2 ([MMY], §1.2.3, Proposition). — Let (λ, π) ∈ ∆∞
R

, and let ∆γ(n) be

the connected component of (λ, π) in ∆n
R

. Then γ(n) is complete for all n large enough.

In particular any Rauzy diagram contains complete paths.
We say that γ ∈ Π(R) is k-complete if it is a concatenation of k complete

paths. We say that γ ∈ Π(R) is positive if Bγ is given, in the canonical basis of
RA

+ , by a matrix with all entries positive.



158 ARTUR AVILA, SÉBASTIEN GOUËZEL, JEAN-CHRISTOPHE YOCCOZ

Lemma 3.3 ([MMY], §1.2.4, Lemma). — If γ is a k-complete path with k ≥
2#A − 3, then γ is positive.

3.3. Zippered rectangles. — Let R ⊂ S0(A ) be a Rauzy class. Let π =
(πt, πb) ∈ R. Let Θπ ⊂ RA be the set of all τ such that

∑

πt(ξ)≤k

τξ > 0 and
∑

πb(ξ)≤k

τξ < 0 for all 1 ≤ k ≤ d − 1.(3.3)

Notice that Θπ is an open convex polyhedral cone. It is non-empty, since the
vector τ with coordinates τξ = πb(ξ) − πt(ξ) belongs to Θπ .

From the data (λ, π, τ), it is possible to define a marked translation surface
S = S(λ, π, τ) in some Qg,κ , where g and κ depend only on π (see [MMY],
§3.2). It is obtained (in the zippered rectangles construction) by gluing rectangles of
horizontal sides λα and vertical sides hα, where the height vector h ∈ RA

+ is given
by h = −Ω(π) · τ , and Ω(π) is the linear operator on RA ,

〈Ω(π) · ex, ey〉 =

⎧
⎪⎪⎨

⎪⎪⎩

1, πt(x) > πt( y), πb(x) < πb( y),

−1, πt(x) < πt( y), πb(x) > πb( y),

0, otherwise.

(3.4)

In particular, the area of the translation surface S is A(λ, π, τ) = −〈λ,Ω · τ〉.

3.3.1. Extension of induction to the space of zippered rectangles. — If γ ∈ Π(R) is
a path starting at π, let Θγ ⊂ RA be defined by the condition

B∗
γ · Θγ = Θπ.(3.5)

If γ is a top arrow ending at π ′, then Θγ is the set of all τ ∈ Θπ ′ such that∑
x∈A τx < 0, and if γ is a bottom arrow ending at π ′, then Θγ is the set of all

τ ∈ Θπ ′ such that
∑

x∈A τx > 0. Thus, the map

Q̂ γ : ∆γ × Θπ → ∆π ′ × Θγ , Q̂ γ (λ, π, τ) = (
Q (λ, π), (B∗

γ )
−1 · τ)

(3.6)

is invertible. Now we can define an invertible map by putting together the Q̂ γ for
every arrow γ . This is a map from

⋃
∆γ ×Θπ (where the union is taken over all

π ∈ R and all arrows γ starting at π) to
⋃

∆π ′ × Θγ (where the union is taken
over all π ′ ∈ R and all arrows ending at π ′). We let ∆̂R = ⋃

π∈R∆π × Θπ . The
map Q̂ is a skew-product over Q : Q̂ (λ, π, τ) = (Q (λ, π), τ ′) where τ ′ depends
on (λ, π, τ).

The translation surfaces S and S′ corresponding respectively to (λ, π, τ) and
Q̂ (λ, π, τ) are obtained by appropriate cutting and pasting, so they correspond
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to the same element in the moduli space Mg,κ (the marking on the homology
is however not preserved), see [MMY], §4.1. We have thus a well defined map
proj : ∆̂R → C satisfying

proj ◦ Q̂ = proj,(3.7)

where C = C (R) is a connected component of Mg,κ (the connectivity of the image
of proj is due to the relation (3.7)). In particular g and κ only depend on R.

Theorem 3.4 (Veech). — If C is a connected component of Mg,κ then there exists

a Rauzy class R such that C = C (R).

Theorem 3.5 (Veech). — The image of proj : ∆̂R → C has full Lebesgue measure

in C .

The action of Q̂ on ∆̂R admits a nice fundamental domain. Let

φ(λ, π, τ) = ‖λ‖ =
∑

α∈A

λα.(3.8)

Let �R ⊂ ∆̂R be the set of all x such that either

1. Q̂ (x) is defined and φ(Q̂ (x)) < 1 ≤ φ(x),
2. Q̂ (x) is not defined and φ(x) ≥ 1,
3. Q̂ −1(x) is not defined and φ(x) < 1.

It is a fundamental domain for the action of Q̂ : each orbit of Q̂ intersects �R

in exactly one point. The fibers of the map proj : �R → C are almost everywhere
finite (with constant cardinality). The projection of the standard Lebesgue measure
on �R is (up to scaling) the standard volume form on C .

3.3.2. The Veech flow. — There is a natural flow T V t : ∆̂R → ∆̂R,
T V t(λ, π, τ) = (etλ, π, e−tτ), which lifts the Teichmüller flow in Mg,κ . This flow
commutes with Q̂ . The Veech flow VT t : �R → �R is defined by VT t(x) =
Q̂ n(T V t(x)) where n is the unique value such that Q̂ n(T V t(x)) ∈ �R. It lifts
the Teichmüller flow on C :

proj ◦ VT t = TFt ◦ proj.(3.9)

Since both the flow T V t and the map Q̂ trivially preserve the standard Lebesgue
measure on ∆̂R, the Veech flow VT t preserves the standard Lebesgue measure on
�R.

Let �
(1)

R
= proj−1(C (1)) be the set of all (λ, π, τ) such that A(λ, π, τ) = 1.

The Veech flow leaves invariant �
(1)

R
. It follows that its restriction VT t : �

(1)

R
→ �

(1)

R

leaves invariant a smooth volume form dω (such that dω ∧ dA = dLeb), whose
projection is, up to scaling, the standard volume form on C (1).
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Remark. — Veech’s proof of the fact that the standard volume form on C (1)

is finite actually first establishes finiteness of the lift measure on �
(1)

R
. A different

proof of finiteness follows from our recurrence estimates.

Remark. — Finiteness is a crucial step in Veech’s proof of conservativity of
an absolutely continuous invariant measure for the Rauzy renormalization (which
is itself the center of Veech’s proof of unique ergodicity for typical interval ex-
change transformations [Ve1]). A different proof of conservativity for the Rauzy
renormalization follows immediately from our recurrence estimates (the proof of
which does not depend on the zippered rectangle construction).

4. Reduction to recurrence estimates

4.1. Measurable models

4.1.1. The Veech flow as suspension over the Rauzy renormalization. — Let Υ̂R ⊂
�R be the set of all (λ, π, τ) with φ(λ, π, τ) = ‖λ‖ = ∑

α∈A λα = 1. The connected
components of Υ̂R are naturally denoted Υ̂π . Let Υ̂

(1)

R
= �

(1)

R
∩Υ̂R, Υ̂(1)

π = �
(1)

R
∩Υ̂π .

Let Υn
R

⊂ ∆n
R

be the set of (λ, π) with ‖λ‖ = 1. We let m̂ denote the induced
Lebesgue measure to Υ̂

(1)

R
.

Notice that Υ̂
(1)

R
is transverse to the Veech flow on �

(1)

R
. We are interested

in the first return map R̂ to Υ̂
(1)

R
. Its domain is the intersection of Υ̂

(1)

R
with the

domain of definition of Q̂ , and we have

R̂(λ, π, τ) = (erλ′, π ′, e−rτ ′),(4.1)

where (λ′, π ′, τ ′) = Q̂ (λ, π, τ) and r = r(λ, π) = − log ‖λ′‖ = − log φ(λ′, π ′, τ ′)
is the first return time. The map R̂ is a skew-product: it can be written as
R̂(λ, π, τ) = (R(λ, π), e−rτ ′). The map R : Υ1

R
→ Υ0

R
is called the Rauzy renor-

malization map. The measure m̂ is invariant under R̂.
The Veech flow can thus be seen as a special suspension over the map R̂,

which is itself an “invertible extension” of a non-invertible map R. This “suspension
model” loses control of some orbits (the ones that do not return to Υ̂

(1)

R
), but those

have zero Lebesgue measure, and will not affect further considerations.

4.1.2. Precompact sections. — In the above suspension model for the Veech
flow, the underlying discrete transformation R̂ is only very weakly hyperbolic. This
is related to the fact that the section Υ̂

(1)

R
is too large (for instance, it has infinite

area). Zorich [Z] has introduced an alternative section with finite area, but such
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a section is still somewhat too large, so that there is not a good control on dis-
tortion. In the following we will introduce a class of suitably small (precompact in
Υ̂

(1)

R
) sections with good distortion estimates.

The section we will choose will be the intersection of Υ̂
(1)

R
with (finite unions

of ) sets of the form ∆γ × Θγ ′ . Precompactness in the λ direction is equivalent to
having B∗

γ · (RA
+ \ {0}) ⊂ RA

+ , which is equivalent to γ being a positive path. To
take care of both the λ and the τ direction, we introduce the following notion.

Definition 4.1. — A path γ , starting in πs and ending in πe, is said to be strongly

positive if it is positive and (B∗
γ )

−1 · (Θπs \ {0}) ⊂ Θπe .

Lemma 4.2. — Let γ be a k-complete path with k ≥ 3#A − 4. Then γ is strongly

positive.

Proof. — Let d = #A . Fix τ ∈ Θπs \ {0}. Write γ as a concatenation of
arrows γ = γ1...γn, and let π i−1 and π i denote the start and the end of γi. Let
τ0 = τ , τ i = (B∗

γi
)−1 · τ i−1. We must show that τ n ∈ Θπn .

Let hi = −Ω(π i) · τ i. Notice that τ ∈ Θπ0 \ {0} implies that h0 ∈ RA
+ \ {0}.

Indeed, since τ ∈ Θπ0 , for every ξ ∈ A , we have
∑

π0
t (α)<π0

t (ξ) τα ≥ 0,
∑

π0
b (α)<π0

b (ξ) τα ≤ 0. Moreover, since τ �= 0, there exists 1 ≤ kt, kb ≤ d minimal
such that τ(π0

t )−1(k t) �= 0 and τ(π0
b )−1(kb) �= 0. Since π0 is irreducible, min{kt, kb} < d .

Noticing that

h0
ξ =

∑

π0
t (α)<π0

t (ξ)

τα −
∑

π0
b (α)<π0

b (ξ)

τα,(4.2)

we see that h0
ξ ≥ 0 for all ξ , and the inequality is strict if π0

t (ξ) = kt +1 (if kt < d )
or if π0

b (ξ) = kb + 1 (if kb < d ).
Notice that hi = Bγi · hi−1, so if γ1...γi is a positive path then hi ∈ RA

+ .
Let 0 ≤ kt

i , kb
i ≤ d − 1 be maximal such that

∑

π i
t (ξ)≤k

τ i
ξ > 0 for all 1 ≤ k ≤ kt

i ,(4.3)

∑

π i
b(ξ)≤k

τ i
ξ < 0 for all 1 ≤ k ≤ kb

i ,(4.4)

where π i
t and π i

b are the top and the bottom of π i. We claim that

1. If hi−1 ∈ RA
+ then kt

i ≥ kt
i−1 and kb

i ≥ kb
i−1,

2. If hi−1 ∈ RA
+ and the winner of γi is one of the first kt

i−1 + 1 letters in
the top of π i−1 then kt

i ≥ min{d − 1, kt
i−1 + 1},

3. If hi−1 ∈ RA
+ and the winner of γi is one of the first kb

i−1 + 1 letters in
the bottom of π i−1 then kb

i ≥ min{d − 1, kb
i−1 + 1}.
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Let us see that (1), (2) and (3) imply the result, which is equivalent to the
statement that kt

n = d − 1 and kb
n = d − 1. We will show that kt

n = d − 1, the other
estimate being analogous. Let us write γ = γ(1)...γ(3d−4) where γ( j) is complete.
Write γ( j) = γsj ...γej . By Lemma 3.3, hk ∈ RA

+ for k ≥ e2d−3. From the definition
of a complete path, for each j > 2d − 3, there exists ej−1 < i ≤ ej such that the
winner of γi is one of the first kt

ej−1
+ 1 letters in the top of π i−1. It follows that

kt
ej ≥ min{d − 1, kt

ej−1
+ 1}, and so kt

n = kt
e3d−4

≥ min{d − 1, kt
e2d−3

+ d − 1} = d − 1.
We now check (1), (2) and (3). Assume that hi−1 ∈ RA

+ , and that γi is a top,
the other case being analogous. In this case π i

t = π i
t−1 and τ i

α = τ i−1
α for π i

t (α) < d ,
hence kt

i ≥ kt
i−1. This shows that the first claim of (1) holds. Moreover, (2) also

holds since its hypothesis can only be satisfied if kt
i−1 = d − 1.

If the winner of γi is not one of the kb
i−1 + 1 first letters in the bottom of

π i−1, then for every α ∈ A such that 1 ≤ π i−1
b (α) ≤ kb

i−1, we have π i−1
b (α) = π i

b(α),
τ i−1
α = τ i

α, so kb
i ≥ kb

i−1.
If the winner β of γi appears in the k-th position in the bottom of π i−1

with 1 ≤ k ≤ kb
i−1 + 1, then
∑

π i
b(ξ)≤ j

τ i
ξ =

∑

π i−1
b (ξ)≤ j

τ i−1
ξ < 0 for all 1 ≤ j ≤ k − 1,(4.5)

∑

π i
b(ξ)≤ j

τ i
ξ =

∑

π i−1
b (ξ)≤ j−1

τ i−1
ξ < 0 for all k + 1 ≤ j ≤ kb

i−1 + 1,(4.6)

∑

π i
b(ξ)≤k

τ i
ξ =

∑

π i−1
b (ξ)≤d−1

τ i−1
ξ − hi−1

β ≤ −hi−1
β < 0,(4.7)

which implies that kb
i ≥ min{d − 1, kb

i−1 + 1}.
This shows that both (3) and the second claim of (1) must hold. ��

4.1.3. A better model. — We will now choose a specific precompact section,
adapted for the problem of exponential mixing (Theorem 2.14). Our particular
choice aims to simplify the combinatorial description of the first return map. We
will later consider a different choice for the recurrence problem (Theorem 2.15).

Let γ∗ ∈ Π(R) be a strongly positive path starting and ending in the same
π ∈ R. Assume further that if γ∗ = γsγ = γγe then either γ = γ∗ or γ is trivial.1

We will say that γ∗ is neat.
Let Ξ̂ = Υ̂

(1)

R
∩ (∆γ∗ × Θγ∗), and let Ξ = Υ0

R
∩ ∆γ∗ . We are interested in the

first return map TΞ̂ to Ξ̂ under the Veech flow. The connected components of
its domain are given by Υ̂

(1)

R
∩ (∆γγ ∗ × Θγ∗), where γ is either γ∗, or a minimal

1 Notice that if γ∗ ends by a bottom arrow and starts by a sufficiently long (at least half the length of γ∗)
sequence of top arrows then this last condition is automatically satisfied.
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path of the form γ∗γ0γ∗ not beginning by γ∗γ∗. The restriction of TΞ̂ to such
a component is given by

TΞ̂(λ, π, τ) =
(

(B∗
γ )

−1 · λ

‖(B∗
γ )

−1 · λ‖, π,
∥
∥(B∗

γ )
−1 · λ∥

∥(B∗
γ )

−1 · τ

)

.(4.8)

The return time function is just

rΞ̂(λ, π, τ) = rΞ(λ, π) = − log
∥
∥(B∗

γ )
−1 · λ

∥
∥.(4.9)

The map TΞ̂(λ, π, τ) = (λ′, π, τ ′) is a skew-product over a non-invertible trans-
formation TΞ(λ, π) = (λ′, π).

The Veech flow can be seen as a suspension over TΞ̂, with roof function rΞ̂.
In this suspension model, many more orbits escape control (the ones that do not
come back to Ξ̂). Still, due to ergodicity of the Veech flow, almost every orbit is
captured by the suspension model.

4.2. Hyperbolic properties. — The transformation TΞ̂ turns out to have much
better hyperbolic properties than R̂.

Lemma 4.3. — TΞ̂ is a hyperbolic skew-product over TΞ.

Implicit in the above statement is the choice of probability measure ν and
Finsler metric ‖ · ‖Ξ̂ which are part of the Definition 2.5 of a hyperbolic skew-
product. The choice of ν is clear (the normalized restriction of m̂ to Ξ̂) but there
is some freedom in the choice of the Finsler metric. In order to enforce the
hyperbolicity properties we want from TΞ̂, we will introduce a particular complete
Finsler metric on Υ̂(1)

π , and then take ‖ · ‖Ξ̂ as its restriction. By strong positivity
of γ∗, Ξ̂ is a precompact open subset of Υ̂

(1)

R
, so Ξ̂ will have bounded diameter

with respect to such metric.

4.2.1. Hilbert metric. — The Hilbert pseudo-metric on R2
+ is given by

distR2+(x, y) = log max1≤i, j≤2
xi yj

xj yi
. One easily checks that if B ∈ GL(2, R) is a linear

map such that B · R2
+ ⊂ R2

+ then B contracts weakly the Hilbert pseudo-metric:
distR2+(B · x, B · y) ≤ distR2+(x, y). In particular, the Hilbert pseudo-metric is invariant
under linear isomorphisms of R2

+.
More generally, if C ⊂ RA \ {0} is an open convex cone whose closure does

not contain any one-dimensional subspace of RA , one defines a Hilbert pseudo-
metric on C as follows. If x and y are collinear then distC(x, y) = 0. Otherwise,
C intersects the subspace generated by x and y in a cone isomorphic to R2

+. We
let distC(x, y) = distR2+(ψ(x), ψ( y)) where ψ is any such isomorphism. If C = RA

+
then we have distC(x, y) = maxα,β∈A log xα yβ

xβ yα
.
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If C′ ⊂ C is a smaller cone then the inclusion C′ → C is a weak contraction
of the respective Hilbert pseudo-metrics: distC(x, y) ≤ distC′(x, y). Moreover, if the
diameter of C′ with respect to distC is bounded by some M then the contraction
is definite: distC(x, y) ≤ δ distC′(x, y) where δ = δ(M) < 1.

We notice that the Hilbert pseudo-metric on a cone C induces the Hilbert
metric on the space of rays {tx : t ∈ R+} contained in C (which is a projective
manifold). It is a complete Finsler metric.

4.2.2. Uniform expansion and contraction. — Recall that Υ̂(1)
π is contained in

∆π × Θπ , which is a product of two cones. In ∆π × Θπ , we have the product
Hilbert pseudo-metric dist((λ, π, τ), (λ′, π, τ ′)) = dist∆π

((λ, π), (λ′, π))+distΘπ
(τ, τ ′).

Each product of rays {(aλ, π, bτ) : a, b ∈ R+} ⊂ ∆π × Θπ intersects transversely
Υ

(1)

R
in a unique point. It follows that the product Hilbert pseudo metric induces

a metric dist on Υ̂(1)
π . It is a complete Finsler metric.

Proof of Lemma 4.3. — Let us first show that TΞ is a uniformly expanding
Markov map (the underlying Finsler metric being the restriction of dist∆π

, and the
underlying measure Leb being the induced Lebesgue measure). It is clear that Ξ

is a John domain.
Condition (1) of Definition 2.2 is easily verified, except for the definite con-

traction of inverse branches. To check this property, we notice that an inverse

branch can be written as h(λ, π) =
(

B∗
γ ·λ

‖B∗
γ ·λ‖, π

)
. Since γ∗ is neat, we can write

B∗
γ = B∗

γ∗B
∗
γ0

for some γ0. Thus h can be written as (the restriction of ) the com-
position of two maps ∆π → ∆π , h = h∗ ◦ h0, where h0 is weakly contracting and h∗
is definitely contracting by precompactness of Ξ in ∆π (which is a consequence
of positivity of γ∗).

To check condition (2) of Definition 2.2, let h(λ, π) =
(

B∗
γ ·λ

‖B∗
γ ·λ‖, π

)
be an

inverse branch of TΞ. The Jacobian of h at (λ, π) is J ◦ h(λ, π) =
(

1
‖B∗

γ ·λ‖
)d

, where
d = #A . It follows that

J ◦ h(λ, π)

J ◦ h(λ′, π)
≤ sup

α∈A

(
λα

λ′
α

)d

≤ ed dist∆π ((λ,π),(λ′,π)),(4.10)

so that log J ◦ h is d-Lipschitz with respect to dist∆π
.

To see that TΞ̂ is a hyperbolic skew-product over TΞ, one checks the con-
ditions (1–4) of Definition 2.5. Condition (1) is obvious, and condition (4) follows
from precompactness of Ξ̂ in ∆π × Θπ as before. Since TΞ̂ is a first return map,
the restriction of m̂ to Ξ̂ is TΞ̂-invariant. Its normalization is the probability meas-
ure ν of condition (2). In order to check condition (3), it is convenient to trivialize
Ξ̂ to a product (via the natural diffeomorphism Ξ̂ → Ξ × PΘγ∗ ). Since ν has
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a smooth density with respect to the product of the Lebesgue measure on the
factors, condition (3) follows by the Leibnitz rule. ��

4.3. Basic properties of the roof function. — Let H(π) = Ω(π) · RA . Recall (from
§3.3) that if τ ∈ Θπ then −Ω(π) · τ ∈ RA

+ , and that Θπ is non-empty, so H(π) ∩
RA

+ �= ∅.

Lemma 4.4. — Let Γ ⊂ Π(R) be the set of all γ such that γ is either γ∗, or

a minimal path of the form γ∗γ0γ∗ not beginning by γ∗γ∗. Let K ⊂ PH(π) be a closed set

such that Bγ · K = K for every γ ∈ Γ. Then either K = ∅ or K = PH(π).

Proof. — Let Π(π) ⊂ Π(R) be the set of all paths that start and end in π.
Then any element of γ∗Π(π)γ∗ is a concatenation of elements of Γ. It follows that
if K is invariant under all Bγ , γ ∈ Γ, then K is invariant under all Bγ , γ ∈ Π(π):
indeed Bγ · K = B−1

γ∗ · Bγ∗γγ∗ · B−1
γ∗ · K = K, since γ∗ and γ∗γγ∗ are concatenation of

elements of Γ. According to Corollary 3.6 of [AV], this implies that K is either
empty or equal to PH(π). ��

Lemma 4.5. — The roof function rΞ is good (in the sense of Definition 2.3).

Proof. — We check conditions (1–3) of Definition 2.3. Let Γ ⊂ Π(R) be the
set defined in the previous lemma. Notice that Γ consists of positive paths.

The set H of inverse branches h of TΞ is in bijection with Γ, since each

inverse branch is of the form h(λ, π) =
(

B∗
γh

·λ
‖B∗

γh
·λ‖, π

)
for some γh ∈ Γ.

Let h ∈ H . Then rΞ(h(λ, π)) = log ‖B∗
γh

· λ‖. Since γh is positive, rΞ ≥ log 2,
which implies condition (1). Notice that rΞ ◦ h = 1

d log J ◦ h, where J is as in the
condition (2) of Definition 2.2, so (2) follows (by the previous discussion, it even
follows that rΞ ◦ h is 1-Lipschitz with respect to dist∆π

).
Let us check condition (3). We identify the tangent space to Ξ at a point

(λ, π) ∈ Ξ with V = {λ ∈ RA : ∑
λα = 0}. Assume that we can write rΞ =

ψ + φ ◦ TΞ −φ with φ ∈ C1, ψ locally constant. Write r (n)(x) = ∑n−1
j=0 rΞ(Tj

Ξ(λ, π)).
Then D(r (n) ◦ hn) = Dφ − D(φ ◦ hn), which can be rewritten

‖(B∗
γh
)n · v‖

‖(B∗
γh
)n · λ‖ = Dφ(λ, π) · v − D(φ ◦ hn)(λ, π) · v, (λ, π) ∈ Ξ, v ∈ V,

or
〈v, Bn

γh
· (1, ..., 1)〉

〈λ, Bn
γh

· (1, ..., 1)〉 = Dφ(λ, π) · v − D(φ ◦ hn)(λ, π) · v,

(λ,π) ∈ Ξ, v ∈ V.

Since Dhn → 0, we conclude that [Bn
γh

· (1, ..., 1)] ∈ PRA converges to a limit
[w] ∈ PRA independent of h. This obviously implies that [w] is invariant by all Bγh ,
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h ∈ H . Since w is a limit of positive vectors (vectors with positive coordinates), by
the Perron–Frobenius Theorem, w is collinear with the (unique) positive eigenvector
of Bγh , which also corresponds to the largest eigenvalue. Recalling that H(π) is
invariant under Bγh , and intersects RA

+ , it follows that w ∈ H(π). According to
the previous lemma, K = {[w]} ⊂ PH(π) should be either empty or equal to
the whole PH(π), so H(π) should be one-dimensional. This gives a contradiction
since H(π) is even dimensional (since H(π) is the image of the antisymmetric
operator Ω(π)). ��

4.4. A recurrence estimate and exponential mixing. — We will show later (in Sec-
tion 6) the following recurrence estimate.

Theorem 4.6. — The roof function rΞ has exponential tails.

We will now show how to conclude exponential mixing for the Teichmüller
flow, Theorem 2.14, assuming the above recurrence estimate and the abstract result
on exponential mixing for hyperbolic skew-product flows.

The map TΞ̂ and the roof function rΞ define together a flow T̂t on the
space ∆̂r = {(x, y, s) : (x, y) ∈ Ξ̂, TΞ̂(x, y) is defined and 0 ≤ s < rΞ(x)}. Since
TΞ̂ is a hyperbolic skew-product (Lemma 4.3), and rΞ is a good roof function
(Lemma 4.5) with exponential tails (Theorem 4.6), T̂t is an excellent hyperbolic
semi-flow. By Theorem 2.7, we get exponential decay of correlations

Ct( f̃ , g̃) =
∫

f̃ · g̃ ◦ T̂t dν −
∫

f̃ dν

∫
g̃ dν,(4.11)

for C1 functions f̃ , g̃, that is

|Ct( f̃ , g̃)| ≤ Ce−3δt‖ f̃ ‖C1‖g̃‖C1,(4.12)

for some C > 0, δ > 0. This estimate holds for C1 functions on ∆̂r , while Theo-
rem 2.14 deals with Hölder functions on C (1). Hence, one needs an additional
lifting and smoothing argument, provided by the following technical lemma.

Let P : Υ̂
(1)

R
× R → C (1) be given by P(z, s) = TFs(proj(z)), where proj :

∆̂R → C is the natural projection.

Lemma 4.7. — For every k ∈ N, 0 < α ≤ 1, p > p′ ≥ 1, δ > 0, there exist

C > 0, ε0 > 0 with the following property. Let f : C (1) → R be a function belonging to

Dk,α ∩ Lp(νC (1) ). For every t > 0, there exists a C1 function f (t) : ∆̂r → R, such that

‖ f ◦ P − f (t)‖Lp′ (ν) ≤ C(‖ f ‖Dk,α + ‖ f ‖Lp(νC (1) ))e
−ε0t and ‖ f (t)‖C1(∆̂r) ≤ C‖ f ‖Dk,αeδt .

Proof. — We identify Υ̂
(1)

R
∩ ∆π × Θπ with a subset U of R2d−2 via a map

(λ, π, τ) �→ (x, y), where x, y ∈ Rd−1 are defined by xi = λ
π−1

t (i+1)

λ
π
−1
t (1)

, yi = τ
π−1

t (i+1)

τ
π
−1
t (1)

,
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1 ≤ i ≤ d − 1 (here πt is the top of π). In this way, Ξ̂ becomes a precompact
subset of R2d−2. Using this identification, we will write rΞ(x) for rΞ(λ, π).

This also provides an identification of ∆̂r with a subset of U×[0,∞) ⊂ R2d−1

via the map (λ, π, τ, s) �→ (x, y, s). We will use ‖ · ‖ to denote the usual norm in
R2d−1, and dist for the corresponding distance.

Let ‖ · ‖F be the Finsler metric on U × R obtained by pullback via P of the
Finsler metric on C (1) defined in §2.2.2. At a point (x, y, s) ∈ Ξ̂×R, we have the
estimate C−1e−2|s|‖w‖ ≤ ‖w‖F ≤ Ce2|s|‖w‖ where w is a vector tangent to (x, y, s).
This follows from precompactness of Ξ̂ when s = 0, and the general case follows
from this one by applying the Teichmüller flow, see (2.13). We let distF be the
metric in ∆̂r corresponding to ‖ · ‖F. We recall that ∆̂r is disconnected, so the
distF distance between two points of ∆̂r is sometimes infinite.

There is another Finsler metric ‖·‖∆̂r over ∆̂r , which is the product of ‖·‖Ξ̂

(introduced in Section 4.2) in the (x, y) direction and the usual metric in the s
direction. We recall that it is with respect to this metric that the C1(∆̂r) norm is
defined. One easily checks that C−1‖w‖ ≤ ‖w‖∆̂r ≤ C‖w‖.

We may assume that ‖ f ‖Dk,α ≤ 1. This implies that for z0 = (x0, y0, s0) ∈ ∆̂r ,
| f ◦ P(z0)| ≤ Ceks0 and if distF(z, z0) = r < 1 then | f ◦ P(z) − f ◦ P(z0)| ≤ Ceks0 rα.

Let ε > 0. Let φ(t) : R2d−1 → [0,∞) be a C∞ function supported in {z ∈
R2d−1 : ‖z‖ < e−εt/10}, such that

∫
R2d−1 φ(t)(z) dz = 1 and such that ‖φ(t)‖C1(R2d−1) ≤

Ce2dεt. Let ψ(t) : R2d−1 → R be given by ψ(t)(x, y, s) = f ◦ P(x, y, s) if (x, y, s) ∈ ∆̂r

and 0 ≤ s ≤ εt, and ψ(t)(x, y, s) = 0 otherwise. We will show that if ε is small
enough then one can take f (t) = φ(t) ∗ ψ(t)|∆̂r, where ∗ denotes convolution.

Let us first check the assertion ‖ f (t)‖C1(∆̂r) ≤ Ceδt . It is immediate to check
that, by choosing ε > 0 small, we have indeed ‖ f (t)‖C1(∆̂r) ≤ C‖ψ(t) ∗φ(t)‖C1(R2d−1) ≤
C‖ψ(t)‖L1( dz)‖φ(t)‖C1(R2d−1) ≤ Ceδt.

We will now check the other assertion ‖ f ◦ P − f (t)‖Lp′ (ν) ≤ Ce−ε0t , assuming
‖ f ‖Dk,α + ‖ f ‖Lp(νC (1) ) ≤ 1.

Choose C0 > max{4, 2k/α}. Let Y ⊂ ∆̂r be the union of the connected
components of ∆̂r which intersect {(x, y, s) ∈ R2d−1 : s > C−1

0 εt}. Let X ⊂ ∆̂r \ Y
be the set of points with dist((x, y, s), ∂∆̂r) ≤ 4e−εt. Thus ∆̂r \ (X ∪ Y) consists of
points well inside the connected components of ∆̂r with not so long (maximal)
return time.

Lemma 4.8. — We have ν(X ∪ Y) ≤ Ce−εt/C.

Proof. — The function rΞ is a good roof function. Therefore, by condition
(2) of Definition 2.3, we have rΞ(x) > (CC0)

−1εt for every (x, y, s) ∈ Y. By Theo-
rem 4.6, ν(Y) ≤ Ce−εt/C.



168 ARTUR AVILA, SÉBASTIEN GOUËZEL, JEAN-CHRISTOPHE YOCCOZ

The boundary of each connected component of ∆̂r can be split in three
parts: a floor (containing points (x, y, s) with s = 0), a roof (containing points
(x, y, s) such that rΞ(x) = s) and a remaining lateral part.

Points (x, y, s) ∈ X are at distance at most 4e−εt of either the floor, the roof,
or the lateral part of the boundary of their connected component in ∆̂r : we can
thus write X = Xfloor ∪ Xroof ∪ Xlat (there is non-trivial intersection of Xfloor and
Xroof with Xlat). We will now show that each of those three sets have ν-measure
at most Ce−εt/C. Clearly ν(Xfloor) ≤ Ce−εt.

Using (2.13) and condition (2) of Definition 2.3, we see that if (x, y) is in
the domain of TΞ̂ then ‖DTΞ̂(x, y)‖, ‖DTΞ̂(x, y)−1‖ ≤ Ce2rΞ(x). Using condition
(2) of Definition 2.3 again we get ‖DrΞ(x)‖ ≤ C‖DTΞ̂(x, y)‖ ≤ Ce2rΞ(x). Thus if
(x, y, s) ∈ X then rΞ is Ce2εt/C0-Lipschitz restricted to the connected component of
the domain of TΞ̂ containing (x, y), and we conclude that if (x, y, s) ∈ Xroof then
s ≥ rΞ(x) − Ce−εt/2, so ν(Xroof ) ≤ Ce−εt/2.

Projecting Xlat on (x, y), we obtain a set Z ⊂ Ξ̂. By Theorem 4.6, ν(Xlat) ≤
Ce−εt/C follows from m̂(Z) ≤ Ce−εt/C. Let us show the latter estimate. Using that
TΞ̂, restricted to a connected component of its domain intersecting Z, is Ce2εt/C0-
Lipschitz, we get that TΞ̂(Z) is contained in a Ce2εt/C0e−εt ≤ Ce−εt/2 neighbor-
hood (with respect to the metric dist) of the boundary of Ξ̂. Since m̂ is in-
variant and smooth, and the boundary of Ξ̂ is piecewise smooth, it follows that
m̂(Z) ≤ Ce−εt/2. ��

Notice that log dν

dz is bounded over ∆̂r , so ‖ f (t)‖Lp(ν) ≤ C‖ f (t)‖Lp( dz) ≤
C‖ f ◦P‖Lp( dz) ≤ C‖ f ◦P‖Lp(ν) = C‖ f ‖Lp(νC (1) ) ≤ C. Hence ‖ f ◦P− f (t)‖Lp(ν) ≤ C and
using Lemma 4.8 we conclude that ‖χX∪Y( f ◦ P − f (t))‖Lp′ (ν) ≤ Ce−εt/C, where χX∪Y

is the characteristic function of X ∪ Y. On the other hand, if z0 ∈ ∆̂r \ (X ∪ Y)

and ‖z − z0‖ ≤ e−εt/10 then distF(z0, z) ≤ Ce2εt/C0e−εt ≤ Ce−εt/2. It follows that
|ψ(t)(z)− f ◦ P(z0)| = | f ◦ P(z)− f ◦ P(z0)| < Ce−αεt/2ekεt/C0 . Thus | f (t)(z0)− f ◦ P(z0)|
≤ Ce−αεt/4. This implies that ‖χ∆̂r\(X∪Y)( f ◦ P − f (t))‖L∞(ν) ≤ Ce−εt/C. The result
follows. ��

Let now k, α, p, q, f and g be as in Theorem 2.14. Let δ satisfy (4.12), and
let ε0 be given by Lemma 4.7. Choose p > p′ > 1, q > q ′ > 1 such that 1

p′ + 1
q ′ = 1.

For t > 0, let f (t) and g(t) satisfy

‖ f ◦ P − f (t)‖Lp′ ≤ C(‖ f ‖Dk,α + ‖ f ‖Lp)e−ε0t,(4.13)

‖ f (t)‖C1(∆̂r) ≤ C(‖ f ‖Dk,α + ‖ f ‖Lp)eδt,(4.14)

‖g ◦ P − g(t)‖Lq ′ ≤ C(‖g‖Dk,α + ‖g‖Lq)e−ε0t,(4.15)

‖g(t)‖C1(∆̂r) ≤ C(‖g‖Dk,α + ‖g‖Lq)eδt.(4.16)
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Then (4.12), (4.14) and (4.16) imply
∣
∣
∣
∣

∫
f (t) · g(t) ◦ T̂t dν −

∫
f (t) dν

∫
g(t) dν

∣
∣
∣
∣ ≤ Ce−3δt‖ f (t)‖C1‖g(t)‖C1

≤ Ce−δt(‖ f ‖Dk,α + ‖ f ‖Lp)(‖g‖Dk,α + ‖g‖Lq).

(4.17)

We have
∫

f · g ◦ TFt dνC (1) −
∫

f dνC (1)

∫
g dνC (1)

=
∫

f ◦ P · g ◦ P ◦ T̂t dν −
∫

f ◦ P dν

∫
g ◦ P dν

= Ct( f ◦ P, g ◦ P).

Using (4.13), (4.15) and (4.17) we get

|Ct( f ◦P, g ◦ P)| ≤ ∣
∣Ct( f (t), g(t))

∣
∣ + ∣

∣Ct( f ◦ P − f (t), g ◦ P)
∣
∣

+ ∣
∣Ct( f ◦ P, g ◦ P − g(t))

∣
∣ + ∣

∣Ct( f ◦ P − f (t), g ◦ P − g(t))
∣
∣

≤ ∣
∣Ct( f (t), g(t))

∣
∣ + 2‖ f ◦ P − f (t)‖Lp′ ‖g‖Lq ′

+ 2‖ f ‖Lp′ ‖g ◦ P − g(t)‖Lq ′ + 2‖ f ◦ P − f (t)‖Lp′ ‖g ◦ P − g(t)‖Lq ′

≤ Ce− min(δ,ε0)t(‖ f ‖Dk,α + ‖ f ‖Lp)(‖g‖Dk,α + ‖g‖Lq).

This concludes the proof of Theorem 2.14, modulo Theorem 4.6 which will be
proved in Sections 5 and 6, and Theorem 2.7 which will be proved in Sections 7
and 8. ��

4.5. A better recurrence estimate and the complement of large balls. — In the formu-
lation of Theorem 4.6, the particular recurrence estimate is not necessarily good
because we were more concerned in obtaining not only a precompact transversal,
but one for which the combinatorics of the first return map is particularly simple
(it is in particular conjugate to a horseshoe on infinitely many symbols). By con-
sidering slightly more complicated combinatorics, one can get considerably better
estimates:

Theorem 4.9. — For every δ > 0, there exists a finite union Ẑ = ⋃
∆γs × Γγe such

that Ẑ(1) = Ẑ∩ Υ̂
(1)

R
is precompact in Υ̂

(1)

R
, and the first return time rẐ to Ẑ under the Veech

flow satisfies
∫

Ẑ
e(1−δ)r Ẑ dm̂ < ∞.(4.18)

This result easily implies Theorem 2.15 (taking K = proj(Ẑ(1))). It will be
proved at the end of Section 6, by using a similar argument to the proof of
Theorem 4.6.
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5. A distortion estimate

The proof of the recurrence estimates is based on the analysis of the Rauzy
renormalization map R. The key step involves a control on the measure of sets
which present big distortion after some long (Teichmüller) time. In order to obtain
nearly optimal estimates, we will need to carry on a more elaborate combinatorial
analysis of Rauzy diagrams.

5.1. Degeneration of Rauzy classes. — Let R ⊂ S0(A ) be a Rauzy class. Let
A ′ ⊂ A be a non-empty proper subset.

Definition 5.1. — An arrow is called A ′-colored if its winner belongs to A ′. A path

γ ∈ R(π) is A ′-colored if it is a concatenation of A ′-colored arrows.

We call π ∈ R A ′-trivial if the last letters on both the top and the bottom
rows of π do not belong to A ′, A ′-intermediate if exactly one of those letters
belong to A ′ and A ′-essential if both letters belong to A ′. Alternatively, π ∈ R is
trivial/intermediate/essential if it is the beginning (and ending) of exactly 0/1/2
A ′-colored arrows.

An A ′-decorated Rauzy class R∗ ⊂ R is a maximal subset whose elements can
be joined by an A ′-colored path. We let Π∗(R∗) be the set of all A ′-colored
paths starting (and ending) at permutations in R∗. We will sometimes write Π∗
for Π∗(R∗).

A decorated Rauzy class is called trivial if it contains a trivial element π.
In this case R∗ = {π} and Π∗(R∗) = {π} (recall that vertices are identified with
trivial (zero-length) paths).

A decorated Rauzy class is called essential if it contains an essential element.
Since Π∗(R∗) �= Π(R) (for instance, Π∗(R∗) does not contain complete

paths), any essential decorated Rauzy class contains intermediate elements.

5.1.1. Essential decorated Rauzy classes. — Let R∗ be an essential decorated
Rauzy class. Let Ress

∗ ⊂ R∗ be the set of essential elements of R∗. Let Πess
∗ (R∗) ⊂

Π∗(R∗) be the set of paths which start and end at an element of Ress
∗ .

An arc γ ∈ Π∗(R∗) is a minimal non-trivial path in Πess
∗ . All arrows in an

arc are of the same type and have the same winner, so the type and winner of
an arc are well defined. Any element of Ress

∗ is thus the start (and end) of one
top arc and one bottom arc. The losers in an arc are all distinct, moreover the
first loser is in A ′ (and the others are not).

If γ ∈ Π∗(R∗) is an arrow, then there exist unique paths γs, γe ∈ Π∗ such
that γsγγe is an arc, called the completion of γ . If π is intermediate, there is a single
arc passing through π, the completion of the arrow starting (or ending) at π.
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If π ∈ R∗ we define πess ∈ Ress
∗ as follows. If π is essential then πess = π. If

π is intermediate, let πess be the end of the arc passing through π.
To γ ∈ Π∗ we associate an element γ ess ∈ Πess

∗ as follows. For a trivial path
π ∈ R∗, we use the previous definition of πess. Assuming that γ is an arrow, we
distinguish two cases:

1. If γ starts in an essential element, we let γ ess be the completion of γ ,
2. Otherwise, we let γ ess be the endpoint of the completion of γ .

We extend the definition to paths γ ∈ Π∗ by concatenation. Notice that if γ ∈ Πess
∗

then γ ess = γ .

5.1.2. Reduction. — We will now generalize the notion of simple reduction
of [AV]. We will need the following concept.

Definition 5.2. — Given π ∈ S(A ) whose top and bottom rows end with different

letters, we obtain the admissible end of π by deleting as many letters from the beginning of

the top and bottom rows of π as necessary to obtain an admissible permutation. The resulting

permutation π ′ belongs then to S0(A ′) for some A ′ ⊂ A .

Let R∗ be an essential decorated Rauzy class, and let π ∈ Ress
∗ . Delete all

letters not belonging to A ′ from the top and bottom rows of π. The resulting
permutation π ′ ∈ S(A ′) is not necessary admissible, but since π is essential the
letters in the end of the top and bottom rows of π ′ are distinct. Let πred be the
admissible end of π ′. We call πred the reduction of π.

We extend the operation π �→ πred of reduction from Ress
∗ to the whole R∗

by taking the reduction of an element π ∈ R∗ as the reduction of πess.
If γ ∈ Πess

∗ is an arc, starting at πs and ending at πe, then the reductions
of πs and πe belong to the same Rauzy class, and are joined by an arrow γ red

(called the reduction of γ ) of the same type, same winner, and whose loser is the
first loser of the arc γ . Thus the set of reductions of all π ∈ R∗ is a Rauzy class
Rred

∗ ⊂ S0(A ′′) for some A ′′ ⊂ A ′.
We define the reduction of a path γ ∈ Π∗ as follows. If γ is a trivial path

or an arc, it is defined as above. We extend the definition to the case γ ∈ Πess
∗ by

concatenation. In general we let the reduction of γ to be equal to the reduction
of γ ess.

Notice that the reduction map Ress
∗ → Rred

∗ is a bijection. The reduction
map Πess

∗ → Π(Rred
∗ ) is a bijection compatible with concatenation.

5.2. Further combinatorics. — Let A ′ ⊂ A be a non-empty proper subset.

5.2.1. Drift in essential decorated Rauzy classes. — Let R∗ ⊂ R be an essential
A ′-decorated Rauzy class.
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For π ∈ R∗, let αt(π) (respectively, αb(π)) be the rightmost letter in the top
(respectively, bottom) row of π that belongs to A \ A ′. Let dt(π) (respectively,
db(π)) be the position of αt(π) (respectively, αb(π)) in the top (respectively, bottom)
of π. Let d(π) = dt(π) + db(π).

An essential element of R∗ is thus some π such that dt(π), db(π) < d . If πs

is an essential element of R∗ and γ ∈ Π∗(R∗) is an arrow starting at πs and
ending at πe, then

1. dt(πe) = dt(πs) or dt(πe) = dt(πs) + 1, the second possibility happening if
and only if γ is a bottom whose winner precedes αt(πs) in the top of πs.

2. db(πe) = db(πs) or db(πe) = db(πs) + 1, the second possibility happening if
and only if γ is a top whose winner precedes αb(πs) in the bottom of πs.

In particular d(πe) = d(πs) or d(πe) = d(πs) + 1. In the second case, we say that
γ is drifting.

Let Rred
∗ be the reduction of R∗, so that Rred

∗ ⊂ S0(A ′′) for some A ′′ ⊂ A ′.
If π ∈ R∗ is essential then there exists α ∈ A ′′ that either precedes αt(π) in the
top of π or precedes αb(π) in the bottom of π (we call such an α good for π).
Indeed, if γ ∈ Π∗(R∗) is a path starting at π, ending with a drifting arrow and
minimal with this property then the winner of the last arrow of γ belongs to A ′′

and either precedes αt(π) in the top of π (if the drifting arrow is a bottom) or
precedes αb(π) in the bottom of π (if the drifting arrow is a top).

Notice that if γ ∈ Π∗ is an arrow starting and ending at essential elements
πs, πe, then a good letter for πs is also a good letter for πe. Moreover, if γ is not
drifting then the winner of γ is not a good letter for πs.

5.2.2. Standard decomposition of separated paths

Definition 5.3. — An arrow is called A \ A ′-separated if both its winner and loser

belong to A ′. A path γ ∈ R is A \A ′-separated if it is a concatenation of A \A ′-separated

arrows.

If γ ∈ Π(R) is a non-trivial maximal A \A ′-separated path, then there exists
an essential A ′-decorated Rauzy class R∗ ⊂ R such that γ ∈ Π∗(R∗). Moreover,
if γ = γ1...γn, then each γi starts at an essential element πi ∈ R∗ (and γn ends at
an intermediate element of R∗ by maximality).

Let r = d(πn)−d(π1). Let γ = γ (1)γ 1...γ (r)γ r where the γ i are drifting arrows
and γ (i) are (possibly trivial) concatenations of non-drifting arrows. If α is a good
letter for π1, then it follows that α is not the winner of any arrow in any γ (i).
The reduction of the γ (i) are thus non-complete paths in Π(Rred

∗ ), according to
Definition 3.1.



EXPONENTIAL MIXING FOR THE TEICHMÜLLER FLOW 173

5.3. The distortion estimate. — Let R ⊂ S0(A ) be a Rauzy class. Let γ ∈
Π(R), and let π denotes its start. The domain of definition ∆γ of Q γ can be
written as ∆′

γ × {π}, where ∆′
γ = B∗

γ · RA
+ ⊂ RA

+ .
The distortion argument will involve not only the study of Lebesgue measure,

but also of its forward images under the renormalization map. Technically, this is
most conveniently done by introducing a class of measures which is invariant as
a whole. For q ∈ RA

+ , we define a measure νq on the σ -algebra of subsets A of
RA

+ which are positively invariant (i.e., such that R+A = A) by

νq(A) = (#A )! Leb
(
A ∩ {

λ ∈ RA
+ : 〈λ, q〉 < 1

})
.(5.1)

Equivalently, νq can be considered as a measure on the projective space PRA
+ .

These measures satisfy νq(RA
+ ) = 1∏

α∈A qα
, and νq(B∗

γ · A) = νBγ ·q(A).

If q ∈ RA
+ and γ ∈ Π(R), these formulas translate in the following algorithm

to compute νq(∆
′
γ ): start from q(0) = q, let then q(1) be equal to q(0), except for

the component q(1)

β of the loser β of the first arrow of γ . If α is its winner, set
instead q(1)

β = q(0)
α + q(0)

β . Define then q(2) by the same process (but starting from
q(1) and considering the second arrow of γ ) and so on. If γ has length n, then
νq(∆

′
γ ) = 1

∏
α∈A q(n)

α

. This holds since q(n) = Bγ · q by construction.

In fact, we will not really study the measures νq, rather the quantities νq(∆
′
γ )

for q ∈ RA
+ and γ ∈ Π(R). To deal with sets of paths instead of sets of simplices,

we will introduce a more convenient formalism, in which conditioning is more or
less transparent.

Given Γ ⊂ Π(R), γs ∈ Π(R), let Γγs ⊂ Γ be the set of paths starting by γs,
and let Γγs be the collection of ends γe of paths γ = γsγe ∈ Γ. Let Pq(Γ | γs) =
νq(

⋃
γ∈Γγs

∆′
γ )

νq(∆′
γs )

. If π is the end of γs, we have Pq(Γ | γs) = PBγs ·q(Γ
γs |π). If γ is an

arrow starting at π with winner α and loser β, we have Pq(γ |π) = qβ

qα+qβ
. More

generally, for A ′ ⊂ A and q ∈ RA
+ , let NA ′(q) = ∏

α∈A ′ qα. Let also N(q) = NA (q).
Then, if γ ∈ Π(R) starts at π,

Pq(γ |π) = N(q)
N(Bγ · q)

.(5.2)

A family Γs ⊂ Π(R) is called disjoint if no two elements are comparable
(for the partial order defined in §3.1.2). If Γs is disjoint and Γ ⊂ Π(R) is a family
such that any γ ∈ Γ starts by some element γs ∈ Γs, then for every π ∈ R

Pq(Γ |π) =
∑

γs∈Γs

Pq(Γ | γs)Pq(γs |π) ≤ Pq(Γs |π) sup
γs∈Γs

Pq(Γ | γs).(5.3)

For A ′ ⊂ A non-empty, let MA ′(q) = maxα∈A ′ qα. Let M(q) = MA (q). The
key distortion estimate is the following.
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Theorem 5.4. — There exist C > 0, θ > 0, depending only on #A with the following

property. Let A ′ ⊂ A be a non-empty proper subset, 0 ≤ m ≤ M be integers, q ∈ RA
+ . Then

for every π ∈ R,

Pq

(
γ ∈ Π(R), M(Bγ · q) > 2MM(q) and MA ′(Bγ · q) < 2M−mM(q)

∣
∣ π

)

≤ C(m + 1)θ2−m.

A crucial feature of our arguments is that we obtain estimates which are
uniform in q. To some extent, this will enable us to treat the process as if it
were Markov: the past has indeed an influence since it changes the parameter q,
replacing it by Bγ · q, but since everything is uniform in q this does not matter.

The proof of Theorem 5.4 is based on induction on #A , and will take the
remaining of this section.

5.4. Reduction estimate. — Let R∗ be an A ′-decorated Rauzy class, and let
γ ∈ Π∗(R∗) start at π ∈ R∗. If R∗ is essential, let Rred

∗ ⊂ S0(A ′′) be its reduction.
Let qred be the (canonical) projection of q on RA ′′

(obtained by forgetting the
coordinates in A \ A ′′). Then the projection of Bγ · q on RA ′′

coincides with
Bγ red ·qred. Notice also that the projections of q and Bγ ·q on RA ′\A ′′

coincide. This
gives the formula

Pq(γ |π)

Pqred(γ red |πred)
= NA \A ′(q)

NA \A ′(Bγ · q)
.(5.4)

Proposition 5.5. — Let R∗ be an A ′-decorated Rauzy class, and let Γ ⊂ Π∗(R∗)
be a family of paths such that, for all γ ∈ Γ, NA \A ′(Bγ · q) ≥ 2MNA \A ′(q). Then for

every π ∈ R∗,

Pq(Γ |π) ≤ 2−M.(5.5)

Proof. — We may assume that Γ is the collection of all minimal paths γ ∈
Π∗(R∗) starting at π and satisfying NA \A ′(Bγ · q) ≥ 2MNA \A ′(q). If R∗ is trivial
then either Γ is empty or M = 0 and the estimate is obvious. If R∗ is neither
trivial nor essential, then Γ consists of a single path γ , and the result follows from
the definition of Pq(γ |π). If R∗ is essential, we notice that two distinct paths in
Γ have disjoint reductions, so the estimate follows from (5.4). ��

5.5. The main induction scheme

Definition 5.6. — A path γ ∈ Π(R) is called A ′-preferring if it is a concatenation

of a A ′-separated path ( first) and a A ′-colored path (second).
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A path is A ′-preferring if and only if it chooses a winner in A ′ whenever
possible. In particular, if a path has no loser in A ′, then it is A ′-preferring. Notice
that γ is A ′-preferring if and only if 〈Bγ · eα, eβ〉 = 0 for α ∈ A \ A ′, β ∈ A ′ (so
Bγ is block-triangular). Notice also that the A ′-separated part or the A ′-colored
part in an A ′-preferring path may very well be trivial.

Proposition 5.7. — There exist C > 0, θ > 0, depending only on #A with the

following property. Let M ∈ N, q ∈ RA
+ . Then for every π ∈ R,

Pq

(
γ is not complete and M(Bγ · q) > 2MM(q)

∣
∣π

) ≤ C(M + 1)θ2−M.

Proposition 5.8. — There exist C > 0, θ > 0, depending only on #A with the

following property. Let A ′ ⊂ A be a non-empty proper subset, M ∈ N, q ∈ RA
+ . Then for

every π ∈ R,

Pq

(
γ is A \ A ′-separated and MA ′(Bγ · q) > 2MM(q)

∣
∣ π

)

≤ C(M + 1)θ2−M.

Proposition 5.9. — There exist C > 0, θ > 0, depending only on #A with the

following property. Let A ′ ⊂ A be a non-empty proper subset, M ∈ N, q ∈ RA
+ . Then for

every π ∈ R,

Pq

(
γ is A ′-preferring and MA ′(Bγ · q) ≤ 2MM(q) < M(Bγ · q)

∣
∣ π

)

≤ C(M + 1)θ2−M.

The proof of Theorem 5.4 and Propositions 5.7, 5.8 and 5.9 will be carried
out simultaneously in an induction argument on d = #A . For d ≥ 2, consider the
statements:

(Ad ) Proposition 5.7 holds for #A = d ,
(Bd ) Proposition 5.8 holds for #A = d ,
(Cd ) Proposition 5.9 holds for #A = d ,
(Dd ) Theorem 5.4 holds for #A = d .

The induction step will be composed of four parts:

1. (Aj ), 2 ≤ j < d , implies (Bd ),
2. (Bd ) implies (Cd ),
3. (Cd ) implies (Dd ),
4. (Dj ), 2 ≤ j ≤ d , implies (Ad ).

Notice that the start of the induction is trivial (for d = 2 the hypothesis in (1) is
trivially satisfied).

In what follows, C and θ denote generic constants, whose actual value may
vary during the course of the proof.
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5.5.1. Proof of (1). — Let Γ be the set of all maximal A \ A ′-separated γ

starting at π such that MA ′(Bγ · q) > 2MMA ′(q). By Lemma 3.2, it is sufficient to
prove

Pq(Γ |π) ≤ C(M + 1)θ2−M.(5.6)

If Γ is non-empty then π is essential (and if Γ = ∅ the statement is trivial).
Let R∗ be the A ′-decorated class containing π. We have Γ ⊂ Π∗(R∗). Decompose
Γ into subsets ΓM, M ≥ M, containing the γ ∈ Γ with 2M+1MA ′(q) ≥ MA ′(Bγ · q)
> 2MMA ′(q). Recall the decomposition of γ ∈ Γ, γ = γ (1)γ 1...γ (r)γ r where r =
r(γ) < 2d . Let ΓM,r ⊂ ΓM collect the γ with r(γ) = r. Let γ(i) = γ (1)γ 1...γ (i)γ i,
1 ≤ i ≤ r, and let γ(0) be the start of γ . To γ ∈ ΓM,r we associate m = (m1, ..., mr)

where

2mi ≤ MA ′(Bγ(i ) · q)

MA ′(Bγ(i−1)
· q)

< 2mi+1.(5.7)

We have 2
∑

mi MA ′(q) ≤ MA ′(Bγ · q) ≤ 22r+∑
mi MA ′(q), so M + 1 ≥ ∑

mi ≥ M − 2r.
Let ΓM,r,m collect the γ with the same m. For 0 ≤ i ≤ r, let ΓM,r,m,i be the
collection of all possible γ(i).

Let Rred
∗ ⊂ S0(A ′′) be the reduction of R∗. If γs ∈ Π∗(R∗) is A \ A ′-

separated then

Pq(ΓM,r,m,i | γs) = Pqred

(
Γred

M,r,m,i

∣
∣ γ red

s

)
,(5.8)

where qred is the orthogonal projection of q on RA ′′
, Γred

M,r,m,i
is the image of

ΓM,r,m,i by the reduction map and γ red
s is the reduction of γs. If γ ∈ ΓM,r,m,i starts

by γs ∈ ΓM,r,m,i−1 then we can write γ = γsγaγb, where γb is a drifting arrow, and
γa is a concatenation of non-drifting arrows. Then γ red

a is a non-complete path
(in Π(Rred

∗ )) satisfying MA ′′(Bγ red
a

· Bγ red
s

· qred) ≥ 2mi−1MA ′′(Bγ red
s

· qred). By (Aj ) with
j = #A ′′ < d ,

Pqred

(
Γred

M,r,m,i

∣
∣ γ red

s

) ≤ C(mi + 1)θ2−mi, γs ∈ ΓM,r,m,i−1.(5.9)

Each family ΓM,r,m,i is disjoint, so (5.8) and (5.9) imply

Pq(ΓM,r,m,i |π) ≤ C(mi + 1)θ2−mi Pq(ΓM,r,m,i−1 |π),(5.10)

which gives

Pq(ΓM,r,m |π) = Pq(ΓM,r,m,r |π) ≤
r∏

i=1

C(mi + 1)θ2−mi ≤ C(M + 1)θ2−M.(5.11)

Summing over the different m (with
∑

mi ≤ M + 1), r < 2d , and M ≥ M, we get
(5.6).
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5.5.2. Proof of (2). — Let Γ be the set of all A ′-preferring γ such that
MA ′(Bγ · q) ≤ 2MM(q) < M(Bγ · q), and which are minimal with those properties.
Any γ ∈ Γ is of the form γ = γsγe where γs is A ′-separated and γe is A ′-colored.
Let Γs ⊂ Π(R) collect all possible γs. Notice that Γs is disjoint.

Let m = m(γs) ∈ [−1, M] be the smallest integer such that MA \A ′(Bγs · q) ≤
2m+1M(q). Notice that MA ′(Bγs · q) = MA ′(q) ≤ M(q). Let Γs,m collect all γs ∈ Γs

with m(γs) = m.
Let us show that for γs ∈ Γs,m

Pq(Γ | γs) ≤ 2m+1−M.(5.12)

Let πe be the ending of γs. Let Γγs be the set of all endings γe of paths γ =
γsγe ∈ Γ that begin with γs. Let R∗ be the A ′-decorated Rauzy class containing
πe. Then Γγs ⊂ Π∗(R∗) is a collection of paths γe satisfying MA \A ′(Bγe · Bγs · q) >
2MM(q) ≥ 2M−1−mM(Bγs · q). In particular, NA \A ′(Bγe · Bγs · q) > 2M−1−mN(Bγs · q).
Applying Proposition 5.5 to Bγs · q, we obtain Pq(Γ | γs) = PBγs ·q(Γ

γs |πe) ≤ 2m+1−M.
If m ≥ 0 then Γs,m consists of A ′-separated paths γs with MA \A ′(Bγs · q) >

2mM(q). By (Bd ),

Pq(Γs,m |π) ≤ C(m + 2)θ2−m.(5.13)

Notice that (5.13) is still satisfied (trivially) for m = −1. Putting together (5.13) and
(5.12), and summing over m, we get

Pq(Γ |π) ≤ C(M + 1)θ2−M.(5.14)

5.5.3. Proof of (3). — The proof is by descending recurrence on #A ′. We
may assume that m > 0 since the case m = 0 is trivial. Let Γ ⊂ Π(R) be the set
of γ starting at π and such that M(Bγ · q) > 2MM(q), MA ′(Bγ · q) < 2M−mM(q)
and which are minimal with those properties. We want to estimate Pq(Γ |π) ≤
C(m + 1)θ2−m.

Let ΓD ⊂ Γ be the set of A ′-preferring paths. We have Pq(ΓD |π) ≤
C(M+1)θ2−M by (Cd ), so we just have to prove that Pq(Γ\ΓD |π) ≤ C(m+1)θ2−m.

If γ ∈ Γ \ ΓD, then at least one of the arrows composing γ has as winner
an element of A \ A ′, and as loser an element of A ′. Decompose γ = γsγe

with γs minimal such that no arrow composing γe has as winner an element of
A \ A ′, and as loser an element of A ′; let n0 = n0(γ) be the length of γs. Let
β = β(γ) ∈ A \ A ′ be the winner of the last arrow of γs.

We can then write Γ\ΓD as the union of Γβ, β ∈ A \A ′, where Γβ collects
all γ with β(γ) = β. We only have to prove that Pq(Γβ |π) ≤ C(m + 1)θ2−m for
any β ∈ A \ A ′.
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Let Γ∗
β ⊂ Γβ be the set of γ such that M(Bγs · q) ≤ 2M−mM(q). For

γ ∈ Γ∗
β, write γ = γ ∗

s γ ∗
e with γ ∗

s minimal with M(Bγ ∗
s
· q) > 2M−mM(q). In particu-

lar M(Bγ ∗
s
· q) ≤ 2M+1−mM(q). Let n∗(γ) be the length of γ ∗

s . Since n∗ > n0, γ ∗
e is

A ′-preferring. Notice that γ ∗
e is also such that M(Bγ ∗

e
· Bγ ∗

s
· q) > 2m−1M(Bγ ∗

s
· q). By

(Cd ), it follows that Pq(Γ
∗
β | γ ∗

s ) ≤ Cmθ21−m. Since the collection of all possible γ ∗
s

is disjoint, we get

Pq(Γ
∗
β |π) ≤ Cmθ21−m.(5.15)

Thus we only need to show that Pq(Γβ \ Γ∗
β |π) ≤ Cmθ2−m.

Before continuing, let us notice that if #A ′ = #A −1, then Γβ = Γ∗
β. Indeed

in this case A = A ′∪{β}, and since Mβ(Bγs ·q) ≤ MA ′(Bγs ·q), we have M(Bγs ·q) ≤
2M−mM(q). In particular, the previous argument is enough to establish (Dd ) in the
case #A ′ = d − 1, which allows us to start the reverse induction on #A ′ used in
the argument below.

For γ ∈ Γβ \ Γ∗
β, there exists an integer m0 = m0(γ) ∈ [0, m) such that

2M−m0M(q) ≥ M(Bγs · q) > 2M−1−m0M(q). We collect all γ with m0(γ) = m0 in Γβ,m0 .
It is enough to show that

Pq(Γβ,m0 |π) ≤ C(m + 1)θ2−m.(5.16)

Write γ = γ 1
s γ 1

e = γ 2
s γ 2

e where γ 1
s , γ 2

s are minimal such that M(Bγ 1
s

· q) >
2M−m0M(q), M(Bγ 2

s
·q) > 2M−1−m0M(q). Let n1 = n1(γ) and n2 = n2(γ) be the lengths

of γ 1
s and γ 2

s . We have n2 < n0 < n1.2

Let Γ1
β,m0,s, Γ2

β,m0,s collect all possible paths γ 1
s , γ 2

s as above. The families
Γ1

β,m0,s, Γ2
β,m0,s are disjoint. If γ = γ 1

s γ 1
e ∈ Γβ,m0,s with γ 1

s ∈ Γ1
β,m0,s, the path γ 1

e is
A ′-preferring and satisfies M(Bγ 1

e
· Bγ 1

s
· q) > 2m0−1M(Bγ 1

s
· q), MA ′(Bγ 1

e
· Bγ 1

s
· q) <

2M−mM(q) < M(Bγ 1
s
· q), so by (Cd ) we have

Pq

(
Γβ,m0,s

∣
∣ γ 1

s

) ≤ C(m0 + 1)θ2−m0, γ 1
s ∈ Γ1

β,m0,s.(5.17)

On the other hand, Mβ(Bγ 2
s
·q) < MA ′(Bγs ·q) < 2M−mM(q) so that MA ′∪{β}(Bγ 2

s
·q) <

2M−mM(q). Then

Pq

(
Γ1

β,m0,s

∣
∣ π

) ≤ Pq

(
Γ2

β,m0,s

∣
∣ π

) ≤ C(m − m0)
θ2m0+1−m,(5.18)

where the first inequality is trivial and the second is by the reverse induction
hypothesis (that is, (Dd ) with A ′ ∪ {β} instead of A ′, M−m0 −1 instead of M and
m − m0 − 1 instead of m). Since Γ1

β,m0,s is disjoint, (5.17) and (5.18) imply (5.16).

2 Notice that we cannot have n2 = n0, since otherwise MA ′ (Bγs · q) = M(Bγs · q) > 2M−mM(q), so that γ /∈ Γ.
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5.5.4. Proof of (4). — Let γ ∈ Π(R) be a non-complete path starting at π.
Let β ∈ A be a letter which is not winner of any arrow of γ , and let A ′ =
A \ {β}. If R∗ ⊂ R is the A ′-decorated Rauzy class containing π then
γ ∈ Π∗(R∗). Let Γβ ⊂ Π∗(R∗) be the family of paths γ satisfying M(Bγ · q) >
2MM(q) and minimal with this property. It is enough to show that

Pq(Γβ |π) ≤ C(M + 1)θ2−M(5.19)

for an arbitrary choice of β and R∗.
First notice that R∗ cannot be a trivial decorated Rauzy class, since A \ A ′

has a single element. If R∗ is neither trivial nor essential, then Γβ contains
a unique path γ starting at π. In this case Pq(Γβ |π) = Pq(γ |π) < 2−M. It is
enough then to consider the case where R∗ is essential.

Let Γ∗
β ⊂ Γβ be the set of all γ such that Mβ(Bγ ·q) ≤ M(q). By (Dd ) applied

to {β}, we have

Pq(Γ
∗
β |π) ≤ C(M + 1)θ2−M.(5.20)

For γ ∈ Γβ \ Γ∗
β, there is at least one arrow composing γ with β as loser.

Let α = α(γ) be the winner of the last such arrow. Let m0 = m0(γ) ∈ [0, M]
be such that 2m0M(q) < Mβ(Bγ · q) ≤ 2m0+1M(q). Write γ = γsγe where γs is
minimal with Mβ(Bγs · q) > 2m0M(q). Let M0 = M0(γ) ∈ [m0, M] be such that
2M0M(q) < M(Bγs · q) ≤ 2M0+1M(q). Let Γ ⊂ Γβ \ Γ∗

β collect the γ with the same
α, m0 and M0. It is enough to show that

Pq(Γ |π) ≤ C(M + 1)θ2−M.(5.21)

Let Γs be the family of possible γs for γ ∈ Γ. By (Dd ) applied to {β},
Pq(Γ | γs) ≤ C(M + 1 − M0)

θ2M0−M, γs ∈ Γs.(5.22)

Let Rred
∗ ⊂ S0(A ′′) be the reduction of R∗. Notice that two distinct paths

in Γs have disjoint reductions. Let Γred
s ⊂ Π(Rred

∗ ) be the image of Γs by the
reduction map. Let qred be the canonical projection of q on RA ′′

. Then by (5.4),

Pq(Γs |π) ≤ Pq

(
Γred

s

∣
∣ πred

)
sup
γs∈Γs

Nβ(q)
Nβ(Bγs · q)

≤ Pq

(
Γred

s

∣
∣ πred

)
2−m0.(5.23)

Notice that if γ red
s ∈ Γred

s then Mα(Bγ red
s

· qred) ≤ 2m0+1M(q), and if M0 > m0 we also
have M(Bγ red

s
· qred) > 2M0M(q). Thus, if M0 > m0, by (Dj ) with j = #A ′′ < d ,

Pq

(
Γred

s

∣
∣ πred

) ≤ C(M0 + 1 − m0)
θ2m0−M0,(5.24)

and we notice that (5.24) also holds, trivially, if m0 = M0. Putting together (5.24),
(5.23) and (5.22) we get (5.21).
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6. Proof of the recurrence estimates

Lemma 6.1. — For every γ̂ ∈ Π(R), there exist M ≥ 0, ρ < 1 such that for every

π ∈ R, q ∈ RA
+ ,

Pq

(
γ cannot be written as γsγ̂ γe and M(Bγ · q) > 2MM(q)

∣
∣π

) ≤ ρ.(6.1)

Proof. — Fix M0 ≥ 0 large and let M = 2M0. Let Γ be the set of all
minimal paths γ starting at π which cannot be written as γsγ̂ γe and such that
M(Bγ · q) > 2MM(q). Any path γ ∈ Γ can be written as γ = γ1γ2 where γ1 is
minimal with M(Bγ · q) > 2M0M(q). Let Γ1 collect the possible γ1. Then Γ1 is
disjoint. Let Γ̃1 ⊂ Γ1 be the set of all γ1 such that MA ′(Bγ1 · q) ≥ M(q) for all
A ′ ⊂ A non-empty. By Theorem 5.4, if M0 is sufficiently large we have

Pq(Γ1 \ Γ̃1 |π) <
1
2
.(6.2)

For πe ∈ R, let γπe be a shortest possible path starting at πe with γπe = γsγ̂ .
If M0 is sufficiently large then ‖Bγπe

‖ < 1
d 2M0−1. It follows that if γ1 ∈ Γ1 ends at

πe then

Pq(Γ | γ1) ≤ 1 − PBγ1 ·q(γπe |πe).(6.3)

If furthermore γ1 ∈ Γ̃1 then

PBγ1 ·q(γπe |πe) = N(Bγ1 · q)
N(Bγπe

· Bγ1 · q)
≥ M(q)d

(22M0M(q))d
= 2−2dM0.(6.4)

The result follows with ρ = 1 − 2−2dM0−1. ��
Proposition 6.2. — For every γ̂ ∈ Π(R), there exist δ > 0, C > 0 such that for

every π ∈ R, q ∈ RA
+ and for every T > 1

Pq(γ cannot be written as γsγ̂ γe and M(Bγ · q) > TM(q) |π) ≤ CT−δ.(6.5)

Proof. — Let M and ρ be as in the previous lemma. Let k be maximal
with T ≥ 2k(M+1). Let Γ be the set of minimal paths γ such that γ is not of the
form γsγ̂ γe and M(Bγ · q) > 2k(M+1)M(q). Any path γ ∈ Γ can be written as γ1...γk

where γ(i) = γ1...γi is minimal with M(Bγ(i ) · q) > 2i(M+1)M(q). Let Γ(i) collect the
γ(i). Then the Γ(i) are disjoint. Moreover, by Lemma 6.1, for all γ (i) ∈ Γ(i),

Pq

(
Γ(i+1)

∣
∣ γ (i)

) ≤ ρ.(6.6)

This implies that Pq(Γ |π) ≤ ρk. The result follows. ��
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Proof of Theorem 4.6. — Let π be the start of γ∗. The push-forward under
radial projection of the measure νq0 onto ∆π ∩Υ

(1)

R
yields a smooth measure ν̃. It

is enough to show that ν̃{x ∈ Ξ : rΞ(x) ≥ log T} ≤ CT−δ, for some C > 0, δ > 0.
A connected component of the domain of TΞ that intersects the set {x ∈ Ξ :
rΞ(x) ≥ log T} is of the form ∆γ ∩ Υ

(1)

R
where γ cannot be written as γsγ̂ γe with

γ̂ = γ∗γ∗γ∗γ∗ and M(Bγ · q0) ≥ C−1T, where q0 = (1, ..., 1) and C is a constant
depending on γ∗. Thus

ν̃{x ∈ Ξ : rΞ(x) ≥ log T}
≤ Pq0

(
γ can not be written as γsγ̂ γe and M(Bγ · q0) ≥ C−1T

∣
∣ π

)
.

The result follows from the previous proposition. ��

Lemma 6.3. — For every k0 ≥ 1 there exist C > 0, θ > 0, depending only on #A
and k0 with the following property. Let M ∈ N, q ∈ RA

+ . Then for every π ∈ R,

Pq

(
γ is not k0-complete and M(Bγ · q) > 2MM(q)

∣
∣ π

) ≤ C(M + 1)θ2−M.

Proof. — The proof is by induction on k0. For k0 = 1, it is Proposition 5.7.
Assume it holds for some k0 ≥ 1. Let Γ be the set of minimal paths which are not
k0 +1-complete and such that M(Bγ ·q) > 2MM(q). Let Γ− ⊂ Γ be the set of paths
which are not k0-complete. Then Pq(Γ− |π) ≤ C(M + 1)θ2−M by the induction
hypothesis. Every γ ∈ Γ \ Γ− can be written as γ = γsγe with γs minimal k0-
complete. Let m = m(γs) ∈ [0, M] be such that 2mM(q) < M(Bγs ·q) ≤ 2m+1M(q). Let
Γm collect the γs with m(γs) = m. Then Γm is disjoint. By the induction hypothesis
Pq(Γm |π) ≤ C(m + 1)θ2−m and by Proposition 5.7, Pq(Γ | γs) ≤ (M + 1 − m)θ2m−M,
γs ∈ Γm. The result follows by summing over m. ��

Proposition 6.4. — For every k0 ≥ 2#A − 3, δ > 0, there exist C > 0 and a finite

disjoint set Γ0 ⊂ Π(R) with the following properties:

1. If γ ∈ Γ0 then γ is minimal k0-complete,

2. For every π ∈ R, q ∈ RA
+ , T ≥ 0,

Pq(γ cannot be written as γsγ0γe with γ0 ∈ Γ0 and(6.7)

M(Bγ · q) > TM(q) |π) ≤ CT(δ−1).

Proof. — Fix some M ≥ 0. Let Γ0 be the set of all minimal paths which
are k0-complete and such that ‖Bγ‖ ≤ 2M+2. Obviously Γ0 satisfies condition (1).
Let us show that if M is large then it also satisfies condition (2). It is sufficient
to prove (6.7) for times T of the form 2k(M+1).
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For k ≥ 0, let Γ be the set of paths γ such that γ is not of the form
γsγ0γe with γ0 ∈ Γ0 and M(Bγ · q) > 2k(M+1)M(q). Any path γ ∈ Γ can be written
as γ1...γk where γ(i) = γ1...γi is minimal with M(Bγ(i ) · q) > 2i(M+1)M(q). Let Γ(i)

collect the γ(i). Then the Γ(i) are disjoint.
Notice that the γi are not 2k0-complete. Otherwise, γi = γsγe with γs and

γe k0-complete. By Lemma 3.3, all coordinates of Bγs · Bγ(i−1)
· q are larger than

M(Bγ(i−1)
· q) > 2(i−1)(M+1). It follows that ‖Bγe‖ ≤ 2M+2, so γe ∈ Γ0, contradiction.

By the previous lemma, Pq(Γ(i) | γs) ≤ C(M+1)θ2−M, γs ∈ Γ(i−1). This implies
that Pq(Γ |π) ≤ (C(M + 1)θ2−M)k. If M is large enough, this gives Pq(Γ |π) ≤
2(δ−1)k(M+1). ��

Proof of Theorem 4.9. — Let Γ0 be as in the previous proposition, with
k0 = 6#A − 8. We let Ẑ = ⋃

∆γe × Θγs where γs is minimal 4#A − 6 com-
plete, γe is minimal 2#A − 3-complete and there exists γ ∈ Γ0 that starts by γsγe.
Its intersection with Υ̂(1) is precompact by Lemmas 3.3 and 4.2.

Fix some component ∆γe0
×Θγs0

of Ẑ and let us estimate m̂{x ∈ ∆γe0
×Θγs0

∩
Υ̂

(1)

R
: rẐ(x) > log T}. Let π be the start of γs0 . If ∆γ1 × Θγ2 is a component

of the domain of the first return map to Ẑ that intersects {x ∈ ∆γe0
× Θγs0

:
rẐ(x) > log T} then γ1 cannot be written as γsγ0γe with γ0 ∈ Γ0. The projection
of m̂|∆γe0

× Θγs0
∩ Υ̂

(1)

R
on Υ

(1)

R
is absolutely continuous with a bounded density, so

we conclude as in the proof of Theorem 4.6 that

m̂
{
x ∈∆γe0

× Θγs0
∩ Υ̂

(1)

R
: rẐ(x) > log T

}

≤ CPq0(γ cannot be written as γsγ0γe with γ0 ∈ Γ0

and M(Bγ · q0) > T |π),

where q0 = (1, ..., 1). The result follows from the previous proposition. ��

7. Exponential mixing for expanding semiflows

In this section and the next, our goal is to prove Theorem 2.7. As a first
step, we will prove in this section an analogous result concerning expanding semi-
flows.

Let T : ⋃
∆(l ) → ∆ be a uniformly expanding Markov map on a John

domain (∆, Leb), with expansion constant κ > 1, and let r : ∆ → R+ be a good
roof function with exponential tails (as defined in Paragraph 2.1). Let ∆r = {(x, t) :
x ∈ ∆, 0 ≤ t < r(x)}, we define a semi-flow Tt : ∆r → ∆r , by Tt(x, s) = (Tnx, s+ t −
r (n)(x)) where n is the unique integer satisfying r (n)(x) ≤ t + s < r (n+1)(x). Let µ be
the absolutely continuous probability measure on ∆ which is invariant under T,
then the flow Tt preserves the probability measure µr = µ ⊗ Leb/(µ ⊗ Leb)(∆r).
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We will also use the finite measure Lebr = Leb ⊗ Leb on ∆r . In this section,
we will be interested in the mixing properties of Tt . Unless otherwise specified, all the

integrals will be taken with respect to the measures Leb or Lebr .
Let us first define the class of functions for which we can prove exponential

decay of correlations:

Definition 7.1. — A function U : ∆r → R belongs to B0 if it is bounded, con-

tinuously differentiable on each set ∆(l )
r := {(x, t) : x ∈ ∆(l ), 0 < t < r(x)}, and

sup
(x,t)∈⋃

∆
(l )
r

‖DU(x, t)‖ < ∞. Write then

‖U‖B0 = sup
(x,t)∈⋃

∆
(l )
r

|U(x, t)| + sup
(x,t)∈⋃

∆
(l )
r

‖DU(x, t)‖.(7.1)

Notice that such a function is not necessarily continuous on the boundary of ∆(l )
r .

Definition 7.2. — A function U : ∆r → R belongs to B1 if it is bounded and there

exists a constant C > 0 such that, for all fixed x ∈ ⋃
l ∆

(l ), the function t �→ U(x, t) is of

bounded variation on the interval (0, r(x)) and its variation is bounded by Cr(x). Let

‖U‖B1 = sup
(x,t)∈⋃

∆
(l )
r

|U(x, t)| + sup
x∈⋃

∆(l )

Var(0,r(x))(t �→ U(x, t))
r(x)

.(7.2)

This space B1 is very well suited for further extensions to the hyperbolic case.
In this paper, the notation C1(X) for some space X always denotes the space of
bounded continuous functions on X which are everywhere continuously differen-
tiable and such that the norms of the differentials are bounded. Then the following
inclusions hold:

C1 ⊂ B0 ⊂ B1.(7.3)

Theorem 7.3. — There exist constants C > 0 and δ > 0 such that, for all functions

U ∈ B0 and V ∈ B1, for all t ≥ 0,
∣
∣
∣
∣

∫
U · V ◦ Tt dLebr −

(∫
U dLebr

)(∫
V dµr

)∣
∣
∣
∣ ≤ C‖U‖B0‖V‖B1 e

−δt.(7.4)

Remark. — Applying the previous theorem to the function U(x, t) · dµ

dLeb(x), we
also obtain

∣
∣
∣
∣

∫
U · V ◦ Tt dµr −

(∫
U dµr

)(∫
V dµr

)∣
∣
∣
∣ ≤ C‖U‖B0‖V‖B1 e−δt.(7.5)

Notation: when dealing with a uniformly expanding Markov map T, we will
always denote by Hn the set of inverse branches of Tn.

The proof of Theorem 7.3 will take the rest of this section.
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7.1. Discussion of the aperiodicity condition. — In this paragraph, we discuss
several conditions on the return time r which turn out to be equivalent to the
aperiodicity condition (3) in Definition 2.3.

Proposition 7.4. — Let T be a uniformly expanding Markov map for a partition {∆(l )}.
Let r : ∆ → R be a function which is C1 on each set ∆(l ), with suph∈H ‖D(r◦h)‖C0 < ∞.

Then the following conditions are equivalent:

1. There exists C > 0 such that there exists an arbitrarily large n, there exist h, k ∈ Hn,

there exists a continuous unitary vector field x �→ y(x) such that, for all x ∈ ∆,

∣
∣D(r (n) ◦ h)(x) · y(x) − D(r (n) ◦ k)(x) · y(x)

∣
∣ > C.(7.6)

2. There exists C > 0 such that there exists an arbitrarily large n, there exist h, k ∈ Hn,

there exists x ∈ ∆ and y ∈ Tx∆ with ‖ y‖ = 1 such that

∣
∣D(r (n) ◦ h)(x) · y − D(r (n) ◦ k)(x) · y

∣
∣ > C.(7.7)

3. It is not possible to write r = ψ + φ ◦ T − φ on
⋃

∆(l ), where ψ : ∆ → R is

constant on each set ∆(l ) and φ ∈ C1(∆).

4. It is not possible to write r = ψ +φ ◦ T−φ almost everywhere, where ψ : ∆ → R
is constant on each set ∆(l ) and φ : ∆ → R is measurable.

The first condition is the (UNI) condition as given in [BV] in their one-
dimensional setting.

Proof. — The implication (1) ⇒ (2) is trivial. Let us prove (2) ⇒ (1). Notice
that there exists a constant c0 such that, for any inverse branch � ∈ Hp of any
iterate Tp of T, for any x ∈ ∆ and any y ∈ Tx∆, |D(r (p) ◦ �)(x) · y| ≤ c0‖ y‖: for
instance, take c0 = suph∈H ‖D(r◦h)‖C0

1−κ−1 .
Let C > 0 be such that (7.7) is satisfied for infinitely many n. It is then

possible to choose n large enough so that c0κ
−n ≤ C/4, h, k ∈ Hn, x0 ∈ ∆ and y0 ∈

Tx∆ such that (7.7) holds. Let y0(x) be a unitary vector field on a neighborhood
U of x such that (7.7) still holds for y0(x). Fix a branch l ∈ Hm for some m such
that l(∆) ⊂ U. Define a vector field y1 on ∆ by y1(x) = Dl(x)−1y0(lx). For any
inverse branch � ∈ Hp for some p ≥ 1, we have

∣
∣D(r (m+n+p) ◦ � ◦ h ◦ l)(x) · y1(x) − D(r (m+n) ◦ h ◦ l)(x) · y1(x)

∣
∣

= ∣
∣D(r (p) ◦ �)(hlx)Dh(lx) · y0(lx)

∣
∣

≤ c0‖Dh(lx)‖ ≤ c0κ
−n ≤ C/4.
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The same estimate applies to k. Since

|D(r (m+n) ◦ h ◦ l)(x) · y1(x) − D(r (m+n) ◦ k ◦ l)(x) · y1(x)|
= |D(r (n) ◦ h)(lx) · y0(lx) − D(r (n) ◦ k)(lx) · y0(lx)| ≥ C,

we get

|D(r (m+n+p) ◦ � ◦ h ◦ l)(x) · y1(x) − D(r (m+n+p) ◦ � ◦ k ◦ l)(x) · y1(x)|
≥ C/2.

Finally, take y(x) = y1(x)/‖ y1(x)‖. This proves (1).
The implication (2) ⇒ (3) is easy: if it is possible to write r = ψ +φ◦T−φ,

then for all h ∈ Hn, r (n) ◦ h(x) = Snψ(h(x)) + φ(x) − φ(hx). Hence, if ‖ y‖ = 1,
∣
∣D(r (n) ◦ h)(x) · y − D(r (n) ◦ k)(x) · y

∣
∣ = ∣

∣D(φ ◦ h)(x) · y − D(φ ◦ k)(x) · y
∣
∣

≤ 2‖φ‖C1κ−n.

This quantity tends to 0 when n → ∞, which is not compatible with (2).
Let us prove (3) ⇒ (2). Assume that (2) does not hold, we will prove that r

can be written as ψ + φ ◦ T − φ. Let h = (h1, h2, ...) be a sequence of H . Write
hn = hn ◦ ... ◦ h1. Then

D
(
r (n) ◦ hn

)
(x) · y =

n∑

k=1

D(r ◦ hk)(hk−1x)Dhk−1(x) · y.(7.8)

The derivative of r ◦ hk is uniformly bounded by assumption and ‖Dhk−1(x)‖ ≤
κ−k+1. Therefore, this series is uniformly converging. Since (2) is not satisfied, its
limit is independent of the sequence of inverse branches h, and defines a contin-
uous 1-form ω(x) · y on ∆. It satisfies, for all h ∈ H ,

ω(x) · y = D(r ◦ h)(x) · y + ω(hx)Dh(x) · y.(7.9)

Take a branch h ∈ H , and let h = (h, h, ...). Let x0 ∈ ∆. The series of
functions

∑∞
k=1(r ◦ hk − r ◦ hk(x0)) is then summable in C1(∆), let us denote its

sum by φ. By construction, ω(x) · y = Dφ(x) · y for all x ∈ ∆ and y ∈ Tx∆. By
(7.9), D(r + φ − φ ◦ T) = 0. Hence, r + φ − φ ◦ T is constant on each ∆(l ), which
concludes the proof.

The implication (4) ⇒ (3) is trivial, we just have to prove (3) ⇒ (4) to
conclude. Assume that r = ψ + φ ◦ T − φ where ψ is constant on each set ∆(l )

and φ is measurable. We will prove that φ has a version which is C1. Let Fn

be the σ -algebra generated by the sets h(∆) for h ∈ Hn. It is an increasing
sequence of σ -algebras. For almost all x ∈ ∆, there exists a well defined sequence
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h = (h1, h2, ...) ∈ H N such that the element Fn(x) of Fn containing x is given
by Fn(x) = h1 ◦ ... ◦ hn(∆). Equivalently, hn is the unique element of H such that
Tn−1(x) ∈ hn(∆). Since T is ergodic, almost every x is normal in the sense that,
for any finite sequence k1, ..., kp of elements of H , there exist infinitely many n
such that, for all 1 ≤ i ≤ p, hn+i = ki.

The martingale convergence theorem shows that, for almost all x ∈ ∆, for
all ε > 0,

Leb{x ′ ∈ Fn(x) : |φ(x ′) − φ(x)| > ε}
Leb(Fn(x))

→ 0.(7.10)

Take a point x0 such that this convergence holds and which is normal. Replacing
φ by φ − φ(x0), we can assume that φ(x0) = 0. Let h = (h1, h2, ...) be the corres-
ponding sequence of H and write hn = h1 ◦ ... ◦ hn, so that Fn(x0) = hn(∆). Then
(7.10) and distortion controls give, for all ε > 0,

Leb
{
x ∈ ∆ : ∣

∣φ(hnx)
∣
∣ > ε

} → 0.(7.11)

Define a strictly increasing sequence mk as follows: start from m1 = 1. If mk has
been defined then, by normality of x0, there exists mk+1 > mk such that (h1, ..., hmk+1)

finishes with (h1, ..., hmk). By (7.11), we can choose a subsequence nk of mk such
that

∀ε > 0,

∞∑

k=1

Leb
{
x ∈ ∆ : ∣

∣φ(hnk x)
∣
∣ > ε

}
< ∞.(7.12)

In particular, for almost all x, φ(hnk x) → 0. Notice that φ(x) = φ(hnx) + r (n)(hnx) −
Snψ(hnx). For almost all x, we get φ(x) = limk→∞ r (nk)(hnk x) − Snkψ(hnk x). Moreover,
the choice of mk ensures that the sequence D(r (nk) ◦ hnk) is Cauchy. Hence, φ

coincides almost everywhere with the C1 function limk→∞ r (nk) ◦ hnk − Snkψ ◦ hnk ,
which concludes the proof. ��

7.2. Existence of bump functions. — The following technical lemma will prove
useful later.

Lemma 7.5. — There exist constants C1 > 1 and C2 > 0 satisfying the following

property: for any ball B(x, r) compactly included in ∆, there exists a C1 function ρ : ∆ →
[0, 1] such that ρ = 0 on ∆\B(x, r), ρ = 1 on B(x, r/C1) and ‖ρ‖C1 ≤ C2/r.

Notice that this property is not true for any John domain, and uses the
existence of the uniformly expanding Markov map T on ∆.
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Proof. — Let x0 ∈ ∆ be in the domain of definition of all iterates of T. Let
‖ · ‖′ be a flat Riemannian metric on a neighborhood of x. By compactness, there
exists a constant K > 0 such that, on a small neighborhood U of x0, K−1‖ · ‖′ ≤
‖ · ‖ ≤ K‖ · ‖′.

For large enough n, the inverse branch h ∈ Hn such that x0 ∈ h(∆) satisfies
h(∆) ⊂ U, since diam(h(∆)) ≤ Cκ−n. The set h(∆) endowed with the distance
given by ‖ · ‖′ is flat. Hence, there exists a constant C > 0 such that, given any
ball B′ = B′(x, r) for this Euclidean distance, which is compactly included in h(∆),
there exists a C1 function ρ supported in B′, equal to 1 on B′(x, r/2) and with
‖ρ‖C1 ≤ C/r.

Since h and its inverse have uniformly bounded derivatives (with respect to
‖ · ‖ and ‖ · ‖′), this easily implies the lemma. ��

The same compactness argument also implies the following lemma:

Lemma 7.6. — For all ε > 0,

sup{k ∈ N : ∃x1, ..., xk ∈ ∆ with d(xi, xj) ≥ ε whenever i �= j} < ∞.

7.3. A Dolgopyat-like spectral estimate. — The main step of the proof of Theo-
rem 7.3 is the study of the spectral properties of weighted transfer operators Ls.
Let σ0 > 0 be such that

∫
eσ0r dLeb < ∞, which is possible since r has exponential

tails. For s ∈ C with �s > −σ0, define

Lsu(x) =
∑

Ty=x

e−sr( y)J( y)u( y).(7.13)

For s = σ + it with �s > −σ0 and t ∈ R, define a norm on C1(∆, C) by

‖u‖1,t = sup
x∈∆

|u(x)| + 1
max(1, |t|) sup

x∈∆

‖Du(x)‖.(7.14)

The main spectral estimate concerning the operators Ls is the following
Dolgopyat-like estimate:

Proposition 7.7. — There exist σ ′
0 ≤ σ0, T0 > 0, C > 0 and β < 1 such that, for

all s = σ + it with |σ | ≤ σ ′
0 and |t| ≥ T0, for all u ∈ C1(∆), for all k ∈ N,

∥
∥Lk

s u
∥
∥

L2 ≤ Cβk‖u‖1,t.(7.15)

This paragraph will be entirely devoted to the proof of Proposition 7.7. The
proof will follow very closely the arguments in [BV], with small complications due
to the general dimension.
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For s = 0, Ls is the usual transfer operator. It acts on the space of C1 func-
tions, has a spectral gap, and a simple isolated eigenvalue at 1 (the corresponding
eigenfunction will be denoted by f0 and is the density of the invariant measure µ).
For σ ∈ R close enough to 0, Lσ acting on C1(∆) is a continuous perturbation of
L0, by a straightforward computation. Hence, it has a unique eigenvalue λσ close
to 1, and the corresponding eigenfunction fσ (normalized so that

∫
fσ = 1) is C1,

strictly positive, and tends to f0 in the C1 topology when σ → 0.
Let 0 < σ1 ≤ min(σ0, 1) be such that fσ is well defined and uniformly

bounded from below for σ ∈ [−σ1, σ1]. For s = σ + it with |σ | ≤ σ1 and t ∈ R,
define a modified transfer operator L̃s by

L̃s(u) = Ls( fσu)
λσ fσ

.(7.16)

It satisfies L̃σ1 = 1, and |L̃su| ≤ L̃σ |u|.
Lemma 7.8. — There exists a constant C3 such that ∀n ≥ 1, ∀s = σ + it with

σ ∈ [−σ1, σ1] and t ∈ R, ∀u ∈ C1(∆), holds for all x ∈ ∆

∥
∥D

(
L̃n

s u
)
(x)

∥
∥ ≤ C3(|t| + 1)L̃n

σ(|u|)(x) + κ−nL̃n
σ (‖Du‖)(x).(7.17)

Proof. — We have

L̃n
s u(x) =

∑

h∈Hn

( fσu)(hx)J(n)(hx)e−sr (n)(hx)

λn
σ fσ(x)

,(7.18)

where r (n)(x) = ∑n−1
k=0 r(Tkx) and J(n)(x) = ∏n−1

k=0 J(Tkx). Differentiating this expres-
sion, we obtain a sum of 5 terms: we can differentiate fσ , or u, or J(n), or r (n), or
1/fσ .

Since fσ is bounded in C1 and uniformly bounded from below, and any
inverse branch of T is contracting, there exists a constant C > 0 such that
‖D( fσ ◦h)(x)‖ ≤ Cfσ(x). Hence, if we differentiate fσ , the resulting term is bounded
by CL̃n

σ(|u|)(x).
In the same way, distortion controls give ‖D( J(n)◦h)(x)‖ ≤ CJ(n)◦h(x). We also

have ‖D(1/fσ)(x)‖ ≤ C/fσ(x). Hence, the corresponding terms are also bounded by
CL̃n

σ(|u|)(x).
Moreover, D(e−sr (n)◦h)(x) = −sD(r (n) ◦ h)(x)e−sr (n)◦h(x). The uniform contraction

of h and the boundedness of the derivative of r ◦ � for � ∈ H show that
this term is bounded by C|s|e−σ r (n)◦h(x). Hence, the resulting term is bounded by
C(|t| + 1)L̃n

σ(|u|)(x).
Finally, ‖D(u◦ h)(x)‖ ≤ κ−n‖Du(hx)‖, which shows the required bound on the

last term. ��
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From this point on, we will fix once and for all a constant C3 > 5 satisfying
the conclusion of Lemma 7.8. This lemma implies that the iterates of L̃s are
bounded for the norm ‖ ‖1,t. More precisely, the following holds:

Lemma 7.9. — There exists a constant C > 1 such that, for all s = σ + it with

σ ∈ [−σ1, σ1] and |t| ≥ 10, for all k ∈ N, for all u ∈ C1(∆),

∥
∥L̃k

s u
∥
∥

1,t
≤ C‖u‖C0 + κ−k

|t| ‖Du‖C0 .(7.19)

In particular,
∥
∥L̃k

s u
∥
∥

1,t
≤ C‖u‖1,t .

Proof. — The inequality
∥
∥L̃k

s u
∥
∥

C0 ≤ ‖u‖C0 and Lemma 7.8 give

∥
∥L̃k

s u
∥
∥

C0 +
∥
∥D

(
L̃k

s u
)∥∥

C0

|t| ≤ ‖u‖C0 + 1
|t|

[
2C3|t|‖u‖C0 + κ−k‖Du‖C0

]

≤ C‖u‖C0 + κ−k

|t| ‖Du‖C0 .

��

To prove Proposition 7.7, we need to get some contraction. This is easy to
do if the derivative is large compared to the C0 norm of the function:

Lemma 7.10. — There exists N0 ∈ N such that any n ≥ N0 satisfies the following

property. Let s = σ + it with σ ∈ [−σ1, σ1] and |t| ≥ 10. Let v ∈ C1(∆) satisfy

sup ‖Dv‖ ≥ 2C3|t| sup |v|. Then

∥
∥L̃n

s v
∥
∥

1,t
≤ 9

10
‖v‖1,t .(7.20)

Proof. — We have

∥
∥L̃n

s v
∥
∥

C0 ≤ ‖v‖C0 ≤ 1
2C3|t| sup ‖Dv(x)‖ ≤ 1

2C3
‖v‖1,t.(7.21)

Moreover, for x ∈ ∆

∥
∥D

(
L̃n

s v
)
(x)

∥
∥ ≤ C3(1 + |t|)L̃n

σ(|v|)(x) + κ−nL̃n
σ(‖Dv‖)(x)

≤ C3(1 + |t|)‖v‖C0 + κ−n‖Dv‖C0

≤
[

1 + |t|
2

+ κ−n|t|
]

‖v‖1,t.
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Hence,
∥
∥L̃n

s v
∥
∥

C0 + 1
|t|

∥
∥D

(
L̃n

s v
)∥∥

C0 ≤
[

1
2C3

+ 1 + |t|
2|t| + κ−n

]

‖v‖1,t.(7.22)

Since C3 ≥ 5 and |t| ≥ 10, the conclusion of the lemma holds as soon as κ−n ≤ 1
5 .
��

Hence, to prove Proposition 7.7, we will mainly have to deal with functions
v satisfying sup ‖Dv‖ ≤ 2C3|t| sup |v|. For technical reasons, it is more convenient
to introduce the following notation.

Definition 7.11. — For t ∈ R, we will say that a pair (u, v) of functions on ∆

belongs to Et if u : ∆ → R+ is C1, v : ∆ → C is C1, 0 ≤ |v| ≤ u and

∀x ∈ ∆, max(‖Du(x)‖, ‖Dv(x)‖) ≤ 2C3|t|u(x).(7.23)

Lemma 7.12. — There exists N1 ∈ N such that any n ≥ N1 satisfies the following

property. Let s = σ + it with σ ∈ [−σ1, σ1] and |t| ≥ 10. Let (u, v) ∈ Et. Let χ ∈ C1(∆)

with ‖Dχ‖ ≤ |t| and 3/4 ≤ χ ≤ 1. Assume that

∀x ∈ ∆,
∣
∣L̃n

s v(x)
∣
∣ ≤ L̃n

σ(χu)(x).(7.24)

Then (L̃n
σ(χu), L̃n

s (v)) ∈ Et.

Proof. — Let (u, v) ∈ Et with |t| ≥ 10. Let n ∈ N. By Lemma 7.8, for x ∈ ∆,
∥
∥D

(
L̃n

σ(χu)
)
(x)

∥
∥ ≤ C3L̃n

σ (χu)(x) + κ−nL̃n
σ(‖D(χu)‖)(x).(7.25)

Since (u, v) ∈ Et and ‖Dχ‖ ≤ |t|,
‖D(χu)(x)‖ ≤ |t|u(x) + ‖Du(x)‖ ≤ (1 + 2C3)|t|u(x)

≤ 4
3
(1 + 2C3)|t|(χu)(x).

Hence,
∥
∥D

(
L̃n

σ(χu)
)
(x)

∥
∥ ≤

[

C3 + κ−n 4
3
(1 + 2C3)|t|

]

L̃n
σ(χu)(x).(7.26)

If n is large enough, the factor is ≤ 2C3|t|, and we get
∥
∥D

(
L̃n

σ (χu)
)
(x)

∥
∥ ≤

2C3|t|L̃n
σ(χu)(x). This is half of what we have to prove.

Concerning v, Lemma 7.8 gives
∥
∥D

(
L̃n

s v
)
(x)

∥
∥ ≤ C3(1 + |t|)L̃n

σ(|v|)(x) + κ−nL̃n
σ(‖Dv‖)(x)

≤ C3(1 + |t|)4
3

L̃n
σ(χu)(x) + κ−n 4

3
2C3|t|L̃n

σ(χu)(x).

If n is large enough, this quantity is again bounded by 2C3|t|L̃n
σ(χu)(x). ��
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If h ∈ Hn, then ‖Dh(x) · y‖ ≤ κ−n‖ y‖. In particular, since r satisfies Condi-
tion (3) of Definition 2.3, the first condition of Proposition 7.4 gives n ≥
max(N0, N1), two inverse branches h, k ∈ Hn and a continuous unitary vector
field y0 on ∆ such that, for all x ∈ ∆,

∣
∣D(r (n) ◦ h)(x) · y0(x) − D(r (n) ◦ k)(x) · y0(x)

∣
∣

≥ 10C3 max(‖Dh(x) · y0(x)‖, ‖Dk(x) · y0(x)‖).
Smoothing the vector field y0, we get a smooth vector field y with 1 ≤ ‖ y‖ ≤ 2
such that, for all x ∈ ∆,

∣
∣D(r (n) ◦ h)(x) · y(x) − D(r (n) ◦ k)(x) · y(x)

∣
∣(7.27)

≥ 9C3 max(‖Dh(x) · y(x)‖, ‖Dk(x) · y(x)‖).
We fix n, h, k and y as above, until the end of the proof of Proposition 7.7.

Lemma 7.13. — There exist δ > 0 and ζ > 0 satisfying the following property. Let

s = σ + it with σ ∈ [−σ1, σ1] and |t| ≥ 10. Let (u, v) ∈ Et. For all x0 ∈ ∆ such

that the ball B(x0, (ζ + δ)/|t|) is compactly included in ∆, there exists a point x1 with

d(x0, x1) ≤ ζ/|t| such that one of the following possibilities holds:

– Either, for all x ∈ B(x1, δ/|t|),
∣
∣e−sr (n)◦h(x)J(hx)(v · fσ )(hx) + e−sr (n)◦k(x)J(kx)(v · fσ )(kx)

∣
∣

≤ 3
4

e−σ r (n)◦h(x)J(hx)(u · fσ)(hx) + e−σ r (n)◦k(x)J(kx)(u · fσ)(kx).

– Or, for all x ∈ B(x1, δ/|t|),
∣
∣e−sr (n)◦h(x)J(hx)(v · fσ )(hx) + e−sr (n)◦k(x)J(kx)(v · fσ )(kx)

∣
∣

≤ e−σ r (n)◦h(x)J(hx)(u · fσ)(hx) + 3
4

e−σ r (n)◦k(x)J(kx)(u · fσ)(kx).

Proof. — Take some constants δ > 0 and ζ > 0. Let t ∈ R with |t| ≥ 10.
Take (u, v) ∈ Et. Consider x0 ∈ ∆ such that the ball B(x0, (ζ + δ)/|t|) is compactly
included in ∆. If δ is small enough and ζ is large enough, we will find a point
x1 ∈ B(x0, ζ/|t|) for which the conclusion of the lemma holds.

First case: Assume first that there exists x1 ∈ B(x0, ζ/|t|) such that |v ◦ h(x1)|
≤ u ◦ h(x1)/2 or |v ◦ k(x1)| ≤ u ◦ k(x1)/2. We will show that this point satisfies the
required conclusion. The situation being symmetric, we can assume that |v◦h(x1)| ≤
u ◦ h(x1)/2.

Since (u, v) ∈ Et, we have ‖Du(x)‖ ≤ 2C3|t|u(x). As h is a contraction, this
yields ‖D(u ◦ h)(x)‖ ≤ 2C3|t|u ◦ h(x). We can integrate this inequality along an
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almost length-minimizing path between two points x, x ′: Gronwall’s inequality gives
u(hx ′) ≤ e2C3|t|d(x,x ′)u(hx).

For x ∈ B(x1, δ/|t|), we get

‖D(v ◦ h)(x)‖ ≤ 2C3|t|u(hx) ≤ 2C3|t|e2C3|t|δ/|t|u(hx1).(7.28)

Hence,

|v(hx) − v(hx1)| ≤ 2C3|t|e2C3δu(hx1)δ/|t|.(7.29)

Since |v(hx1)| ≤ u(hx1)/2, we get

|v(hx)| ≤
(

1
2

+ 2C3δe2C3δ

)

u(hx1) ≤
(

1
2

+ 2C3δe2C3δ

)

e2C3δu(hx).(7.30)

If δ is small enough, we get |v(hx)| ≤ 3
4 u(hx) for all x ∈ B(x1, δ/|t|). This concludes

the proof.

Second case: Assume that, for all x ∈ B(x0, ζ/|t|), holds |v ◦ h(x)| > u ◦ h(x)/2
and |v ◦ k(x)| > u ◦ k(x)/2.

Let φ : [0, ζ/(2|t|)] → ∆ be the solution of the equation φ′(τ) = y(φ(τ)) with
φ(0) = x0. Write xτ = φ(τ). We will first show that there exists τ ≤ ζ/(8|t|) for
which F(xτ) := e−sr (n)◦h(xτ )J ◦ h(xτ)(v · fσ )(hxτ) and G(xτ) := e−sr (n)◦k(xτ )J ◦ k(xτ)(v · fσ )(kxτ )

have opposite phases. Let γ(τ) be the difference of their phases.
On the set h(B(x0, ζ/|t|)) ∪ k(B(x0, ζ/|t|)), the function v is non vanishing.

Hence, it can locally be written as v(x) = ρ(x)eiθ(x). Since Dv(x) = Dρ(x)eiθ(x) +
iρ(x)eiθ(x)Dθ(x), the inequality ‖Dv(x)‖ ≤ 2C3|t|u(x) yields

‖Dθ(x)‖ ≤ 2C3|t|u(x)/ρ(x) ≤ 4C3|t|.(7.31)

Since γ(τ) = −tr (n)(hxτ) + θ(hxτ) + tr (n)(kxτ ) − θ(kxτ ), we get

γ ′(τ) = t
[
D(r (n) ◦ k)(xτ ) · y(xτ ) − D(r (n) ◦ h)(xτ) · y(xτ )

]

+ Dθ(hxτ)Dh(xτ) · y(xτ ) − Dθ(kxτ)Dk(xτ ) · y(xτ ).

By (7.27) and (7.31), we get

|γ ′(τ)| ≥ 9C3|t| max(‖Dh(xτ) · y(xτ )‖, ‖Dk(xτ ) · y(xτ )‖)
− 4C3|t|‖Dh(xτ) · y(xτ )‖ − 4C3|t|‖Dk(xτ ) · y(xτ )‖

≥ C3|t| max(‖Dh(xτ) · y(xτ )‖, ‖Dk(xτ ) · y(xτ )‖).
There exists a constant γ0 > 0 such that, for all x ∈ ∆ and all y ∈ Tx∆ with
1 ≤ ‖ y‖ ≤ 2, ‖Dh(x) · y‖ ≥ γ0 and ‖Dk(x) · y‖ ≥ γ0. We get finally

|γ ′(τ)| ≥ |t|C3γ0.(7.32)
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If ζ = 16π/(C3γ0), we obtain τ ∈ [0, ζ/(8|t|)] for which F(xτ) and G(xτ) have
opposite phases. Set x1 = xτ ∈ B(x0, ζ/(4|t|)).

From the definition of F and the inequality ‖D(v ◦ h)(x)‖ ≤ 4C3|t||v(hx)| on
the ball B(x0, ζ/|t|), it is easy to check the existence of a constant C independent
of δ such that, for all x ∈ B(x0, ζ/|t|), ‖DF(x)‖ ≤ C|t||F(x)|. If x, x ′ ∈ B(x0, ζ/(3|t|)),
an almost length-minimizing path γ between x and x ′ is contained in B(x0, ζ/|t|).
Gronwall’s inequality along this path yields |F(x ′)| ≤ eC|t|d(x,x ′)|F(x)|. Moreover, if
ΓF denotes the phase of F(x), we have ‖DΓF(x)‖ ≤ C|t|. On the ball B(x1, δ/|t|)
(which is included in B(x0, ζ/(3|t|)) as soon as δ ≤ ζ/12), we get:

|ΓF(x) − ΓF(x1)| ≤ Cδ and e−δC ≤ |F(x)|
|F(x1)| ≤ eδC.(7.33)

In the same way, if ΓG denotes the phase of G, we have for all x ∈ B(x1, δ/|t|)

|ΓG(x) − ΓG(x1)| ≤ Cδ and e−δC ≤ |G(x)|
|G(x1)| ≤ eδC.(7.34)

Assume for example that |F(x1)| ≥ |G(x1)| (the other case is symmetric). If δ is
small enough, we get for all x ∈ B(x1, δ/|t|)

|ΓF(x) − ΓG(x) − π| ≤ π/6 and |F(x)| ≥ |G(x)|/2.(7.35)

We can then use the following elementary lemma:

Lemma 7.14. — Let z = reiθ and z′ = r ′eiθ ′
be complex numbers with |θ−θ ′−π| ≤

π/6 and r ′ ≤ 2r. Then |z + z′| ≤ r + r ′
2 .

Proof. — We can assume that θ = 0. Then

|z + z′|2 = (r + r ′ cos(θ ′))2 + (r ′ sin(θ ′))2.(7.36)

Since cos(θ ′) ≤ 0 and r ′ ≤ 2r, we have r+r ′ cos(θ ′) ∈ [−r, r]. Moreover, | sin(θ ′)| ≤
1/2. Hence,

|z + z′|2 ≤ r2 + r ′2/4 ≤ (r + r ′/2)2.(7.37) ��

Together with (7.35), the lemma proves that, for all x ∈ B(x1, δ/|t|),
|F(x) + G(x)| ≤ |F(x)| + |G(x)|/2.(7.38)

This proves that the second conclusion of Lemma 7.13 holds. ��
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From this point on, we fix the constants ζ and δ given by Lemma 7.13.
Since ∆ is a John domain, there exist constants C0 and ε0 such that, for all
ε < ε0, for all x ∈ ∆, there exists x ′ ∈ ∆ such that d(x, x ′) ≤ C0ε and such
that the ball B(x ′, ε) is compactly contained in ∆. Choose T0 ≥ 10 such that
2(ζ + δ)/T0 < ε0.

Lemma 7.15. — There exist β0 < 1 and 0 < σ2 < σ1 satisfying the following

property. Let s = σ + it with σ ∈ [−σ2, σ2] and |t| ≥ T0. Let (u, v) ∈ Et. Then there

exists ũ : ∆ → R such that (ũ, L̃n
s v) ∈ Et and

∫
ũ2 dµ ≤ β0

∫
u2 dµ.

Proof. — Consider a maximal set of points x1, ..., xk ∈ ∆ such that the
balls B(xi, 2(ζ + δ)/|t|) are compactly included in ∆, and two by two disjoint.
By Lemma 7.6, this set is finite. The John domain condition on ∆ ensures that
∆ is covered by the balls B(xi, C4/|t|) where C4 = (2 + C0)2(ζ + δ).

In each ball B(xi, (ζ + δ)/|t|), there exists a ball B′
i = B(x ′

i , δ/|t|) on which
the conclusion of Lemma 7.13 holds for the pair (u, v). We will write type(B′

i) = h
if the first conclusion of Lemma 7.13 holds, and type(B′

i) = k otherwise. By
Lemma 7.5, there exists a function ρi on ∆ such that ρi = 1 on B′′

i =
B(x ′

i , δ/(C1|t|)), ρi = 0 outside of B′
i and ‖ρi‖C1 ≤ C2|t|/δ. We define a function

ρ on ∆ by

ρ =
( ∑

type(B′
i)=h

ρi

)

◦ Tn(7.39)

on h(∆),

ρ =
( ∑

type(B′
i)=k

ρi

)

◦ Tn(7.40)

on k(∆), and ρ = 0 on ∆\(h(∆) ∪ k(∆)). This function satisfies ‖ρ‖C1 ≤ |t|/η0

for some constant η0 independent of s, u, v, and we can assume η0 < 1/4. Notice
that η0 depends on n, h, k and δ, which is not troublesome since these quantities
are fixed once and for all. Define a new function χ = 1 − η0ρ. It takes its values
in [3/4, 1], with ‖Dχ‖ ≤ |t|. Moreover, by construction,

∣
∣L̃n

s v
∣
∣ ≤ L̃n

σ (χu).(7.41)

We set ũ = L̃n
σ(χu). By (7.41) and Lemma 7.12, (ũ, L̃n

s v) ∈ Et. We have to show
that, for some constant β0 < 1,

∫
ũ2 dµ ≤ β0

∫
u2 dµ as soon as σ is small enough.
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The definition of L̃n
σ gives

λ2n
σ f 2

σ (x)ũ2(x) =
( ∑

l∈Hn

e−σ r (n)(lx)J(lx)(χ · fσ · u)(lx)
)2

≤
( ∑

l∈Hn

J(lx)
(

fσ · u2
)
(lx)

)( ∑

l∈Hn

e−2σ r (n)(lx)J(lx)
(

fσ · χ2
)
(lx)

)

≤
(

sup
∆

fσ
f0

)( ∑

l∈Hn

J(lx)
(

f0 · u2
)
(lx)

)

×
(

sup
∆

fσ
f2σ

)(
∑

l∈Hn

e−2σ r (n)(lx)J(lx)
(

f2σ · χ2
)
(lx)

)

.

If x ∈ B′′
i with type(B′

i) = h, we have

1
λn

2σ f2σ(x)

∑

l∈Hn

e−2σ r (n)(lx)J(lx)
(

f2σ · χ2
)
(lx) = L̃n

2σ(χ
2)(x)

= 1 − (
1 − (1 − η0)

2
)
e−2σ r (n)(hx)J(hx)

f2σ(hx)
λn

2σ f2σ(x)
.

This is uniformly bounded by a constant η1 < 1. The same inequality holds if
type(B′

i) = k, with h replaced by k. Define a number

ξ(σ) =
(

sup
∆

λn
2σ f0(x) f2σ (x)
λ2n

σ f 2
σ (x)

)(

sup
∆

fσ
f0

)(

sup
∆

fσ
f2σ

)

.(7.42)

Let X = ⋃
B′′

i and Y = ∆\X. We have proved that

∀x ∈ X, ũ2(x) ≤ η1ξ(σ)L̃n
0(u

2)(x).(7.43)

If x �∈ X, there is no cancellation mechanism, and we simply have

∀x ∈ Y, ũ2(x) ≤ ξ(σ)L̃n
0(u

2)(x).(7.44)

The equations (7.43) and (7.44) are not sufficient by themselves to obtain an in-
equality

∫
ũ2 dµ ≤ β0

∫
u2 dµ, one further argument is required.

Since ‖Du‖ ≤ 2C3|t|u, ‖D(u2)‖ ≤ 4C3|t|u2. Hence, (u2, u2) ∈ E2t. By
Lemma 7.12, we obtain (L̃n

0(u
2), L̃n

2it(u
2)) ∈ E2t. Hence, the function w = L̃n

0(u
2)

satisfies ‖Dw‖ ≤ 4C3|t|w. Gronwall’s inequality then implies that, for all points
x, x ′ ∈ ∆, w(x ′) ≤ w(x)e4C3|t|d(x,x ′). In particular, there exists a constant C such that,
for all points x, x ′ in a ball B(xi, C4/|t|), w(x ′) ≤ Cw(x). This yields

∫
B(xi,C4/|t|) w dµ

µ(B(xi, C4/|t|)) ≤ C

∫
B′′

i
w dµ

µ(B′′
i )

.(7.45)
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Moreover, Leb(B(xi, C4/|t|))/Leb(B′′
i ) is uniformly bounded since (∆, Leb) is a John

domain, and the density of µ is bounded from above and below. We get another
constant C′ such that

∫

B(xi,C4/|t|)
w dµ ≤ C′

∫

B′′
i

w dµ.(7.46)

Since the balls B′′
i are disjoint, we obtain

∫

Y
w dµ ≤ C′

∫

X
w dµ.(7.47)

Consider finally a large constant A such that (A + 1)η1 + C′ ≤ A. With (7.43) and
(7.44), we get

(A + 1)

∫
ũ2 dµ ≤ ξ(σ)

[

(A + 1)

∫

X
η1w dµ + (A + 1)

∫

Y
w dµ

]

≤ ξ(σ)

[

(A + 1)η1

∫

X
w dµ + A

∫

Y
w dµ + C′

∫

X
w dµ

]

≤ ξ(σ)A
∫

w dµ.

Since
∫

w dµ = ∫
L̃n

0(u
2) dµ = ∫

u2 dµ, we finally get
∫

ũ2 dµ ≤ ξ(σ)
A

A + 1

∫
u2 dµ.(7.48)

When σ → 0, ξ(σ) converges to 1. Hence, there exists σ2 > 0 such that β0 =
sup|σ |≤σ2

ξ(σ) A
A+1 is < 1. ��

Lemmas 7.10 and 7.15 easily imply Proposition 7.7:

Proof of Proposition 7.7. — Is is sufficient to prove that there exist β < 1 and
C > 0 such that, for all m ∈ N, for all s = σ + it with σ small enough and
|t| ≥ T0, for all u ∈ C1(∆),

∥
∥L̃2mn

s u
∥
∥

L2(µ)
≤ Cβm‖u‖1,t.(7.49)

Indeed, if (7.49) is proved, consider a general integer k and write it as k = 2mn+ r
where 0 ≤ r ≤ 2n − 1. Then

∥
∥Lk

s u
∥
∥

L2(Leb)
≤ Cλk

σ

∥
∥L̃k

s u
∥
∥

L2(µ)
≤ Cλk

σβ
m
∥
∥L̃r

su
∥
∥

1,t
≤ Cλk

σβ
m‖u‖1,t,(7.50)
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by Lemma 7.9. Choosing σ ′
0 small enough so that sup|σ |≤σ ′

0
λσβ

1/(2n) < 1, we obtain
the full conclusion of Proposition 7.7.

Let us prove (7.49) for u ∈ C1(∆). Suppose first that, for all 0 ≤ p < m,∥
∥D(L̃pn

s u)
∥
∥

C0 ≥ 2C3|t|
∥
∥L̃pn

s u
∥
∥

C0 . Then Lemma 7.10 gives

∥
∥L̃mn

s u
∥
∥

1,t
≤

(
9
10

)m

‖u‖1,t.(7.51)

Since
∥
∥L̃2mn

s u
∥
∥

L2(µ)
≤ ∥

∥L̃2mn
s u

∥
∥

1,t
≤ C

∥
∥L̃mn

s u
∥
∥

1,t
by Lemma 7.9, (7.49) is satisfied.

Otherwise, let p < m be the first time such that
∥
∥D(L̃pn

s u)
∥
∥

C0 < 2C3|t|
∥
∥L̃pn

s u
∥
∥

C0 ,(7.52)

and let v = L̃pn
s u. Since (sup |v|, v) ∈ Et, we can apply Lemma 7.15 and obtain a se-

quence of functions uk with u0 = sup |v|, ∫
u2

k dµ ≤ βk
0

∫
u2

0 dµ, and (uk, L̃kn
s v) ∈ Et.

In particular,
∥
∥L̃2mn

s u
∥
∥

L2(µ)
= ∥

∥L̃(2m−p)n
s v

∥
∥

L2(µ)
≤ ‖u2m−p‖L2(µ) ≤ β

(2m−p)/2
0 sup |v|

≤ β
m/2
0 ‖u‖C0 .

This proves (7.49) and concludes the proof of Proposition 7.7. ��
7.4. A control in the norm ‖ · ‖1,t . — Although it will not be useful in this

paper, it is worth mentioning that Proposition 7.7, which gives a control in the
L2 norm, easily implies an estimate in the stronger norm ‖ · ‖1,t. This kind of
estimate is especially useful for the study of zeta functions.

Proposition 7.16. — There exist σ ′
0 ≤ σ0, T0 > 0, C > 0 and β < 1 such that, for

all s = σ + it with |σ | ≤ σ ′
0 and |t| ≥ T0, for all u ∈ C1(∆), for all k ∈ N,

∥
∥Lk

s u
∥
∥

1,t
≤ Cλk

σ min(1, βk|t|)‖u‖1,t .(7.53)

Proof. — It is sufficient to prove the existence of β < 1 such that
∥
∥L̃3k

s u
∥
∥

1,t
≤ Cβk|t|‖u‖1,t(7.54)

if |σ | is small enough and |t| is large enough. Indeed, together with Lemma 7.9,
it implies the conclusion of the proposition.

Denote by Lip(∆) the set of Lipschitz functions on ∆, with its canonical
norm

‖w‖Lip = sup
x∈∆

|w(x)| + sup
x �=x ′

|w(x) − w(x ′)|
d(x, x ′)

.(7.55)
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We will use the following classical Lasota-Yorke inequality on the transfer operators
L̃σ , for small enough |σ |: there exist C > 0 and β1 < 1 such that, for all k ∈ N,
for all w ∈ Lip(∆),

∥
∥L̃k

σw
∥
∥

Lip
≤ Cβk

1‖w‖Lip + C‖w‖L1 .(7.56)

Hence,
∥
∥L̃2k

s u
∥
∥

C0 ≤ ∥
∥L̃k

σ

(∣∣L̃k
s u

∣
∣)

∥
∥

C0 ≤ Cβk
1

∥
∥L̃k

s u
∥
∥

Lip
+ C

∥
∥L̃k

s u
∥
∥

L2 .(7.57)

Moreover,
∥
∥L̃k

s u
∥
∥

Lip
≤ |t| ∥∥L̃k

s u
∥
∥

1,t
≤ C|t|‖u‖1,t , and

∥
∥L̃k

s u
∥
∥

L2 ≤ βk
2‖u‖1,t for some

β2 < 1, by Proposition 7.7. Hence, there exists β3 < 1 such that
∥
∥L̃2k

s u
∥
∥

C0 ≤ C|t|βk
3‖u‖1,t.(7.58)

By Lemma 7.9, we get

∥
∥L̃3k

s u
∥
∥

1,t
≤ C

∥
∥L̃2k

s u
∥
∥

C0 + κ−k

|t|
∥
∥D

(
L̃2k

s u
)∥∥

C0 .(7.59)

Notice that ‖D(L̃2k
s u)‖C0

|t| ≤ ∥
∥L̃2k

s u
∥
∥

1,t
≤ C‖u‖1,t . Together with (7.58), this implies (7.54)

and concludes the proof of the proposition. ��
7.5. Proof of Theorem 7.3. — Let U ∈ B0 and V ∈ B1 be such that∫

V dµr = 0. We will prove that there exist δ > 0 independent of U, V, and C > 0
dependent of U, V such that

∀t ≥ 0,

∣
∣
∣
∣

∫
U · V ◦ Tt

∣
∣
∣
∣ ≤ Ce−δt.(7.60)

By the closed graph theorem, this will imply Theorem 7.3.
For t ≥ 0, let At = {(x, a) ∈ ∆r : a + t ≥ r(x)} and Bt = ∆r\At . Then

∫
U · V ◦ Tt =

∫

At

U · V ◦ Tt +
∫

Bt

U · V ◦ Tt =: ρ(t) + ρ̄(t).(7.61)

We have

|ρ̄(t)| ≤ C
∫

x∈∆

max(r(x) − t, 0) ≤ C
∫

r(x)≥t
r(x)(7.62)

≤ C‖r‖L2(Leb(x : r(x) > t))1/2.

Since r has exponentially small tails, this quantity decays exponentially. It is there-
fore sufficient to prove that ρ(t) decays exponentially to conclude.

Since ρ(t) is bounded, we can define, for s ∈ C with �s > 0,

ρ̂(s) =
∫ ∞

0
e−stρ(t) dt.(7.63)

For W : ∆r → R and s ∈ C, set Ŵs(x) = ∫ r(x)
0 W(x, a)e−sa da when x ∈ ∆.
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Lemma 7.17. — Let s ∈ C with �s > 0. Then

ρ̂(s) =
∞∑

k=1

∫

∆

V̂s(x) · (Lk
s Û−s

)
(x) dx.(7.64)

Proof. — We compute

ρ̂(s) =
∫

x∈∆

∫ r(x)

a=0

∫

t+a≥r(x)
e−stU(x, a)V ◦ Tt(x, a) dt da dx

=
∞∑

k=1

∫

x∈∆

∫ r(x)

a=0

∫ r(Tkx)

b=0
U(x, a)V(Tkx, b)e−s(b+r (k)(x)−a) db da dx

=
∞∑

k=1

∫

x∈∆

Û−s(x)e−sr (k)(x)V̂s(Tkx) dx

=
∞∑

k=1

∫

x∈∆

V̂s(x)
(
Lk

s Û−s

)
(x) dx. ��

Lemma 7.18. — There exists C > 0 such that, for all s = σ + it with |σ | ≤ σ0/4
and t ∈ R, the function LsÛ−s is C1 on ∆ and satisfies the inequality

∥
∥LsÛ−s

∥
∥

1,t
≤ C

max(1, |t|) .(7.65)

Proof. — Let us first prove that there exists C > 0 such that, whenever
|σ | ≤ σ0/4,

∀x ∈ ∆,
∣
∣Û−s(x)

∣
∣ ≤ C

max(1, |t|) e(σ0/2)r(x).(7.66)

Since Û−s(x) = ∫ r(x)
a=0 U(x, a)esa da, this is trivial if |t| ≤ 1. If |t| > 1, an integration

by parts gives

Û−s(x) =
∫ r(x)

a=0
U(x, a)esa da =

[

U(x, a)
esa

s

]r(x)

0

−
∫ r(x)

a=0
∂tU(x, a)

esa

s
da.(7.67)

The boundary terms are bounded by Ce(σ0/4)r(x)/|t|, while the remaining term is
at most

Cr(x)e(σ0/4)r(x)/|t| ≤ C′e(σ0/2)r(x)/|t|.(7.68)

This proves (7.66).
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We can now compute

|LsÛ−s(x)| =
∣
∣
∣
∣
∣

∑

h∈H

e−sr◦h(x)J(hx)Û−s(hx)

∣
∣
∣
∣
∣

(7.69)

≤ C
max(1, |t|)

∑

h∈H

e(σ0/4)r(hx)J(hx)e(σ0/2)r(hx).

This sum is bounded by C′
max(1,|t|) since σ0/2 + σ0/4 < σ0.

We have LsÛ−s(x) = ∑
h∈H e−sr◦h(x)J(hx)

∫ r(hx)
a=0 U(hx, a)esa da. To obtain

D(LsÛ−s)(x), we can differentiate e−sr◦h(x), or J(hx), or U(hx, a) in the integral,
or the bound r(hx) of the integral.

Since D(e−sr◦h(x)) = −sD(r ◦ h)(x)e−sr◦h(x), and ‖D(r ◦ h)‖ is uniformly bounded,
the corresponding term is bounded by C|s| · C/ max(1, |t|), by the computation
done in (7.69). Since D( J ◦ h)(x) ≤ CJ(hx), the corresponding term is bounded by
C/ max(1, |t|). If we differentiate U(hx, a) in the integral, the corresponding term
is bounded by C

∑
h∈H e(σ0/4)r(hx)J(hx)e(σ0/4)r(hx)r(hx), which is still uniformly bounded.

Finally, the last term satisfies a similar bound.
We have proved that ‖D(LsÛ−s)‖C0 ≤ C for some constant C. Together with

the inequality ‖LsÛ−s‖C0 ≤ C/ max(1, |t|), it proves the lemma. ��
Lemma 7.19. — There exists C > 0 such that, for s = σ + it with |σ | ≤ σ0/4 and

t ∈ R,

∥
∥V̂s

∥
∥

L2 ≤ C
max(1, |t|) .(7.70)

Proof. — The inequality (7.66) for V̂s is trivial if |t| ≤ 1, and can be proved
by an integration by parts along the flow direction (using the bounded variation
of t �→ V(x, t)) if |t| > 1. This concludes the proof since

∫
∆

eσ0r < ∞. ��
Corollary 7.20. — There exists σ3 > 0 (independent of U, V) such that the function

ρ̂ admits an analytic extension φ to the set {s = σ + it : |σ | ≤ σ3, |t| ≥ T0}. This extension

satisfies |φ(s)| ≤ C/t2.

Proof. — For s = σ + it with |σ | ≤ σ0/4 and |t| ≥ T0, set φ(s) = ∑∞
k=1

∫
V̂s ·

Lk
s Û−s. By Lemma 7.17, it coincides with ρ̂ when �s > 0.

We have to check that the series defining φ is summable, and that φ satisfies
the bound |φ(s)| ≤ C/t2. By Proposition 7.7, Lemma 7.18 and Lemma 7.19, if
|σ | is small enough,

∣
∣
∣
∣

∫
V̂s · Lk

s Û−s

∣
∣
∣
∣ ≤ ∥

∥V̂s

∥
∥

L2

∥
∥Lk

s Û−s

∥
∥

L2 ≤ ∥
∥V̂s

∥
∥

L2Cβk−1
∥
∥LsÛ−s

∥
∥

1,t
≤ C

t2
βk.(7.71)

This last term is summable and its sum is at most C
(1−β)t2 . ��



EXPONENTIAL MIXING FOR THE TEICHMÜLLER FLOW 201

Lemma 7.21. — For all s = it �= 0, there exists an open disk Os with center s
(independent of U, V) such that ρ̂ admits an analytic extension to Os.

Proof. — The operator Ls acting on C1 satisfies a Lasota–Yorke inequality, by
Lemma 7.8 and the compactness of the unit ball of C1(∆) in C0(∆). By Hennion’s
theorem [He], its spectral radius on C1 is ≤ 1, and its essential spectral radius
is < 1.

Let us prove that Ls has no eigenvalue of modulus 1. This is an easy con-
sequence of the weak-mixing of the flow Tt, but we will rather derive it directly.
Assume that there exists a nonzero C1 function u and a complex number λ with
|λ| = 1 such that Lsu = λu. Then |u| = |Lsu| ≤ L0|u|. Since

∫ |u| = ∫
L0|u|, we get

|u| = L0|u|. In particular, |Lsu| = L0|u|, which means that all the complex numbers
e−itr(hx)u(hx) have the same argument. Take k ∈ N such that k|t| ≥ T0. The com-
plex numbers e−itkr(hx)uk(hx) also have the same argument. Hence, |Lks(uk)| = L0|uk|.
In the same way, for any n ∈ N, |Ln

ks(u
k)| = Ln

0|uk|. This is a contradiction, since
Ln

ks(u
k) tends to 0 in L2 by Proposition 7.7, while

∫
Ln

0|uk| = ∫ |uk| does not tend
to 0 when n → ∞.

We have proved that the spectral radius of Ls is < 1. Hence, there exists
a disk Os around s and constants C > 0, r < 1 such that, for all s′ ∈ Os and for all
n ∈ N,

∥
∥Ln

s′
∥
∥

C1 ≤ Crn. Since Ls′Û−s′ is uniformly bounded in C1 by Lemma 7.18,
the series

∑
k≥1

∫
∆

V̂s′ · Lk−1
s′ (Ls′Û−s′) is convergent on Os. By Lemma 7.17, it co-

incides with ρ̂(s′) for �s′ > 0. ��
Lemma 7.22. — There exists an open disk O0 with center 0 (independent of U, V)

such that ρ̂ admits an analytic extension to O0.

Proof. — The transfer operator L0 acting on C1 has an isolated eigenvalue 1.
For small s, Ls is an analytic perturbation of L0. Hence, it admits an eigenvalue λs

close to 1. Denote by Ps the corresponding spectral projection, and fs the eigen-
function (normalized so that

∫
fs = 1). On a disk O0 centered in 0, it is possible

to write Ls = λsPs + Rs where Ps and Rs commute, and
∥
∥Rn

s

∥
∥

C1 ≤ Crn for some
uniform constants C > 0 and r < 1.

The function s �→ λs is analytic in O0, let us compute its derivative at 0.
Since ‖Ls − L0‖C1 = O(s) and ‖ fs − f0‖C1 = O(s), we have

λs =
∫

Ls fs =
∫

(Ls − L0)( fs − f0) +
∫

L0( fs − f0) +
∫

Ls f0

= O(s2) +
∫

( fs − f0) +
∫

L0

(
e−sr f0

) = O(s2) + 0 +
∫

e−sr dµ

= 1 − s
∫

r dµ + O(s2).
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Hence, λ′(0) = − ∫
r dµ �= 0. Shrinking O0 if necessary, we can assume that λs is

equal to 1 only for s = 0.
For s ∈ O0\{0}, define a function

φ(s) = 1
1 − λs

∫

∆

V̂s · PsLsÛ−s +
∞∑

k=0

∫

∆

V̂s · Rk
s LsÛ−s,(7.72)

where the last series is converging since
∥
∥Rk

s

∥
∥

C1 ≤ Crk and ‖LsÛ−s‖C1(∆) ≤ C by
Lemma 7.18. It coincides with ρ̂(s) when �s > 0. When s → 0, the function

1
1−λs

has a pole of order exactly one, since λ′(0) �= 0. Let us show that
∫

V̂0 ·
P0L0Û0 = 0. This will conclude the proof, since the function φ, being bounded
on a neighborhood of 0, can then be extended analytically to 0.

The function P0L0Û0 is proportional to f0. Hence, it is sufficient to prove∫
V̂0 f0 = 0. But

∫

∆

V̂0(x) f0(x) dLeb(x) =
∫

x∈∆

∫ r(x)

t=0
V(x, t) dt dµ(x) =

∫
V dµr = 0.(7.73)

��
We will use the following classical Paley–Wiener theorem:

Theorem 7.23. — Let ρ : R+ → R be a bounded measurable function. For �s > 0,

define ρ̂(s) = ∫ ∞
x=0 e−sxρ(x) dx. Suppose that ρ̂ can be analytically extended to a function φ

on a strip {s = σ + it : |σ | < ε, t ∈ R} and that

∫ ∞

t=−∞
sup
|z|<ε

|φ(z + it)| dt < ∞.(7.74)

Then there exist a constant C > 0 and a full measure subset A ⊂ R+ such that, for all

x ∈ A, |ρ(x)| ≤ Ce−(ε/2)x.

Proof of Theorem 7.3. — We can summarize Corollary 7.20, Lemma 7.21 and
Lemma 7.22 as follows: there exists σ4 > 0 (independent of U, V) such that ρ̂

admits an analytic extension φ to the set {s = σ + it : |σ | ≤ σ4, t ∈ R}. Moreover,
there exists C > 0 such that this extension satisfies

|φ(σ + it)| ≤ C min
(

1,
1
t2

)

.(7.75)

Together with Theorem 7.23, it implies that ρ(t) decays exponentially on a subset
of R+ of full measure. Hence, on a full measure subset of R+,

∣
∣∫ U · V ◦ Tt

∣
∣ ≤

Ce−δt . Since t �→ ∫
U·V◦Tt is continuous by dominated convergence, this inequality

holds in fact everywhere. This concludes the proof of Theorem 7.3. ��
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8. Exponential mixing for hyperbolic semiflows

In this section, we will prove Theorem 2.7, using Theorem 7.3 and an
approximation argument.

8.1. Estimates on bad returns. — In this paragraph, we will prove the following
exponential estimate on the number of returns to the basis ∆:

Lemma 8.1. — Let Ψt(x, a) be the number of returns to ∆ of (x, a) before time t,
i.e.,

Ψt(x, a) = sup{n ∈ N : a + t > r (n)(x)}.(8.1)

For all κ > 1, there exist C > 0 and δ > 0 such that, for all t ≥ 0,

∫

∆r

κ−Ψt(x,a) dLebr ≤ Ce−δt.(8.2)

Proof. — We have

∫

∆r

κ−Ψt(x,a) dLebr =
∞∑

n=0

κ−nLebr{(x, a) : r (n)(x) < a + t ≤ r (n+1)(x)}

≤
∞∑

n=0

κ−nLebr{(x, a) : t ≤ r (n+1)(x)}.

Moreover, for σ > 0,

Lebr{(x, a) : t ≤ r (n+1)(x)}

=
∫

∆

r(x)1r (n+1)(x)≥t ≤
(∫

∆

r2

)1/2 (∫

∆

1r (n+1)(x)≥t

)1/2

≤ C
(∫

∆

eσ r (n+1)(x)/eσ t

)1/2

.

If σ is small enough,
∫

∆

eσ r (n+1)(x) =
∫

∆

Ln+1
σ (1) ≤ Cλn+1

σ .(8.3)

Choosing σ small enough so that κ−1
√

λσ < 1, we obtain
∫

∆r
κ−Ψt(x,a) dLebr ≤

Ce−σ t/2. ��
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8.2. Proof of Theorem 2.7. — Let U, V be C1 functions on ∆̂r , with
∫

U dνr

= 0. We will prove that
∫

U · V ◦ T̂2t dνr decreases exponentially fast in t.
Define a function Vt on ∆r by Vt(x, a) = ∫

y∈π−1(x) V ◦ T̂t( y, a) dνx( y). Let
πr : ∆̂r → ∆r be given by πr( y, a) = (π(x), a).

Lemma 8.2. — There exist δ > 0 (independent of U, V) and C > 0 such that, for

all t ≥ 0,

∣
∣
∣
∣

∫

∆̂r

U · V ◦ T̂2t dνr −
∫

∆̂r

U · Vt ◦ Tt ◦ πr dνr

∣
∣
∣
∣ ≤ Ce−δt.(8.4)

Proof. — We have

∣
∣
∣
∣

∫
U · V ◦ T̂2t dνr −

∫
U · Vt ◦ Tt ◦ πr dνr

∣
∣
∣
∣

=
∣
∣
∣
∣

∫
U · (V ◦ T̂t − Vt ◦ πr) ◦ T̂t dνr

∣
∣
∣
∣

≤ C
∫

|V ◦ T̂t − Vt ◦ πr | ◦ T̂t dνr = C
∫

|V ◦ T̂t − Vt ◦ πr | dνr.

Take x ∈ ∆. If π( y) = π( y′) = x, the contraction properties of T̂ give
d(T̂t( y, a), T̂t( y′, a)) ≤ κ−Ψt (x,a)d( y, y′), where Ψt is defined in Lemma 8.1. Hence,
|V ◦ T̂t( y, a) − V ◦ T̂t( y′, a)| ≤ Cκ−Ψt (x,a). Averaging over y′, we obtain
|V ◦ T̂t( y, a) − Vt(x, a)| ≤ Cκ−Ψt(x,a). Finally,

∫

∆̂r

|V ◦ T̂t − Vt ◦ πr| dνr ≤ C
∫

∆r

κ−Ψt (x,a) dµr.(8.5)

This quantity decays exponentially, by Lemma 8.1 (and since the density of µ is
bounded). ��

Lemma 8.3. — There exist δ > 0 (independent of U, V) and C > 0 such that, for

all t ≥ 0,

∣
∣
∣
∣

∫

∆̂r

U · Vt ◦ Tt ◦ πr dνr

∣
∣
∣
∣ ≤ Ce−δt.(8.6)

Proof. — Define a function Ū on ∆r by Ū(x, a) = ∫
y∈π−1(x) U( y, a) dνx( y).

Since U ∈ C1(∆̂r) and the measures νx satisfy the third property in the definition
of hyperbolic skew-products, the function Ū belongs to B0. Moreover,

∫
∆r

Ū dµr =
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∫
∆̂r

U dνr = 0. Hence, Theorem 7.3 (or rather the remark following it) gives

∣
∣
∣
∣

∫

∆̂r

U · Vt ◦ Tt ◦ πr dνr

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

∆r

Ū · Vt ◦ Tt dµr

∣
∣
∣
∣ ≤ Ce−δt‖Ū‖B0‖Vt‖B1 .(8.7)

To conclude the proof, it is thus sufficient to show that ‖Vt‖B1 is uniformly
bounded. First of all, since V is bounded, Vt is bounded.

Consider then x ∈ ⋃
∆(l ). Take 0 < a < r(x). If Tt(x, a) is not of the form

(x ′, 0), then Vt is differentiable along the flow direction at (x, a). Its derivative is
given by

∫

y∈π−1(x)
(∂aV)(T̂t( y, a)) dνx( y),(8.8)

since the flow is an isometry in the flow direction. In particular, this derivative is
bounded by ‖V‖C1 .

There is a finite number of points 0 < a1 < · · · < ap < r(x) such that
Tt(x, ai) is of the form (x ′, 0). Indeed, since r is uniformly bounded from below
by a constant ε1, there are at most r(x)

ε1
+ 1 such points. At each of these points,

Vt has a jump of at most 2‖V‖C0 . Finally, the variation of a �→ Vt(x, a) along the
interval (0, r(x)) is at most

(
r(x)
ε1

+ 1
)

2‖V‖C0 + r(x)‖V‖C1 ≤ Cr(x)‖V‖C1 .(8.9) ��

Lemmas 8.2 and 8.3 show that, for a uniform constant δ > 0 and for some
constant C > 0 depending on U and V, for all t ≥ 0,

∣
∣
∣
∣

∫
U · V ◦ T̂2t dνr

∣
∣
∣
∣ ≤ Ce−δt.(8.10)

By the closed graph theorem, the constant C can be chosen of the form
C′‖U‖C1‖V‖C1 for a uniform constant C′. This concludes the proof of The-
orem 2.7.
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A. A simple distortion estimate

Here we present an alternative distortion estimate, Theorem A.2, which is
far from optimal, but is enough to obtain exponential mixing, while being based
on a much simpler argument. While much simpler, we have only noticed it after
obtaining the nearly optimal estimate.

For A ′ ⊂ A non-empty, let mA ′(q) = minα∈A ′ qα, and let m(q) = mA (q).
The other notations are those of §5.3.

Lemma A.1 (Kerckhoff, [K]). — For every T > 0, q ∈ RA
+ , α ∈ A , π ∈ R, we

have

Pq(γ ∈ Γα(π), (Bγ · q)α > Tqα |π) < T−1,(A.1)

where Γα(π) denotes the set of paths starting at π with no winner equal to α.

Proof. — Let Γ(n)
α (π) ⊂ Γα(π) denote the set of paths of length at most n.

We prove the inequality for Γ(n)
α (π) by induction on n. The case n = 0 is clear.

The case n follows immediately from the case n − 1 when none of the rows of
π end with α. Assume for instance that the top row of π ends with α and the
bottom row with β. Then every path γ ∈ Γ(n)

α (π) starts with the bottom arrow
γs starting at π. Let q ′ = Bγs · q. We have q ′

α = qα + qβ and Pq(γs |π) = qα

q ′
α
. The

inequality follows by the induction hypothesis. ��
Theorem A.2. — There exists C > 1 such that for every q ∈ RA

+ , if π ∈ R
Pq(M(Bγ · q) < C min{m(Bγ · q), M(q)} |π) > C−1.(A.2)

Proof. — For 1 ≤ k ≤ d , let mk(q) = max mA ′(q) where the maximum is
taken over all A ′ ⊂ A such that #A ′ = k. In particular m = md . We will show
that for 1 ≤ k ≤ d there exists C > 1 such that

Pq(M(Bγ · q) < C min{mk(Bγ · q), M(q)} |π) > C−1(A.3)

(the case k = d implying the desired statement). The proof is by induction on k.
For k = 1 it is obvious. Assume that it is proved for some 1 ≤ k < d with
C = C0. Let Γ be the set of minimal paths γ starting at π with M(Bγ · q) <
C0 min{mk(Bγ · q), M(q)}. Then there exists Γ1 ⊂ Γ with Pq(Γ1 |π) > C−1

1 and
A ′ ⊂ A with #A ′ = k such that if γ ∈ Γ1 then mk(Bγ · q) = mA ′(Bγ · q).

For γs ∈ Γ1, choose a path γ = γsγe with minimal length such that γ ends
at a permutation πe such that the top or the bottom row of πe (and possibly both)
ends by some element of A \ A ′. Let Γ2 be the collection of the γ = γsγe thus
obtained. Then Pq(Γ2 |π) > C−1

2 and M(Bγ · q) < C2M(Bγs · q) for γ = γsγe ∈ Γ2.
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Let Γ3 be the set of paths γ = γsγe such that γs ∈ Γ2, the winner of the
last arrow of γe belongs to A ′, the winners of the other arrows of γe belong to
A \ A ′, and we have (Bγ · q)α ≤ 2d(Bγs · q)α for all α ∈ A ′. By Lemma A.1,
Pq(Γ3 | γs) > 1

2 , γs ∈ Γ2, and Pq(Γ3 |π) > (2C2)
−1.

Let γ = γsγe ∈ Γ3, γs ∈ Γ2. If M(Bγ · q) > 2dM(Bγs · q), we take γ1 with
γs ≤ γ1 ≤ γ , of minimal length such that M(Bγ1 · q) > 2dM(Bγs · q); there ex-
ists α ∈ A \ A ′ such that M(Bγ1 · q) = (Bγ1 · q)α ≤ 4dM(Bγs · q). Moreover we
have mA ′(Bγ1 · q) > (C0C24d )−1M(Bγ1 · q) in this case. If M(Bγ · q) ≤ 2dM(Bγs · q),
the loser α of the last arrow of γ (which belongs to A \ A ′ by construction)
satisfies (Bγ · q)α ≥ (C0C22d )−1M(Bγ · q). This allows again to conclude: in any
case there exists γ1 with γs ≤ γ1 ≤ γe and A ′

1 with #A ′
1 = k + 1 such that

M(Bγ1 · q) ≤ 4dC0C2 min{mA ′
1
(Bγ1 · q), M(q)}. Since the set Γ4 of all γ1 thus ob-

tained satisfies Pq(Γ4 |π) ≥ Pq(Γ3 |π) > (2C2)
−1, (A.3) holds with k + 1 instead

of k. ��

B. Spectral gap

This section is concerned with the natural action of SL(2, R) on a connected
component of a stratum C (1). Though we have not used it elsewhere in this paper,
this action is very important in several works on the Teichmüller flow, see for
instance the work on Lyapunov exponents of [Fo].

We recall that the mere existence of this action has already important implica-
tions: for instance the action of non-compact one-parameter subgroups (which are
conjugate either to the Teichmüller flow or the horocycle flow) is automatically mix-
ing with respect to any ergodic invariant measure for the SL(2, R) action. Thus,
ergodicity of the Teichmüller flow ([Ma], [Ve1]) with respect to the absolutely
continuous invariant measure on C (1) implies mixing (which can be obtained also
directly [Ve2]).

Here we will show how our analysis of the Teichmüller flow can be used to
show that the SL(2, R) action has a spectral gap. To put this concept in context,
we recall some more general definitions.

Definition B.1. — Let G be a (locally compact σ -compact) group. A (strongly continu-

ous) unitary representation of G is said to have almost invariant vectors if for every ε > 0
and for every compact subset K ⊂ G, there exists a unit vector v such that ‖g · v − v‖ < ε

for all g ∈ K.

A unitary action which does not have almost invariant vectors is said to be isolated
from the trivial representation.

If G is a semi-simple Lie group (such as SL(2, R)), a representation which is isolated

from the trivial representation is also said to have a spectral gap.
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Given a probability preserving action of SL(2, R), it thus makes sense to ask
whether the corresponding unitary representation on L2

0 (the space of zero-average
L2 functions) has a spectral gap. Ergodicity of the action is of course a necessary
condition, being equivalent to the nonexistence of invariant unit vectors. It may
happen for a group G that any unitary representation which has almost invariant
vectors has indeed an invariant unit vector: this is one of the equivalent definitions
of Kazhdan’s property (T), and has several consequences. As it is well known,
SL(2, R) does not have property (T), so the spectral gap is indeed a non-automatic
property in this case.

The spectral gap for the SL(2, R) action on C (1) can be also seen more
geometrically as a statement about the foliated Laplacian on C (1)/SO(2, R),3 or
of the Casimir operator: the spectrum (for the action on L2

0) does not contain 0.
The connection between the spectral gap for the SL(2, R) action and rates

of mixing for non-compact one-parameter subgroups was used most notably by
Ratner [Rt]. In her work, estimates on the rates of mixing are deduced from
the spectral gap. That one could also go the other way around seems to be also
understood (the argument is much easier than for the direction used by Ratner).
It is possible however that this is the first time that it has been useful to consider
this connection in the other direction.

The existence of a spectral gap has several ramifications. It is even inter-
esting to just “go back” to rates of mixing using the work of Ratner. It implies
polynomial decay of correlations for the horocycle flow. It even gives back extra infor-
mation regarding the Teichmüller flow: it implies that exponential mixing holds for
observables which are only Hölder along the SO(2, R) orbits (this notion of reg-
ularity is made precise in [Rt]). Further applications include exponential estimates
for the Ball Averaging Problem, see [MNS].

The initial line of the arguments given here (reduction to a “reverse Ratner
estimate”) was explained to us by Nalini Anantharaman, Sasha Bufetov and Gio-
vanni Forni. The proof of the “reverse Ratner estimate” was explained to us by
Giovanni Forni.

Proposition B.2. — Let us consider an ergodic action of SL(2, R) by measure-preserving

automorphisms of a probability space. Let ρ be the corresponding representation on the space

H of L2 zero average functions. Assume that there exist δ ∈ (0, 1) and a dense subset of

the subspace of SO(2, R)-invariant functions H′ ⊂ H consisting of functions φ for which the

correlations 〈φ, ρ(gt) · φ〉, gt =
(

et 0
0 e−t

)

, decay like O(e−δt). Then ρ is isolated from the

trivial representation.

3 The space C (1)/SO(2, R) is foliated by quotients of SL(2, R)/SO(2, R), which is a model for 2-dimensional
hyperbolic space. In particular there is a natural leafwise metric of constant curvature −1, which allows us to define
the foliated Laplacian, whose spectrum is contained in [0,∞).
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Proof. — Let us decompose ρ into irreducible representations. Thus H =∫
Hξ dµ(ξ), and there are irreducible actions ρξ of SL(2, R) on each Hξ which

integrate to ρ.
Bargmann’s classification (see [Rt] and the references therein) shows that all

non-trivial irreducible representations fall into one of three series of representa-
tions: the principal, the complementary and the discrete series. Thus we have the
corresponding decomposition µ = µp + µc + µd . We recall some basic facts that
follow from this classification:

1. If ρξ is in the complementary series, then there exists s = s(ξ) ∈ (0, 1),
such that ρξ is isomorphic to the following representation ρs: the Hilbert
space is

Hs =
{

f : R → C : ‖ f ‖2 =
∫

R×R

f (x) f ( y)
|x − y|1−s

dx dy < ∞
}

,(B.1)

and the action is given by

ρs

(
a b
c d

)

f (x) = 1
(cx + d )1+s

f
(

ax + b
cx + d

)

.(B.2)

2. The (integrated) representation ρ is isolated from the trivial representation
if and only if there exists ε > 0 such that s(ξ) < 1 − ε for µc-almost
every ξ .

3. The space of SO(2, R) invariant vectors H′
ξ ⊂ Hξ is zero-dimensional

(in the case of the discrete series) or one-dimensional (in the case of the
principal and complementary series).

Let H′ ⊂ H be the set of SO(2, R) invariant functions. Then H′ = ∫
H′

ξ dµ(ξ).
The point of the proof is the following lemma:

Lemma B.3. — If ρξ is in the complementary series and φξ ∈ H′
ξ is a non-zero

vector, then 〈φξ, ρξ(gt) · φξ〉 is positive and

lim
t→∞

1
t

log〈φξ, ρξ(gt) · φξ〉 = −1 + s(ξ).(B.3)

Let us show how to conclude the proof using the lemma. Suppose by contra-
diction that ρ is not isolated from the trivial representation. There exists a function
φ = ∫

φξ dµ(ξ) ∈ H′ whose correlations decay like O(e−δt) and such that

µc{ξ : φξ �= 0 and s(ξ) ∈ (1 − δ/2, 1)} > 0.(B.4)

Write φ = φp + φc where φp is the part of φ corresponding to representations in
the principal series, and φc corresponds to the complementary series (as discussed
above, φξ = 0 for µd-almost every ξ ). Then

〈φ, ρ(gt) · φ〉 = 〈φp, ρ(gt) · φp〉 + 〈φc, ρ(gt) · φc〉.(B.5)
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By the results of Ratner [Rt], the correlations of φp decay at least as te−t . More-
over, by (B.3), positivity, and (B.4), the second term is larger than Ce−δt/2 for
large t. This contradicts the speed of decay of correlations of φ. ��

Proof of Lemma B.3. — A function f ∈ Hs is invariant under the SO(2, R) ac-
tion if and only if it is smooth and satisfies the differential equation (1+x2) f ′(x)+
(1 + s)x f (x) = 0, i.e., f (x) = c

(1+x2)(1+s)/2 .
For such a function f , the correlations are given by

〈 f , ρs(gt) · f 〉 = |c|2et(1+s)

∫

R×R

dx dy
(1 + x2)(1+s)/2(1 + e4ty2)(1+s)/2|x − y|1−s

= |c|2et(−1+s)

∫

R×R

dx dy
(1 + x2)(1+s)/2(1 + y2)(1+s)/2|x − e−2ty|1−s

.

(B.6)

This shows that the correlations are positive and that

lim infet(1−s)〈 f , ρs(gt) · f 〉
≥ |c|2

∫

R×R

dx dy
(1 + x2)(1+s)/2(1 + y2)(1+s)/2|x|1−s

> 0.
(B.7)

Moreover, Ratner has proved the upper bound lim sup et(1−s)〈 f , ρs(gt) · f 〉 < ∞ in
[Rt, Theorem 1] (the convergence of the last integral in (B.6) to the integral in
(B.7) can also be verified directly). This concludes the proof of the lemma. ��

Since our Main Theorem implies exponential decay of correlations for com-
pactly supported smooth functions, the hypothesis of Proposition B.2 is satisfied.
Corollary 1.1 follows.
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Université Pierre et Marie Curie,
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