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ABSTRACT

We study the dynamics of the Teichmiiller flow in the moduli space of Abelian differentials (and more generally,
its restriction to any connected component of a stratum). We show that the (Masur-Veech) absolutely continuous invariant
probability measure is exponentially mixing for the class of Holder observables. A geometric consequence is that the
SL(2, R) action in the moduli space has a spectral gap.

1. Introduction

Let .#, be the moduli space of non-zero Abelian differentials on a compact
Riemann surface of genus g > 1. Alternatively, .#, can be seen as the moduli space
of translation surfaces of genus g: outside the zero set of an Abelian differential w
there are preferred local charts where @ = dz, and the coordinate changes of
those charts are translations. Let ///g(l) C M, denote the subspace of surfaces with
normalized area f lw|? = 1.

By postcomposing the preferred charts with an element of GL(2,R) one
obtains another translation structure: this gives a natural GL(2,R) action on .Z,.
The SL(2,R) action preserves ///g(l). The Teichmiiller flow on .Z, is defined as

t

the diagonal action of SL(2,R): J% = (6 eg) D My — M,

0
The space .#, is naturally stratified: given a list ¥ = (ky, ..., k;) of positive
integers with ) (k; —1) = 2g—2, we let .#, . be the space of Abelian differentials
whose zeroes have order «; — 1, ...,x; — 1. The strata are obviously ivariant by

the GL(2,R) action.

The strata .#,, are not necessarily connected (a classification of connected
components is given in [KZ]). Let 4 be a connected component of some stra-
tum A, and let €V = € N .. Tt has a natural structure of an analytic
variety, and hence a natural Lebesgue measure class. By the fundamental work of
Masur [Ma] and Veech [Vel], there exists a unique probability measure vga) on
%V which is equivalent to Lebesgue measure, invariant by the Teichmiiller flow,
and ergodic. Veech later showed i [Ve2] that vyn is actually mixing, meaning
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that for any observables f, g € L*(vgm) one has

(1.1) S o TZ(x)g(x) dvgo (x) — fdvcgm/ gdvgay — 0.
&) &

e

In this paper we are concerned with the speed of mixing of the Teichmiiller flow,
that is, the rate of the convergence in (1.1), for a suitable class of observables.

Main Theorem. — The Techmiiller flow (restricted to any connected component of
any stratum of the moduli space of Abelian differentials) s exponentially mixing for Holder
observables.

The complete formulation of this result, specifying in particular what is un-
derstood by a Holder observable in this non-compact setting, is given in Theo-
rem 2.14.

Previously it had been shown by Bufetov [Bu] that the Central Limit Theo-
rem holds for the Teichmiiller flow (for suitable classes of observables). Though
he did not obtain rates of mixing for the Teichmiiller flow itself, he did obtain
stretched exponential estimates for a related discrete time transformation (the Zorich
renormalization algorithm for interval exchange transformations). In this paper we
will also work with a discrete time transformation, though not directly with the
Zorich renormalization.

This paper has two main parts: first we obtain exponential recurrence es-
timates, and then, using ideas first introduced by Dolgopyat [Do] and developed
in [BV], we obtain exponential mixing. The proof of exponential recurrence uses
an “induction on the complexity” scheme. Intuitively, the dynamics at “infinity” of
the Teichmiiller flow can be partially described by the dynamics in simpler (lower
dimensional) connected components of strata, and we obtain estimates by induction
all the way from the simplest of the cases. A simpler version of this scheme was
used to show some combinatorial richness of the Teichmiiller flow in the proof
of the Zorich-Kontsevich conjecture [AV]. The recurrence estimates thus obtained
are close to optimal.

It should be noted that our work does not use the SL(2,R) action for the
estimates, and can be used to obtain new proofs of some previously known results
which used to depend on the SL(2,R) action. In the other direction, however,
it was pointed out to us by Bufetov that our main theorem has an important
new corollary for the SL(2,R) action. It regards the nature of the correspond-
ing unitary representation of SL(2,R) on the space L%(ch(l)) of L? zero-average
functions.

Corollary 1.1. — The action of SL(2,R) on Li(vgw) has a spectral gap.
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The notion of spectral gap and the derivation of the corollary from the
Main Theorem are discussed in Appendix B.

Remark. — Using Corollary 1.1 and the results of Ratner [Rt], it is possible
to extend the main theorem to a larger class of functions, namely, the functions
which are Holder continuous in the direction of the SO(2,R) action. This point
of view even makes unnecessary the discussion of the metric on the Teichmiiller
space in Section 2.2.2, or the smoothing arguments in Lemma 4.7. However, we

nevertheless include these arguments to keep the presentation completely indepen-
dent of the SL(2,R) action.

Remark. — Exponential recurrence estimates for the Teichmiiller flow were
first obtained by Athreya [At], who used the SL(2,R) action to prove them for
some large compact sets (which are, in particular, SO(2, R) invariant). Our work
allows us to obtain exponential recurrence for certain smaller compact sets, for
which the first return map has good hyperbolic and distortion properties. Bufetov
has independently obtained a proof of exponential recurrence estimates for such
small compact sets, using the method of [Bu]. Those estimates, while non-optimal,
are enough to obtain exponential mixing using the remainder of our argument.

We should also point out that recurrence estimates are often useful in statis-
tical arguments in a very practical sense. For instance, the proof of typical weak
mixing in [AF] can be made more transparent using such estimates.

2. Statements of the results

2.1. Exponential muxing for excellent hyperbolic semiflows. — To prove exponential
decay of correlations for the Teichmiiller flow, we will show that this flow can be
reduced to an abstract flow with good hyperbolic properties. In this paragraph,
we describe some assumptions under which such a flow is exponentially mixing

By definition, a Finsler manifold is a smooth manifold endowed with a norm
on each tangent space, which varies continuously with the base point.

Defimition 2.1. — A John domain A s a finite dimensional connected Finsler mani-
Jold, together with a measure Leb on A, with the following properties:

1. For x,x' € A, let d(x,x") be the infimum of the length of a C' path contained in
A and joiming x and x'. For this distance, A 1s bounded and there exist constants
Co and ey such that, for all & < ey, for all x € A, there exists x' € A such that
d(x,x") < Coe and such that the ball B(x', €) is compactly contained mn A.

2. The measure Leb s a fully supported finite measure on A, satisfying the following
mequality: for all C > 1, there exists A > 1 such that, whenever a ball B(x,r) s
compactly contained mn A, Leb(B(x, Cr)) < ALeb(B(x, r)).
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For example, if A is an open subset of a larger manifold, with compact clo-
sure, whose boundary is a finite union of smooth hypersurfaces in general position,
and Leb is obtained by restricting to A a smooth measure defined in a neighbor-
hood of A, then (A, Leb) is a John domain.

Defimation 2.2, — Let L. be a finite or countable set, let A be a jJohn doman, and let
{ADY} 1, be a partition into open sets of a full measure subset of A. A map T :J, AP —
A s a uniformly expanding Markov map i

1. For each 1, T is a C' diffeomorphism between AV and A, and there exist constants
ik > 1 (independent of 1) and Cy such that, for all x € AV and all v € T,A,
«lloll = IDT(x) - oll = Colloll.

2. Let J(x) be the wmverse of the Jacobian of U with respect to Leb. Denote by € the
set of inverse branches of T. The function log] is C' on each set A" and there
exists G >0 such that, for all h € €, |D((log]) o h)|lcoa) < C.

Such a map T preserves a unique absolutely continuous measure . Its dens-
ity is bounded from above and from below and is C'. This measure is ergodic
and even mixing (see e.g. [Aar]). Notice that Leb is not assumed to be abso-
lutely continuous with respect to Lebesgue measure. Although this will be the
case in most applications, this definition covers also e.g. the case of maximum
entropy measures when L is finite (in which case log] is constant, which yields

D((log]) o k) = 0).

Definition 2.3. — Let T :|J, AP — A be a uniformly expanding Markov map on
a John domain. A function r:|J A" — Ry is a good roof function if

1. There exists €, >0 such that r > &,.

2. There exists C >0 such that, for all h € 7€, |D(roh)|c < C.

3.1t is not possible to write r =Y +do T —¢ on |JAD, where ¥ : A — R is
constant on each set AP and ¢ : A — R s Cl.

If r is a good roof function for T, we will write 7 (x) = ZZ;& r(T*x).

Defimition 2.4. — A good roof function r as above has exponential tails if there
exists o9 > 0 such that f 5 €7 dLeb < oo.

If A is a Finsler manifold, we will denote by Cl(Z) the set of functions
u : A — R which are bounded, continuously differentiable, and such that
sup, .z [[Du(x)|| < oco. Let

(2.1) lullcrzy = sup |u(x)| + sup IDu(x) ||

x€A xXEA

be the corresponding norm.
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Definition 2.5. — Let T : | J, AP — A be a uniformly expanding Markov map,
preserving an absolutely continuous measure . An hyperbolic skew-product over 1" is a map
T Jrom a dense open subset of a bounded connected Finsler mamyfold A, o A, satisfying the
Jollowing  properties:

1. There exists a continuous map 7 : A — A such that Tomw =o'l whenever both
members of this equality are defined.

2. There exists a probability measure v on A, guing full mass to the domain of definition
of T, which is invariant under T.

3. There exists a family of probability measures {v,}cn on A which is a disintegration

of v over o n the following sense: x — v, is measurable, vy is supported on 7 ~1(x)
and, for any measurable set A C A V(A) = f V(A) due(x).
Moreover, this disintegration satisfies the following property: there exists a constant
C >0 such that, for any open subset O C UA”), Jor any u € CY(zx~1(0)),
the function u : O — R giwen by u(x) = fu(y) dv,(») belongs to C'(O) and
satisfies the wnequality

(2.2) sup [Da(x)|| < G sup |[Du(p)ll.

€0 2ex~1(0)

4. There exists k > 1 such that, for all y,, s € A with () = 7w( ), holds

(2.3) d(Tyl,Tyg) < Kfld()’lyﬁ)-

Let T be an hyperbolic skew-product over a uniformly expanding Markov
map T. Let r be a good roof function for T, with exponential tails. It is then
possible to define a space A, and a semiflow T, over T on Z, using the roof
function rom, in the following way. Let A, = {(9,9) : yen! (UZA) 0<s<
r(my)}. For almost all y € A all 0 <s<r(my) and all 1> 0, there exists a unique
n € N such that " (my) < ¢+ s < r"*D(mwy). Set T (y, $) = (T” L5+t — 1" ().
This 1s a semiflow defined almost_everywhere on A, Tt preserves the probability
measure v, = v ® Leb/(v ® Leb)(A) Using the canonical Finsler metric on A,,
namely the product metric given by |(u, 0)|| := |lull + ||z, we define the space
C! (A) as in (2.1). Notice that A 1s not connected, and the distance between
points in different connected components is infinite.

Definition 2.6. — A semuflow T, as above is called an excellent hyperbolic semi-
flow.

The main motivations for this definition are that the Teichmiiller flow is
isomorphic to an excellent hyperbolic semiflow — the proof of this isomorphism
will take a large part of this article — and that such a flow has exponential decay
of correlations:
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Theorem 2.7. — Let T, be an excellent hyperbolic semi-flow on a space A, preserving
the probability measure v,. There exist constants G >0 and 8 >0 such that, for all functions
U,V e Cl(A), for all t >0,

2 [fuvenan(fua)(fva)

We will see the consequences of this theorem in the next sections. The proof
of Theorem 2.7 will be deferred to Sections 7 and 8.

)
< ClIUllt IVIiere™.

2.2. The Techmiiller flow

2.2.1. Techmiiller space, moduli space and the Techmiiller flow. — Let g € N* and
s € N* be positive integers. Take M a compact orientable C* surface of genus g,
and let X = {A, ..., A;}] be a subset of M. Let « = (ky, ..., k) € (N*)’ be such
that Y (k; — 1) = 2¢ — 2.

A translation structure on (M, X) with singularities type « 1s an atlas on M\ X
for which the coordinate changes are translations, and such that each singularity A;
has a neighborhood which is isomorphic to the «;-fold covering of a neighborhood
of 0 in R?\{0}. The Teichmiller space 2,, = 2(M, Z,k) is the set of such
structures modulo isotopy rel. X. It has a canonical structure of manifold.

Let us describe this manifold structure by introducing charts through the
period map ©. Let & be a translation structure on (M, X). If y € C°([0, T], M) is
a path on M, then it is possible to lift it in R? starting from 0: this lifting is
possible locally outside of the singularities, and the local form of the translation
structure close to the singularities implies that this lifting is also possible at the
singularities. Taking the value of the lifting at T, we get a developing map

(2.5) D; : C°([0, T], M) — R%.

This yields a linear map H,(M, X;Z) — R?, ie., an element of H'(M, Z; R?).
It is invariant under isotopy rel. X. Hence, it defines a map ® : 2(M, X, k) —
H'(M, Z; R?).

This map is a local diffeomorphism for the canonical manifold structure of
2(M, X, k), and gives in particular local coordinates. It even endows Z2(M, X, k)
with a complex affine manifold structure.

A translation structure on (M, X) defines a volume form on M\X (the pull-
back of the standard volume form on R? by any translation chart). The manifold
M has finite area for this volume form. Let 21 (M, ¥, k) be the smooth hyper-
surface of 2(M, X, k) given by area 1 translation structures.

The space H'(M, ; R?) has a standard volume form (the Lebesgue form
giving covolume 1 to the integer lattice). Pulling it back locally with ®, we obtain
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a smooth measure u on 2(M, X, k). It induces a smooth measure u” on the
hypersurface 2V(M, %, k).
The group SL(2,R) acts on 2(M, X, k) by postcomposition in the charts.
It preserves the hypersurface 2(M, X, k) and leaves invariant the measures wu
t
and V. In particular, the action of J% := <i)
flow, called the Teichmiiller flow.

The modular group of (M, X) is the group of diffeomorphisms of M fix-
ing ¥, modulo isotopy rel. X. It acts on the Teichmiiller space 2(M, X, k). The
quotient is denoted by #,, = .#(M, X,«) and is called the moduli space. The
action of the modular group on Z2(M, X, k) is proper and faithful, but it is not
free. Hence, .#Z (M, X, k) has a complex affine orbifold structure.

Since the action of the modular group preserves the measure p and the

0\ . .
e_t 1S a measurc preserving

hypersurface 2, we also obtain a measure v on the moduli space, as well as
a codimension 1 hypersurface .#ZV(M, ¥, k) of area 1 translation structures, and
a measure V'V on it. Moreover, the action of SL(2, R) commutes with the action of
the modular group, whence SL(2,R) still acts on .Z(M, X, k) and .Z"(M, T, k),
preserving respectively v and v, In particular, the action of 7%, defines a flow
on .# (M, X, k), that we still call the Teichmiiller flow.

Theorem 2.8 (Masur, Veech). — The measure vV has finite mass. Moreover, on each
connected component of MV (M, X, k), the Teichmiiller flow is ergodic, and even mixing.

Our goal in this paper is to estimate the speed of mixing of the Teichmiiller
flow. Our estimates will in particular give a new proof of Theorem 2.8.

2.2.2. A Finsler metric on the Teichmiiller space. — Yor a general dynamical sys-
tem, the exponential decay of correlations usually only holds at best for sufficiently
regular functions. In our case, “regular” will mean Hoélder continuous, for some
natural metric. This metric will be a Finsler metric on the Teichmiller space,
invariant under the action of the modular group.

Let & be a translation structure on (M, X) with singularities type «. The
saddle connections of & are the unit speed geodesic paths y : [0, T] = M such that
Yy 1(¥) = {0, T}. Equivalently, these are straight lines (for the translation struc-
ture) connecting two singularities, and without singularity in their interiors. If y is
a saddle connection, then Dg(y) is a complex number measuring the holonomy
of the translation structure along y. If [y] is the class of y in H;(M, X; Z), then
De(y) = ©(8)([y]) by definition of ©.

The saddle connections define in particular elements of H;(M, X; Z). They
are invariant under isotopy, and depend only on the class of & in 2(M, X, k).
The following lemma is well known (see e.g. [EM]).
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Lemma 2.9. — Any translation surface & admils a triangulation whose vertices are
the singularities X and whose edges are saddle connections. In particular, the saddle connections
generale the homology H, (M, Z; R).

Proposition 2.10. — Let g € 2(M, X, k), and let & be a translation surface represent-
g q. Let {y,} be the set of its saddle connections. Define a function || -1, on H'(M, ; C)

by

o([v,.]) ‘
CIOIANE

This function defines a norm on H'M, Z; C).

(2.6) lell, = sup

neN

Proof: — Let ||-|| be any norm on H;(M, X; R). We will prove the existence
of C >0 such that, for any saddle connection y, C7'||[y]]l < |©(¢)([¥D] < ClIL¥]1Il.
Since the saddle connections generate the homology, this will easily imply the result
of the proposition.

Since y = O(¢)([y]) is linear, the inequality |@(¢)([yD| < Cll[y]ll is trivial.
For the converse inequality, let . > 0 be such that any point of M can be joined to
a point of ¥ by a path of length at most L. The inequality C™!|ly|| < |®(¢)([y])|
is trivial for the (finite number of) saddle connections of length < L. Consider
now a saddle connection y with length > L., and let » > 2 be such that (#/2)L <
|©(¢)([yD| < nL.. We can subdivide y in n segments [x;, x;] of length at most L.
Joining each x; to a singularity, we obtain a decomposition in homology [y]
Z?:l[ViL where y; 1s a path of length at most 3L. There exists a constant
such that any such path y; satisfies |[[y;]]l < C, and we obtain |[y]]] < 2C

0@ Ay DI

oA Ol

Proposition 2.11. — The map from DM, T, k) to the set of norms on H'(M, Z; C)
gwen by g || - |, i continuous.

Proof — Let € > 0. By compactness of the unit ball, there exists a finite
number of saddle connections y, ..., yx such that, for any w € H'(M, X; C),

o([y.))

(2.7) loll, < (1 +¢&) sup o) (0 ’ .

1<n<N

If ¢" is close enough to ¢, the saddle connections y; survive in ¢’, and we get

o([y.))

o([y.]) €
1 _
o) (1)) ' = (1=e) sup

1 —
28 Jol, = su GO E

1<n<N
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For the converse inequality, we have to prove that the new saddle connections ap-
pearing in ¢’ do not increase the norm too much. Let £ be a translation surface
representing ¢. By Lemma 2.9, £ is obtained by gluing a finite number of trian-
gles along some parallel edges. A translation surface & close to & is obtained by
modifying slightly the sides of these triangles in R? and then gluing them along
the same pattern. Hence, we get a map ¢z : § — & which is affine in each
triangle of the triangulation. Moreover, if & is close enough to &, the differential
of ¢z 1s &-close to the identity

Let ' be a saddle connection in &. The path (bg;()/) is a union of a fi-
nite number of segments in &, and its length is at most (1 + &)|Dg(y")]. It is
homotopic to a unique geodesic path y in &§. This path is a union of a finite
number of saddle connections yi, ..., ¥, with > |Ds(y)| < (1 + ¢)|Dg/(y")|. For
w e H'(M, Z; C), we get

’ N ) N )
)wWD _IEL o]y BT )
) ([y'N Dy ()] YN D)
o[y
=0 S Doy = Ol
Hence, we obtain [|wll, < (1 + &)l|lwl|,. O

Since the tangent space of 2(M, X, k) is everywhere identified through ©
with H'(M, X; C), the norm | - ||, gives a Finsler metric on 2(M, X, «). It de-
fines a distance (which is infinite for points in different connected components) on
2(M, X, k) as follows: the distance between two points x, x" is the infimum of the
length (measured with the Finsler metric) of a C' path joining x and «'.

Let sys : 2(M, £, k) — R, be the systole function, i.e., the shortest length
of a saddle connection. It is bounded on 2 (M, X, k).

Lemma 2.12. — The function ¢ > log(sys(q)) s 1-Lipschitz on the space
2M, %, k).

Proof — We will prove that, for any C' path p: (—1,1) > 2(M, X, k) with
p(0) = ¢ and p'(0) = w € H'(M, X; C) holds

| [logsys(p() —logsys()| _

(2.9) lim su < ol

t—0 |t|

This will easily imply the result.
In a translation surface representing ¢, there is a finite number of saddle
connections i, ..., yn with minimal length. For small enough ¢ sys(p(?)) =
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min, ;< [O(p())([¥:]]. Moreover,

C) ; f
log 100 (1)| — log(sys(g)) = log |~ V) :;)t&);_[ﬁ]) + ot

o oy )
= th .
: <®(q)([%]) +olf)

Hence,

o([yi]) '
CIOIGA)
< |tllwll, + o). O

| log sys(po(#)) — logsys(¢)| < [¢| max + o(?)

1<i<N

By construction, the norm || - ||, is invariant under the action of the modu-
lar group. As a consequence, the modular group acts by isometries on Z(M, Z, k).
Hence, the distance on 2(M, X,k) induces a distance on the quotient
MM, Z, k). It is Finsler outside of the singularities of this orbifold. Notice that
the systole is also invariant under the modular group, and passes to the quo-
tient. We will still denote by sys this new function. The function logosys is still
1-Lipschitz on .#Z (M, X, k).

The systole plays an important role in the topology of .Z"V(M, I, k) since,
for all & > 0, the set {¢g € .AZVM, Z,k) : sys(q) > &} is compact. To say
it differently, a sequence ¢, € #V(M, X, k) diverges to infinity if and only if
sys(¢q,) = 0.

Corollary 2.13. — The distance on 2V (M, X, k) is complete.

Proof — It 1s sufficient to prove the same statement in the quotient
MM, Z, k). If g, is a Cauchy sequence in .ZV(M, T, k), the sequence
log sys(g,) is also Cauchy by Lemma 2.12. Hence, sys(g,) is bounded away from 0.
In particular, the sequence ¢, remains in a compact subset of the moduli space
MV (M, T, k), and converges to any of its cluster values. O

Any element w € H'(M, X; C) can be written uniquely as @ = a + ib where
a,b e H'M, 2; R). Let w = a — . In this notation, the differential of the action
of the Teichmiller flow is given by

d7%,
(2.10) df(q) — 0()).
t t=0
Hence, |d‘7’j((’) z=qu < 1. In particular, the Teichmiller flow satisfies
(2.11) d(TF(q), q) < .

The same inequality holds in the quotient space .Z (M, X, k).
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If ge¢ 2M, 2,k) and w = a+ i € H' (M, Z; C) (identified through ® with
the tangent space of 2(M, X, k) at ¢), then the differential of the Teichmiiller
flow is given by

(2.12) DI%(q) - w = é'a+ie”'b.
This mmplies the inequality
(2.13) Mwll, < IDIF(G) - 0llzz < Ml

which corresponds to the classical fact that the extreme Lyapunov exponents of
the Teichmiiller flow are —2 and 2.

2.2.3. Exponential decay of correlations. — Let €V be a connected component
of #/V(M, X, k). It is an orbifold, and is endowed with a finite mass measure
vyo (which we will assume to be normalized so that it is a probability measure),
and a distance dg0). The Teichmiiller diagonal flow Z% acts ergodically on &
and preserves the measure vgo).

For 0 <a <1 and f : €Y — R, we will denote by w,(f,x) the local
Holder constant of f at «, 1.e.

(2.14) wo(f.x) = sup SO
yeB;(éx,l) dgr (9, x)*
J#Ex

For ke N and 0 <a <1, let %, be the set of functions f : €V — R such that
the norm

(2.15) I ll2, := sup |f(x)|sys(x)" + sup w,(f, %) sys(x)*

xeg M xee M

is finite. This is the set of functions which are locally a-Holder at each point and
do not behave worse than sys(x)™* at infinity. When f is compactly supported, this
condition reduces to the fact that f/ is a-Holder, but it is much more permissive
in general.

For example, if a function f : ¢V — R is compactly supported and C!
(meaning that its lift to the manifold 21(M, X, k) is G'), then it belongs to all
spaces Z q-

The main result of this article is the following theorem:

Theorem 2.14. — Let k € N and 0 < o < 1. Let p,q € Ry be such that
1/p+1/q < 1. Then there exist constants § > 0 and C > O (depending on k, o, p, q) such
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that, for all functions f : €V — R belonging to Dpo N LL(vg0)) and g : €V — R
belonging to Do N LI(vyw), for all ¢ >0, holds

'ff-go TF dvga) — (/fdvcgm)) (fng%ﬂ(l)>'

< G Mg, + 1A 00) (gl 2 + Nglie)e™.

An important ingredient in the course of the proof will be recurrence es-
timates to a given compact set. We give here a consequence of these estimates,
which is of independent interest:

Theorem 2.15. — Let § > 0. Then there exist a compact set K C €V and a constant
C >0 such that, for all t >0,
(2.16) ven{x e €V 1 Vs e [0,1], TF(x) &€ K} < Ce 17",

This result easily implies the following corollary:

Corollary 2.16. — For all § > 0, there exists C >0 such that, Ve > 0,
(2.17) vea {x € €V 1 sys(x) < e} < Ce*™.

Proof. — Let K be a compact subset as in Theorem 2.15. On K, the systole
is larger than a constant gy. If sys(x) <& < g, then JZ%x ¢ K for || <log(e/e)
since logosys is 1-Lipschitz and d(J%x, x) < |t|. Hence,

veo {x € €0 ¢ sys(x) < e}
< vgnf{r e €V : Vs € [—log(ey/e), log(eo/e)], TF,(x) & K}

2(1-8)

=ven{x € €V : Vs €0, 2log(ey/e)], TF(x) € K} < C (88 ) .
0

O

This estimate is known not to be optimal: by the Siegel-Veech formula (see
e.g. [EM]), there exists a constant C > 0 such that

(2.18) venfx € €V 1 sys(x) < g} ~ Cée’.

Notice however that the proof of this result relies heavily on the SL(2, R) action,
while our estimates involve only the Teichmiiller flow. Since the loss between (2.18)
and (2.17) is arbitrarily small, Theorem 2.15 is quite sharp. In particular, the com-
binatorial estimates we will develop in Section 5 for the proofs of Theorems 2.14
and 2.15 are quasi-optimal.

Remark. — As a consequence of Corollary 2.16 (or of Equation (2.18)), the
function ¢ : x > 1/sys(x) belongs to L’ for all p < 2. Moreover, Lemma 2.12
shows that ¢ € 2, ;.
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3. The Veech flow

In this section we introduce the Veech flow, and discuss its basic combi-
natorics, related to interval exchange transformations. The Veech flow is a finite
cover of the Teichmiiller flow, and it will be shown in the next section that our
results for the Teichmiiller flow follow from corresponding results for the Veech

flow.
We follow the presentation of [MMY].

3.1. Rauzy classes and nterval exchange transformations

3.1.1. Interval exchange transformations. — An interval exchange transformation
is defined as follows. Let & be some fixed alphabet on d > 2 letters.

1. Take an interval I C R (all intervals will be assumed to be closed at the
left and open at the right),

2. Break it into 4 > 2 intervals {I,}4cr,

3. Rearrange the intervals in a new order (via translations) inside I.

Modulo translations, we may always assume that the left endpoint of I is 0.
Thus the interval exchange transformation is entirely defined by the following data:

1. The lengths of the intervals {I,}yc,
2. Their orders before and after rearranging.

The first are called length data, and are given by a vector A € Rf (here and
henceforth Ry = (0, 00)). The second are called combinatorial data, and are given
by a pair of bijections w = (7, ;) from o/ to {l,...,d} (we will sometimes call
such a pair of bijections a permutation). We denote the set of all such pairs of
bijections by &(&7). The bijections m, : & — {l,...,d} can be viewed as rows
where the elements of &/ are displayed in the order (7w 1(1),...,71; '(d)). Thus
we can see an element of G(&7) as a pair of rows, the top (corresponding to 7))
and the bottom (corresponding to m;) of . The interval exchange transformation
associated to these data will be denoted [/ = f(A, 7).

Notice that if the combinatorial data are such that the set of the first £
elements in the top and bottom of 7 coincide for some 1 < £ <d then, irrespective
of the length data, the interval exchange transformation splits into two simpler
transformations. We are mostly interested in combinatorial data for which this
does not happen, which we will call wrreducible. Let &°(/) C &S(«/) be the set
of irreducible combinatorial data.

3.1.2. Rauzy classes. — A dwagram (or directed graph) consists of two kinds of
objects, vertices and (oriented) arrows joining two vertices. Thus, an arrow has
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a start and an end. A path of length m > 0 in the diagram is a finite se-
quence vy, ..., v, of vertices and a sequence of arrows ai, ..., @, such that a; starts
at v, and ends in y. A path is said to start at g, end in u,, and pass through
U1y ooy U1 1If 1 and y, are paths such that the end of y, is the start of yy, their
concatenation is also a path, denoted by y,y. We can identify paths of length
zero with vertices and paths of length one with arrows. Paths of length zero are
called trivial. We introduce a partial order on paths: y; < y if and only 1if y starts
by ;.

Given w € 6% &) we consider two operations. Let o and B be the last
elements of the top and bottom rows. The tp operation keeps the top row un-
changed, and it changes the bottom row by moving B to the position immediately
to the right of the position occupied by «. When applying this operation to 7,
we will say that o wins and B loses. The botlom operation is defined in a similar
way, just interchanging the words top and bottom, and the roles of @ and B. In
this case we say that f wins and o loses. Notice that both operations preserve
the first elements of both the top and the bottom row.

It is easy to see that each of these operations gives a bijection of &°(&).
A Rauzy class R is a minimal non-empty subset of &°(«”) which is invariant
under the top and bottom operations. Given a Rauzy class R, we define a dia-
gram, called Rauzy diagram. Its vertices are the elements of R and for each vertex
m € R and each of the operations considered above, we define an arrow joining
7 to the image of m by the corresponding operation. Notice that every vertex
is the start and end of two arrows, one top and one bottom. Every arrow has
a start, an end, a type (top or bottom), a winner and a loser. The set of all paths
is denoted by II(R).

3.1.3. Linear action. — Let R C G"(«/) be a Rauzy class. To each path
y € TI(R), we associate a linear map B, € SL(&7/,Z) as follows. If y is trivial,
then B, =id. If y is an arrow with winner « and loser B then B, -¢ = ¢ for
& e \{a} and B, - ¢, = ¢, +¢5, where {¢:}scy is the canonical basis of R7. We

extend the definition to paths so that B, ,, =B,, -B,,.

3.2. Rauzy induction. — Let R C G°() be a Rauzy class, and define A}, =
Rf xR. Given (A, 7) in Aj,, we say that we can apply Rauzy induction to (A, )
if Ay # Ap, where «, B € &/ are the last elements of the top and bottom rows
of m, respectively. Then we define (A, ") as follows:

1. Let y = y(A, ) be a top or bottom arrow on the Rauzy diagram starting
at , according to whether A, > Ag or Ag > A,.

2. Let A; = Ag if & is not the winner of y, and A, = |Ay — Ag| if & is the
winner of y.

3. Let " be the end of y.
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We say that (A, ') is obtained from (A, ) by applying Rauzy induction, of type
top or bottom depending on whether the type of y is top or bottom. We have
that 7’ € R and 1’ € RY. The interval exchange transformations / : I — I and
ST = I specified by the data (A, mw) and (A, n") are related as follows. The
map /' is the first return map of f to a subinterval of I, obtained by cutting
from I a subinterval with the same right endpoint and of length Ag, where & is
the loser of y. The map Q : (A, m) > (M, 7’) is called Rauzy induction map. Its
domain of definition, the set of all (A, m) € Aom such that A, # Ag (where o and
B are the last letters in the top and bottom rows of ), will be denoted by Aj,.

The connected components A, = R”f X {m} of Ag% are naturally labeled by
the elements of R, or equivalently, by paths in IT(2R) of length 0. The connected
components A, of A}, are naturally labeled by arrows, that is, paths in TT(R)
of length 1. One easily checks that each connected component of Ay is mapped
homeomorphically to some connected component of A.

Let Ay be the domain of QF, n > 2. The connected components of Ag,
are naturally labeled by paths in TT(JR) of length n: if y is obtained by following
a sequence of arrows yy,...,¥,, then A, = {x € A?R QM) € A, 1 <k=<n}
If y starts at 7 and ends at m/, then for any x = (A, m) € A,

3.1) Q") = (B 2, )

(here and in the following we will use A* to denote the transpose of a matrix A).
Indeed for arrows this follows from the definitions, and the extension to paths is
then immediate. Moreover, A, = (B} -R‘f ) x {m}.

If y is a path in TT(R) of length 7 ending at 7’ € ‘R, let

(3.2) "=Q":A, = Ay

This map is a homeomorphism.
Let AR = ﬂnz() Ag. A sufficient condition for (A, ) to belong to AR is for
the coordinates of A to be independent over Q.

3.2.1. Complete and positive paths

Defimition 3.1. — Let R C &) be a Rauzy class. A path y € TI(R) is called
complete if every o € o is the winner of some arrow composing Y.

Lemma 3.2 ([MMY], §1.2.3, Proposition). — Let (A, ) € AF, and let A,y be
the connected component of (A, ) m Ay. Then y(n) is complete for all n large enough.

In particular any Rauzy diagram contains complete paths.

We say that y € TTI(PR) is k-complete if it is a concatenation of £ complete
paths. We say that y € II(R) is positive if B, is given, in the canonical basis of
R”f , by a matrix with all entries positive.
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Lemma 3.3 ([MMY], §1.2.4, Lemma). — If y s a k-complete path with k >
2o/ — 3, then y s positive.

3.3. Zippered rectangles. — Let R C S°%/) be a Rauzy class. Let m =
(7, m,) € R. Let ®, CR? be the set of all T such that

(3.3) > 7%>0 and Y 1, <0 forall 1 <k<d-—1.

7 (§) <k mp(§) <k

Notice that ®, is an open convex polyhedral cone. It is non-empty, since the
vector T with coordinates 7z = 7,(§) — m,(§) belongs to ®,.

From the data (A, 7w, 1), it is possible to define a marked translation surface
S = S(A,m, 1) in some Z,,, where g and k depend only on m (sce [MMY],
§3.2). It is obtained (in the zippered rectangles construction) by gluing rectangles of
horizontal sides A, and vertical sides 4,, where the height vector & € Rf Is given
by h=—Q(7) -1, and Q(m) is the linear operator on R7,

L x> m(), mx) <m(),

(3.4) (Q(m) - e, 0) = 11, m(x) <m(y), m(x) > m,(p),
0, otherwise.
In particular, the area of the translation surface S i1s A(A, 7, 7) = —(A, Q2 - 1).

3.3.1. Extension of induction to the space of zippered rectangles. — If y € TI(R) 1is
a path starting at 7, let ®, C R” be defined by the condition

(3.5) B:-©, = 0,.

If ¥ is a top arrow ending at 7', then ©, is the set of all T € ®, such that
Y ey T <0, and if y is a bottom arrow ending at 7/, then ®, is the set of all
T € O, such that )  _ 7, > 0. Thus, the map

(3.6) Q' :A, xO, > Ay x0,, QUm0 =(QR%mn. B)" 1)

is mvertible. Now we can define an mvertible map by putting together the QV for
every arrow Y. This is a map from (JA, X ©, (where the union is taken over all
7 € MR and all arrows y starting at ) to |JA, x O, (where the union is taken
over all 7' € R and all arrows ending at 7'). We let Ap = U, e Ax X . The
map Q is a skew-product over Q: Q(k,n, 7) = (Q(A, ), T') where 7' depends
on (A, m, 7).

_ The translation surfaces S and S’ corresponding respectively to (A, 7, 7) and
Q (A, m, ) are obtained by appropriate cutting and pasting, so they correspond
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to the same element in the moduli space .#,. (the marking on the homology
is however not preserved), see [MMY], §4.1. We have thus a well defined map
proj : Agy — € satisfying

(3.7) proj o Q = proj,

where ¢ = € (R) is a connected component of .Z,, (the connectivity of the image
of proj is due to the relation (3.7)). In particular ¢ and « only depend on ‘R.

Theorem 3.4 (Veech). — 1If € is a connected component of My, then there exists
a Rauzy class R such that € = € (R).

Theorem 3.5 (Veech). — The image of proj : Ap — € has Jull Lebesgue measure
m .

The action of Q on Ag admits a nice fundamental domain. Let

(3.8) ¢0, 71, D) =M =) e

=r4
Let O C qu be the set of all x such that either

1. Qv is defined and ¢(Q (1) <1 < ¢(v),
2. g(x) is not defined and ¢(x) > 1,
3. Q7!'(») is not defined and ¢(x) < 1.

It is a fundamental domain for the action of Q: each orbit of Q intersects Ogp
in exactly one point. The fibers of the map proj: Ox — € are almost everywhere
finite (with constant cardinality). The projection of the standard Lebesgue measure
on U, is (up to scaling) the standard volume form on ¥.

3.3.2. The Veech flow. — There is a natural flow T : Ay — Am,
TV(A,m, 1) = (A, m,¢'1), which lifts the Teichmiiller flow in .#,,. This flow
commutes with Q The TVeech flw V7, © Ox — Ox is defined by 7T(x) =
Q"(TY,(x)) where n is the unique value such that Q"(T¥(x)) € Ugn. It lifts
the Teichmiiller flow on %:

(3.9 proj o ¥, = J%, o proj.

Since both the flow 7%, and the map Q trivially preserve the standard Lebesgue
measure on Ag, the Veech flow %7, preserves the standard Lebesgue measure on
Om.

Let Uf = proj ' (¥") be the set of all (A, 7, 7) such that A, 7, 7) = L.
The Veech flow leaves invariant Ug). It follows that its restriction ¥.7, : Ug) — U;)
leaves invariant a smooth volume form dw (such that dw A dA = dLeb), whose
projection is, up to scaling, the standard volume form on €.
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Remark. — Veech’s proof of the fact that the standard volume form on €
is finite actually first establishes finiteness of the lift measure on U(gl{). A different
proof of finiteness follows from our recurrence estimates.

Remark. — Finiteness i3 a crucial step in Veech’s proof of conservativity of
an absolutely continuous invariant measure for the Rauzy renormalization (which
is itself the center of Veech’s proof of unique ergodicity for typical interval ex-
change transformations [Vel]). A different proof of conservativity for the Rauzy
renormalization follows immediately from our recurrence estimates (the proof of
which does not depend on the zippered rectangle construction).

4. Reduction to recurrence estimates
4.1. Measurable models

4.1.1. The Veech flow as suspension over the Rauzy renormalization. — Let Yo C
Ox be the set of all (A, m, T) with ¢(A, 7, ‘L') = ||All = ),y *e = 1. The connected
components of Y are naturally denoted Y. Let T(l) Ué;)ﬂ?m, ?7({1) = Ué}i)ﬂ?ﬂ.
Let T C Ay be the set of (A,m) with [[A]] = 1. We let m denote the induced
Lebesgue measure to /T\;).

Notice that ?(l) is transverse to the Veech flow on U(l) We are interested
in the first return map R to T() Its domain is the intersection of Téf{) with the
domain of definition of Q and we have

(4.1) R, 7m0 =@\, 7, e 7)),

where (\V, 7', 1) = Q(k 7, 7) and 7 = r(A, 1) = —log |IAM|| = —logep(\, ', T')
is the first return time. The map R is a skew- -product: it can be written as
R()» 7,7 = (R(A, m),¢’t"). The map R : Tl — Tm is called the Rauzy renor-
malization map. The measure m is invariant under R.

The Veech flow can thus be seen as a special suspension over the map R,
which is itself an “invertible extension” of a non-invertible map R. This “suspension
model” loses control of some orbits (the ones that do not return to T(l)) but those

have zero Lebesgue measure, and will not affect further considerations.

4.1.2. Precompact sections. — In the above suspension model for the Veech
flow, the underlying discrete transformation R is only very weakly hyperbolic. This
is related to the fact that the section ’Y\"g{) is too large (for instance, it has infinite
area). Zorich [Z] has introduced an alternative section with finite area, but such
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a section is still somewhat too large, so that there is not a good control on dis-
tortion. In the following we will introduce a class of suitably small (precompact in
T%)) sections with good distortion estimates.

The section we will choose will be the intersection of /Y\";) with (finite unions
of) sets of the form A, x ®,,. Precompactness in the A direction is equivalent to
having BJ - RZ\{0}) C RY, which is equivalent to y being a positive path. To
take care of both the A and the 7 direction, we introduce the following notion.

Defimation 4.1. — A path y, starting in 7w, and ending in w,, 15 said lo be strongly
positie if it s positive and (B;)*l (0, \{0}) CO,,.

Lemma 4.2. — Let y be a k-complete path with k > 3#a/ —4. Then y is strongly
postitive.

Progf. — Let d = #4/. Fix v € O, \ {0}. Write y as a concatenation of
arrows ¥ = y,...y,, and let 77! and 7' denote the start and the end of y,. Let
=1, = (B;’;)_1 -7, We must show that 7" € O..

Let /' = —Q(x') - '. Notice that T € O \ {0} implies that A’ € R"f \ {0}
Indeed, since T € O, for every & € &/, we have Zn?(a)<n?(§) 7, > 0,
an(a)qg@ 7, < 0. Moreover, since T # 0, there exists 1 < k’,k* < d minimal
such that 7,014 # 0 and 70140 7# 0. Since 7 is irreducible, min{k’, ¥’} < d.
Noticing that

(4.2) K= Y - Y

7)<l (&) 7 (o) <7 (&)

we see that 4} > 0 for all &, and the inequality is strict if 77(§) = A'+1 (if &' < d)
or if w)(§) =k +1 (if £’ <d).

Notice that #' = B, -k, so if y,...y; is a positive path then 4’ € Rf .

Let 0 <k, k" <d—1 be maximal such that

(4.3) Y >0 forall 1 <k<k,
(&) <k

(4.4) Z Té <0 forall 1 <k<#,
(&) <k

where JTZ and 712 are the top and the bottom of . We claim that

L If ' € RY then k! > k| and & > &),

2. If /7' € RY and the winner of y, is one of the first £, + 1 letters in
the top of 7! then £/ > min{d — 1, £, + 1},

> Mi—1

3. If B! e R”f and the winner of y; 1s one of the first kl-b_l + 1 letters in
the bottom of 7'~' then &’ > min{d — 1, £ | + 1}.



162 ARTUR AVILA, SEBASTIEN GOUEZEL, JEAN-CHRISTOPHE YOCCOZ

Let us see that (I), (2) and (3) imply the result, which is equivalent to the
statement that k' =d — 1 and k£’ =d — 1. We will show that &/ = d — 1, the other
estimate being analogous. Let us write y = y()...¥(34—4) Where ¥ is complete.
Write y(;) = ..., By Lemma 3.3, W e R‘f for £ > ey,_3. From the definition
of a complete path, for each j > 2d — 3, there exists ¢_; < i < ¢ such that the
winner of y; is one of the first kéfl + 1 letters in the top of 7'~'. It follows that
/fé_ > min{d — 1, k;,-,l + 1}, and so k, =k,  >min{d — 1,k +d—1}=d—1.

We now check (1), (2) and (3). Assume that #~' € RY, and that y; is a top,
the other case being analogous. In this case 7/ = x|, and t, = 7! for /(@) < d,
hence £ > k! . This shows that the first claim of (1) holds. Moreover, (2) also
holds since its hypothesis can only be satisfied if £ | =d — 1.

If the winner of y; is not one of the k{i , + 1 first letters in the bottom of
77!, then for every a € &/ such that 1 < ng_l(a) < klﬂl, we have 712_1(04) = JTZ(a),
Tl =1, 50 K > K.

If the winner B of y; appears in the A-th position in the bottom of 7
with 1 <& < kl-b_l + 1, then

-1

(4.5) dori= Y <0 foral 1 <j<k—1,
HGEY LGRS

(4.6) dori= ) r'<0 forall k+1<j<k +1,
HGEY L GET

(4.7) Yor= ) -k =kt <o,
&)<k LGRS

which implies that £’ > min{d — 1, &/ | + 1}.
This shows that both (3) and the second claim of (1) must hold. |

4.1.3. A better model. — We will now choose a specific precompact section,
adapted for the problem of exponential mixing (Theorem 2.14). Our particular
choice aims to simplify the combinatorial description of the first return map. We
will later consider a different choice for the recurrence problem (Theorem 2.15).

Let y. € II(CR) be a strongly positive path starting and ending in the same
7 € R. Assume further that if y, = ¥, = yy, then either y =y, or y is trivial.'
We will say ch/lE Ve 18 neal.

Let E = Tz()}i) N(A,, x0,,), and let E=T3NA,. We are interested in the
first return map Tz to Z under the Veech flow. The connected components of
its domain are given by /Y\“;) N (A, x 0,), where y is either y,, or a minimal

! Notice that if y, ends by a bottom arrow and starts by a sufficiently long (at least half the length of y,)
sequence of top arrows then this last condition is automatically satisfied.
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path of the form y,yy. not beginning by y,y.. The restriction of Tz to such
a component is given by

(4.8) Tz(A, 1) = ( B~ -2 T, }(B*)—l -A||(B*)_1 .‘r).
(B3~ - Al 4 4

The return time function is just

(4.9) ra(h, 1) =ra(h, m) = —log |(BS) ™" - A].

The map Tz(A, 7, 17) = (M, 7w, 1) is a skew-product over a non-invertible trans-
formation Tg(A, m) = (\/, ).

The Veech flow can be seen as a suspension over Tz, with roof function rz.
In this suspension model, many more orbits escape control (the ones that do not
come back to @) Still, due to ergodicity of the Veech flow, almost every orbit is
captured by the suspension model.

4.2. Hyperbolic properties. — The transformation Tz turns out to have much
better hyperbolic properties than R.
Lemma 4.3. — Tz s a hyperbolic skew-product over Tz.

=

Implicit in the above statement is the choice of probability measure v and
Finsler metric || - ||g which are part of the Definition 2.5 of a hyperbolic skew-
product. The choice of v is clear (the normalized restriction of m to @) but there
is some freedom in the choice of the Finsler metric. In order to enforce the
hyperbolicity properties we want from Tz, we will introduce a particular complete
Finsler metric on ?7(11), and then take || - ||z as its restriction. By strong positivity

~ -~
[

of y,, E Is a precompact open subset of Té}{), so & will have bounded diameter
with respect to such metric.

4.2.1. Hilbert metric. — The Hilbert pseudo-metric on RZ is given by

dis‘[R2+ (x,») = logmax, ; < X’i". One easily checks that if B € GL(2,R) is a linear
=T N

map such that B-R5 C R% then B contracts weakly the Hilbert pseudo-metric:

diStRi B-xB-y < diStRQ+ (x,9). In particular, the Hilbert pseudo-metric is invariant

under linear isomorphisms of RZ.

More generally, if C C R“\ {0} is an open convex cone whose closure does
not contain any one-dimensional subspace of R?, one defines a Hilbert pseudo-
metric on G as follows. If x and y are collinear then distg(x, y) = 0. Otherwise,
C intersects the subspace generated by x and y in a cone isomorphic to RZ. We
let distg(x, ) = distRi (Y(x), ¥(»)) where ¥ is any such isomorphism. If C = Rf

then we have distc(x, y) = max, ge. log ‘Ziﬁ.
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If C' C C is a smaller cone then the inclusion C' — C is a weak contraction
of the respective Hilbert pseudo-metrics: distc(x, y) < distc (x, ). Moreover, if the
diameter of C’ with respect to diste is bounded by some M then the contraction
is definite: distq(x, ») < ddiste(x, ) where 6 = (M) < 1.

We notice that the Hilbert pseudo-metric on a cone C induces the Hilbert
metric on the space of rays {tx : ¢ € R,} contained in C (which is a projective
manifold). It is a complete Finsler metric.

4.2.2. Uniform expansion and contraction. — Recall that ’i(rl) is contained in
A, X ©;, which is a product of two cones. In A, x ®,, we have the product
Hilbert pseudo-metric dist((A, 7, 7), (A, w, t')) = dista_ (X, @), (X, 7)) +diste_(7, T').
Each product of rays {(aA,m, b7) : a,b € Ry} C A, X ®, intersects transversely
T;) in a unique point. It follows that the product Hilbert pseudo metric induces

a metric dist on Y. It is a complete Finsler metric.

Proof of Lemma 4.3. — Let us first show that Tz is a uniformly expanding
Markov map (the underlying Finsler metric being the restriction of dist,,, and the
underlying measure Leb being the induced Lebesgue measure). It is clear that &
is a John domain.

Condition (1) of Definition 2.2 is easily verified, except for the definite con-

traction of inverse branches. To check this property, we notice that an inverse
B} A

IBE -2
B} =B} B} for some y;. Thus £ can be written as (the restriction of) the com-

branch can be written as A(A, m) = ( 71). Since y, is neat, we can write
position of two maps A, = A,, h= h,ohy, where hy is weakly contracting and £,
is definitely contracting by precompactness of E in A, (which is a consequence
of positivity of ;).

To check condition (2) of Definition 2.2, let A(h, ) = (

B’;~A
IB}-2ll°

71) be an

d
inverse branch of Tg. The Jacobian of 4 at (A, ) i1s Joh(A, ) = (\IB*I‘N) , where
Y
d = #4/. It follows that

d
(4.10> J o h(h, 7) < sup A < eddistAn((A,n),(k’,n))
Joh(W, ) ™ aew \Ay/) ’

so that logJ o/ is d-Lipschitz with respect to dista_.

To see that Tz 1s a hyperbolic skew-product over Tz, one checks the con-
ditions (1-4) of Definition 2.5. Condition (1) is obvious, and condition (4) follows
from precompactness of E in A, x ©, as before. Since T3 is a first return map,
the restriction of 7 to & is Tg-invariant. Its normalization is the probability meas-
ure v of condition (2). In order to check condition (3), it is convenient to trivialize

E toa product (via the natural diffeomorphism E — E x P®,,). Since v has
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a smooth density with respect to the product of the Lebesgue measure on the
factors, condition (3) follows by the Leibnitz rule. ]

4.3. Basic properties of the roof function. — Let H(m) = Q(m) -R?. Recall (from
§3.3) that if T € ®, then —Q(7) -7 € R:'f, and that ®, is non-empty, so H(w) N
RY # (.

Lemma 4.4. — Let T C TI(R) be the set of all y such that y s ether y,, or
a mumimal path of the form y.YoVs not beginming by Viyi. Let K C PH(w) be a closed set
such that B, - K =K for every y € I'. Then ether K =9 or K = PH(m).

Proof. — Let I1(r) C TI(R) be the set of all paths that start and end in 7.
Then any element of y,I1()y, is a concatenation of elements of I'. It follows that
if K is mvariant under all B, y € I', then K is invariant under all B,, y € Il(7):
indeed B, - K = B;*l By, - B;*l -K =K, since y, and y,yy,. are concatenation of
elements of I'. According to Corollary 3.6 of [AV], this implies that K is either
empty or equal to PH(m). O

Lemma 4.5. — The roof function rg s good (in the sense of Definition 2.3).

Proogf. — We check conditions (1-3) of Definition 2.3. Let I' C IT(R) be the
set defined i the previous lemma. Notice that I" consists of positive paths.
The set S of inverse branches 4 of Tz is in bijection with I', since each

) ) BE A
inverse branch is of the form i(A, m) = <HBZ}1‘MI’
Yh

Let & € 7. Then rg(h(X, w)) = log B, - All. Since y; is positive, rz > log2,
which implies condition (1). Notice that g5 0/ = llllogjo h, where J i1s as in the
condition (2) of Definition 2.2, so (2) follows (by the previous discussion, it even
follows that rg o & is 1-Lipschitz with respect to dista_).

Let us check condition (3). We identify the tangent space to E at a point
(A,m) € E with V={1 € R : Y A, = 0}. Assume that we can write rg =
V+¢oTz—¢ with ¢ € C', ¢ locally constant. Write 7™ (x) = Z;:ol rg(TL (A, 7).
Then D™ o A") = D¢p — D(¢p o £"), which can be rewritten

”(B;ill)” . Z)” _ D¢()\., )0 — D(¢ O}lﬂ)()\" ) -, A, m)eB veV,
[1(B5,)" - Al

71) for some y, € I'.

or

(U,B;L//l'(l,.--, 1)) —D(p()\. jT)Z)—D((PO}ln)()\‘ T[)Z/
B (1, 1) o
(A,m)e g, ve V.

Since DA#* — 0, we conclude that [B;L/,, -(1,...,1D] € PR? converges to a limit
[w] € PR? independent of 4. This obviously implies that [w] is invariant by all B,,,
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h e . Since w is a limit of positive vectors (vectors with positive coordinates), by
the Perron—Irobenius Theorem, w is collinear with the (unique) positive eigenvector
of B,,, which also corresponds to the largest eigenvalue. Recalling that H(mw) is
invariant under B,,, and intersects R:'f , 1t follows that w € H(m). According to
the previous lemma, K = {[w]} C PH(x) should be either empty or equal to
the whole PH(7w), so H(mr) should be one-dimensional. This gives a contradiction
since H(mw) i1s even dimensional (since H(mw) 1s the image of the antisymmetric
operator £2(7)). O

4.4. A recurrence estimate and exponential mixing. — We will show later (in Sec-
tion 6) the following recurrence estimate.

Theorem 4.6. — The roof function rg has exponential tails.

We will now show how to conclude exponential mixing for the Teichmiiller
flow, Theorem 2.14, assuming the above recurrence estimate and the abstract result
on exponential mixing for hyperbolic skew-product flows.

The map Tz and the roof function rg define together a flow T; on the
space Z, = {(x,9,5) : (x,») € @, Tz(x,») 13 defined and 0 < s < rg(x)}. Since

5 1s a hyperbolic skew-product (Lemma 4.3), and rg is a good roof function
(Lemma 4.5) with exponential tails (Theorem 4.6), T, is an excellent hyperbolic
semi-flow. By Theorem 2.7, we get exponential decay of correlations

(4.11) C,(f,gr):/f-go'ftdv—ffdvfgdv,
for C! functions f , g, that is

(4.12) IC,(f, D < Ce™| fllarlIgller s

for some C >0, § > 0. This estimate holds for C! functions on A,, while Theo-
rem 2.14 deals with Hélder functions on €V. Hence, one needs an additional
lifting and smoothing argument, provided by the following technical lemma.

Let P: XYY x R — €0 be given by P(z,5) = FZ(proj(z)), where proj :
Ag — € is the natural projection.

Lemma 4.7. — For ewery k € N, 0 <a <1, p>p >1, § >0, there exist
C >0, &g >0 with the following property. Let f : €V — R be a function belonging to
Do N LI (vg). For every t > 0, there exists a C! function O : Z, — R, such that
If 0P =N < CUS gy + 1S sy )e™ and || fPllca, < CllLf g6

Proof. — We identify ?2(}1{) NA, x ©, with a subset U of R*™? via a map

At Tl
A s Ji

(A, 7, 1) — (x,9), where x,» € R™! are defined by x =

b
G Tty
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-~
[
-

1l <i:<d-1 (here m is the top of m). In this way, & becomes a precompact
subset of R%*~2, Using this identification, we will write rg(x) for rz(A, 7).

This also provides an identification of Z,. with a subset of Ux[0, co) C R*~!
via the map (A, m, 7,5) = (x,9,5). We will use || -| to denote the usual norm in
R?~!) and dist for the corresponding distance.

Let ||-|lr be the Finsler metric on U x R obtained by pullback via P of the
Finsler metric on €V defined in §2.2.2. At a point (x,,s5) € & x R, we have the
estimate C™'¢?M||w|| < |Jw|lr < Ceé®||w| where w is a vector tangent to (x, 7, s).
This follows from precompactness of & E when 5 =0, and the general case follows
from this one by applying the Teichmiller flow, see (2.13). We let disty be the
metric in A corresponding to || - [[p. We recall that A 1s disconnected, so the
disty distance between two points of A, 1s sometimes infinite.

There 1s another Finsler metric ||-||z, over Z,, which is the product of |||z
(introduced in Section 4.2) in the (x,y) direction and the usual metric in the s
direction. We recall that it is with respect to this metric that the Cl(/A\,.) norm 1s
defined. One easily checks that C7'|jw| < lwliz, < Cllwll.

We may assume that || f|lg,, < 1. This implies that for zy = (x,0, %) € Zr,
| f o P(z)] < Ce™ and if distp(z, 20) =7 <1 then |f o P(z2) —f o P(z)| < Cere,

Let ¢ > 0. Let ¢ : R*' — [0,00) be a C® function supported in {z €
R2~! ¢ ||z|l <¢7#/10}, such that fde 19 (z)dz =1 and such that [|¢? || ge- H =
Ce* ', Let ¥ : R* ! — R be given by ¥ (x,9,5) =1 oP(x,y,s) if (x,,5) € A,
and 0 < s < &f, and 1/f(’)(x, 9,5) = 0 otherwise. We will show that if ¢ is small
enough then one can take [ = ¢ x W)@, where * denotes convolution.

Let us first check the assertion ||f(t)||cl(z7) < C¢%. It is immediate to check
that, by choosing & > 0 small, we have indeed || /|13, < CllY? % ||cime-1) <
ClY Ol an 9 ooty < Ce.

We will now check the other assertion || foP — /|y, < Ce ™, assuming
(WA o WA IV

Choose Co > max{4, 2k/a}. Let Y C Z be the union of the connected
components of A, which intersect {(x, ), 9) € RZ‘I s> Cy e} Let X C A\ Y
be the set of points with dist((x, y, s), aA) < 4¢ . Thus A \ XUY) consists of
points well inside the connected components of A with not so long (maximal)
return time.

Lemma 4.8, — We have v(XUY) < Ce¢/¢,

Progf. — The function rg 1s a good roof function. Therefore, by condition
(2) of Definition 2.3, we have rz(x) > (CCy)~'et for every (x,7,s) € Y. By Theo-
rem 4.6, v(Y) < Ce e/,
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The boundary of each connected component of A, can be split in three
parts: a floor (containing points (x,»,s) with s = 0), a roof (containing points
(x,9,5) such that rg(x) =) and a remaining lateral part.

Points (x, 9, s) € X are at distance at most 4¢ " of either the floor, the roof,
or the lateral part of the boundary of their connected component in A,: we can
thus write X = Xgoor U Xjoor U X, (there is non-trivial intersection of Xg,,, and
Koot With X, ). We will now show that each of those three sets have v-measure
at most Ce /¢, Clearly v(Xgoo) < Ce .

Using (2.13) and condition (2) of Definition 2.3, we see that if (x,y) is in
the domain of Tz then [[DTz(x,»)|, [DTs(x )" < Ce”=™. Using condition
(2) of Definition 2.3 again we get ||[Drz(x)|| < C|DTz(x,»)| < Cé¥=®. Thus if
(x,9,5) € X then rg is Ceetl CO—Lipschitz restricted to the connected component of
the domain of Tz containing (x,y), and we conclude that if (x,y,s5) € X,,o¢ then
s> rg(x) — Ce % 50 V(X oor ) < Ce#/2.

Projecting X, on (x, ), we obtain a set Z C E. By Theorem 4.6, v(X},) <
Ce*"C follows from m(Z) < Ce*/C. Let us show the latter estimate. Using that
Tz, restricted to a connected component of its domain intersecting Z, is Ce*/-
Lipschitz, we get that Tg(Z) is contained in a Ce*/%¢~¢" < Ce*"/?> neighbor-
hood (with respect to the metric dist) of the boundary of E. Since m is in-
variant and smooth, and the boundary of E is piecewise smooth, it follows that
m(Z) < Ce 82, O

I])l

Notice that log iz is bounded over A,, so I Ny < Clf Ny <
Cll foPllisay < CllfoPllirw = C||f||w(u{(1)) < C. Hence “foP_f([)”I/(v) < C and
using Lemma 4.8 we conclude that || xxuy(foP—f (’))||L,,/(v) < Ce ¢ where xxuy
is the characteristic function of X UY. On the other hand, if zp € A, \ (XUY)
and ||z — 2|l < /10 then distp(zy, 2) < Ce/Ce=¢ < Ce=*/2. It follows that

[V (2) —f o P(20)| = | [0 P(2) —f 0 P(z)| < Ce**"/2¢/%  Thus | (z9) —f o P(z0)|
< Ce™/* This implies that I X2\ xun)(f o P — DN xw < Ce 7. The result
follows. o

Let now %, «, p, ¢, f and g be as in Theorem 2.14. Let § satisfy (4.12), and
let &y be given by Lemma 4.7. Choose p>p' > 1, ¢> ¢ > 1 such that pl, —|—q1, =1.

For >0, let /¥ and g satisfy

(4.13) I/ o P—=/Ply < CUS g, + 1S e,
(4.14) I/ M@y = CUS g, + 1S e,

(4.15) lgoP =gl < Cllglla, + lglde™,
(4.16) 1€, < Cligha, + lglue™.
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Then (4.12), (4.14) and (4.16) imply

4.17) ' [ro-groTiav= [oav [ g0 av] < i Oele o
< G S g + 1S Mgl + lghs)-

We have
ff-go 9% dlkg(l) — /fdlkg(l) /gdvsgu)

:/fop.gopoidv—ffoPdv/goPdu
=Ci(foP,goP).
Using (4.13), (4.15) and (4.17) we get

ICi(foP,go P)| < [Ci(f?, g")| + |C(f o P =/, g0 P)|
+ |C(foP,goP—g))| +|Ci(foP—f 0 goP—g")|
<GS e+ 20 0P =l ligly
+ 2/ SNy llgo P — gy + 21 S o P—fPlyllgo P — gy
< Ce ™| fllg, + I f ) Ulgl 2. + llglio)-

This concludes the proof of Theorem 2.14, modulo Theorem 4.6 which will be
proved in Sections 5 and 6, and Theorem 2.7 which will be proved in Sections 7
and 8. O

4.5. A better recurrence estimate and the complement of large balls. — In the formu-
lation of Theorem 4.6, the particular recurrence estimate i3 not necessarily good
because we were more concerned in obtaining not only a precompact transversal,
but one for which the combinatorics of the first return map is particularly simple
(it 1s in particular conjugate to a horseshoe on infinitely many symbols). By con-
sidering slightly more complicated combinatorics, one can get considerably better
estimates:

Theorem 4.9. — For every & > 0, there exists a finite union 7= U A, x Ty such
that 7V = ZﬂT() i precompact mn YY) and the Surst return time 17 lo 7 under t/ze Veech
Slow  satisfies

(4.18) fe”)ff dm < oo.

Z

This result easily implies Theorem 2.15 (taking K = proj(f(l))). It will be
proved at the end of Section 6, by using a similar argument to the proof of
Theorem 4.6.
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5. A distortion estimate

The proof of the recurrence estimates is based on the analysis of the Rauzy
renormalization map R. The key step involves a control on the measure of sets
which present big distortion after some long (Teichmiiller) time. In order to obtain
nearly optimal estimates, we will need to carry on a more elaborate combinatorial
analysis of Rauzy diagrams.

5.1. Degeneration of Rauzy classes. — Let R C &°(«/) be a Rauzy class. Let
/' C &/ be a non-empty proper subset.

Definition 5.1. — An arrow is called o7 ~colored if ils winner belongs to </'. A path
y € R(w) s " ~colored if it is a concatenation of </’ -colored arrows.

We call m € R &"-trivial if the last letters on both the top and the bottom
rows of 7w do not belong to &', @ -intermediate if exactly one of those letters
belong to /" and &/"-essential if both letters belong to 7’. Alternatively, 7w € R is
trivial/intermediate/essential if it is the beginning (and ending) of exactly 0/1/2
&/'-colored arrows.

An &/"-decorated Rauzy class R, C R is a maximal subset whose elements can
be joined by an &’-colored path. We let IT,(R,) be the set of all .2/’-colored
paths starting (and ending) at permutations in R,. We will sometimes write I,
for IT1,(R,).

A decorated Rauzy class is called trivial if it contains a trivial element .
In this case R, = {7} and I1.(R,) = {7} (recall that vertices are identified with
trivial (zero-length) paths).

A decorated Rauzy class is called essential if it contains an essential element.

Since IT,(R.) # II(R) (for instance, IT,(R.) does not contain complete
paths), any essential decorated Rauzy class contains intermediate elements.

5.1.1. Essential decorated Rauzy classes. — Let R, be an essential decorated
Rauzy class. Let RS® C R, be the set of essential elements of R,. Let TI$*(R,) C
I1,(R,) be the set of paths which start and end at an element of R

An arc y € I1,(R,) is a minimal non-trivial path in IT{*. All arrows in an
arc are of the same type and have the same winner, so the type and winner of
an arc are well defined. Any element of RJ* is thus the start (and end) of one
top arc and one bottom arc. The losers in an arc are all distinct, moreover the
first loser is in &/’ (and the others are not).

If y € TI,(R,) is an arrow, then there exist unique paths y,, ¥, € I1, such
that y,yy, 1s an arc, called the completion of y. If m is intermediate, there i1s a single
arc passing through 7, the completion of the arrow starting (or ending) at .
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If m € R, we define 7 € RY® as follows. If 7 is essential then 7 =m. If

€ss

7 1s intermediate, let 7 be the end of the arc passing through .
To y € Il we associate an element y** € I1$¥ as follows. For a trivial path
m € R,, we use the previous definition of 7

distinguish two cases:

. Assuming that y is an arrow, we

1. If y starts in an essential element, we let y**

2. Otherwise, we let y**

be the completion of y,
be the endpoint of the completion of y.

We extend the definition to paths y € I1, by concatenation. Notice that if y € IT®
then y* = y.

3.1.2. Reduction. — We will now generalize the notion of simple reduction
of [AV]. We will need the following concept.

Definition 5.2. — Given w € &(of) whose top and bottom rows end with different
letters, we obtain the admissible end of w by deleting as many letters from the beginming of
the top and bottom rows of 7 as necessary to obtain an admissible permutation. The resulting

permutation 7' belongs then to S°(</") for some o' C .

Let R, be an essential decorated Rauzy class, and let m € JR®. Delete all
letters not belonging to &’ from the top and bottom rows of m. The resulting
permutation 7' € G(&') is not necessary admissible, but since 7 is essential the
letters in the end of the top and bottom rows of 7’ are distinct. Let 7™¢ be the
admissible end of 7’. We call 7™ the reduction of .

We extend the operation 7 +> 7™¢ of reduction from PR to the whole R,
by taking the reduction of an element 7w € R, as the reduction of 7.

If y € II{® i3 an arc, starting at m, and ending at m,, then the reductions
of m, and 7, belong to the same Rauzy class, and are joined by an arrow y™
(called the reduction of y) of the same type, same winner, and whose loser is the
first loser of the arc y. Thus the set of reductions of all w € R, is a Rauzy class
Rred € S%F”) for some & C o

We define the reduction of a path y € Il, as follows. If y is a trivial path
or an arc, it 13 defined as above. We extend the definition to the case y € II{® by
concatenation. In general we let the reduction of y to be equal to the reduction
of y*.

Notice that the reduction map R™ — R is a bijection. The reduction
map 1% — TT(R™) is a bijection compatible with concatenation.

5.2. Further combinatorics. — Let o/" C &/ be a non-empty proper subset.

5.2.1. Dnifi i essential decorated Rauzy classes. — Let R, C R be an essential
&/'-decorated Rauzy class.
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For w € *R,, let «,(m) (respectively, a,()) be the rightmost letter in the top
(respectively, bottom) row of m that belongs to & \ &/’. Let d,(w) (respectively,
d,(m)) be the position of «,(m) (respectively, o,(;r)) in the top (respectively, bottom)
of w. Let d(m) = d,(;r) + d,(m).

An essential element of PR, is thus some 7 such that d,(m), dy(w) <d. If «,
1s an essential element of R, and y € II.(R,) is an arrow starting at 7, and
ending at 7w,, then

l. d(m,) = d)(m;) or d,(m,) = di(,) + 1, the second possibility happening if
and only if y is a bottom whose winner precedes «; () in the top of m,.
2. dy(m,) = dy(m;) or dy(m,) = dy(m;) + 1, the second possibility happening if
and only if y is a top whose winner precedes «,(w,) in the bottom of ;.

In particular d(w,) = d(m,) or d(m,) = d(w,) + 1. In the second case, we say that
y 1s dnifiing.

Let R™ be the reduction of fR,, so that R C &) for some &7" C &'
If 7 € R, is essential then there exists o € &/” that either precedes o, () in the
top of m or precedes «,(7) in the bottom of 7 (we call such an o good for ).
Indeed, if y € IT,(R,) is a path starting at 7, ending with a drifting arrow and
minimal with this property then the winner of the last arrow of y belongs to &7”
and either precedes o, () in the top of m (if the drifting arrow is a bottom) or
precedes () in the bottom of 7 (if the drifting arrow is a top).

Notice that if y € I, is an arrow starting and ending at essential elements
7, ,, then a good letter for m; is also a good letter for m,. Moreover, if y is not
drifting then the winner of y is not a good letter for m,.

5.2.2. Standard decomposition of separated paths

Definition 5.3. — An arrow is called <7\ <" -separated if both s winner and loser
belong to <f'. A path y € R is o\ o -separated if it s a concatenation of /\ o/’ -separated

arrows.

If y € TI(R) is a non-trivial maximal &7\ .o/"-separated path, then there exists
an essential .@/’-decorated Rauzy class R, C R such that y € I1,(R,). Moreover,
if ¥ = y,...y,, then each y; starts at an essential element 7; € R, (and y, ends at
an intermediate element of R, by maximality).

Let r = d(m,) —d(m)). Let y = yPy'..yPy" where the y' are drifting arrows
and y are (possibly trivial) concatenations of non-drifting arrows. If a is a good
letter for m;, then it follows that a is not the winner of any arrow in any y®.
The reduction of the y are thus non-complete paths in IT(R™?), according to
Definition 3.1.
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5.3. The distortion estimate. — Let R C 6°(«/) be a Rauzy class. Let y €
[T(R), and let 7 denotes its start. The domain of definition A, of Q" can be
written as A} x {r}, where A/ =B - R’f - R’f.

The distortion argument will involve not only the study of Lebesgue measure,
but also of its forward images under the renormalization map. Technically, this is
most conveniently done by introducing a class of measures which is invariant as
a whole. For ¢ € Rf , we define a measure v, on the o-algebra of subsets A of
Rf which are positively invariant (.e., such that R;A = A) by

(5.1) v,(A) = #)! Leb(AN {1 e RY : (A, q) < 1}).

Equivalently, v, can be considered as a measure on the projective space PRY.

These measures satisfy v,,(Rf) = I/qa, and vq(B; “A) =g, (A).

If g € R"f and y € [I(R), these formulas translate in the following algorithm
to compute v,(A)): start from ¢© = ¢, let then ¢V be equal to ¢, except for

the component qg) of the loser B of the first arrow of y. If o is its winner, set

instead qgl) = ¢+ q/(go). Define then ¢® by the same process (but starting from

¢"" and considering the second arrow of y) and so on. If y has length n, then

l . . .
v (A) = Mow i This holds since ¢™ =B, - ¢ by construction.
In fact, we will not really study the measures v,, rather the quantities vq(A;)

for ¢ € Rf_/ and y € TI(R). To deal with sets of paths instead of sets of simplices,
we will introduce a more convenient formalism, in which conditioning is more or
less transparent.

Given I' C IT(R), y, € [I(R), let I'), C T" be the set of paths starting by y,,
and let I' be the collection of ends y, of paths y = y,;y, € I'. Let P,(I'|y,) =

WUrern 8 1f 7 s the end of 1, we have P(I'|y,) = Py (I |7). If y is an

U(I(A;’s)

arrow starting at 7 with winner « and loser B, we have P,(y |m) = q(f(m. More
o

generally, for &/’ C &/ and ¢ € R‘f, let Nov(q) = [ e go- Let also N(¢) = Ny (g).
Then, if y € TI(¢R) starts at 7,

N(¢)

5.2) B ID =\

A family I, C TI(R) is called disjoint if no two elements are comparable
(for the partial order defined in §3.1.2). If T, is disjoint and I' C TI(FR) is a family
such that any y € I starts by some element y, € I, then for every m € R

(9.3) P, |m) = Z P, (T [y)P,(y, ) = Py (s | 70) sup P (I" | ).

el ysely

For &/’ C o/ non-empty, let M,/ (¢) = MaxXye ¢o. Let M(g) = M(¢). The
key distortion estimate is the following,
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Theorem 5.4. — There exist C> 0, 0 >0, depending only on #</ with the following
property. Let o' C </ be a non-emply proper subset, 0 < m <M be integers, g € RY. Then
Jor every w € R,

P,(y € II(R), M(B, - ) > 2"M(g) and M (B, - ¢) < 2"""M(q) | )
< C(m+ 1?27

A crucial feature of our arguments is that we obtain estimates which are
unmiform wm q. To some extent, this will enable us to treat the process as if it
were Markov: the past has indeed an influence since it changes the parameter ¢,
replacing it by B, - ¢, but since everything is uniform in ¢ this does not matter.

The proof of Theorem 5.4 is based on induction on #&7, and will take the

remaining of this section.

5.4. Reduction estimate. — Let R, be an /'-decorated Rauzy class, and let
y € II.(R,) start at = € R,. If R, is essential, let R C &°(”) be its reduction.
Let ¢! be the (canonical) projection of ¢ on R?" (obtained by forgetting the
coordinates in & \ /). Then the projection of B, - ¢ on R’ coincides with
B,a-¢™d. Notice also that the projections of ¢ and B, -¢ on R”\’" coincide. This
gives the formula

5.4) P,(y|m) _ N (q)
Pya(yrd|med) N (B, - q)

Proposition 5.5. — Let R, be an /' -decorated Rauzy class, and let T C I1,(R,)

be a family of paths such that, for all y € Ty, Nopw (B, - ) > 2MNop o0 (q). Then for

every € Ry,

(5.5) P, |m) <27™.

Proof — We may assume that I'" is the collection of all minimal paths y €
[1,(R,) starting at 7 and satisfying Non o (B, - ¢) > 2MNnor(9). If R, is trivial
then either I' is empty or M = 0 and the estimate is obvious. If R, is neither
trivial nor essential, then I' consists of a single path y, and the result follows from
the definition of P, (y |m). If R, is essential, we notice that two distinct paths in
I' have disjoint reductions, so the estimate follows from (5.4). O

5.5. The main induction scheme

Definition 5.6. — A path y € TICR) is called o'-preferring if it is a concatenation
of a o' -separated path (first) and a /' -colored path (second).
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A path is @ -preferring if and only if it chooses a winner in 27" whenever
possible. In particular, if a path has no loser in &', then it is .@/’-preferring. Notice
that y is &/'-preferring if and only if (B, -¢,,¢) =0 for « € &'\ &', pe & (so
B, is block-triangular). Notice also that the &’-separated part or the .2/’-colored
part in an .&/’-preferring path may very well be trivial.

Proposition 53.7. — There exist C > 0, 0 > 0, depending only on #</ with the
Jollowing property. Let M € N, q € RY. Then for every 7w € R,

P,(y is not complete and M(B, - ¢) > 2"'M(g) | 7) < C(M + 1)’27™.

Proposition 5.8, — There exist C > 0, 0 > 0, depending only on #</ with the
Jollowing property. Let <" C of be a non-empty proper subset, M € N, ¢q € Rf . Then for
every € R,

P,(y is o \ o -separated and M, (B, - g) > 2Y'M(q) }JT)
<CM+ 1)’2™,

Proposition 5.9. — There exist C > 0, 0 > 0, depending only on #o/ with the
Jollowing property. Let <" C of be a non-empty proper subset, M € N, ¢q € R”f . Then for
every w € R,

P,(y is o -preferring and Mo, (B, - @) < 2Y'M(q) < M(B, - ¢) | )
<CM+ 1’2 ™,

The proof of Theorem 5.4 and Propositions 5.7, 5.8 and 5.9 will be carried
out simultaneously in an induction argument on d = #47. Yor d > 2, consider the
statements:

(A,) Proposition 5.7 holds for #47 = d,
(B;) Proposition 5.8 holds for #4/ = d,
(C4) Proposition 5.9 holds for #.o/ = d,
(D,) Theorem 5.4 holds for #of = d.

The induction step will be composed of four parts:

1. (A), 2 <j<d, implies (B,),
2. (B,) implies (C,),
3. (C,) mplies (D,),
4. (D), 2 <j <d, implies (A,).

Notice that the start of the induction is trivial (for d = 2 the hypothesis in (1) is
trivially satisfied).

In what follows, C and 6 denote generic constants, whose actual value may
vary during the course of the proof.
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5.5.1. Proof of (1). — Let I" be the set of all maximal &7 \ &/'-separated y
starting at 7 such that Mg (B, - ¢) > MM, (). By Lemma 3.2, it is sufficient to
prove

(5.6) P,(T|m) < CM + 1)’27™.

If I' is non-empty then 7 is essential (and if I' = ¢ the statement is trivial).
Let R, be the .&/’-decorated class containing w. We have I" C IT,(R,). Decompose
' into subsets I'y;, M > M, containing the y € I' with 2*'M_,(¢) > M(B, - )
> IMM,,(¢). Recall the decomposition of y € T, y = yWyly®Py" where r =
r(y) < 2d. Let Ty, C Iy collect the y with r(y) = r. Let y; = yPyly@y,

1 < <7, and let y be the start of y. To y € I'y, we associate m = (m, ..., m,)
where

M., @B, -
(5.7> Qm, S ”@7( Y@) q) < 2ml'+1-

My By, - 9)

We have 22""M,,(g) < M (B, - q) < 22T2"M_(q), so M+ 1> m; > M — 2r.
Let I'yy,, collect the y with the same m. For 0 < ¢ < r, let I'y;,,; be the
collection of all possible ;.

Let R C &"(«”) be the reduction of R,. If y, € II,(R,) is & \ &'~
separated then

(5.8) Py(Cag i | 70) = Py [ 759),

where ¢! is the orthogonal projection of ¢ on R¥’, F;’Idrml. is the image of
red

Iy, by the reduction map and p is the reduction of y,. If y € Iy, ,; starts
by v € I'yi, i1 then we can write y = y,),¥;, where y, is a drifting arrow, and
Y. is a concatenation of non-drifting arrows. Then y™? is a non-complete path
(in TI(RYY) satisfying My (Bysea - Byrea - ¢ = 27 "M (Byra - ¢™%). By (A)) with
J=#d" <d,

(9.9) Pea (Frl\e;,ir,m,i |yd) < Clmi4+ D27, y, € Dy, i

Each family I'y;, . 13 disjoint, so (5.8) and (5.9) imply

(5'10> Pll(rl\’l,r,m,i | 7T) E C(mz + 1)927"1qu(F1\’I,r,nz,i—l |T[)7

which gives

5.11) P,(Tyi, [ 7) = Py(Dy, 0, |70 < [[ Clm+ 127" < COM + 127,
i=1

Summing over the different m (with Y m < M+ 1), r<2d, and M > M, we get
(5.6).
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5.5.2. Proof of (2). — Let I' be the set of all @/’-preferring y such that
M. B, - ¢ =< MM(q) < M(B, - ¢), and which are minimal with those properties.
Any y € I' is of the form y = y,y, where y, is &'-separated and y, is @/’-colored.
Let I'y C TI(XR) collect all possible y,. Notice that Iy is disjoint.

Let m = m(y,) € [—1,M] be the smallest integer such that M.\, (B, -¢) <
2"+1M(g). Notice that M. (B, - ¢ =My (9 < M(g). Let T, collect all y, € ',
with m(y,) = m.

Let us show that for y, € I',,

(9.12) P,(I'|y,) < 2"~

Let m, be the ending of y,. Let I' be the set of all endings y, of paths y =
VY. € I' that begin with y,. Let R, be the @/’-decorated Rauzy class containing
7,. Then T C I1,(R,) is a collection of paths y, satisfying M (B,, - B,, - ¢) >
MM(q) > 2M*17'”M(By_&_ - ¢). In particular, N (B,, - B, - ¢) > 2M*l*'”N(B,,X - q).
Applying Proposition 5.5 to B, - ¢, we obtain P,(I'|y,) =Pg, ., (I'[7,) < gmHi=M

If m >0 then I',,, consists of &’-separated paths y, with Mg\ (B, - ¢) >
2"M(q). By (B,),

(5'13> P(](Fs,m | jT) S C(m + 2)927'”.

Notice that (5.13) 1s still satisfied (trivially) for m = —1. Putting together (5.13) and

(5.12), and summing over m, we get
(5.14) P,(|m) <CM+ 1)’27™.

5.5.3. Proof of (3). — The proof is by descending recurrence on #27’. We
may assume that m > 0 since the case m =0 is trivial. Let I' C TT(R) be the set
of y starting at 7w and such that M(B, - ¢) > 2MM(g), M, B, -q) < M="M(q)
and which are minimal with those properties. We want to estimate P,(I'|m) <
C(m+1)P27.

Let Tp C I' be the set of &'-preferring paths. We have P (I'p|m) <
CM+ 127 by (C,), so we just have to prove that P,(I'\I'p|7) < C(m+1)"27".

If y e '\ T'p, then at least one of the arrows composing y has as winner
an element of & \ &', and as loser an element of &’. Decompose y = y,y.
with y; minimal such that no arrow composing y, has as winner an element of
&/ \ &', and as loser an element of &7’; let ny = ny(y) be the length of y,. Let
B=pB(y) € &\ & be the winner of the last arrow of y,.

We can then write '\T'p as the union of T'y, B € &\ &', where I'g collects
all y with B(y) = B. We only have to prove that P, (I's|m) < C(m + 1?27 for
any fe o\ o'
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Let F}", C I'sg be the set of y such that M(B, - ¢) < M="M(q). For
y € 'y, write y = y7y) with y” minimal with M(B,: - ¢) > M="M(q). In particu-
lar M(B,: - ¢) < OMHI="M(g). Let n*(y) be the length of y*. Since n* > ny, y* is
o’ —prefefring. Notice that y is also such that M(B,. - B,.-¢q) > 2"‘*1M(By‘* -q). By
(Ca), 1t follows that P,(I'y | y) < Cmf2'". Since the collection of all possible y*
is disjoint, we get

(5.15) P, (| ) < Cm"2'".

Thus we only need to show that P,(I'g\ I |m) < CmfP27 ™.

Before continuing, let us notice that if #&/' = #4/ — 1, then I'; = I';. Indeed
in this case &/ = 2/'U{B}, and since Mg(B,,-q) < M (B,,-¢q), we have M(B,,-¢) <
M="M(g). In particular, the previous argument is enough to establish (D,) in the
case #27' = d — 1, which allows us to start the reverse induction on #&’ used in
the argument below.

For y € I'g \ I'y, there exists an integer my = my(y) € [0,m) such that
M=mM(q) > M(@B,, - ¢) > M=1=mNM(q). We collect all y with my(y) = my in g -
It is enough to show that

(5.16) P,(Tg . | m) < C(m+ 1?2,
Write y = y'y! = y?y? where y!, y? are minimal such that M(B, - ¢) >

oM=mN(g), M@B,:-q) > QM=1=mNM(q). Let n, = n(y) and ny = ny(y) be the lengths
of y! and y2. We have ny <ny <mn.?

Let Ty, Fé’mw collect all possible paths y!, y? as above. The families
2 e . . .
F}lmo,s’ Fﬂm’s are disjoint. If y = )/51)/81 € I'g s With )/S1 IS F}B,mo,v the path yel 1S

a/'-preferring and satisfies M(B,; - B,1 - ¢) > 2’”0_1M(By31 “q), My(By1 - By ) <
2M="M(g) < M(B,) - ¢), so by (C,) we have

(5.17) P,(Cpus | ¥)) < Clmg+ D'27™,  y! €T

Bomo,s*
On the other hand, Mg(B,2-¢9) < M,/ (B,, -¢) < M=mM(g) so that Moo (By2-q) <
M="M(g). Then

(5.18) P,(T!

B.mg,s

”) = Pq(FQ

where the first mequality is trivial and the second is by the reverse induction
hypothesis (that is, (D,) with &7’ U{B} instead of &/, M —my—1 instead of M and

m—my — 1 instead of m). Since I 1s disjoint, (5.17) and (5.18) imply (5.16).

B.mo,s

2 Notice that we cannot have ny = ny, since otherwise M,/ B, -9 =M(@B,, -9 > 2“’”’1\/[(q), so that y ¢ I
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5.5.4. Proof of (4). — Let y € II(R) be a non-complete path starting at .
Let B € &/ be a letter which is not winner of any arrow of y, and let &' =
o\ {B}. If R, C R is the &'-decorated Rauzy class containing 7 then
y € II,(R,). Let T'y C I1,(R,) be the family of paths y satisfying M(B, - ¢) >
2MM(g) and minimal with this property. It is enough to show that

(5.19) P,([s|7) < CM + 1)P27™

for an arbitrary choice of B and fR,.

First notice that R, cannot be a trivial decorated Rauzy class, since 7 \ o/’
has a single element. If 98, is neither trivial nor essential, then I's contains
a unique path y starting at 7. In this case P, (I'g|m) = P (y|7) < 2°M Tt is
enough then to consider the case where R, is essential.

Let I'y C I'g be the set of all y such that Mg(B,-¢) < M(g). By (D,) applied
to {8}, we have

(5.20) P, (I |7m) < C(M + D27,

For y € I'g \ I'j, there is at least one arrow composing y with g as loser.
Let ¢ = a(y) be the winner of the last such arrow. Let my = my(y) € [0, M]
be such that 2™M(g) < Mg(B, - ¢) < 2mtIM(g). Write ¥ = y,y, where y, is
minimal with Mg(B,, - ¢) > 2™M(¢). Let My, = My(y) € [my, M] be such that
MM (g) < M(@B,, - ¢) < MM (g). Let T C g\ F; collect the y with the same
a, my and My. It i1s enough to show that

(5.21) P,(I'|7) < CM + 1)"27™.
Let T’y be the family of possible y, for y € I'. By (D,) applied to {8},
(5.22) P,(|y) <CM+1—My)2M™  y er,.

Let R C &%) be the reduction of fR,. Notice that two distinct paths
in I'y have disjoint reductions. Let Fied C H(fﬁfd) be the image of I'; by the
reduction map. Let ¢"¢ be the canonical projection of ¢ on R?". Then by (5.4),

N
n,red) Sup ,B(q) S Pq (rﬂ;ed

VJGFS N/S(B)/j : q) l
Notice that if )/S’md € Ffed then Ma(BySn:d-q“d) < 2m*1M(gq), and if My > my we also
have M(B,a - g*%) > 2MM(q). Thus, if My > my, by (D)) with j =#" <,

(5.23) P,(I|m) < P, (I

T[red) Q—m() .

(5.24) p, (I

jTred) S C(M() + 1 — m0)92mo—1\’107

and we notice that (5.24) also holds, trivially, if m; = M,. Putting together (5.24),
(5.23) and (5.22) we get (5.21).
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6. Proof of the recurrence estimates

Lemma 6.1. — For every ¥ € TI(R), there exist M >0, p <1 such that for every
T €R, ¢eRY,

(6.1) Pq(y cannot be written as yyy. and M(B,, - q) > QMM(q) | 7'[) < p.

Proof. — Fix My > 0 large and let M = 2M,. Let I' be the set of all
minimal paths y starting at 7 which cannot be written as y,Yy, and such that
M@, - ¢) > 2MM(g). Any path y € I’ can be written as y = y;% where y; is
minimal with M(B, - ¢) > oMoM(g). Let Ty collect the possible y;. Then T is
disjoint. Let I, € Ty be the set of all y; such that M. (B,, - ¢9) = M(g) for all
/" C &/ non-empty. By Theorem 5.4, if My is sufficiently large we have

~ 1
(6.2) Pq(Fl \F] |7T) < 2

For 7, € R, let y, be a shortest possible path starting at 7, with y, = y,y.
If My is sufficiently large then [B, | < ;QMO_l. It follows that if y; € I'y ends at
7, then

(6.3) P,(T|y) <1 —Pg, (Va, | 7).
If furthermore y, € [, then

NGB, -9 M(g)*
N@B,, - B, -9 = (2™M(¢g))’

_ 0—2dMy

(6'4> PBV1 ‘q(ym | ne) =

The result follows with p = 1 — 272Mo=1, O

Proposition 6.2. — For every Y € TI(R), there exist § > 0, C > 0 such that for
every w € R, ¢ € RY and for every T > 1

(6.5) P,(y cannot be written as y,yy, and M(B, - ) > TM(g) | ) < CT™.

Proof. — Let M and p be as in the previous lemma. Let £ be maximal
with T > 2MM+D Tt T be the set of minimal paths y such that y is not of the
form y Yy, and M(B, -¢) > 2FMFDM(g). Any path y € T’ can be written as ...3;
where y; = y1...y; 18 minimal with M(B,,; - ¢) > 2'MFTDM(g). Let T'; collect the
Yi)- Then the T; are disjoint. Moreover, by Lemma 6.1, for all y© € 'y,

(6.6) P, (Cisny | y?) <»p.

This mmplies that P (I'| ) < p*. The result follows. |
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Proof of Theorem 4.6. — Let m be the start of y,. The push-forward under
radial projection of the measure v, onto AnﬂTg{) yields a smooth measure v. It
is enough to show that ¥{x € E : rg(x) > logT} < CT™*, for some C >0, § > 0.
A connected component of the domain of Tg that intersects the set {x € B :
rz(x) > log T} is of the form A, N T;) where y cannot be written as y,y, with
Y = ¥¥¥s¥s and M(B, - ¢o) > C7'T, where ¢y = (I,...,1) and C is a constant
depending on y,. Thus

vxe 8 : rg(x) > logT}

<P, (y can not be written as y,7y, and M(B, - ¢) > C™'T ‘ 71).
The result follows from the previous proposition. 0

Lemma 6.3. — For every ky > 1 there exist C >0, 6 > 0, depending only on #/
and ko with the following property. Let M € N, q € RY. Then for every 7 € R,

P,(y is not ky-complete and M(B,, - g) > 2Y'M(g) | m) < C(M + 1)?27™.

Proof. — The proof is by induction on k. For k =1, it is Proposition 5.7.
Assume it holds for some k) > 1. Let I" be the set of minimal paths which are not
ko+ 1-complete and such that M(B, -¢) > 2"M(g). Let I'_ C T be the set of paths
which are not k-complete. Then P, (I'_|m) < C(M + 1)2™ by the induction
hypothesis. Every y € I'\ I'_ can be written as y = y,¥, with y, minimal k-
complete. Let m = m(y,) € [0, M] be such that 2"M(q) < M(B,,-¢q) < 2""'M(g). Let
I, collect the y, with m(y,) =m. Then TI', is disjoint. By the induction hypothesis
P, |m) < C(m+ 1)?2=" and by Proposition 5.7, P(T|y) =M+1-— m)?2m=M,
¥s € I',,. The result follows by summing over m. O

Proposition 6.4. — For every ky > 2#a/ — 3, § > 0, there exist C >0 and a fiute
disjoint set T'p C TI(R) with the following properties:

1.1If y € Ty then y s mimmal ky-complete,
2. For every m € *R, qeR:'f, T=>0,

(6.7) P,(y cannot be wntlen as y,yyy. with y, € I'y and
M(B, - ¢) > TM(g) | ®) < CT®™V.

Proof. — Fix some M > 0. Let I'y be the set of all minimal paths which
are ky-complete and such that ||B,|| < 2Y*2 Obviously I'y satisfies condition (1).
Let us show that if M is large then it also satisfies condition (2). It is sufficient
to prove (6.7) for times T of the form 2D,
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For £ > 0, let I" be the set of paths y such that y is not of the form
Yvoy. with ¥y € Ty and M(B, - ¢) > 2"™+DM(g). Any path y € ' can be written
as y...y; where y; = yi...y; is minimal with M(B, - ¢) > 2™*DM(g). Let T
collect the y;). Then the I';) are disjoint.

Notice that the y; are not 2k-complete. Otherwise, y; = y,¥. with y, and
Y. ko-complete. By Lemma 3.3, all coordinates of B, - B,  -¢ are larger than
M(B,,_,, - q) > 207V Tt follows that ||B,, || < 2¥*2, so y, € 'y, contradiction.

By the previous lemma, P (T |y,) < C(M+1)?2"M y, € I';_}y. This implies
that P,(I'|m) < (C(M + 1)?27M)E If M is large enough, this gives PT|m) <
Q=DM+ |

V@)

Proof of Theorem 4.9. — Let Ty be as in the previous proposition, with
ky = 6#a/ — 8. We let Z = UA, x ©, where y, is minimal 4#% — 6 com-
plete, ¥, is minimal 2#¢ — 3-complete and there exists y € 'y that starts by yy,.
Its intersection with Y1 is precompact by Lemmas 3.3 and 4.2.

Fix some component A, X ®, —of 7 and let us estimate m{x € Ay, X0, N
?g{)  rz(x) > logT}. Let m be the start of y,. If A, x ©,, 1s a component
of the domain of the first return map to Z that intersects {x € A, x ©,
r7(x) > log'T} then y, cannot be written as Y1y, with y, € I'y. The projection
of mlA,, x 0, ﬂ/T\;) on Té}{) is absolutely continuous with a bounded density, so
we conclude as in the proof of Theorem 4.6 that

m{x e, x ©, NYR : r;(x) >log T}
< CP, (y cannot be written as y,yyy, with y, € I'y
and M(B, - ¢) > T |m),

where ¢y = (1, ..., 1). The result follows from the previous proposition. |

7. Exponential mixing for expanding semiflows

In this section and the next, our goal is to prove Theorem 2.7. As a first
step, we will prove in this section an analogous result concerning expanding semi-
flows.

Let T : UA® — A be a uniformly expanding Markov map on a John
domain (A, Leb), with expansion constant «k > 1, and let »: A — R, be a good
roof function with exponential tails (as defined in Paragraph 2.1). Let A, = {(x,¢) :
xe A,0 < t<r(x)}, we define a semi-flow T,: A, = A,, by T(x,s) = (T"x, s+1¢—
r™(x)) where n is the unique integer satisfying 7™ (x) < ¢+ s <" (x). Let u be
the absolutely continuous probability measure on A which 1s invariant under T,
then the flow T, preserves the probability measure u, = u @ Leb/(u & Leb)(A,).
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We will also use the finite measure Leb, = Leb ® Leb on A,. In this section,
we will be interested in the mixing properties of T,. Unless otherwise specified, all the
wntegrals will be taken with respect to the measures Leb or Leb,.

Let us first define the class of functions for which we can prove exponential
decay of correlations:

Defimtion 7.1. — A function U : A, — R belongs to By if it is bounded, con-
tinwously ~ differentiable on each set AV = {(x,) : x € AV, 0 < { < r(x)}, and
SUP, e ya® DU, D < oo. Write then

(7.1) IUllz, = sup  |[U(x, )]+ sup [[DU(x, D).
(r.peJAad (r.pelyal

Notice that such a function is not necessarily continuous on the boundary of A,

Definition 7.2. — A function U : A, — R belongs to B, if it is bounded and there
exists a constant C.> 0 such that, for all fixed x € |, A, the function t v Ul(x, 1) is of
bounded variation on the interval (0, r(x)) and its variation is bounded by Cr(x). Let
Var(o,r(x))(z‘ > U(X, t))

(7.2) IUllg, = sup |U(x, t)| + sup
(nea? veJa® 7(x)

This space A, is very well suited for further extensions to the hyperbolic case.
In this paper, the notation C!'(X) for some space X always denotes the space of
bounded continuous functions on X which are everywhere continuously differen-
tiable and such that the norms of the differentials are bounded. Then the following
inclusions hold:

(7.3) C'c %, c %.

Theorem 7.3. — There exist constants C >0 and & > O such that, for all functions
Ue By and V € By, for all t >0,

(7.4) 'fU-VoTt dLeb, — </UdLeb,) (/Vdu,>

Remark. — Applying the previous theorem to the function Uf(x, ¢)- di’; , (%), we

—4
< ClUlzIVIize™.

also obtain

o oo (fou) (fu)

Notation: when dealing with a uniformly expanding Markov map T, we will

< ClUlz IVIze™.

always denote by .77, the set of inverse branches of T".
The proof of Theorem 7.3 will take the rest of this section.
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7.1. Duiscussion of the aperiodicity condition. — In this paragraph, we discuss
several conditions on the return time r which turn out to be equivalent to the
aperiodicity condition (3) in Definition 2.3.

Proposition 1.4. — Let T be a uniformly expanding Markov map for a partition {AD}.
Let r: A — R be a function which is C' on each set AP, with sup,,, |ID(roh)|co < oo.
Then the following conditions are equivalent:

1. There exists C> 0 such that there exists an arbitrarily large n, there exist h, k € F,,
there exists a continuous unitary vector field x v~ y(x) such that, for all x € A,

(7.6) IDG 0 B)(x) - y(x) — DG 0 B)(x) -»(x)| > C.

2. There exists C > 0 such that there exists an arbitrarily large n, there exist h, k € H,,
there exists x € A and y € T,A with ||y|| =1 such that

(7.7) DG 0 h)(x) -y — D 0 B (x) - | > C.

3.1t is not possible to write r =Y +¢oT —¢ on |JAD, where ¥ : A — R is
constant on each set AV and ¢ € C'(A).

4. 1t 15 not possible to wnite r =Y+ o T'—¢ almost everywhere, where ¥ : A — R
is constant on each set AP and ¢ : A — R is measurable.

The first condition is the (UNI) condition as given in [BV] in their one-
dimensional setting.

Proof. — The mmplication (1) = (2) is trivial. Let us prove (2) = (1). Notice
that there exists a constant ¢, such that, for any inverse branch £ € JZ, of any
iterate T/ of T, for any x € A and any y € T.A, DG o £)(x) -y < ol y||: for
instance, take ¢y = Sup”e‘fﬂlj,(:dl)uco.

Let C > 0 be such that (7.7) is satisfied for infinitely many » It is then
possible to choose n large enough so that ¢x™ < C/4, h ke JH,, xy € A and y, €
T,A such that (7.7) holds. Let »9(x) be a unitary vector field on a neighborhood
U of x such that (7.7) stll holds for yy(x). Fix a branch [/ € JZ, for some m such
that /(A) C U. Define a vector field y; on A by y(x) = Di(x)"'yy(lx). For any

inverse branch £ € JZ, for some p> 1, we have

}D(T(m-i-n-i-/)) olohol)(x) y(x) — D™ o ho )(x) 5 (x)}
= |DG? 0 &) (hix)Dh(lx) - yo (1) |
< olDAl) | < cox™ < G/4.
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The same estimate applies to £. Since

IDE™ o ho )(x) - 1 (x) —DE"™ o ko )(x) -y (%]
= D" o h)(Lx) - yo(lx) — D™ o k) (Ix) - yo(l0)| > C,

we get

D@ 0 £ o ho l)(x) -y (x) — DE™ ™ o0 Lo ko l)(x) -y (x)]
> (C/2.

Finally, take »(x) = y;(x)/[| »1(x)||. This proves (1).
The implication (2) = (3) 1s easy: if it is possible to write r = Y +¢olT — ¢,
then for all 4 € J, r™ o h(x) = S,¥(h(x)) + ¢(x) — ¢p(hx). Hence, if ||y =1,

DG 0 ) (x) -9 — DG 0 k)(x) - 3| = [D(p o h)(x) -y — D(p 0 k) () - y)|
< 2(Pllcik™.

This quantity tends to 0 when n — oo, which is not compatible with (2).

Let us prove (3) = (2). Assume that (2) does not hold, we will prove that »
can be written as ¥ +¢oT —¢. Let h = (hy, ho, ...) be a sequence of J. Write
h,=h,o..ohy. Then

(7.8) D(r® oh,)(x) -y = Z D(r o ) (h,_,x)Dh,_ (%) - y.

k=1

The derivative of 7o/ is uniformly bounded by assumption and [D#4,_,(x)|| <
k1. Therefore, this series is uniformly converging. Since (2) is not satisfied, its
limit 1s independent of the sequence of inverse branches %, and defines a contin-

uous l-form @(x) -y on A. It satisfies, for all 4 € 2,
(7.9) w(x) -y =D(roh)(x) -y + w(hx)Dh(x) - .

Take a branch 2 € 7, and let h = (h,h,...). Let xp € A. The series of
functions Z;il(ro h, —r o h(xy)) is then summable in C'(A), let us denote its
sum by ¢. By construction, w(x) -y = D¢(x) -y for all x € A and y € T,A. By
(7.9), D(r+¢ —¢poT) =0. Hence, r+¢ —poT is constant on each A", which
concludes the proof.

The implication (4) = (3) is trivial, we just have to prove (3) = (4) to
conclude. Assume that r = ¥ + ¢ o T — ¢ where ¥ is constant on each set AY
and ¢ is measurable. We will prove that ¢ has a version which is C'. Let %,
be the o-algebra generated by the sets #(A) for 2 € JZ,. It is an increasing
sequence of o-algebras. For almost all x € A, there exists a well defined sequence
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h = (h, hy,...) € ZN such that the element F,(x) of .%, containing x is given
by F,(x) =k o... 0o h,(A). Equivalently, %, is the unique element of S such that
T '(x) € h,(A). Since T is ergodic, almost every x is normal in the sense that,
for any finite sequence 4, ..., %, of elements of 7, there exist infinitely many n
such that, for all 1 < <p, Ay = k.

The martingale convergence theorem shows that, for almost all x € A, for
all € >0,

Leb{x' € F,(x) © 16() — @0 > &}
Leb(F, (x))

(7.10) 0.

Take a point x; such that this convergence holds and which is normal. Replacing
¢ by ¢ — p(xy), we can assume that ¢(xy)) = 0. Let &= (4, hy, ...) be the corres-
ponding sequence of ¢ and write h, = o...0k,, so that F,(x) = £,(A). Then
(7.10) and distortion controls give, for all € >0,

(7.11) Leb{x € A : |p(h,v)| > e} — 0.

Define a strictly increasing sequence my as follows: start from m; = 1. If my has
been defined then, by normality of x, there exists m;; > my; such that (4, ..., h,,, )
finishes with (4, ..., &,). By (7.11), we can choose a subsequence n; of m; such
that

(7.12) Ve>0, Y Lebfxe A : |p(h, 0] > e} < oo.

k=1

In particular, for almost all x, ¢(%,x) — 0. Notice that ¢(x) = ¢(h,x) + 1™ (h,x) —
S, ¥(h,x). For almost all x, we get ¢(x) = limy_, o, 7™ (h,.x) — S, ¥(h,x). Moreover,
the choice of m; ensures that the sequence D(r™ o k,) is Cauchy. Hence, ¢
coincides almost everywhere with the C!' function lim;_ . 7™ o &, — S, ¥ o hk,,
which concludes the proof. ]

7.2. Exstence of bump functions. — The following technical lemma will prove
useful later.

Lemma 7.5. — There exist constants Cy > 1 and Cy > 0 satisfying the jfollowing
property: for any ball B(x,r) compactly included in A, there exists a C' function p : A —
[0, 1] such that p =0 on A\B(x,7), p=1 on B(x,r/C)) and ||p|lcx < Co/r.

Notice that this property is not true for any John domain, and uses the
existence of the uniformly expanding Markov map T on A.
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Proof. — Let xp € A be in the domain of definition of all iterates of T. Let
| -1 be a flat Riemannian metric on a neighborhood of x. By compactness, there
exists a constant K > 0 such that, on a small neighborhood U of x5, K7!|| - |’ <
- <Kl

For large enough n, the inverse branch 4 € J%, such that x, € A(A) satisfies
(A) C U, since diam(Z(A)) < Ck™". The set (A) endowed with the distance
given by | -||" is flat. Hence, there exists a constant C > 0 such that, given any
ball B = B'(x, r) for this Euclidean distance, which is compactly included in %Z(A),
there exists a C! function p supported in B, equal to 1 on B'(x,7/2) and with
Iollar = G/r.

Since £ and its inverse have uniformly bounded derivatives (with respect to
|-l and || -||"), this easily implies the lemma. O

The same compactness argument also implies the following lemma:
Lemma 7.6. — For all € > 0,

sup{k € N @ vy, oo, ;i € A with d(x;, ) > € whenever 1 # j} < 00.

7.3. A Dolgopyat-like spectral estimate. — The main step of the proof of Theo-
rem 7.3 i1s the study of the spectral properties of weighted transfer operators L.
Let 0y > 0 be such that [¢”"dLeb < oo, which is possible since r has exponential
tails. For s € G with s > —ogy, define

(7.13) Lu(x) = Y e " ()u(y).

Ty=x

For s =0 + i with Rs> —o0; and ¢ € R, define a norm on C'(A, C) by

1
7.14 ull; ;, = sup |u(x)| + sup ||[Du(x)]|.
(7.14) Nl xe£| ()] max(L. 1) XEE [Du(x) ||

The main spectral estimate concerning the operators L is the following
Dolgopyat-like estimate:

Proposition 7.7. — There exist o) < 0y, To >0, C>0 and B <1 such that, for
all s=o0 + it with |o| <oy and |t| > Ty, for all u e CY(A), for all k €N,

(7.15) LA, < CBMlully...

2

This paragraph will be entirely devoted to the proof of Proposition 7.7. The
proof will follow very closely the arguments in [BV], with small complications due
to the general dimension.
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For s =0, L, is the usual transfer operator. It acts on the space of C! func-
tions, has a spectral gap, and a simple isolated eigenvalue at 1 (the corresponding
eigenfunction will be denoted by f; and is the density of the invariant measure ).
For o € R close enough to 0, L, acting on C'(A) is a continuous perturbation of
Ly, by a straightforward computation. Hence, it has a unique eigenvalue A, close
to 1, and the corresponding eigenfunction f, (normalized so that [f, = 1) is C',
strictly positive, and tends to f; in the C! topology when o — 0.

Let 0 < 07 < min(oy, 1) be such that f; is well defined and uniformly
bounded from below for o € [—o0y,01]. For s = o0 4+« with |o| < 0, and ¢ € R,
define a modified transfer operator L, by

LW
=,

It satisfies L,1 = 1, and |Lu| < L, |ul.

(7.16) L,(w)

Lemma 7.8. — There exists a constant Csg such that Nn > 1, Vs = o + it wiih
o €[—0y,01] and t € R, Yu € C'(A), holds for all x € A

(7.17) ID(Lw) (0 || < Cs(lel + DLEul) () + "L (D) ().

Proof. — We have

~ (j,;— u) (/lx)J(ﬂ) (}lx)e_”('» (hx)

(7.18) Lru(x) = Z ﬂ |
hest, Ay Jo (x)

fon e e Z;é r(Th) and J(x) = Z;(I)J(Tkx) Differentiating this expres-

sion, we obtain a sum of 5 terms: we can differentiate f;, or u, or J®, or 7, or
1/f.

Since f; is bounded in C!' and uniformly bounded from below, and any
iverse branch of T is contracting, there exists a constant C > 0 such that
ID(fs0oh)(x)|| < Cf;(x). Hence, if we differentiate f;, the resulting term is bounded
by CL: (Ju) ().

In the same way, distortion controls give ||[D(J™oh)(x)|| < CJ™ok(x). We also
have [[D(1//)(x)| < C/f(x). Hence, the corresponding terms are also bounded by
CLZ (Jul) (x).

Moreover, D(eﬂ’(")°’l)(x) = —sD(O™ o /z)(x)e*”(”)"h(x). The uniform contraction
of & and the boundedness of the derivative of r o £ for £ € F show that
this term is bounded by Clsle" " Hence, the resulting term is bounded by
Gl + DL (ful) (x).

Fmally, [[D(zoh)(x)|| < «7"||Du(hx)||, which shows the required bound on the
last term. |
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From this pomt on, we will fix once and for all a constant C3 > 5 satisfying
the conclusion of Lemma 7.8. This lemma implies that the iterates of L, are
bounded for the norm | |[|;,. More precisely, the following holds:

Lemma 7.9. — There exists a constant C > 1 such that, for all s = o + it with
o €[—oy,01] and |t| > 10, for all k € N, for all u€ C'(A),

—k
- K
7.19) [Tiul,, < Clallcs + IDuls
In particular, ﬁffu”l , < Cllully.
Proof. — The inequality Hilfu ‘CO < |lull|cc and Lemma 7.8 give

DT o

| L
| 1

1
ot =< llullco + ¥ [2Csl e llullco + e ~H[Dullco ]

—k

K
< Cllullco + Y IDullco.
O

To prove Proposition 7.7, we need to get some contraction. This is easy to
do if the derivative is large compared to the C° norm of the function:

Lemma 7.10. — There exists Ny € N such that any n > Ny satisfies the following

property. Let s = o + it with o € [—o01,01] and |t| > 10. Let v € C'(A) satisfy
sup [|Do|| > 2Cs|¢| sup |o|. Then

- 9
(7.20) L], , < Lolelhe
Proof. — We have

1
o = lolleo < sup [Do()ll = -, N2l

3 1
(7.21) Lo T 2,

Moreover, for x € A

ID(Li2) ()| < Cs(1 + 1)L (2D (x) + &L (Dol (x)
=< Gs(1 4+ [tDllllco + « "I Doflco

1+ [ .
=l 5 tx |2 | M2l
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Hence,

1y L+,
o + |t| ”D(st) HCO = [200; + 2|t| tK ] “2)”1"'

Since C3 > 5 and |¢] > 10, the conclusion of the lemma holds as soon as k™" <

(7.22) | L

1
5
O
Hence, to prove Proposition 7.7, we will mainly have to deal with functions

v satisfying sup ||Do|| < 2Cs|¢| sup |o]. For technical reasons, it is more convenient
to introduce the following notation.

Defition 7.11. — For t € R, we will say that a pair (u,v) of functions on A
belongs to & if u: A —> Ry is C', v: A—C 5 C', 0<|v| <u and

(7.23) Ve A, max(|[Du)]l, Do) ) < 2Cs|t|u(x).

Lemma 7.12. — There exists Ny € N such that any n > N, satisfies the following
property. Let s = o +it with o € [—0y,0,] and |t| > 10. Let (u,v) € &,. Let x € C'(A)
with | Dx|| < |t| and 3/4 < x < 1. Assume that

(7.24) Vie A, L] < L (xw ).
Then (L1 (xu), L'(v)) € &.

Proof. — Let (u,0) € & with |t| > 10. Let n € N. By Lemma 7.8, for x € A,
(7.25) ID(T2 (xw) @ || < G512 (xw () + k"L D (w1 ().
Since (u,v) € & and ||[Dy| < |¢,
I @I < 1) + Du)|l < (1 + 2Cs)|u(x)

- 4
5 (12011 .

[A

Hence,
- 4 -
(7.26) ID(L: (xw) ()| < [03 +i 203)|¢|} L2 (u) (x).

If n is large enough, the factor is < 2Cs|¢|, and we get ”D(i};()(u))(x)” <
2(]3|t|iz(xu)(x). This 1s half of what we have to prove.
Concerning v, Lemma 7.8 gives

ID(Li2) (0| < Cs(1 + [T (o) (x) + &L, (I Del]) (x)
4. 4 ~
= Gl 4140 , Lo G () 4 7, 2G5 L (0) ().

If # is large enough, this quantity is again bounded by 2C;|¢|L (xu)(x). |
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If & e 7, then ||Dhi(x) -yl < «7"||y]l. In particular, since r satisfies Condi-
tion (3) of Definition 2.3, the first condition of Proposition 7.4 gives n >
max(Np, Ny), two inverse branches &,k € %, and a continuous unitary vector
field o on A such that, for all x € A,

DG 0 h)(x) - 3o (x) — D™ 0 k) (x) - 30 ()]
> 10C; max([|DA(x) - po (O], [DA) -y () [])-
Smoothing the vector field y;, we get a smooth vector field y with 1 < |yl <2
such that, for all x € A,
(7.27) DG 0 h)(x) - p(x) — D™ 0 k)(x) - ()]
> 9C; max(|[Dh(x) - p() ||, [DE(x) - y(0)]).

We fix n, h, k and y as above, until the end of the proof of Proposition 7.7.

Lemma 7.13. — There exist § > 0 and ¢ > 0 satisfying the following property. Let
s=o0 4+ with o € [—oy,0,] and |t| > 10. Let (u,v) € &,. For all xo € A such
that the ball B(xy, (¢ + 8)/|t]) s compactly included n A, there exists a pont x, with
d(xo, x1) < C/|t| such that one of the following possibilities holds:

— Either, for all x € B(xy, 8/]|t]),

(n)

|g—.sr(")oll(X)J(/lx) (Z) j‘;)(hx) —|— g_'W
3 "

< 4e—<’” O ) (- fo ) () + €

— O, for all x € B(xy, 8/|t]),

FOT () (v - fi) (k)|
RO (k) (- f5) (k).

(n)

|g—sr(")O/l(X)J(/lx) (v fo)(hx) + e Ok(x)J(/fX) (@ Jfr)(/fx)}
< "M () (u - f3) () + ie“’””“’f"”J(/fx)(u Jo) (k).

Prooff — Take some constants 6 > 0 and ¢ > 0. Let ¢t € R with |¢{ > 10.
Take (u,0) € &,. Consider xy € A such that the ball B(xy, (¢ +6)/|¢]) is compactly
included in A. If § is small enough and ¢ is large enough, we will find a point
x1 € B(xp, ¢/]t]) for which the conclusion of the lemma holds.

First case: Assume first that there exists x; € B(xg, ¢/|t]) such that [v o A(x)]
<wuoh(x)/2 or |vok(x)| <wuok(x)/2. We will show that this point satisfies the
required conclusion. The situation being symmetric, we can assume that |vo/(x;)| <
uo h(x))/2.

Since (u,v) € &;, we have ||Du(x)|| < 2Cs|tlu(x). As h is a contraction, this
yields [|D(u o £)(x)|| < 2Cs|¢lu o h(x). We can integrate this inequality along an
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almost length-minimizing path between two points x, x": Gronwall’s inequality gives
u(hy') < My ().
For x € B(xy, 8/1¢]), we get

(7.28) ID@ o ) (@) < 2Cs|tulhn) < 2Cs|tle* "M u(hxy).
Hence,
(7.29) lo(hx) — v(hxy)| < 2C5]t|2 P u(hx)8/ 1.

Since |v(hx))| < u(hx1)/2, we get
1 o 1 ( (

7.30 lo(ha)| < | 4 2C586° Ju(hny) < | 4 2C386°“ ) 2“Pu(hy).
2 2

If § 15 small enough, we get |v(hx)| < Zu(/zx) for all x € B(xy, §/|¢]). This concludes
the proof.

Second case: Assume that, for all x € B(xg, £/|¢]), holds |vo A(x)| > uo h(x)/2
and |vo k(x)| > uo k(x)/2.

Let ¢ : [0, ¢/(2|t]))] = A be the solution of the equation ¢'(t) = y(¢(1)) with
¢(0) = x9. Write x* = ¢(1r). We will first show that there exists v < ¢/(8]¢]) for
which F(x*) := ¢ 0 h(x) (- £) (hx*) and G(x7) 1= ¢4 0 k(x7) (- f3) (kx")
have opposite phases. Let y(t) be the difference of their phases.

On the set A(B(xo, ¢/1t])) U k(B(xo, ¢/1¢])), the function v is non vanishing.
Hence, it can locally be written as o(x) = p(x)¢?™. Since Do(x) = Dp(x)e?™ +
ip(x)e?DO(x), the inequality ||Do(x)| < 2Cs|t|u(x) yields

(7.31) DO < 2C5]tu(x)/ p(x) < 4Cs]].
Since (1) = —r™ (hx") + O(hx) + tr® (kx™) — O(kx"), we get
y'(0) =t [D0™ 0 H(x") - p(x") = DE® o h) (") - y(x7) ]
+ DO DA - () — DO )DA(T) - (7).
By (7.27) and (7.31), we get

Y (D] = 9C; ¢l max([[DAGT) - ()|, [IDAGT) - p(H )
— 4Gs|t[IDAKT) -y ()| — 4Cs || [IDEGRT) - p (<O |
> G|t max([[DA(T) - (O 1, IDEGET) -y ().

There exists a constant )y, > 0 such that, for all x € A and all y € T,A with
<yl =2, [IDA(x) -yl = yo and [[DE(x) -yl = yo. We get finally

(7.32) lY' @I = 11Cs 0.
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If ¢ = 167/(Csyy), we obtain T € [0, £/(8]¢])] for which F(x*) and G(x*) have
opposite phases. Set x; = " € B(xg, ¢/(4]t])).

From the definition of F and the inequality ||[D(vo A)(x)| < 4Cs|t||o(hx)| on
the ball B(xy, ¢/|t]), it is easy to check the existence of a constant C independent
of 8 such that, for all x € B(x, ¢/|¢]), |IDF(x)|| < C|t]|F(x)|. If x, x" € B(x, ¢/(3]2])),
an almost length-minimizing path y between x and x" is contained in B(xy, {/[¢]).
Gronwall’s inequality along this path yields |F(x')] < &“M100|F(x)|. Moreover, if
['r denotes the phase of F(x), we have |[DI'p(x)|| < Cl¢l. On the ball B(x, d/|t])
(which 1s included in B(xo, ¢/(3[t])) as soon as § < ¢/12), we get:

: F ,
(7.33) ITp(x) — Tp(x)| < C8 and ¢°¢ < IF] < ¢
[FCx)]

In the same way, if I'g denotes the phase of G, we have for all x € B(x, §/|¢])

_ 161 _

.34 r -T C$ and ¢
(7.34) TG (x) clx)] < and ¢ % < G| <e

Assume for example that |F(x;)| > |G(x))| (the other case is symmetric). If § is
small enough, we get for all x € B(xy, 6/[¢])

(7.35) ITp(x) — Tg(x) — | < /6 and |[F(x)| > |G(x)]/2.
We can then use the following elementary lemma:

Lemma 7.14. — Let z=1re" and 2 = 1'é? be complex numbers with |0 —6' —m| <
/6 and v < 2r. Then |2+ 2| <r+ ’2/

Proof. — We can assume that 8 = 0. Then
(7.36) lz4+ 2| = (r + 7 cos(0))? + (+' sin(6"))°.

Since cos(@’) < 0 and 7" < 2r, we have r+7'cos(f’) € [—r, r]. Moreover, |sin(@’)| <
1/2. Hence,

(7.37) e+ 2P <A+ <+ /2)%

Together with (7.35), the lemma proves that, for all x € B(x, §/|¢),
(7.38) IF() + G| < [F()| + 1G()[/2.

This proves that the second conclusion of Lemma 7.13 holds. |



194 ARTUR AVILA, SEBASTIEN GOUEZEL, JEAN-CHRISTOPHE YOCCOZ

From this point on, we fix the constants ¢ and § given by Lemma 7.13.
Since A is a John domain, there exist constants C, and &, such that, for all
e < gy, for all x € A, there exists ¥ € A such that d(x, 1) < Cpe and such
that the ball B(x’, &) i1s compactly contained in A. Choose Ty > 10 such that
2(¢ +6)/ Ty < &.

Lemma 7.15. — There exist By < 1 and 0 < oy < oy satispying the jfollowing
property. Let s = o + it with o € [—09, 09] and |t| = Ty Let (u,v) € &,. Then there
exists w: A — R such that (@, L'v) € & and thQ du < ,30qu du.

Proof — Consider a maximal set of points xq,...,x € A such that the
balls B(x;, 2(¢ + 6)/|¢]) are compactly included in A, and two by two disjoint.
By Lemma 7.6, this set is finite. The John domain condition on A ensures that
A is covered by the balls B(x;, C4/|t]) where Cy = (2 4+ C)2(¢ + 9).

In each ball B(x;, (¢ + 8)/]t]), there exists a ball B! = B(x/, §/|¢]) on which
the conclusion of Lemma 7.13 holds for the pair (x, v). We will write type(B)) = 4
if the first conclusion of Lemma 7.13 holds, and type(B)) = £ otherwise. By
Lemma 7.5, there exists a function p; on A such that p = 1 on B! =
B(x!, §/(Cylt])), pi = 0 outside of B! and [|p]lct < Cslt|/6. We define a function
p on A by

(7.39) o= ( > pl-) oT"

type(B)=h

on h(A),

(7.40) o= < > ,02»> oT"

type(B))=k

on k(A), and p = 0 on A\(Z(A) U k(A)). This function satisfies |[pllc: < |¢]/no
for some constant 1y independent of s, u, v, and we can assume 17y < 1/4. Notice
that 7y depends on n, /4, £ and §, which is not troublesome since these quantities
are fixed once and for all. Define a new function x = 1 —nyp. It takes its values
in [3/4, 1], with [|[Dx| < |¢|. Moreover, by construction,

(7.41) |Lio| < L (xw).

We set u = i’;(xu). By (7.41) and Lemma 7.12, (&, L’jv) € &,. We have to show
that, for some constant By < 1, thQ du < ,BOfUQ du as soon as o is small enough.
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The definition of i’c‘, gives

2
bt O (x) = (Z OB X e - u)(zx>>

le
( > I (s <1x)> ( Y e O (f - x2)<1x)>
le A, lest;,
< (sup )(ZJUX) <1x>)
lest;,
f —207™ (Ix) 2
x (sup ) <Ze T (oo - X )(1@) .
fZJ le s,
If x € B! with type(B)) =4, we have
1 —207™ (Ix) L y2 _TIn 2
X () ,;e T (foo - 1) (@) = T, GO
= 1—=(1=(1—= 2\ —207™ (hx) ) ]élf(/lx) )
(1= (1 —=mn9)?)e J( x)AgUfQU(x)

This 1s uniformly bounded by a constant n; < l. The same inequality holds if
type(B)) = £, with % replaced by £. Define a number

(7.42) &(o) = (sup Ag”ﬁ)(x?ﬁg (X)> ( upﬁ;> (supf )

A5 (x) A Jo A foo
Let X =|JB? and Y = A\X. We have proved that
(7.43) VieX, #() <&)L) .

If x € X, there is no cancellation mechanism, and we simply have
(7.44) VeeY, #(x) <&)L) ).

The equations (7.43) and (7.44) are not sufficient by themselves to obtain an in-
equality f 2 du < By f u’ dp, one further argument is required.

Since [|[Du|| < 2Cs|tlu, |D@)| < 4Cs|tlu*. Hence, (%, u*) € &,. By
Lemma 7.12, we obtain (Lﬁ(uz) th(uz)) € &,. Hence, the function w = L”(uz)
satisfies ||Dw| < 4Cs|tjlw. Gronwall’s inequality then implies that, for all points
x,x €A, wx) < w(x)e sl particular, there exists a constant C such that,

for all points x,x" in a ball B(x;, C4/|{]), w(x") < Cw(x). This yields

Jsecuan 20 At _ Sy wdp

7.45 .
743 pnB, Ca/le)) = n@B))
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Moreover, Leb(B(x;, C4/[¢]))/Leb(B”) is uniformly bounded since (A, Leb) is a John
domain, and the density of @ is bounded from above and below. We get another
constant C’ such that

(7.46) / wdp < C// wdpL.
B(x:Ci/ ) B
Since the balls B! are disjoint, we obtain
(7.47) fwd,u < C/f wdpu.
Y X

Consider finally a large constant A such that (A+1)n, +C" < A. With (7.43) and
(7.44), we get

(A+l)/2¢2du§€(a) [(A+ 1)[ nlwdu+(A+1)/wdu:|
X Y

<é&(o) |:(A+1)U1/WdM+AdeM+C//de]
X Y X

< S(G)Af wdp.

Since fwdu = fig(uQ) du = qu du, we finally get

(7.48) / i du < &(0) A f £ dp
) - A+1 '

When o — 0, £(0) converges to 1. Hence, there exists oo > 0 such that B, =
A .
SUP|;|<4, §(0) 0y 18 < L. |

Lemmas 7.10 and 7.15 easily imply Proposition 7.7:

Proof of Proposition 7.7. — Is 1s sufficient to prove that there exist B <1 and
C > 0 such that, for all m € N, for all s = 0 + & with o small enough and
lt| > Ty, for all u e CI(A),

(7.49) 122w

m
L2(w) E CIB ”u”l,t'

Indeed, if (7.49) is proved, consider a general integer £ and write it as £ = 2mn—+r
where 0 <r <2n— 1. Then

(7.50) ILEu|,, Lty = CAL || LEul|,, w = CALB" Hi,;'u”u < CAE B lull1s
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by Lemma 7.9. Choosing o, small enough so that SUP 5| <o Lo BYE" < 1, we obtain
the full conclusion of Proposition 7.7.

Let us prove (7.49) for u € C'(A). Suppose first that, for all 0 < p < m,
”D(L{’”u)”co > 2C;s|¢| HL{”uHCo. Then Lemma 7.10 gives

3 91"
(7.51) L], , < (10) llull-

Since HL?'””uHLQ(M) < ” Lfm’lu||1 ,=C H i;””u”“ by Lemma 7.9, (7.49) is satisfied.
Otherwise, let p <m be the first time such that

(7.52) DAL 0 < 20314 | L]

and let v = L/u. Since (sup |0],v) € &, we can apply Lemma 7.15 and obtain a se-
quence of functions w;, with u, = sup |¢], fui du < ,B(ijué du, and (u, Lf”v) € &,
In particular,

=9 = (Om— 2m—p)/2
T oy = 0]y < Nitampllizgn < B3 sup ol
2
< By llullco-
This proves (7.49) and concludes the proof of Proposition 7.7. ]
7.4. A control in the norm | - ||,,. — Although it will not be useful in this

paper, it i1s worth mentioning that Proposition 7.7, which gives a control in the
[’ norm, easily implies an estimate in the stronger norm | - |;,. This kind of
estimate 1s especially useful for the study of zeta functions.

Proposition 71.16. — There exist oy < 0y, Ty >0, C>0 and B <1 such that, for
all s =0+t with |o| <o and |t| > Ty, for all ue CY(A), for all k €N,

(7.53) (197

|, < CAL min(1, B4) a1
Proof. — It 1s sufficient to prove the existence of B <1 such that

(7.54) |L¥ ], , < CBMellully,,

1,0 —

if |o| 13 small enough and |¢| 1s large enough. Indeed, together with Lemma 7.9,
it implies the conclusion of the proposition.

Denote by Lip(A) the set of Lipschitz functions on A, with its canonical
norm

lw(x) — w(x')]
(7.55) llllLip = sup |w(x)| + sup N
xXEA xF£x! d(x, X )
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We will use the following classical Lasota-Yorke inequality on the transfer operators

L,, for small enough |o|: there exist C >0 and f; <1 such that, for all £ € N,
for all w € Lip(A),

(7.56) | L], < CBIllwluip + Cllzollw-
Hence,
(7.57) |25l o = TG (IEu) | o = CBY [Tl + C [T .
Moreover, HiquLip < ¢ Hifu”u < Clt|||lully,, and ”i’;uHI? < ,3(/2“||u||1,t for some
B <1, by Proposition 7.7. Hence, there exists B3 <1 such that
(7.58) 1L u] o < CleBs Nl
By Lemma 7.9, we get
—k

ms9 |G, =]+, D

D@00

Notice that ' "' < ||L%u|, , < Cllull, ;. Together with (7.58), this implies (7.54)
and concludes the proof of the proposition. O

7.5. Proof of Theorem 7.5. — Let U € %, and V € %, be such that
[ Vdu, =0. We will prove that there exist § > 0 independent of U, V, and C >0
dependent of U,V such that

/U'VOT[

By the closed graph theorem, this will imply Theorem 7.3.
For t >0, let A, ={(x,a) € A, : a+t>r(x)} and B, = A\A,. Then

(7.60) Vi >0, < Ce ™.

(7.61) fU-VoTZ:fU-VoT,—I—/U-VoT,z:p(t)—i—Z)(t).
Ay B,
We have
(7.62) lp(H)] < C/ max(r(x) —¢,0) < C/ r(x)
xXEA r(x)>t

< Clirlle(Leb(x = r(x) > )2

Since 7 has exponentially small tails, this quantity decays exponentially. It is there-
fore sufficient to prove that p(f) decays exponentially to conclude.
Since p(#) is bounded, we can define, for s € C with s> 0,

(7.63) () = / N e~ p(t) dt.
0

For W: A, - R and s € G, set Ws(x) = OT(X) Wi(x, a)e**da when x € A.
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Lemma 7.17. — Let s € C with Ns > 0. Then
(7.64) 2(6) = Z f V() - (L0_,) (%) do.
k=174
Proof. — We compute

r(x)
o(s) = / / ¢ "U(x, a)V o T,(x, a) dt dadx
XeEA t+a>r(x)

a=0
r(x)

o r(Thy) 7

=> f / U(x, @) V(Thx, b)e @09 qp dada
F=1 xe€A Ja=0 b=0

=Y [ TLwe Tty
F=1 xXEA

=y f V(0 (L0 (x) dr.
f=1 €A

X O

Lemma 7.18. — T//z\ere exists G >0 such that, for all s= 0+t with |o| < o0y/4
and t € R, the function L,U_, is C' on A and satisfies the inequalily

-~ G
(7.65) ILU-],, < .
M max (1, ¢
Proof — Let us first prove that there exists G > 0 such that, whenever
|0| = 00/4':
8 G (90/2)r(x)
(7.66) Vie A, |U_ (0| < /T,

max(l, [¢])

Since U_,(x) = [" U(x, a)¢™ da, this is trivial if [/ < 1. If |4/ > 1, an integration

by parts gives

r(x) sa T 7(x) r(x) sa
(7.67) U0 = / U(x, @) da = [U(x, 0° ] _ f a,U(x,a)’ da.
a 'S‘ a S

=0 0 =]

The boundary terms are bounded by Ce©/Y"™/|7|, while the remaining term is
at most

(7.68) Cr(x)e ™0 /11| < T2 /1),

This proves (7.66).
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We can now compute

(7.69) ILU_ @] =Y e ™)) U_ (k)
he

C

(o0/4)r(hx) (00/2)r(hx)
= E e hx)e .
max(1, |¢]) J ()

he

This sum is bounded by max(l ypy Since 0o/2 +0p/4 < 0y.
7 U(x, a)e*da. To obtain

We have LU (x) = Y, ¢ 0w [
D(Ljﬁ,s)(x), we can differentiate ¢™°* or J(ix), or U(hx,a) in the integral,
or the bound 7(4x) of the integral.

Since D(e™""¥) = —sD(r 0 h)(x)e™"*"  and ||D(ro4)| is uniformly bounded,
the corresponding term is bounded by Cls| - G/ max(l, |¢|), by the computation
done in (7.69). Since D(J o h)(x) < CJ(hx), the corresponding term is bounded by
C/max(l, |¢]). If we differentiate U(fix, @) in the integral, the corresponding term
is bounded by C)",_, O/ DTEI () @0/ () - which s still uniformly bounded.
Finally, the last term satisfies a similar bound.

We have proved that ||D(Lsﬁ,s)||co < C for some constant C. Together with
the inequality ||Lsﬁ,s||co < CG/max(l, |¢]), it proves the lemma. O

Lemma 7.19. — There exists C > 0 such that, for s = o +ut with |o| < 0y/4 and
t e R,
C

(7.70) ”Vf”L2 = max(1, |¢])

Proof. — 'The inequality (7.66) for V, is trivial if || <1, and can be proved
by an integration by parts along the flow direction (using the bounded variation
of t = V(x,2)) 1f |¢] > 1. This concludes the proof since fA %" < 00. O

Corollary 7.20. — There exists o3 > 0 (independent of U, V) such that the function
0 admits an analytic extension ¢ to the set {s = o +it : |o| < o3, |t| > To}. This extension

satisfies |p(s)| < C/1.

Proof. — Yor s =0 4+ with |o| < o0p/4 and |{| > T, set ¢(s) = Z,fil f\7y
Lfﬁ,j. By Lemma 7.17, it coincides with p when Ns > 0.

We have to check that the series defining ¢ is summable, and that ¢ satisfies
the bound |¢(s)] < C/*. By Proposition 7.7, Lemma 7.18 and Lemma 7.19, if
|o| is small enough,

f v, 10

This last term 1s summable and its sum 1s at most

(7.71) < V|, Itf 0], < |V ,.C8 LT,

C k
l,tE lLQ'B'

e[ LU = Vil

C
(1-pe- 0
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Lemma 7.21. — For all s = it # 0, there exists an open disk Oy with center s
(independent of U, V) such that p admits an analytic extension to O.

Proof. — The operator L, acting on C! satisfies a Lasota—Yorke inequality, by
Lemma 7.8 and the compactness of the unit ball of C!'(A) in C°(A). By Hennion’s
theorem [He], its spectral radius on C' is < 1, and its essential spectral radius
s < 1.

Let us prove that L; has no eigenvalue of modulus 1. This is an easy con-
sequence of the weak-mixing of the flow T,, but we will rather derive it directly.
Assume that there exists a nonzero C! function u and a complex number A with
[X\]| =1 such that Lu = Au. Then |u| = |Lu| < Lg|u|. Since f|u| = fL0|u|, we get
|u| = Lo|u|. In particular, |Lsu| = Lo|u|, which means that all the complex numbers
""" y(hx) have the same argument. Take £ € N such that k|¢| > Ty. The com-
plex numbers ¢~ " y*(hx) also have the same argument. Hence, |Ly(u*)| = Lo|u].
In the same way, for any n € N, |LZ(«")| = L¢|«*|. This is a contradiction, since
L («*) tends to 0 in L? by Proposition 7.7, while ng|uk| = f|uk| does not tend
to 0 when n — oo.

We have proved that the spectral radius of L, is < 1. Hence, there exists
a disk O, around s and constants C > 0, » < 1 such that, for all s € O, and for all
neN, |Li|, < G Since Lly/ﬁ_s/ is uniformly bounded in C! by Lemma 7.18,
the series Zkzl f A vg . Lf,_I(LS/ﬁ_S/) 1s convergent on O;. By Lemma 7.17, it co-
incides with p(s') for Ms > 0. O

Lemma 7.22. — There exists an open disk Oq with center O (independent of U, V)
such that p admits an analytic extension to O.

Progf. — The transfer operator Ly acting on C' has an isolated eigenvalue 1.
For small s, L, is an analytic perturbation of L. Hence, it admits an eigenvalue A,
close to 1. Denote by P; the corresponding spectral projection, and f; the eigen-
function (normalized so that [f =1). On a disk O, centered in 0, it is possible
to write L, = A,P, + R, where P, and R, commute, and HR? < Cr" for some
uniform constants C >0 and < 1.

The function s = A, is analytic in Oy, let us compute its derivative at 0.
Since [|L; — Lollct = O(s) and ||.f; —follct = O(s), we have

e

A = f LJ = f (L — Lo)(f —fi) + f Lo(f —fi) + f L
:0(52)+f(ﬁ —ﬁ))—l—/Lo(e” 5) :O(52)+O—|—fe"d,u

=1 —sfrdu+0(52).
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Hence, 1\ (0) = — f rdu # 0. Shrinking Oy if necessary, we can assume that A; is
equal to 1 only for s =0.
For s € Op\{0}, define a function

(7.72) B(s) = ! /\A/-PLG +§:/\7-R’fLﬁ
A 1 . )\‘S A S S S bt} k_o A S s ) -5

where the last series is converging since HR’: a = Cr* and ||LXG,5”CI(A) < C by
Lemma 7.18. It coincides with p(s) when Rs > 0. When s — 0, the function
=y has a pole of order exactly one, since A'(0) # 0. Let us show that f ?0-
POLOGO = 0. This will conclude the proof, since the function ¢, being bounded
on a neighborhood of 0, can then be extended analytically to O.

The function POLOﬁO i1s proportional to fy. Hence, it is sufficient to prove

[Vofs = 0. But

7(x)

(7.73) f Vo(x) /o (x) dLeb(x) = f Vx, £) dtdu(x) = / Vdu, = 0.
A xeA Jt

=0 0

We will use the following classical Paley-Wiener theorem:

Theorem 7.23. — Let p: R — R be a bounded measurable function. For Ns > 0,
define p(s) = [, O:O e p(x) dx. Suppose that p can be analytically extended to a function ¢
on a stnp {s=oc4+1u: |o|<e teR} and that

(7.74) f sup |¢p(z + )| dt < oo.

1=—00 |z]<e
Then there exist a constant G > 0 and a full measure subset A C Ry such that, for all
¥ €A, |p(n)] < Cem/n,

Proof of Theorem 7.5. — We can summarize Corollary 7.20, Lemma 7.21 and
Lemma 7.22 as follows: there exists o4 > 0 (independent of U, V) such that p
admits an analytic extension ¢ to the set {s=0 4+ : |o| < o4, t € R}. Moreover,
there exists C > 0 such that this extension satisfies

(7.75) |p(o + )] < Cmin (1, zf12> .

Together with Theorem 7.23, it implies that p(f) decays exponentially on a subset
f U-VoT,| <
Ce™. Since ¢ +> [ U-VoT, is continuous by dominated convergence, this inequality
holds in fact everywhere. This concludes the proof of Theorem 7.3. |

of R, of full measure. Hence, on a full measure subset of R,
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8. Exponential mixing for hyperbolic semiflows

In this section, we will prove Theorem 2.7, using Theorem 7.3 and an
approximation argument.

8.1. Estumates on bad returns. — In this paragraph, we will prove the following
exponential estimate on the number of returns to the basis A:

Lemma 8.1. — Let V/(x,a) be the number of returns to A of (x,a) before time ¢,

Le.,
8.1) W,(x,a) =sup{n e N : a+1>r"(x)).

For all k > 1, there exist C>0 and 6 >0 such that, for all t > 0,
(8.2) f kYD dLeb, < Ce .
A,

Proof. — We have

f PR IC) dLeb, = 231(771116137{()67 a) : MO () <a+1t< 7(ﬂ+1)(x)}
Ay

n=0

< ZK—"Leb,{(x, a) : ¢ < ")
n=0

Moreover, for o > 0,

Leb{(x,a) : ¢ < "D (x)}

1/2 1/2
= f 7'(x)l,.(u+1>(x)zt < (f 72> (f 1;-(u+1>(x)zt>
A A A
1/2
< C (/ ew(nﬂ)(x)/em)
A

(8.3) f o = / L) < Cast
A A

If o is small enough,

Choosing ¢ small enough so that k7 '\/A, < 1, we obtain f@ kY0 dleb, <
Ce 2, ]



204 ARTUR AVILA, SEBASTIEN GOUEZEL, JEAN-CHRISTOPHE YOCCOZ

8.2. Proof of Theorem 2.7. — Let U,V be C! functions on Zr, with [ Udy,
= 0. We will prove that [U-VoTydy, decreases exponentially fast in .

Define a function V, on A, by V,(x,a) = f VoT,(y, a)dv,(y). Let

yer—1(x)

7T, Z, — A, be given by m,(y, a) = (w(x), a).

Lemma 8.2. — There exist § > 0 (independent of U, V) and C > 0 such that, for
all t >0,

(8.4)

< Qe .

>

/AU-Vondvr—fAU-V,oT,omdv,
A, 7
Proof. — We have

'fU-VoTQ,dv,—/U-V[oT[on,du,

= '/U-(Vof,—V,om)oidvr

fo|Vo:f,—V,om|oidvr:C/|V0T,—V[orr,|dv,.

Take x € A. If n(y) = #(y) = «x, the contraction properties of T give
d(:f,(y, a),:f,(y’,a)) < k" V*9¢(y,9"), where W, is defined in Lemma 8.1. Hence,
[V o :f\,(y, a) — V o T,(y’,a)| < Ck ¥®9  Ayveraging over ), we obtain
Vo T,(»,a) — Vi(x,a)| < Ck¥*9_ Finally,

(8.5) fA IVoT,—V,om|dy, < cf kYO qu, .
A, Ay

This quantity decays exponentially, by Lemma 8.1 (and since the density of w 1is
bounded). O

Lemma 8.3. — There exist § > 0 (independent of U, V) and C > 0 such that, for
all t >0,

(8.6) / U-V,0T,om,dy,| < Ce.

A,

Progf. — Define a function U on A, by Uy, a) = fyerl(x) U(y, @) dv, ().

Since U € C!(A,) and the measures v, satisfy the third property in the definition
of hyperbolic skew-products, the function U belongs to %,. Moreover, |, A Udn, =
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ferdvr = 0. Hence, Theorem 7.3 (or rather the remark following it) gives

(8.7) 021V 5,

fA U-V,oT,omdy,| =
A,

/ U-V,oT,du,| < Ce
A,

To conclude the proof, it is thus sufficient to show that |V,||s, 1s uniformly
bounded. First of all, since V is bounded, V, is bounded.

Consider then x € [JA". Take 0 < a < r(x). If T)(x,a) is not of the form
(x',0), then V, is differentiable along the flow direction at (x, ). Its derivative is
given by

8.8 f @V, @) dn(),
yer 1 (x)

since the flow 1s an isometry in the flow direction. In particular, this derivative is
bounded by |[V||c:.

There is a finite number of points 0 < a; < --- < g, < r(x) such that
T,(x,a;) 1s of the form (x',0). Indeed, since 7 is uniformly bounded from below
by a constant &, there are at most ’i’“) + 1 such points. At each of these points,
V, has a jump of at most 2{|V|co. Flnally, the variation of a > V,(x, @) along the
mnterval (0, r(x)) 1s at most

r(x)
8.9) < . T 1) 2[Vllco +r)IVller = Cr) [IV]|cr.

1 O

Lemmas 8.2 and 8.3 show that, for a uniform constant § > 0 and for some
constant C >0 depending on U and V, for all > 0,

(8.10) '/U-Von dv,| < Ce™®

By the closed graph theorem, the constant C can be chosen of the form
CNUJlctIVIler for a uniform constant C’. This concludes the proof of The-
orem 2.7.
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A. A simple distortion estimate

Here we present an alternative distortion estimate, Theorem A.2, which is
far from optimal, but is enough to obtain exponential mixing, while being based
on a much simpler argument. While much simpler, we have only noticed it after
obtaining the nearly optimal estimate.

For &/' C o/ non-empty, let my/(¢) = mingc. ¢4, and let m(g) = my(g).
The other notations are those of §5.3.

Lemma A1 (Kerckhoff;, [K]). — For every T >0, g€ RY, o € o/, m € R, we

have
(A'l) Pq(y € Fa(n)’ (By : Q)ot > T%{ | 7[) < Til’
where Ty (1) denotes the set of paths starting at 7w with no winner equal to «.

Progf — Let T™ () C [y() denote the set of paths of length at most n.
We prove the inequality for I'”(7) by induction on n. The case n = 0 is clear.
The case n follows immediately from the case n — 1 when none of the rows of
7 end with o. Assume for instance that the top row of 7 ends with o and the
bottom row with B. Then every path y € F((;l)(ﬂ) starts with the bottom arrow
Y, starting at 7. Let ¢’ =B, - ¢. We have ¢, = ¢, + ¢5 and P,(y,|7) = ZZ The
inequality follows by the induction hypothesis. O

Theorem A2. — There exists C > 1 such that for every ¢ € R‘f ,fmeR
(A.2) P,(M(B, - ¢) < Cmin{m(B, - ¢), M(¢)} |7) > C~".

Proof — TYor 1 < k < d, let m;(¢) = maxm, (g) where the maximum is
taken over all @’ C & such that #</' = k. In particular m = m,;. We will show
that for 1 < £ < d there exists C > 1 such that

A.3) P,(M(B, - ¢) < Cmin{my(B, - 9), M(¢)} | 7) > C~'

(the case & = d implying the desired statement). The proof is by induction on £.
For £ = 1 it is obvious. Assume that it is proved for some 1 < k£ < d with
C = (Cy. Let I' be the set of minimal paths y starting at 7 with M(B, - ¢) <
Comin{m;(B, - ¢), M(¢)}. Then there exists I'y C I' with P(I"; |m) > Cl_1 and
/" C o/ with #47" =k such that if y € I'y then m;(B, - ¢9) = m,(B, - ¢).

For y, € '), choose a path y = y,y, with minimal length such that y ends
at a permutation 7, such that the top or the bottom row of m, (and possibly both)
ends by some element of o7\ &/’. Let I'y be the collection of the y = y,y, thus
obtained. Then P, (I'; | ) > C;l and M(B, - ¢) <C,M(@B,, - ¢) for y = y,y, € I'o.
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Let I's be the set of paths y = y,y, such that y, € I'y, the winner of the
last arrow of y, belongs to o7’, the winners of the other arrows of y, belong to
o\ &', and we have (B, - ¢)y < 2d(B,, - ¢)y for all « € &/". By Lemma A.l,
P,(Ts|7,) > |, y, € Ty, and Py(Is|7) > (2Cy)~".

Let y = y,y, € I's, y, € I'y. If M(B,, - ¢) > 2dM(B,, - ¢), we take y; with
Ys < 1 < ¥, of minimal length such that M(B,, - ¢9) > 2dM(B,, - ¢); there ex-
ists @« € &/ \ & such that M(B,, - ¢) = (B, - ¢y < 4dM(B,, - ¢). Moreover we
have m.(B,, - ¢) > (CoCo4d)"'M(B,, - ¢) in this case. If M(B, - ¢) < 2dM(B,, - ¢),
the loser o of the last arrow of y (which belongs to & \ &’ by construction)
satisfies (B, - ¢)o > (COCQQd)_lM(By - ¢). This allows again to conclude: in any
case there exists y; with y, < y; < ¥, and & with #&/ = k4 1 such that
M(@B,, - ¢) < 4dCyCy min{m,(B,, - ¢), M(¢)}. Since the set I'y of all y; thus ob-
tained satisfies P (I'y|m) > P,(I's|m) > (2C)7!, (A.3) holds with £+ 1 instead
of k. O

B. Spectral gap

This section is concerned with the natural action of SL(2, R) on a connected
component of a stratum €'". Though we have not used it elsewhere in this paper,
this action is very important in several works on the Teichmiiller flow, see for
instance the work on Lyapunov exponents of [lo].

We recall that the mere exustence of this action has already important implica-
tions: for instance the action of non-compact one-parameter subgroups (which are
conjugate either to the Zechmiiller flow or the horocycle flow) is automatically mix-
ing with respect to any ergodic invariant measure for the SL(2,R) action. Thus,
ergodicity of the Teichmiller flow ([Ma], [Vel]) with respect to the absolutely
continuous invariant measure on %" implies mixing (which can be obtained also
directly [Ve2]).

Here we will show how our analysis of the Teichmiiller flow can be used to
show that the SL(2,R) action has a spectral gap. To put this concept in context,
we recall some more general definitions.

Defimition B.1. — Let G be a (locally compact o-compact) group. A (strongly continu-
ous) unitary representation of G is said to have almost nvariant vectors if for every € > 0
and for every compact subset K C G, there exists a unit vector v such that ||g-v—v| <e
Jor all g € K.

A wunitary action which does not have almost invariant vectors is said to be isolated
from the trivial representation.

If G s a semi-simple Lie group (such as SL(2,R)), a representation which is isolated
Jrom the trivial representation s also said to have a spectral gap.
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Given a probability preserving action of SL(2,R), it thus makes sense to ask
whether the corresponding unitary representation on L (the space of zero-average
[? functions) has a spectral gap. Ergodicity of the action is of course a necessary
condition, being equivalent to the nonexistence of invariant unit vectors. It may
happen for a group G that any unitary representation which has almost invariant
vectors has indeed an invariant unit vector: this is one of the equivalent definitions
of Kazhdan’s property (1), and has several consequences. As it is well known,
SL(2, R) does not have property (T), so the spectral gap is indeed a non-automatic
property in this case.

The spectral gap for the SL(2,R) action on €V can be also seen more
geometrically as a statement about the foliated Laplacian on ¢V/SO(2,R),® or
of the Casimir operator: the spectrum (for the action on L) does not contain 0.

The connection between the spectral gap for the SL(2,R) action and rates
of mixing for non-compact one-parameter subgroups was used most notably by
Ratner [Rt]. In her work, estimates on the rates of mixing are deduced from
the spectral gap. That one could also go the other way around seems to be also
understood (the argument is much easier than for the direction used by Ratner).
It 1s possible however that this is the first time that it has been useful to consider
this connection in the other direction.

The existence of a spectral gap has several ramifications. It is even inter-
esting to just “go back” to rates of mixing using the work of Ratner. It implies
polynomial decay of correlations for the horocycle flow. It even gives back extra infor-
mation regarding the Teichmiiller flow: it implies that exponential mixing holds for
observables which are only Hoélder along the SO(2,R) orbits (this notion of reg-
ularity 1s made precise in [Rt]). Further applications include exponential estimates
for the Ball Averaging Problem, see [MNS].

The initial line of the arguments given here (reduction to a “reverse Ratner
estimate”) was explained to us by Nalini Anantharaman, Sasha Bufetov and Gio-
vanni Forni. The proof of the “reverse Ratner estimate” was explained to us by
Giovanni Forni.

Proposition B.2. — Let us consider an ergodic action of SL(2, R) by measure-preserving
automorphisms of a probability space. Let p be the corresponding representation on the space
H of L? zero average functions. Assume that there exist § € (0,1) and a dense subset of
the subspace of SO(2, R)-wvariant functions H' C H consisting of functions ¢ for which the

et

correlations (@, p(g,) - ), g = (O e(_)t)’ decay like O(e™). Then p is isolated from the

trivial representation.

3 The space €V/SO(2, R) is foliated by quotients of SL(2, R)/SO(2, R), which is a model for 2-dimensional
hyperbolic space. In particular there is a natural leafwise metric of constant curvature —1, which allows us to define
the foliated Laplacian, whose spectrum is contained in [0, 00).
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Proof. — Let us decompose p into irreducible representations. Thus H =
f H; du(§), and there are irreducible actions pg of SL(2,R) on each Hg which
integrate to p.

Bargmann’s classification (see [Rt] and the references therein) shows that all
non-trivial irreducible representations fall into one of three series of representa-
tions: the principal, the complementary and the discrete series. Thus we have the
corresponding decomposition u = w, + p, + pyz. We recall some basic facts that
follow from this classification:

1. If p; 13 in the complementary series, then there exists s = s(§) € (0, 1),
such that pg is isomorphic to the following representation p,: the Hilbert
space 1s

S S)

RxR |[x =1

(B.1) %?:{f:R—)C:HfHQ: dxdy<oo},

and the action is given by

a b 1 ax+b
(B.2) 'O‘Y<c d)f(x) T (o + d)lﬁf(ﬁx + d) .

2. The (integrated) representation p is isolated from the trivial representation
if and only if there exists € > 0 such that s(§) < 1 — ¢ for p,-almost
every &.

3. The space of SO(2,R) invariant vectors H"é C H; is zero-dimensional
(in the case of the discrete series) or one-dimensional (in the case of the
principal and complementary series).

Let H C H be the set of SO(2, R) invariant functions. Then H’ :fHé du(é).
The point of the proof is the following lemma:

Lemma B.3. — If p; is in the complementary series and ¢z € Hi is a non-zero
vector, then (@g, pe(g) - @) 1s positive and

1
B.3) lim  log(d. pe(g) - ¢x) = —1+ ().

Let us show how to conclude the proof using the lemma. Suppose by contra-
diction that p is not isolated from the trivial representation. There exists a function
¢ = f ¢ du(§) € H' whose correlations decay like O(¢™) and such that

(B.4) A&+ e £0 and 5(&) € (1 —8/2,1)} > 0.

Write ¢ = ¢, + ¢. where ¢, is the part of ¢ corresponding to representations in
the principal series, and ¢, corresponds to the complementary series (as discussed
above, ¢ = 0 for p,-almost every &). Then

(B.5) (D, p(g) - ) = (B, P(8) - Dy) + (D, (&) - Do)
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By the results of Ratner [Rt], the correlations of ¢, decay at least as fe~'. More-
over, by (B.3), positivity, and (B.4), the second term is larger than Ce°/? for
large ¢. This contradicts the speed of decay of correlations of ¢. ]

Proof of Lemma B.53. — A function f € J¢ is invariant under the SO(2,R) ac-
tion if and only if it is smooth and satisfies the differential equation (14 x%)f"(x)+

1+ S)Xf(x) =0, i~e~: f(x) = (1+x2;‘(1+,‘)/2~

For such a function f, the correlations are given by

. dxdy
. — 2 1(1+s)
B.6 (/s 0(g) - /) =lcl"e LXR (1 4 x2)H9/2(]  gHy2)1+9/2|y — |1
. — |C|Qel(71+s) dx d))
Rxr (1 +a2)A+9/2(] _|_y2)(1+s)/2|x — g—szll—s'

This shows that the correlations are positive and that

liminfe" = (£, p(g) - f)

(B.7) 9 dxdy
> |l ‘ ‘ ‘ >0
ror (1 A A2 AH9/2(] 4 52)(14+9/2 g |15

Moreover, Ratner has proved the upper bound limsup '~ (f, p,(g) - f) < o0 in
[Rt, Theorem 1] (the convergence of the last integral in (B.6) to the integral in
(B.7) can also be verified directly). This concludes the proof of the lemma. O

Since our Main Theorem implies exponential decay of correlations for com-
pactly supported smooth functions, the hypothesis of Proposition B.2 is satisfied.
Corollary 1.1 follows.
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