
Exponential Moving Average Normalization
for Self-supervised and Semi-supervised Learning

Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Zhuowen Tu, Stefano Soatto
Amazon Web Services

{zhaoweic,ravinash,smmaji,fowlkec,ztu,soattos}@amazon.com

Abstract

We present a plug-in replacement for batch normaliza-
tion (BN) called exponential moving average normaliza-
tion (EMAN), which improves the performance of exist-
ing student-teacher based self- and semi-supervised learn-
ing techniques. Unlike the standard BN, where the statis-
tics are computed within each batch, EMAN, used in the
teacher, updates its statistics by exponential moving aver-
age from the BN statistics of the student. This design re-
duces the intrinsic cross-sample dependency of BN and en-
hances the generalization of the teacher. EMAN improves
strong baselines for self-supervised learning by 4-6/1-2
points and semi-supervised learning by about 7/2 points,
when 1%/10% supervised labels are available on ImageNet.
These improvements are consistent across methods, network
architectures, training duration, and datasets, demonstrat-
ing the general effectiveness of this technique. The code will
be made available online.

1. Introduction

Supervised learning has achieved remarkable success on
a variety of visual tasks, benefiting from the availability of
large-scale annotated datasets such as ImageNet [37], MS-
COCO [31], and ShapeNet [6]. However, in some domains
such as medical imaging, large amounts of annotations are
expensive or time-consuming to collect. Learning effective
representations with small amounts (semi-supervised) or no
(unsupervised or self-supervised) manual annotation is thus
an important problem in computer vision [3, 8, 9, 17, 19, 28,
29, 39, 41, 45].

Although many choices exist for semi- and self-
supervised learning [3,15,29,34,50], an effective approach
is the family of student-teacher models [9, 17, 19, 22, 28,
41, 47], where the outputs of the teacher are used to guide
the learning of the student on the unlabeled data. Within
this family, a common approach is to update the teacher
using exponential moving average (EMA) of the student

student

BN

BN

teacher

BN

BN

im_v1 im_v2

EMA

out_v1 out_v2

student

BN

BN

teacher

EMAN

EMAN

im_v1 im_v2

EMA

out_v1 out_v2

loss loss

Figure 1. The EMA-teacher framework with standard BN (left)
and the proposed EMAN (right). θ are the model parameters, and
µ and σ2 BN statistics. EMA denotes exponential moving average
updates. im v1 and im v2 are two different views of the same
image. No gradient is backpropagated through the teacher model.

parameters over its training trajectory [41], which we call
EMA-teacher, as shown in Figure 1 (left). As discussed
in [1,24,26], the temporally averaged teacher, as interpreted
as the temporal ensembling of the student checkpoints, can
improve generalization. Due to this property, it has been
adopted in recent self-supervised learning methods [17,19].

While the objective and the update mechanisms are dif-
ferent for the student and the teacher, both networks use
the standard batch normalization (BN) [25], as in the early
EMA-teacher frameworks [41]. However, this can lead to
two potential problems:

1. Cross-sample dependency. This is an intrinsic prop-
erty of BN where the output of a sample is dependent
on all other samples in the same batch. This cross-
sample information leakage may allow the model to
“cheat” in semi- or self-supervised learning. To avoid
this, some special designs on normalization were ap-
plied in [8, 17, 19, 21]. For example, [21] switched
to layer normalization [2]; MoCo [19] designed Shuf-
fleBN where a mini-batch uses BN statistics from other
randomly sampled mini-batch; and SimCLR [8] and
BYOL [17] used Synchronized BN (SyncBN).

2. Model parameter mismatch. In the teacher network, its
parameters are averaged from the student parameters

of previous iterations, but the batch-wise BN statistics
are instantly collected at current iteration. This could
lead to potential mismatch between the model param-
eters and the BN statistics in the parameter space.

We present a simple replacement for standard BN used
in the EMA-teacher framework, called exponential mov-
ing average normalization (EMAN). As shown in Figure
1 (right), the EMAN statistics (mean µ′ and variance σ′2)
in the teacher are exponentially moving averaged from the
student BN statistics, similar to the other parameters. The
EMAN is simply a linear transform, without batch-wise
statistics computation, and thus has removed cross-sample
dependency presented in BN in the teacher. Since the nor-
malization statistics and model parameters are both updated
using EMA, we expect this to improve stability of train-
ing by reducing the potential model parameter mismatches
when using BN. This simple design requires only a few
lines of code, and can replace other complex normaliza-
tion schemes (e.g. ShuffleBN, SyncBN, etc.) within various
semi- and self-supervised learning techniques.

We have evaluated EMAN within various EMA-
teacher frameworks, including recent state-of-the-art semi-
supervised learning (FixMatch [39]) and self-supervised
learning (MoCo [19] and BYOL [17]) techniques. On self-
supervised learning, EMAN improves the performance of
MoCo/BYOL by 4-6/1-2 points when 1%/10% labels are
available on ImageNet [37]. On semi-supervised learning,
EMAN improves the performance of FixMatch by about 7/2
points for 1%/10% labels, leading to the new state-of-the-
art performances of 63.0/74.0 top-1 accuracy for 1%/10%
labels on ImageNet. These improvements are consistent
across methods, network architectures, training duration,
and datasets, demonstrating the effectiveness of EMAN as
a general technique. In addition, EMAN is just as efficient
as standard BN, and does not require cross-GPU commu-
nication or synchronization of ShuffleBN or SyncBN. We
thus believe that EMAN can be of interest for other future
student-teacher variants.

2. Related Work
Semi-supervised learning leverages unlabeled data to

improve the model performance, and has a long history
in machine learning [7, 51]. We primarily focus on re-
cent deep-learning based approaches. Pseudo-Labeling [29]
generates synthetic labels from the confident predictions to
learn on the unlabeled data. Temporal ensembling of pre-
dictions was proposed to improve robustness in [28]. Con-
sistency regularization based methods [28, 33, 39, 41] learn
by requiring the predictions to be consistent after perturba-
tions on inputs and/or model parameters. For example, Π-
model [28] perturbs the model weights, uses dropout [40],
and enforces that the clean and noisy predictions be consis-
tent. Mean-teacher [41] proposed the EMA-teacher frame-

work, and learns by enforcing consistency between the stu-
dent and teacher models. FixMatch [39] assumes consis-
tency between the weakly and strongly augmented inputs.
A broader survey of semi-supervised learning techniques
can be found in [7, 51].

Unsupervised or self-supervised learning aims to learn
representations from data without annotations. It has been
particularly effective in natural language processing [12,
36]. Early self-supervised learning approaches in computer
vision were based on proxy tasks, e.g. solving jigsaw puz-
zles [34], colorization [50] and rotation prediction [15]. Re-
cently, the contrastive learning [18] using instance discrim-
ination has achieved promising results [8, 9, 19, 32, 42, 45].
For example, MoCo [19] and SimCLR [8, 9] have nar-
rowed the gap between supervised and unsupervised learn-
ing in some domains. BYOL [17] found that, instead of
a contrastive loss, optimizing a feature regression loss can
achieve better results than prior work [8,9,19]. An extensive
survey of self-supervised learning can be found in [27].

The student-teacher framework was first introduced
in [4] and developed in [22] to distill knowledge from the
pretrained teacher model to the new student model. While
in [9,22], the teacher is a pretrained and frozen model, other
variants are available for different purposes. For example,
in [39] the teacher and the student are identical; in [38] the
teacher is an ensemble of multiple networks; in [4, 9, 22]
the teacher is a more complex network than the student for
model compression; in [28] the teacher is a temporal en-
semble of student checkpoints with the step of one epoch;
in [17, 19, 41], the teacher is a more smoothly temporal en-
semble than [28] by exponential moving average.

Normalization is a critical component to enable faster
convergence and reduce the dependency on initialization for
modern deep networks. While BN [25] is widely used, it in-
troduces some issues, such as requiring large batch sizes for
accurate statistics, and mismatch between how BN is used
during training and inference. To address these, other nor-
malization techniques have been proposed. Layer Normal-
ization (LN) [2] normalizes along the channel and spatial
dimension, Instance Normalization (IN) [43] along only the
spatial dimension, and Group Normalization (GN) [44] op-
erates similar to LN but divides the channels into groups.
MABN [48] shares some similarities with our EMAN, but
mainly focuses on the stability of small batch size training
and updates its statistics inside a single network. In self-
supervised learning, to avoid the possible information leak-
age via BN, [21] used LN, SimCLR [8] and BYOL [17]
use SyncBN, and MoCo [19] uses ShuffleBN where a mini-
batch uses BN statistics from other randomly sampled mini-
batch. Although these normalization schemes work well in
some specific cases, our experiments will show that they do
not generalize well across various semi- and self-supervised
learning methods.

3. Preliminaries
3.1. EMA-Teacher Framework

The EMA-teacher framework, with architecture shown
in Figure 1 (left), was first introduced in the Mean Teacher
[41], to improve the non-smooth temporal ensembling of
[28]. The teacher parameters θ′ are updated by exponential
moving average (EMA) from the student parameters θ,

θ′ := mθ′ + (1−m)θ, (1)

where the momentum m is a number close to 1, e.g. 0.999.
The student network is exactly the same as the standard su-
pervised network, where the parameters θ are learned by
standard SGD. In general, there is no gradient backpropa-
gation through the teacher model, and the teacher model is
discarded once training finished.

This EMA teacher can be interpreted as a smooth tempo-
ral ensembling of the student checkpoints along the training
trajectories. As discussed in [1,24,26], this temporal weight
averaging mechanism can stabilize training trajectories and
present better performances than the standard SGD update.
In consistency based semi- and self-supervised learning,
training could be less stable [1], where the EMA-teacher
framework with improved generalization can help. Due to
its good performance, this EMA-teacher has derived differ-
ent variants for different tasks [17, 19].

While the EMA-teacher has the special update rule for
the learnable parameters, it does not for its normalization
operators. Instead, the standard BN is used in both student
and teacher models as in [41].

3.2. Batch Normalization

BN [25] can stabilize the learning and enable faster con-
vergence, and thus has been widely adopted. It has differ-
ent training and inference modes. During training, BN first
computes the mean and the variance of the layer inputs for
the current batch {xi}ni=1,

µB =
1

n

n∑
i=1

xi,

σ2
B =

1

n

n∑
i=1

(xi − µB)2,

(2)

where n is batch size. Next, every sample x in the current
batch is normalized using the batch-wise statistics µB and
σ2
B, and then an affine transformation with learnable param-

eters γ and β is applied,

x̂ = BN(x) = γ
x− µB√
σ2
B + ε

+ β, (3)

where ε is a small constant for numerical stability.

At inference, however, it is not desirable to use the batch-
wise statistics, µB and σ2

B, since the output of an input
should be deterministic and not dependent on other inputs in
the same batch. The population statistics, E[µ] and E[σ2],
should be used instead. But this requires an additional stage
of statistics gathering on a large sample population, which
could be undesirable. In many implementations, a more
practical and efficient strategy is widely used, collecting the
proxy statistics µ and σ2 by exponential moving average
during training,

µ := αµ+ (1− α)µB,

σ2 := ασ2 + (1− α)σ2
B,

(4)

where the momentum α here is usually 0.9. With the proxy
statistics µ and σ2, the BN at inference becomes

x̂ = BN(x) = γ
x− µ√
σ2 + ε

+ β, (5)

which differs from its training mode of (3). This practical
strategy is very common in many implementations, e.g. as
default in PyTorch and TensorFlow.

4. Exponential Moving Average Normalization
In the EMA-teacher framework, as introduced in Section

3.1, both the student and the teacher use the standard BN
during training,

y = f(BN(x), θ),

y′ = f(BN(x), θ′).
(6)

where f is the intermediate layers of relu-conv, which
takes the output of normalization as input. The standard
BN is well aligned with the model parameters for a typical
network (e.g. the student) which is updated by SGD, since
the parameters are optimized with those batch-wise statis-
tics. However, it is no longer the case for the teacher that
is updated by EMA. Two reasons suggested that. First, the
teacher is used to generate pseudo ground-truth to guide the
learning of the student. With batch-wise BN, these gener-
ated pseudo labels will be cross-sample dependent, which
is not desirable. For example, the pseudo label of x1 is de-
pendent on x2 if x1 and x2 are in the same training batch.
Second, there is a possible mismatch between the model pa-
rameters θ′ and batch-wise BN statistics (µB and σ2

B) in the
teacher model. The former is averaged from the student pa-
rameters of previous iterations, but the latter is instantly col-
lected at current iteration, and the former is not optimized
for the latter. This mismatch could lead to non-smoothness
in the parameter space.

To resolve these issues, we propose using exponential
moving average normalization (EMAN) for the teacher dur-
ing training (student still uses BN),

y′ = f(EMAN(x), θ′), (7)

Algorithm 1 PyTorch-like Pseudocode of EMAN Update
f_s, f_t: encoder networks for student and teacher

params_s = f_s.parameters() # learnable parameters
params_t = f_t.parameters() # learnable parameters
for s, t in zip(params_s, params_t):

t = momentum*t + (1-momentum)*s

buffers_s = f_s.buffers() # BatchNorm proxy statistics
buffers_t = f_t.buffers() # BatchNorm proxy statistics
for s, t in zip(buffers_s, buffers_t):

t = momentum*t + (1-momentum)*s

where

x̂ = EMAN(x) = γ
x− µ′√
σ′2 + ε

+ β, (8)

where µ′ and σ′2 are also exponentially moving averaged
from the student µ and σ2, in the same way of (1),

µ′ := mµ′ + (1−m)µ,

σ′2 := mσ′2 + (1−m)σ2.
(9)

The key difference between (3) and (8) is the normaliza-
tion factors. They are batch-wise µB and σ2

B in (3), but
EMA updated µ′ and σ′2 in (8). This new normalization
technique for the teacher is simply a linear transform which
is no longer dependent on batch statistics. EMAN elim-
inates cross-sample dependence in the teacher, and there
is no mismatch between the model parameters (θ′) and its
normalization factors (µ′ and σ′2). Note that although the
student is still cross-sample dependent, this is a less seri-
ous issue than the cross-sample dependency in the teacher.
EMAN is better aligned with the EMA-teacher framework
than the standard BN (and probably other normalization),
and as we show next, it is generally applicable in different
EMA-teacher variants for different tasks [17, 19, 39, 41].

4.1. Applications

We have applied EMAN to recent state-of-the-art semi-
supervised learning (FixMatch [39]) and self-supervised
learning (MoCo [19] and BYOL [17]) methods. Applying
EMAN to these three techniques is simple, requiring a few
lines of code change, as shown in Algorithm 1, where the
learnable parameter update is adopted as in [17, 19, 41].

FixMatch [39] uses identical teacher and student mod-
els, with architecture shown in Figure 2 (left). The teacher
generates pseudo labels after thresholding, which are then
used to guide the learning of the student with standard
cross-entropy loss. A tricky mechanism in FixMatch is to
concatenate the strongly and weakly augmented images first
and then forward them to the model together. In this case,
the teacher and the student are using exactly the same BN
statistics. We first reframe FixMatch in the EMA-teacher
framework (with standard BN), motivated by its success.
However, this change leads to much worse performance,
with possible reasons discussed above in this section.

cat(im_s, im_w)

logit_wlogit_s

pseudo-label

network

BN

BN

student

BN

BN

teacher

EMAN

EMAN

im_s im_w

EMA

logit_s logit_w

pseudo-label
CE lo

ss
CE loss

Figure 2. The architecture change of FixMatch using EMAN.
im s/im w is the strongly/weakly augmented view of an image,
cat concatenation. The other symbols are similar as Figure 1.

MoCo [19] has bridged the gap between supervised and
unsupervised learning in multiple visual tasks. It can be
interpreted as a variant of EMA-teacher, where the key
(teacher) model is EMA updated from the query (student)
model, and a contrastive loss is constructed between their
outputs. MoCo also found it problematic to use BN in both
student and teacher, due to possible information leakage.
The model would probably “cheat” with local BN statis-
tics to find a low-loss trivial solution rather than learning
good representations. Instead, MoCo uses ShuffleBN in the
teacher, in which the batch-wise BN statistics are computed
inside a randomly shuffled mini-batch samples across dis-
tributed GPUs. This ensures that the batch statistics used
to compute the query and the key come from two different
subsets, avoiding the cheating issue to some extent.

BYOL [17] can also be interpreted as a EMA-teacher
variant similar to MoCo, although the student/teacher is
named as online/target network. It differs from the other
contrast based self-supervised learning [8,19,45] by formu-
lating the self-supervised learning problem as a regression
task, bridging the student and teacher outputs with a simple
L2 loss. [14] hypothesizes that the reason why BYOL does
not need contrastive loss is BN also plays an role of im-
plicit contrast term, not just normalization. To have stronger
implicit contrast and avoid knowledge leakage, SyncBN is
adopted in both student and teacher models, in which the
BN statistics are collected globally across GPU cards and
machines. This requires efficient synchronization technique
and leads to slower training speed.

Our experiments show that using standard BN in both
teacher and student models results in poor performances
in all these three techniques. Although different solutions
have been proposed to avoid that, e.g. Shuffle BN in MoCo
and SycnBN in BYOL, they do not generalize well in other
techniques as will be shown in our experiments. To have
a general and simpler solution, we apply EMAN in all

0 10 20 30 40 50 60 70 80 90 100

epoch

0

10

20

30

40

50

60

70

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

FixMatch on ImageNet with 10% Labels

baseline

BN

EMAN

(a)

0 10 20 30 40 50 60 70 80 90 100

epoch

0

5

10

15

20

25

30

35

40

45

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

MoCo KNN Accuracy on ImageNet

ShuffleBN

BN

EMAN

(b)

0 5 10 15 20 25 30 35 40 45 50

epoch

0

5

10

15

20

25

30

35

40

45

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

BYOL KNN Accuracy on ImageNet

SyncBN

BN

EMAN

(c)
Figure 3. The training accuracy curves of FixMatch, MoCo and BYOL on ImageNet, by using different normalization schemes.

three techniques, as in Figure 1 and 2. EMAN can im-
prove over the standard BN by a large margin, and even
surpass the ShuffleBN/SyncBN counterparts, universally in
FixMatch/MoCo/BYOL. In addition, the training will be
simpler and more efficient since EMAN requires no cross-
GPU communication or synchronization as needed in Shuf-
fleBN/SyncBN. We expect EMAN to be applicable to other
student-teacher variants.

5. Experiments

ImageNet [37] is mainly used in all experiments, which
contains∼1.28 million images for training and 50K images
for validation. The proposed EMAN has been evaluated on
the state-of-the-art self-supervised learning (MoCo [19] and
BYOL [17]) and semi-supervised learning (FixMatch [39]).
For MoCo, the official implementation was used, but Fix-
Match and BYOL were reimplemented in PyTorch [35].
The default network is ResNet-50 [20] and the default hy-
perparameters in the corresponding papers were used, un-
less noted otherwise. For FixMatch, the batch size for la-
beled (unlabeled) images is 64 (320) with initial learning
rate 0.03. For BYOL, the batch size is 512 with initial
learning rate 0.9. All experiments were run on a machine
with 8 V100 GPU cards. The self-supervised pretrained
models were evaluated by 1) linear classification follow-
ing [8, 9, 17, 19]; and 2) kNN classification with k = 20
following [5,30,45,52], on top of the frozen representation.
The other settings will be introduced in the following spe-
cific experimental sections. More experimental details can
be found in the appendix.

5.1. The Effect of EMAN

The effect of the proposed EMAN was evaluated. For
FixMatch, only 10% labels were used and the rest data as
unlabeled. For MoCo and BYOL, we showed the accura-
cies of the kNN classifier along the training, since it is too
expensive to train additional linear classifier. The kNN clas-
sifier used 10% train (50% val) as training set (query)

student teacher FixMatch MoCo BYOL

default default 67.1 54.4 55.4
BN BN 58.9 52.5 52.0

SyncBN SyncBN 52.0 53.3 55.4
BN ShuffleBN 55.8 54.4 52.6
GN GN 63.3 49.3 failed
IN IN 61.3 46.5 failed
BN EMAN 69.2 55.8 56.2

Table 1. Accuracy with different normalization.

for efficiency purpose (the observations are consistent with
all train/val data). FixMatch/MoCo/BYOL was trained
for 100/100/50 epochs, where FixMatch drops learning rate
by 10 times at 60th and 80th epoch, and MoCo/BYOL uses
cosine learning schedule. All training uses linear warm-up
learning rate for 5 epochs.

FixMatch was reframed to the EMA-teacher framework
as in Figure 2, using standard BN, denoted as “BN” in Fig-
ure 3 (a). However, this architecture change leads to much
worse performance than the baseline FixMatch (“base-
line”). Switching to standard BN also leads to worse per-
formance than the baseline MoCo (ShuffleBN) and BYOL
(SyncBN), as shown in Figure 3 (b) and (c). By simply
changing the standard BN to the proposed EMAN in the
teacher model, significant boosts are available in all Fix-
Match/MoCo/BYOL, e.g. roughly 10/6/7 points. This sim-
ple change also surpassed all three very strong baseline Fix-
Match/MoCo/BYOL by about 2/4/3 points.

To check the generalization, SyncBN and ShuffleBN
were also evaluated in the other techniques, as shown in
Table 1, where MoCo and BYOL were measured by lin-
ear classification on 10% labeled data. Although they work
well within their own technique (i.e., ShuffleBN in MoCo
and SyncBN in BYOL), they do not generalize very well
across techniques. For example, SyncBN is 1.1 points
worse than ShuffleBN in MoCo and even 6.9 points worse
than BN in FixMatch; and ShuffleBN is 2.8 points worse
than SyncBN in BYOL and even 3.1 points worse than BN
in FixMatch. In contrast, EMAN generalizes very well in

Method
1% labels 10% labels 100% labels

top-1 top-5 top-1 top-5 top-1 top-5

Supervised [3, 20] 25.4 48.4 56.4 80.4 76.1 92.9

L
in

ea
r

MoCo 43.2 71.0 58.8 82.6 67.5 88.1
MoCo-EMAN 48.9 75.3 60.5 83.5 67.7 88.0
MoCo (2×) 51.5 77.6 64.2 86.0 72.4 90.9
MoCo-EMAN (2×) 56.8 80.4 65.7 86.4 72.3 90.6
MoCo (800) 50.4 76.6 63.0 85.4 70.3 90.0
MoCo-EMAN (800) 55.4 79.3 64.0 85.3 70.1 89.3
BYOL 51.3 76.3 64.8 86.2 71.4 90.2
BYOL-EMAN 55.1 78.9 66.7 87.3 72.2 90.7

Fi
ne

tu
ne

MoCo 44.8 73.4 63.3 86.1 76.1 92.9
MoCo-EMAN 50.4 77.8 64.9 87.1 76.0 93.0
MoCo (2×) 53.1 79.9 67.9 88.6 79.2 94.6
MoCo-EMAN (2×) 59.2 83.7 69.7 89.8 78.9 94.3
MoCo (800) 50.9 78.1 66.3 87.7 77.2 93.6
MoCo-EMAN (800) 57.4 82.3 68.1 88.5 77.4 93.6
BYOL 52.1 77.3 67.7 88.5 77.0 93.5
BYOL-EMAN 54.6 78.6 68.1 88.6 77.1 93.5

Table 2. The linear and the finetuning evaluation on ImageNet.
The default model is ResNet-50 trained for 200 epochs. “2×”
means ResNet-50 of 2× width and “800” means 800 epochs.

all three techniques and achieved the best results. Other
cross-sample independent normalization techniques were
also evaluated in Table 1, including Group Normalization
(GN) [44] and Instance Normalization (IN) [43]. But they
all lead to inferior performances. Also note that EMAN is
as simple as BN, unlike ShuffleBN in MoCo and SyncBN
in BYOL which rely on cross-GPU communication or syn-
chronization. For example, switching SyncBN to EMAN in
BYOL, the training can be speeded up by about 30% with
PyTorch implementation on a machine with 8 GPUs.

5.2. Self-supervised Evaluation

We self-supervised pre-train MoCo and BYOL models
with EMAN on unlabeled data and then evaluate learned
representations on multiple downstream classification tasks.

Linear Classification and Finetuning The linear and fine-
tuning evaluation were on different percentages of labeled
ImageNet data, including 1%, 10% and 100%. Only the la-
beled data were used in these experiments. For 1% (10%)
labels, five (three) different sets of samples were run and
the averaged numbers are shown in Table 2. We searched
the best learning rate from {15,30,60} ({0.2,0.4,0.8}) for
MoCo (BYOL) linear evaluation, since they are quite sen-
sitive in these experiments. When finetuning, we found it
was important to have different learning rates for the pre-
trained encoder and the randomly initialized top classifier.
We thus used learning rate of 1.0 (0.1) for top classifier for
1% (10%) labels, and searched the best learning rate from
{0.0001,0.001,0.01} for the pretrained encoder when fine-
tuning. All experiments were trained for 50 epochs, with

Method Arch Epochs
1% labels 10% labels

top-1 top-5 top-1 top-5
Supervised [3] res50 100 25.4 48.4 56.4 80.4

InstDisc [45] res50 - - 39.2 - 77.4
PIRL [32] res50 800 - 57.2 - 83.5
CPC v2 [21] res161 - 52.7 77.9 73.1 91.2
MoCo-v2 [10] res50 800 50.9 78.1 66.3 87.7
SimCLR [8] res50 1000 48.3 75.5 65.6 87.8
PCL [30] res50 200 - 75.6 - 86.2
SwAV [5] res50 800 53.9 78.5 70.2 89.9
BYOL [17] res50 1000 53.2 78.4 68.8 89.0
MoCo-EMAN res50 800 57.4 82.3 68.1 88.5
BYOL-EMAN res50 200 55.1 78.9 68.1 88.6

Table 3. Comparison with other self-supervised models.

learning rate dropped by 10 times at 30th and 40th epoch.
For linear evaluation in Table 2, while EMAN models

have comparable performances as the baselines for 100%
labels, they improve over the baselines by 1-2 points of top-
1 accuracy for 10% labels. The gains become bigger (4-5
points) when only 1% labels are available. The observa-
tions are consistent across different techniques (MoCo and
BYOL), different architectures (ResNet-50 and ResNet-50
of 2× width), and different epochs (200 and 800). Note that
the evaluation on 1%/10% labels is more practical than that
on 100% labels, since when full dataset is annotated, the
advantage of self-supervised pretraining will be reduced.
For example, compared with supervised baseline, the self-
supervised models are usually worse for 100% labels, but
have significant gains (>30/10 points) for 1%/10% labels,
indicating the self-supervised pretraining is much more use-
ful when there is insufficient supervision available.

Finetuning usually achieved better results than the linear
classification, in Table 2, with increasing gains for more an-
notations, but they could be worse if the hyperparameters
are not carefully tuned as introduced above, especially for
fewer labels. The gains by EMAN over those strong base-
lines are still consistent with the linear classification, and
even larger in most of the experiments with 1% labels.

Comparison with the State-of-the-art The EMAN mod-
els were compared with the state-of-the-art self-supervised
learning methods for 1%/10% labels in Table 3. To have
fair comparison, only the results of ResNet-50 was shown
where possible. The reported BYOL [17] was pretrained
for 1000 epochs, with 53.2/68.8 top-1 accuracy for 1%/10%
labels, but our BYOL-EMAN achieved 55.1/68.1, which
was pretrained only for 200 epochs. Our MoCo-EMAN
achieved the accuracy of 57.4 for 1% labels, which is much
higher than the other methods in the table, and 68.1 for 10%
labels. Note that, the comparison between these methods is
not completely fair. For example, the SwAV [5], with higher
accuracy for 10% labels, used much more expensive multi-
crop strategy, which could also benefit our EMAN models.

Method Epochs
kNN retrieval
top-1 mAP recall

Supervised 90 74.8 57.9 37.0

MoCo 200 54.5 32.4 18.5
MoCo-EMAN 200 58.0 39.8 24.3
MoCo 800 60.0 41.4 25.6
MoCo-EMAN 800 62.8 47.9 30.5
BYOL 200 62.8 37.5 20.1
BYOL-EMAN 200 64.9 39.8 20.4

InstDisc [45] - 46.5 - -
LA [52] - 49.4 - -
PCL [30] 200 54.5 39.5† 24.2†

SwAV [5] 800 59.2 35.9† 17.5†

Table 4. The kNN and image retrieval evaluation on ImageNet. †

indicates numbers run by us from the pretrained model.

kNN Classification and Image Retrieval Although the
linear classification is a common strategy to evaluate the
self-supervised models in recent years [8,17,19], it requires
additional training, which is not the most direct way to eval-
uate the representations. Instead, we also compared the
kNN accuracies on full train/val data in Table 4, fol-
lowing [5, 30, 45, 52]. With this more direct evaluation, the
EMAN still has consistent improvements over the MoCo
and BYOL baselines. And they also outperform [45, 52]
and recent PCL [30] and SwAV [5].

We also evaluate on the task of image retrieval (find the
most relevant entries for each query) on ImageNet which
also requires no additional training. This task is a prac-
tical application of self-supervised pretraining, since the
accurate annotations are usually unavailable in many sce-
narios of image retrieval. We used train as the retrieval
database and val as queries, and followed [49] to use the
top 1000 retrievals for the evaluation of mean averaged pre-
cision (mAP) and recall. Table 4 shows the EMAN also has
consistent and nontrivial improvements over the baselines
for this task. The PCL [30] and SwAV [5] are compared,
but they have shown much worse results.

It has also been shown that the unsupervised learning
is still lagging behind supervised learning for kNN classi-
fication and image retrieval, although SwAV [5] has pre-
sented minor gap to supervised learning for linear evalua-
tion. However, the EMAN models can learn better feature
representations for these two tasks.

Low-shot Classification Given the superior performances
of EMAN in the regimes of few annotations in Table 2, low-
shot classification was evaluated, with k samples per class.
Following [16, 30], we trained linear SVMs [11] on top of
the frozen representations. We searched the best SVM cost
parameter C ∈ 2[−5,5], and averaged the numbers of 5 dif-
ferent sets of samples.

The results in Table 5 have demonstrated that EMAN
still improves the MoCo/BYOL baselines in low-shot cases,

Method Epochs k=1 k=2 k=4 k=8 k=16

Im
ag

eN
et

Supervised 90 46.8 57.2 64.4 68.6 71.0
PCL [30]† 200 29.5 36.3 42.3 46.9 50.9
SwAV [5]† 800 23.5 33.6 43.5 51.7 57.8
MoCo 200 22.8 28.7 34.7 40.7 46.0
MoCo-EMAN 200 29.3 36.0 41.6 46.9 50.8
MoCo 800 31.4 38.3 44.1 49.5 53.9
MoCo-EMAN 800 35.8 43.7 49.8 54.0 57.2
BYOL 200 25.6 34.2 42.5 49.4 54.7
BYOL-EMAN 200 27.4 36.8 45.6 52.6 57.5

V
O

C
07

Supervised 90 56.0 69.6 74.9 79.9 82.7
PCL [30] 200 47.9 59.6 66.2 74.5 78.3
MoCo 200 47.0 58.9 65.3 72.5 76.3
MoCo-EMAN 200 50.1 59.7 67.2 74.1 77.9
BYOL 200 42.8 55.4 63.2 72.8 77.7
BYOL-EMAN 200 44.6 56.5 65.4 73.9 78.8

iN
at

ur
al

is
t MoCo 1000 21.1 25.4 31.3 36.2 41.8

MoCo-EMAN 1000 24.0 28.4 33.3 38.0 41.7
BYOL 200 16.8 22.3 29.0 35.0 40.4
BYOL-EMAN 200 18.0 23.9 30.5 36.3 41.5

Table 5. The low-shot evaluation. † indicates numbers run by us
from the pretrained model.

Method Pretrained Schd.
1% labels 10% labels

top-1 top-5 top-1 top-5

baseline None 1× - - 67.1 86.7
EMAN None 1× - - 69.2 88.3
baseline MoCo 1× 51.2 73.5 70.2 89.0
EMAN MoCo 1× 58.1 80.4 72.0 90.2
EMAN MoCo-EMAN 1× 60.9 82.5 72.6 90.5
baseline None 3× - - 71.1 88.9
EMAN None 3× - - 72.8 90.3
EMAN MoCo 3× 61.4 82.1 73.9 91.0
EMAN MoCo-EMAN 3× 63.0 83.4 74.0 90.9

Table 6. The FixMatch results on ImageNet.

as low as k = 1 sample per class. For example, in the ex-
periments of ImageNet, MoCo-EMAN is about 4-6 points
better than MoCo. The gains for BYOL are smaller, but still
1-3 points. Note that, our MoCo-EMAN can achieve 35.8%
top-1 accuracy for 1000-way 1-shot ImageNet, which is
12.3 points higher than SwAV [5]. Pascal VOC2007 [13]
and iNaturalist [23] have also been tested. Since the domain
of VOC is similar to ImageNet, we directly used the frozen
ImageNet representations for VOC experiments. However,
it is not the case for iNaturalist, where ImageNet represen-
tations have poor performances, so we train MoCo/BYOL
from scratch on iNaturalist for 1000/200 epochs. The im-
provements by EMAN are still consistent on both datasets.

5.3. Semi-supervised Evaluation

The semi-supervised learning experiments of FixMatch
are shown in Table 6, where “1×” means training 50 (100)
epochs with learning rate dropped at 30/40th (60/80th)

Method Arch
1% labels 10% labels

top-1 top-5 top-1 top-5
Supervised [3] res50 25.4 48.4 56.4 80.4

Pseudo-label [3, 29] res50 - 51.6 - 82.4
S4L Rotation [3] res50 - 53.4 - 83.8
UDA [46] res50 - - 68.8 88.5
FixMatch [39] res50 - - 71.5 89.1
SimCLR-v2 [9] res50 60.0* - 70.5* -
FixMatch-EMAN res50 63.0 83.4 74.0 90.9

Table 7. The comparison with other semi-supervised models. *
means rough numerical estimates from the plots since no exact
numbers for ResNet-50, self-distilled, were reported in [9].

epoch, for 1% (10%) labels. For 10% labels, the top-1 ac-
curacy is improved to 69.2 by EMAN from the baseline
of 67.1. No results were reported for 1% labels since the
default hyperparameters do not work very well. The de-
fault FixMatch is trained from scratch. However, as seen
in Section 5.2, the self-supervised pretrained models can be
a significant help for semi-supervised scenarios. Therefore,
we also trained FixMatch initialized from the self-suprvised
pretrained models, with initial learning rate of 0.003. When
finetuned from MoCo, the 1× baseline FixMatch has 3.1
points of improvement and FixMatch-EMAN 2.8 points for
10% labels. For 1% labels, the gains by EMAN over the
baseline FixMatch become bigger (∼7 points). When fine-
tuned from MoCo-EMAN, additional gains are available,
which is consistent with the observations of Section 5.2. Fi-
nally, we have trained 3× longer models with cosine learn-
ing rate schedule, and the improvements are still consistent.

Comparison with the State-of-the-art The FixMatch-
EMAN models are compared with the state-of-the-art semi-
supervised methods in Table 7. For 10% labels the proposed
FixMatch-EMAN achieves 74.0 top-1 accuracy, beating out
the original FixMatch [39] by 2.5 points. Note that this is
very close to the fully supervised learning accuracy of 76.1
in Table 2. For 1% labels, the best previously reported re-
sults are SimCLR-v2 of roughly 60.0, with knowledge dis-
tillation being trained for 300 epochs after self-supervised
pretraining and semi-supervised finetuning. Our FixMatch-
EMAN achieved 63.0, which is about 3.0 points higher than
SimCLR-v2, with simpler pipeline and fewer epochs (150).
Finally, we note the specifically designed semi-supervised
learning algorithms (in Table 7) outperform self-supervised
pre-trainning followed by semi-superivised finetuning (in
Table 3) for annotation insufficient scenarios.

5.4. Ablation Studies

The ablation experiments, with results in Table 8, fol-
lowed the experimental settings of Table 1. MoCo and
BYOL were evaluated by linear classification as in Section
5.2 on 10% labeled data.

student teacher FixMatch MoCo BYOL

default default 67.1 54.4 55.4
BN BN 58.9 52.5 52.0
BN EMAN 69.2 55.8 56.2
BN EMAN (m=0.9) 69.0 51.2 -
BN EMAN (m=0.99999) 54.6 failed -
BN teacher PN (α=0.9) 61.4 54.6 52.4
BN student PN (α=0.9) 68.6 52.4 failed
BN teacher PN (α=0.999) 60.9 55.5 54.8
BN student PN (α=0.999) 69.2 55.7 56.2

Table 8. The ablation experiments. “PN” means proxy norm, m
EMAN momentum of (9) and α BN momentum of (4).

EMAN Momentum We have tested different EMAN mo-
mentums of (9), but the momentum for parameter update of
(1) is remained the same 0.999 as in [19, 41]. When m =
0.9 of EMAN, the statistics are updated much faster than the
parameters, and the accuracy drops for MoCo but remains
almost the same for FixMatch. When m = 0.99999, the
statistics are updated much slower, and both MoCo and Fix-
Match have much worse performances. These have shown
that the normalization statistics should well aligned with the
parameters to ensure stable performance.

Other EMAN-similar Designs Two other designs, achiev-
ing similar goals of EMAN in Section 4, were also evalu-
ated. Both of them use (8) in the teacher during training,
but the difference is what proxy statistics µ′ and σ′2 to use.
The first design is to use the collected proxy statistics of
the teacher following (4) up to the previous iteration. This
is similar to run the inference mode (5) during training in
standard BN, but update the proxy statistics using (4) on the
fly. The second design is to simply copy the proxy statistics
from the student, by setting m = 0 in (9). They are denoted
as “teacher PN” and “student PN” in Table 8, respectively.
When using the default BN momentum α = 0.9, both de-
signs usually lead to worse performance than EMAN. By
setting α = 0.999 to have better aligned statistics with
the parameters, better results are available, and the “student
PN” achieved very close performances to EMAN.

6. Conclusion

In this paper, we proposed a simple normalization tech-
nique, exponential moving average normalization (EMAN),
for EMA-teacher based semi- and self-supervised learning.
It resolves the issues of cross-sample dependency and pa-
rameter mismatch when using the standard BN in EMA-
teacher framework. This simple design improves the state
of the art in semi- and self-supervised learning. These im-
provements are consistent across different techniques, net-
work architectures, training duration, and datasets, showing
that EMAN is generally applicable.

References
[1] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and An-

drew Gordon Wilson. There are many consistent explana-
tions of unlabeled data: Why you should average. In ICLR,
2019. 1, 3

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 1, 2

[3] Lucas Beyer, Xiaohua Zhai, Avital Oliver, and Alexander
Kolesnikov. S4L: self-supervised semi-supervised learning.
In ICCV, pages 1476–1485, 2019. 1, 6, 8

[4] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 535–541, 2006. 2

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020. 5, 6, 7

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv:1512.03012,
2015. 1

[7] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien.
Semi-supervised learning (chapelle, o. et al., eds.; 2006).
IEEE Transactions on Neural Networks, 20(3):542–542,
2009. 2

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, volume 119, pages 1597–
1607, 2020. 1, 2, 4, 5, 6, 7

[9] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey Hinton. Big self-supervised models
are strong semi-supervised learners. In NeurIPS, 2020. 1, 2,
5, 8

[10] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv:2003.04297, 2020. 6

[11] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Mach. Learn., 20(3):273–297, 1995. 7

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT, pages
4171–4186, 2019. 2

[13] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pas-
cal visual object classes (VOC) challenge. Int. J. Comput.
Vis., 88(2):303–338, 2010. 7

[14] Abe Fetterman and Josh Albrecht. Understanding self-
supervised and contrastive learning with bootstrap your own
latent (byol). https://untitled-ai.github.io/understanding-self-
supervised-contrastive-learning.html, 2020. 4

[15] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018. 1, 2

[16] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In ICCV, pages 6390–6399, 2019. 7

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. In NeurIPS, 2020.
1, 2, 3, 4, 5, 6, 7

[18] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In CVPR,
pages 1735–1742, 2006. 2

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. Momentum contrast for unsupervised vi-
sual representation learning. In CVPR, pages 9726–9735,
2020. 1, 2, 3, 4, 5, 7, 8

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5, 6

[21] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali
Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.
Data-efficient image recognition with contrastive predictive
coding. In ICML, volume 119, pages 4182–4192, 2020. 1,
2, 6

[22] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. 1, 2

[23] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alexander Shepard, Hartwig Adam, Pietro Per-
ona, and Serge J. Belongie. The inaturalist species classi-
fication and detection dataset. In CVPR, pages 8769–8778,
2018. 7

[24] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E.
Hopcroft, and Kilian Q. Weinberger. Snapshot ensembles:
Train 1, get M for free. In ICLR, 2017. 1, 3

[25] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, volume 37, pages 448–456, 2015. 1,
2, 3

[26] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In
Amir Globerson and Ricardo Silva, editors, UAI, pages 876–
885. AUAI Press, 2018. 1, 3

[27] Longlong Jing and Yingli Tian. Self-supervised visual fea-
ture learning with deep neural networks: A survey. IEEE
Trans. Pattern Anal. Mach. Intell., 2020. 2

[28] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In ICLR, 2017. 1, 2, 3

[29] Dong-Hyun Lee. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, 2013. 1, 2, 8

[30] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and
Steven CH Hoi. Prototypical contrastive learning of unsu-
pervised representations. arXiv preprint arXiv:2005.04966,
2020. 5, 6, 7

[31] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV, volume 8693, pages 740–755, 2014. 1

[32] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. In CVPR, pages
6706–6716, 2020. 2, 6

[33] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: A regularization
method for supervised and semi-supervised learning. IEEE
Trans. Pattern Anal. Mach. Intell., 41(8):1979–1993, 2019.
2

[34] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
volume 9910, pages 69–84, 2016. 1, 2

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, pages 8024–8035, 2019. 5

[36] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training, 2018. 2

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Fei-Fei Li. Imagenet large scale visual recognition chal-
lenge. Int. J. Comput. Vis., 115(3):211–252, 2015. 1, 2, 5

[38] Zhiqiang Shen, Zhankui He, and Xiangyang Xue. MEAL:
multi-model ensemble via adversarial learning. In AAAI,
pages 4886–4893. AAAI Press, 2019. 2

[39] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han
Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In
NeurIPS, 2020. 1, 2, 4, 5, 8

[40] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15(1):1929–1958, 2014. 2

[41] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, pages
1195–1204, 2017. 1, 2, 3, 4, 8

[42] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. In ECCV, pages 776–794, 2020.
2

[43] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv:1607.08022, 2016. 2, 6

[44] Yuxin Wu and Kaiming He. Group normalization. In ECCV,
volume 11217, pages 3–19, 2018. 2, 6

[45] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance

discrimination. In CVPR, pages 3733–3742, 2018. 1, 2, 4, 5,
6, 7

[46] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,
and Quoc V Le. Unsupervised data augmentation for consis-
tency training. In NeurIPS, 2020. 8

[47] Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and
Quoc V. Le. Self-training with noisy student improves im-
agenet classification. In CVPR, pages 10684–10695. IEEE,
2020. 1

[48] Junjie Yan, Ruosi Wan, Xiangyu Zhang, Wei Zhang, Yichen
Wei, and Jian Sun. Towards stabilizing batch statistics in
backward propagation of batch normalization. In ICLR,
2020. 2

[49] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis E. H. Tay, Ze-
qun Jie, Wei Liu, and Jiashi Feng. Central similarity quan-
tization for efficient image and video retrieval. In CVPR,
pages 3080–3089, 2020. 7

[50] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful
image colorization. In ECCV, volume 9907, pages 649–666,
2016. 1, 2

[51] Xiaojin Jerry Zhu. Semi-supervised learning literature sur-
vey. Technical report, University of Wisconsin-Madison De-
partment of Computer Sciences, 2005. 2

[52] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In ICCV, pages 6001–6011. IEEE, 2019. 5, 7

