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ABSTRACT: Data modeled as sums of exponentials arise in many areas of science and
are common in NMR. However, exponential parameter estimation is fundamentally a
difficult problem. In this article, Bayesian probability theory is used to obtain optimal
exponential parameter estimates. The calculations are implemented using Markov chain
Monte Carlo with simulated annealing to draw samples from the joint posterior probability
for all of the parameters appearing in the exponential model. Monte Carlo integration is
then used to approximate the marginal posterior probabilities for each of the parameters.
We give numerical examples taken from simulated data and NMR relaxation experiments to
illustrate the calculations and the effect of prior information on the parameter estimates.
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INTRODUCTION

Magnetic resonance experiments often generate data
that are modeled as a sum of exponentials (1–11).
Experiments relying on NMR to probe reaction kinet-

ics, diffusion, molecular dynamics, and xenobiotic
metabolism are only some of the applications where
parameter estimates from exponential models provide
insight into chemical and biological processes. Recent
reviews discuss the analysis and methods commonly
used to estimate exponential parameters (12, 13). Ex-
ponential parameter estimation can be challenging
(14, 15), and low signal-to-noise ratios or sparse data
sets, common in magnetic resonance, only exacerbate
the difficulties (16). In this article, an extension of a
previous brief exposition (17), we address the expo-
nential parameter estimation problem by applying
Bayesian probability theory. Because the parameter
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estimates are made using Bayesian probability theory,
one is able to make well-informed judgments about
the uncertainties associated with the parameter esti-
mates.

We model the data as a sum of exponentials

di � C � �
j�1

m

Ajexp���jti� � ni, [1]

where m is the number of exponentials and di is a data
value sampled at ti. The parameters of interest are the
decay rate constants, �j, the amplitudes, Aj, and, if
present, the constant offset C. The error parameters,
ni, are commonly referred to as noise. In the fre-
quency interpretation of probability one must make
assumptions about the sampling frequency distribu-
tion of the noise. In Bayesian probability theory no
such assumptions are made; rather, one assigns prob-
abilities to represent what is actually known about the
noise.

In any given problem, one may or may not know
the number of exponentials or whether the constant
offset is present. In Bayesian probability theory, when
these are known, the problem is one of parameter
estimation. When the value of m or the presence of C
is not known, the problem is one of model selection.
Both problems are solved using Bayes’ theorem (18)
and the rules of probability theory (19). However, the
parameter estimation and model selection problems
have different solutions. In this article, we address the
parameter estimation problem. The model selection
problem is addressed in a companion article (20).

THEORY

Our goal is to estimate all of the decay rate constants,
amplitudes, and offsets appearing in Eq. [1]. In
Bayesian probability theory, everything known about
a parameter is summarized in a probability density
function. If the data are biexponential, there are four
different probability density functions to compute. All
of these probability density functions can be com-
puted from the joint posterior probability for all of the
parameters given the data, D, and the prior informa-
tion, I, by application of the sum rule. For example,
the posterior probability for �1 is computed as

P��1�DI� � � d�2dA1dA2dCP��1�2A1A2C�DI�.

[2]

In a similar manner, the posterior probability for A1 is
given by

P� A1�DI� � � d�1d�2dA2dCP��1�2A1A2C�DI�.

[3]

The process of integrating over unneeded or nuisance
parameters to obtain the probability for a parameter of
interest is called marginalization. If the model con-
tains more than two exponentials, one must evaluate
more integrals to obtain a marginal posterior proba-
bility, but the principle remains unchanged.

If we designate all of the decay rate constants by �
�{�1, �2, . . . , �m}, the amplitudes by A � {A1, A2,
. . . , Am} and the constant, if present, by C, then the
joint posterior probability for the parameters is repre-
sented symbolically by P(�AC�DI ). We write this
joint posterior probability as if C is known to be
present; if C is not present, then any notation involv-
ing C is absent. To compute the joint posterior prob-
ability for all the parameters, one applies Bayes’ the-
orem:

P��AC�DI� �
P��AC�I� P�D��ACI�

P�D�I� , [4]

where P(�AC�I ) is the joint prior probability for the
parameters and P(D��ACI ) is the direct probability
for the data. In parameter estimation problems the
marginal posterior probability for the data, P(D�I ), is
a normalization constant and is dropped from the
calculation. However, in model selection problems,
P(D�I ) is the quantity of interest. Here, we drop the
normalization constant and factor the joint prior prob-
ability for the parameters to obtain

P��AC�DI� 	 P�C�I� �
j�1

m

� 
P��j�I� P� Aj�I��P�D��ACI�, [5]

where terms of the form P( � �I ) are prior probabilities,
(i.e., they depend only on the prior information I ). At
this point in the calculation, all of the prior probabil-
ities can be assigned.

However, the direct probability for the data,
P(D��ACI ) in Eq. [5], does not include the error
parameters, ni, nor does it, in any obvious way, in-
clude information about the noise characteristics. This
direct probability cannot be assigned because these
noise characteristics were removed by marginaliza-
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tion. Appendix A provides further details on the
Bayesian calculations, the assignment of all the prob-
abilities, and the marginalizations necessary to obtain
P(D��ACI).

To compute the marginal posterior probability for
each parameter, one must integrate P(�AC�DI ) over
all of the parameters except the one of interest. No
analytic solution exists for these integrals so they
must be evaluated numerically. We evaluate these
integrals by first using Markov chain Monte Carlo
with simulated annealing (21, 22) to draw samples
from the joint posterior probability for the parameters.
We usually run 50 to 100 Markov chain Monte Carlo
simulations in parallel. After the annealing phase, we
draw 50 to 100 independent samples from each sim-
ulation, which generates 2,500 to 10,000 samples
from the joint posterior probability. Quantitative eval-
uation of Markov chain convergence remains an ac-
tive research area, and no universal solutions are
known. We assess Markov chain convergence visu-
ally by plotting the logarithm of the posterior proba-
bility for each simulation as a function of the sample
repeat number. When converged, the individual tra-
jectories consistently cross each other and appear
stationary. Monte Carlo integration is then used to
compute means, standard deviations, and histograms
for each parameter of interest. The histograms serve
only as visual representations of the marginal distri-
butions and are not used in any calculations. See our
companion article in this issue and a recent review for
details on the use of Markov chain Monte Carlo in
Bayesian probability theory (20, 23).

RESULTS AND DISCUSSION

We begin by considering the results from a Bayesian
analysis of simulated data. The simulation mimics
water relaxation experiments with human-brain gray
matter in vivo. Biexponential relaxation is reported in

stimulated echo spectra from localized voxels along
the Sylvian fissure (6 ). The parameters used to gen-
erate the simulated data are from these empirical
observations (see Table 1). The only parameter varied
was the noise level. Three data sets with signal-to-
noise ratios of 400:1, 40:1, and 20:1 were analyzed.
Table 1 lists the parameter estimates from these three
analyses. Each mean and standard deviation in Table
1 was computed from 10,000 Markov chain Monte
Carlo samples (100 simulations sampled 100 times
each). A typical analysis completes in less than 90 s
on a Sun Microsystems Ultra 60, dual 450 MHz
workstation.

When the signal-to-noise ratio is high, 400:1, the
Bayesian parameter estimates are essentially identical
to the simulation inputs. In the moderate signal-to-
noise ratio data, 40:1, all of the parameter estimates
are less certain by about a factor of 10. Parameter
estimate uncertainties from the low signal-to-noise
ratio data, 20:1, are about twice those from the 40:1
data. The direct dependence of the width of the pos-
terior probability (the parameter estimate uncertainty)
on the noise standard deviation is a general feature in
probability theory and is found in virtually all Bayes-
ian calculations. Despite the large uncertainties in the
low signal-to-noise data, in all cases the estimated
values of the parameters are within plus or minus one
or two standard deviations of their true values.

The simulated data in Fig. 1 illustrates a common
problem in magnetic resonance data, low signal-to-
noise ratios. Although the peak signal-to-RMS noise
level of the data is 40:1, the second data point’s
signal-to-noise ratio drops to 25:1, and more than half
the data have signal-to-noise ratios of 5:1 or less.

Figure 2 displays the marginal posterior probabil-
ity density for the small decay rate constant (�1, upper
panel) and its amplitude (A1, lower panel) computed
from the simulated 400:1, 40:1, and 20:1 signal-to-
noise ratio data. The hypotheses that best agree with
the data and the prior information are those with the

Table 1 Parameter Estimates Obtained from Simulated Biexponential Data

Peak
�1

Mean
�1

Peak
A1

Mean
A1

Peak
�2

Mean
�2

Peak
A2

Mean
A2

Mean
f2:f1

Mean
A1 � A2

True value 1.85 — 32.5 — 13.09 — 217.5 — 13:87 250
S:N � 400 1.82 1.83  .08 32.6 32.7  1.3 13.14 13.16  .15 218.3 218.3  1.3 13:87 251  .9
S:N � 40 1.8 1.9  .5 43 45  11 13.1 13.4  1.4 203 202  11 18:82 247  8
S:N � 20 1.7 2.2  .8 53 67  22 12.9 15.6  4.9 189 181  22 27:73 249  19

The simulated data contain 16 data points uniformly sampled over a 700-ms period. A Markov chain Monte Carlo simulation was used
to draw samples from the joint posterior probability for the parameters. Monte Carlo integration was then used to obtain samples from the
marginal posterior probability for each of the four parameters. The columns labeled “Peak” are parameters from the Markov chain Monte Carlo
simulation with the highest overall joint posterior probability. The mean and standard deviations are the mean and standard deviations of the
samples computed for each of the four parameters. The column labeled f2:f1 are the mean fractional amplitudes at t � 0.
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highest posterior probabilities. A probability density
function’s width is a natural measure of how uncertain
one is of the true, but unknown, value. Visual inspec-
tion of the functions’ widths efficiently communicates
the relative quality of the estimates.

We next illustrate how Bayesian parameter esti-
mates are affected by model choice and prior proba-
bilities. Table 2 summarizes analysis results from a
23Na transverse relaxation study of rat brain in vivo
(James Goodman, personal communication). The re-
laxation data were collected with a surface coil using
slice-selection methods and a LASER pulse sequence
(24). We assume the 23Na transverse relaxation is
biexponential and use three different sets of priors:
loose, tight, and flat to analyze the data. In all cases,
we use bounded Gaussian prior probabilities (see Ap-
pendix A for assignment details) and adjust their
bounds, means, and standard deviations. The tight
prior bounds the parameters to within one order of
magnitude of their maximum likelihood estimates,
whereas the loose prior restricts them to within two
orders of magnitude. The flat prior bounds are ex-
tremely wide and are so uninformative that the anal-
ysis essentially uses a uniform prior probability
around the high likelihood region of parameter space.

The results of the biexponential analyses are found
in the first three rows of Table 2. Note that changing
the bounds, means, and standard deviations of the
prior probabilities have almost no effect on the pa-

rameter estimates. Unless the width of the joint prior
probability density function is comparable with the
width of the direct probability for the data, the joint
prior probability has essentially no effect on the re-
sults. Though the tight prior is much more informative
than the others, it is still uninformative (wide) com-
pared with the direct probability.

The joint prior probability for the parameters does
affect the Markov chain Monte Carlo simulation used
in the calculation. The uninformative (flat) joint prior
probability increases the size of the four-dimensional
parameter space and requires a threefold increase in
the number of Markov chain annealing steps to
achieve convergence. However, the resulting param-
eter estimates are essentially the same as those from
the other two analyses.

Figure 1 A comparison of simulated biexponential data,
(E) and the model decay curve (solid line) generated from
the maximum joint posterior probability for the parameters.
The residuals, the difference between the data and the
model, are shown at the bottom (x). The parameters used to
generate the simulated data are given in Table 1.

Figure 2 The marginal posterior probability density for
the decay rate constant �1 (top); the marginal posterior
probability for the amplitude A1 (bottom). The three poste-
rior probabilities shown in each of these plots are computed
from the simulated 400:1 (—), 40:1 (- - -), and 20:1 (●–●–●)
signal-to-noise ratio data.
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Reports of mono- and biexponential 23Na trans-
verse relaxation in vivo are found in the literature
(25–29). In the biexponential cases, the reported 23Na
decay rate constants range from 200 to 1,400 sec�1

for the rapidly decaying component, and 25 to 145
sec�1 for the slowly decaying component. The re-
ported monoexponential decay rate constants fall in
the range of 18 to 55 sec�1. What happens when we
assume the model for our 23Na data is a monoexpo-
nential? The results for the single exponential model
with loose priors are shown as the last line in Table 2.
The monoexponential’s decay rate constant and am-
plitude estimates are significantly different (more than
five standard deviations) from the parameter estimates
computed with a biexpoential model.

The 23Na data analysis points out the importance of
the model selection in obtaining meaningful parame-
ter estimates. An analysis based on a model where
either the number of exponentials or the presence of a
constant does not correspond to the data will give
incorrect results. The results are incorrect in the sense
that none of the parameter estimates accurately reflect
the unknown true signal parameters. The adverse con-
sequence of analyzing exponentially decaying data
using the wrong model cannot be overemphasized.

To get some impression of which model is correct,
we plotted the residuals computed from the maximum
posterior probability parameter estimates for the
mono- (dotted line) and biexponential (solid line)
models (Fig. 3). The biexponential residuals look
random; they oscillate above and below zero. By
contrast, the monoexponential residuals are first
above zero, then below, and then back above zero in
a systematic way. This type of systematic behavior is
characteristic of residuals when the model does not
match the data and is significant, but qualitative, ev-
idence that these data are biexponential. Bayesian
probability theory solves the model selection problem

by computing the posterior probability for the number
of exponentials in the data and whether a constant is
present. In our companion article in this issue, a
Bayesian exponential model selection calculation is
described and is applied to these data (20).

SUMMARY AND CONCLUSION

Bayesian probability theory provides a rigorous the-
oretical framework for the analysis of data modeled as
a sum of exponentials. Bayesian posterior probability
density functions provide optimal exponential param-
eter estimates as well as a quantitative assessment of
the estimates’ uncertainties. We have implemented
these Bayesian calculations on single and parallel
computational architectures. The software is fully in-
tegrated into a commercial NMR data analysis pack-

Table 2 Parameter Estimates Obtained from 23Na Transverse Relaxation Data (Rat Brain in vivo at 4.7 T)

m Priors �1 A1 �2 A2 f2:f1

2 Loose 23.3  1.0 36  2 106  25 19  4 35:65
2 Tight 23.1  1.1 36  2 101  24 20  3 36:64
2 Flat 23.2  1.1 36  2.4 106  29 20  4 36:64
1 Loose 27.9  1.3 46  1 — — —

Nine data points were collected over 140 ms. A Markov chain Monte Carlo simulation was used to draw samples from the joint posterior
probability for the parameters given a one- or two-component exponential model. The estimated parameters are the mean and standard
deviation of these samples. The column labeled f2:f1 are the mean fractional amplitudes at t � 0. The loose analysis used the prior bounds
set based on the total acquisition time. These bounds span a little more than two orders of magnitude. In the tight analysis the priors were much
more informative, spanning only one order of magnitude. The flat analysis continues to use a Gaussian prior but with the bounds so wide that
the prior is essentially flat over the region of parameter space supported by the likelihood, i.e., a flat, uniform prior. The final analysis uses
a monoexponential model and the priors span about two orders of magnitude. Note the monoexponential � estimate differs from the
biexponential model � estimates by about five standard deviations.

Figure 3 The residuals, the difference between the data
and the model, for the 23Na relaxation analysis using the
loose joint prior probability density function for mono-
(- - - -) and biexponential (—) models.
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age (VnmrJ, Varian NMR Systems, Palo Alto, CA).
Both the Vnmrj implementation and standalone ex-
ecutables for manual use are available for free down-
load at http://BayesianAnalysis.wustl.edu.
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APPENDIX

A. The Calculations

In the theory section of this article, we factored the
joint posterior probability for the parameters, but we
did not explain how the resulting probabilities were
assigned. In addition, Eq. [5] is a marginal probability
from which the standard deviation of the noise prior
probability was removed. Marginal probabilities can-
not be assigned; rather, they must be computed using
the rules of probability theory. In this appendix we
detail how this joint marginal posterior probability,
P(�AC�DI), is computed.

To compute Eq. [5] we reintroduce the standard
deviation of the noise prior probability, �. The joint
posterior probability for the parameters, Eq. [5], is
given by

P��AC�DI� 	 � d�P�C�I� �
j�1

m

� 
P��j�I� P� Aj�I��P�D���ACI�, [6]

where the sum rule was used to remove the standard
deviation of the noise prior probability. Factoring the
last term in Eq. [6] using the product rule gives

P��AC�DI� 	 � d�P�C�I� P���I� �
j�1

m

� 
P��j�I� P� Aj�I��P�D��AC�I�, [7]

where P(��I ) is the prior probability for �, and
P(D��AC�I ) is the direct probability for the data
given the parameters. These two probabilities are the
only terms in this equation that depend on �. If we
separate these two probabilities in preparation for
evaluating the integral over the standard deviation, we
obtain

P�D��ACI� � � d�P���I� P�D��AC�I�. [8]

The exponential model equation, Eq. [1], contains a
set of parameters, the ni, along with the parameters of
interest, �, A, and C. But the ni do not appear in Eq.
[8], nor do they appear in Eq. [5]. Consequently, the
direct probability for the data, Eq. [8], must be a
marginal probability from which both � and the ni

were removed using the sum rule. To show how these
hypotheses were removed, we reintroduce the ni. If
we designate n � n1, n2, . . . , nN, the direct probability
for the data, Eq. [8], is given by

P�D��ACI� � � dnd�P���I� P�nD��AC�I�. [9]

Factoring P(nD��AC�I ) using the product and sum
rules yields,

P�D��ACI� � � dnd�P���I� P�n���

� P�D��AC�nI�. [10]

The three terms on the right-hand side of Eq. [10] are,
respectively, the prior probability for the standard
deviation, the prior probability for the errors given the
standard deviation, and the direct probability for the
data given all of the parameters, including the stan-
dard deviation and the n. But this last term is a delta
function because of the model, Eq. [1]. Either the
error plus the model is equal to the data, in which case
the probability is 1, or the error plus the model do not
add up to the data, in which case the probability is 0,

P�D��AC�nI� � �
i�1

N

�� di � ni � C � �
j�1

m

Aje
��jti� .

[11]

The prior probability for the errors, given the standard
deviation, must now be assigned. If all we know is the
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standard deviation of the errors, and if we use the
principle of maximum entropy to assign this prior
probability, then maximum entropy will assign a 0
mean Gaussian of standard deviation �,

P�n��� � �2��2��N/ 2exp�� �
i�1

N ni
2

2�2�. [12]

Equation [12] explicitly demonstrates that � is the stan-
dard deviation of the prior probability used to represent
what is known about the errors, and is not the standard
deviation of the noise. No assumptions are made about
the sampling frequency distribution of the errors. When
maximum entropy is used to assign a Gaussian prior
probability for the errors, all of the noise characteristics
except the mean and second moments cancel from the
calculations. Any noise sample having the same mean
and second moments will yield exactly the same infer-
ence. See (19, chap. 7) and (31) for more on the near
irrelevance of sampling-frequency distributions.

The prior probability for the standard deviation of
the noise prior is typically assigned using a Jeffreys’
prior (30),

P���I� 	
1

�
. [13]

Strictly speaking, the Jeffreys’ prior is not a proba-
bility because it is not normalizable. If one adheres to
the rules of probability theory, this Jeffreys’ prior
must be bounded and normalized, and the bounds
should only be allowed to go to infinity as a limit at
the end of the calculations. However, here the use of
a Jeffreys’ prior is harmless because the likelihood is
so strongly peaked.

The integrals over the ni are trivial, one obtains

P�D��ACI� 	 � d���N�1exp��
Q

2�2�, [14]

where

Q 	 �
i�1

N �di � C � �
j�1

m

Aje
�jti� 2

. [15]

Equation [14] is a Gaussian likelihood and is usually
assigned directly because it is taken as axiomatic.
However, learning how these probabilities are as-
signed to represent states of knowledge is an impor-
tant step in understanding how Bayesian probability
theory should be used.

The integral over � can be transformed into a
Gamma function integral, and its evaluation yields

P�D��ACI� 	 
Q

2 �
�N/ 2

. [16]

This equation is of the form of Student’s t-distribution
and is substituted into Eq. [5]. It is this t-distribution
that is actually used in the Markov chain Monte Carlo
simulations. Making this substitution, one obtains

P��AC�DI� 	 P�C�I� �
j�1

m


P��j�I� P� Aj�I��
Q

2 �
�N/ 2

,

[17]

and all that remains is to assign the other prior prob-
abilities.

Though the prior probability for the parameters may
have little or no effect on the final parameter estimates,
they can affect the efficiency and convergence of the
Markov chain Monte Carlo simulations. In these calcu-
lations the prior probabilities’ primary function is to
provide order-of-magnitude estimates for the parame-
ters. These estimates are ascertained from known fac-
tors, such as the sampling time and the magnitude of the
data. Because a bounded Gaussian correctly describes an
order of magnitude estimate, we assign the prior proba-
bilities for the amplitudes, the constant offset, and decay
rate constants using broad uninformative Gaussians.
These priors are assigned by specifying a low and high
parameter range. From this range a mean value is com-
puted, Mean � (low � high)/2. The standard deviation
of the Gaussian prior probability is set so the entire
interval, low to high, represents a three standard devia-
tion interval, standard deviation � (high�low)/3. If L,
H, M, and �� represent the lower bound, the upper
bound, the mean, and the standard deviation of the
Gaussian prior probability, then the prior probability for
parameter � is given by

P���LH� 	 �e�
���M�2�/ 2��
2

(L � � � H)
0 otherwise

[18]

where � is any one of the parameters of interest. The
prior probabilities, represented symbolically by Eq.
[18], are substituted into Eq. [17] and the resulting
equation is used in the numerical computation.

The model, Eq. [5], is completely symmetric under
exchange of labels on the exponential model compo-
nents. Nothing in the model differentiates which ex-
ponential model component goes with which expo-
nential signal component. This symmetry manifests
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itself in the probability density function. For example,
in the biexponential case if there is a peak in the joint
posterior probability function for the decay rate con-
stants at (�1 � �̂1, �2 � �̂2), then there is an identical
peak at (�1 � �̂2, �2 � �̂1). To break this symmetry
we order the decay rate constants as follows (L �
�1 � �2 � H ). This condition leaves a single unique
global maximum in the joint posterior probability.
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