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Authors’ note: The original published version of this pa-
per contained a regrettable error in the proof of ǫ-differential
privacy of the “chain mechanism”. This version of the paper
corrects the error by replacing the chain mechanism with an
(ǫ, δ)-differentially private mechanism, inspired by [17], for
estimating the alternating graph statistics discussed herein.

ABSTRACT

The effective analysis of social networks and graph-structured
data is often limited by the privacy concerns of individuals
whose data make up these networks. Differential privacy
offers individuals a rigorous and appealing guarantee of pri-
vacy. But while differentially private algorithms for comput-
ing basic graph properties have been proposed, most graph
modeling tasks common in the data mining community can-
not yet be carried out privately.

In this work we propose algorithms for privately estimat-
ing the parameters of exponential random graph models
(ERGMs). We break the estimation problem into two steps:
computing private sufficient statistics, then using them to es-
timate the model parameters. We consider specific alternat-
ing statistics that are in common use for ERGM models and
describe a method for estimating them privately by adding
noise proportional to a high-confidence bound on their local
sensitivity. In addition, we propose an estimation algorithm
that considers the noise distribution of the private statistics
and offers better accuracy than performing standard param-
eter estimation using the private statistics.

Categories and Subject Descriptors

H.2.7 [Database Administration]: Security, integrity, and
protection; H.2.8 [Database Management]: Data Mining
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1. INTRODUCTION
The explosion in the collection of networked data has fu-

eled researchers’ interest in modeling networks and predict-
ing their behavior. However, for important application areas
such as disease transmission, network vulnerability assess-
ment, and fraud detection (among others), networks contain
sensitive information about individuals and their relation-
ships. It is difficult for institutions to release network data
and it remains difficult for researchers to acquire data in
many important application domains.

Recently, a rigorous privacy standard, differential privacy
[9] was proposed that allows for formal bounds on the disclo-
sure about individuals that may result from computations
on sensitive data. Differential privacy provides each partic-
ipant in a dataset with a strong guarantee and makes no
assumptions about the prior knowledge of attackers.

Since its introduction, differentially private algorithms have
been developed for a wide range of data mining and anal-
ysis tasks, for both tabular data and networked data. For
networks, existing work has focused on algorithms for accu-
rately releasing common graph statistics under differential
privacy [13, 17, 25, 26, 28, 31]. However, graph statistics
are only one aspect of social network analysis and are often
most useful in conjunction with some paradigm for model-
ing structural features of graphs. Privately modeling graph
data has only rarely been explored by researchers; we are
aware only of work using the Kronecker model [20] under
differential privacy [22].

In this work, we study the differentially private use of the
classic exponential random graph model (ERGM) [21, 30,
27]. ERGMs are a powerful statistical modeling tool that al-
lows analysts to analyze a network’s social structure and for-
mation process. In social science and related fields ERGMs
have been successfully applied to many scenarios, such as
co-sponsorship networks [5], friendship networks [12], and
corporate and inter-organizational networks [21].

Our goal is to accurately support parameter estimation
for ERGMs under differential privacy, focusing on a specific
set of model parameters of recent interest to researchers:
the alternating statistics. These sophisticated statistics rep-
resent more structural information than traditional star and
triangle counts, and have been shown to lead to much better
modeling results [30, 27, 14, 12].

Our adaptation of differential privacy to graphs protects
relationships of individuals by limiting the influence on the
output of any single relationship (edge) that is created or
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removed from the network.1 A standard algorithm that im-
plements this idea is the Laplace mechanism [9], which adds
random noise to the output. The amount of noise required
is related to the maximum difference in the output due to
a single edge addition or removal for any possible network
(this is the global sensitivity of the function producing the
output). For ERGM estimation, this requires calculating
the exact change in the ERGM parameter estimates as a
result of changing an edge. Unfortunately, the global sensi-
tivity for most ERGM parameters is either hard to compute
in general, or too high, so that using noise calibrated to the
global sensitivity is not acceptable.

To overcome this obstacle, we decompose private ERGM
estimation into two separate steps. We first privately com-
pute the sufficient statistics for ERGM estimation (typically
the model statistics required by model description) and then
estimate the parameters using only these sufficient statistics.
Since the estimation process uses only the differentially-
private statistics, and there is no additional access to the
original graph, the output of estimation is also differentially
private. In practice, the estimation algorithm is executed
either on the server side (by the data owner) or on the client
side (by the analyst). In either case, it does not violate
the privacy condition to release both the statistics and the
derived ERGM parameters.

Challenges arise in both steps of our approach. While
prior work has proposed mechanisms for various graph statis-
tics, common ERGM models use unique statistics, e.g., al-
ternating graph statistics [30], which are a complex aggre-
gation of a series of basic graph statistics. We describe new
approaches for privately computing these statistics. The
second parameter estimation step could be implemented us-
ing standard methods [29, 3] while treating the privately-
computed statistics as if they were the true statistics. In-
stead, we propose a novel parameter estimation method
based on Bayesian inference, which considers the noise dis-
tribution from which the private statistics are drawn and
produces more accurate parameter estimates.

Contributions

• In Section 3, we describe (ǫ, δ)-differentially private al-
gorithms for estimating two key statistics: alternating k-
triangle and alternating k-twopath. The algorithms add
noise proportional to a high-likelihood bound on the local
sensitivity of the statistics. Unlike global sensitivity, lo-
cal sensitivity is determined by the current graph instead
of worst-case graphs and can be much lower. Our algo-
rithms use a technique formalized in [17] and inspired by
the Propose-Test-Release approach [8].
• We describe a new Bayesian method for ERGM param-
eter estimation (in Section 4) that is designed for the noisy
sufficient statistics produced by a differentially private algo-
rithm. While it is possible to use a standard algorithm for
estimation, our inference takes the unknown network as a
hidden variable and can result in estimates with lower error.
• We study a set of ERGM models based on model terms
consisting of alternating graph statistics [30] (in Section 5).
Our experiments on both synthetic and real graphs show

1This is one of the most common interpretations of differen-
tial privacy for graphs, called edge differential privacy [13].
Node differential privacy is stronger, but often hurts util-
ity. Our results for edge-differential privacy can easily be
extended to k-edge privacy to protect multiple edges.

that our techniques significantly reduce noise over baseline
approaches.

2. BACKGROUND

2.1 Exponential random graph model (ERGM)
A graph G = (V,E) is defined as a set of nodes V and

relationships E : V ×V → {0, 1}. A common representation
of a graph is as an adjacency matrix x, where xij ∈ {0, 1}
indicating whether there is an edge from node i to j. Let f(·)
define a vector of graph statistics called the model terms; the
concrete values of f(x) are the model statistics. Formally,
the ERGM with parameter vector θ defines a probability
distribution over graphs in the space X (typically the set of
all simple graphs with n vertices):

p(x|θ) =
exp(θ · f(x))

Zθ
(1)

Zθ is a normalizing constant to make p(x) a true probabil-
ity distribution, parameterized by θ. If x0 is the observed
graph and X represents the random variable defined by the
distribution above, our goal is to tune the parameter vector
θ, s.t. the expected value of f(X) is equal to observed statis-
tics, meaning Eθ(f(X)) = f(x0), which intuitively puts the
observed graph in the “center” of space of possible graphs
implied by the model. For example, the simplest ERGM
uses the number of edges as the only model term. If m0 is
the total number of edges in x0, the θ, which enables the
expected number of edges of ERGM equal to m0, is given
by [24]:

θ = log
m0

(

n
2

)

−m0

(2)

Estimating θ. The optimal θ maximizes the likelihood of
x0 given θ [24], i.e., argmaxθ p(x0|θ). Unfortunately, most
ERGMs do not have an analytical or closed-form estimate
for the optimal θ. Thus, numerical solutions are proposed in
the literature, such as Markov chain monte carlo maximum
likelihood estimation [29] and Bayesian inference [3]. An
interesting property of these inference methods is that the
algorithm does not require access to the input graph itself,
i.e., the sufficient statistics for the parameter estimation are
just the model statistics. This feature enables us to decom-
pose the private inference problem into two steps, allowing
analysts to see only the sufficient statistics.

Alternating statistics. A model term is usually a count-
ing query of a specific graph pattern. Common patterns
include triangles, stars and loops [21]. Recent research has
introduced alternating statistics for k-star, k-triangle and
k-twopath, which can represent structural properties of a
graph better than traditional star and triangle counts [30].
Many works have explored these statistics since they were
proposed, and they are an active and promising form of
ERGM [30, 27, 14, 12]. Our work is focused on these alter-
nating statistics (defined precisely in Section 3) which have
not been studied before under differential privacy. A wide
variety of other model terms are used with ERGMs; our gen-
eral approach is compatible with other terms but they are
beyond the scope of this work.

922



2.2 Differential privacy
Differential privacy is traditionally defined over a tabular

based database D consisting of records, each of which de-
scribes an individual. When querying the database, differ-
ential privacy protects individuals by restricting the impact
on the output of any individual who opts into or out of the
database. Two such databases that differ by one record are
called neighbors.

Definition 2.1 (Differential Privacy[7]). Let D and D′ be
neighboring databases and K be any algorithm. For any
subset of outputs O ⊆ Range(K), the following holds:

Pr[K(D) ∈ O] ≤ exp(ǫ)× Pr[K(D′) ∈ O] + δ

If δ = 0, K is standard ǫ-differentially private. Otherwise,
K is relaxed (ǫ, δ)-differentially private.

The input privacy parameter ǫ (and δ if using the relaxed
definition) are non-negative and are used to measure the
degree of privacy protection. Smaller ǫ means better privacy
as exp(ǫ) is close to one.

In this paper, our database is a graph describing rela-
tionships among individuals. Our purpose is to protect rela-
tionships among individuals so we adapt differential privacy,
following [13, 17, 26, 31, 28], by defining a neighboring graph
as a graph that differs by one edge.

Global sensitivity and the Laplace mechanism

Differential privacy can be achieved by adding noise to the
output of algorithms according to privacy parameters and
query sensitivity. The global sensitivity of a query is the
maximum possible difference in the output when evaluating
the query on two neighboring graphs. E.g., the query asking
for the maximum degree of a graph has global sensitivity 1,
because adding or removing one edge changes any degree by
at most 1. Let Lap(b) be a Laplace random variable with
mean 0 and scale b.

Definition 2.2 (Laplace mechanism [9]). Given query f on
graph x, the following algorithm K(f, x) is ǫ-differentially
private:

K(f, x) = f(x) + Lap(GSf/ǫ)

where global sensitivity

GSf = max
∀x1,x2 neighbors

|f(x1)− f(x2)|

A basic property we rely on is that post-processing a noisy,
differentially-private output using any algorithm that does
not access the original data cannot alter the privacy guaran-
tee [19]. Past research has shown that post-processing the
noisy output can, however, have significant impact on utility.
In addition, composition rules for differential privacy allow
us to compute the ǫ privacy standard that results from the
combined release of multiple query answers or releases. Pre-
cisely, if each release is ǫi-differential privacy, the combined
is then

∑

i ǫi-differential privacy.
In our perturbation step, we will use the composition rule

to add noise to multiple model terms. In the parameter
estimation step, we run post-processing.

Local sensitivity and its smooth bound

Some common graph analyses have high global sensitivity,
requiring the Laplace mechanism to add enormous amounts

of noise. For example, consider the simplest ERGM model
above where θ is calculated by (2). On a graph wherem0 = 0
or a graph where m0 =

(

n
2

)

, θ can change drastically with
the addition or deletion of one edge. In other words, the
global sensitivity is very high for this function. But the fact
is that most real graphs are nothing like these extremes.
Thus, by only focusing on the input graph’s neighbors, the
local sensitivity [25] can be much smaller.

Definition 2.3 (Local sensitivity[25]). Given query f and
graph x, local sensitivity LSf (x)

LSf (x) = max
x,x′neighbors

|f(x)− f(x′)|

However, one cannot achieve differential privacy by adding
noise proportional to the local sensitivity because local sen-
sitivity itself could disclose information. The authors of [25]
proposed using a smooth upper bound on the local sensi-
tivity, the smooth sensitivity. Intuitively, smooth sensitivity
tries to “smooth” out the difference between local sensitiv-
ities of two neighbors, so that it is itself not sensitive. Let
d(x, x′) be the distance between two graphs, i.e. the number
of edges in which they differ.

Definition 2.4 (Smooth bound and smooth sensitivity[25]).
Function Sf : X ⇒ R defines a β-smooth bound of local
sensitivity on query f if

∀x : Sf (x) ≥ LSf (x)

∀x, x′ neighbors : Sf (x) ≤ exp(β)Sf (x
′)

The β-smooth sensitivity of f is a β-smooth bound, and

SSf,β(x) = max
x′

{

LSf (x
′) · exp

(

−βd(x, x′)
)}

Calculating the smooth sensitivity for a function may be
easy (in cases like the median of a list of numbers [25]) but
could be quite difficult for other functions, requiring complex
proofs and nontrivial algorithms [17].

3. PERTURBING MODEL STATISTICS
In this section we provide methods for privately comput-

ing alternating graph statistics. In Sec. 3.1 we define three
alternating statistics and show that one of them (alternat-
ing k-star) has a constant global sensitivity. This means
the Laplace mechanism to be applied with relatively small
error. However, alternating k-triangle and alternating k-
twopath both have high global sensitivity. In Sec 3.2 we
show that we cannot resort to smooth sensitivity, as calcu-
lating the smooth sensitivity is NP-hard in both cases. To
address this challenge, we adapt a technique which calibrates
noise to a private, high-likelihood upper bound on the local
sensitivity [17]. That bound is produced using the global
sensitivity of the local sensitivity function. If, however, the
global sensitivity of that function is high, the technique can
be repeatedly applied, using a high-likelihood bound on the
local sensitivity of the local sensitivity function. We describe
these “first-order” and “second-order” algorithms with static
error calculation in Sec 3.2, and then analyze the local sen-
sitivity of alternating k-triangle and alternating k-twopath
in Sec. 3.3.

3.1 Alternating graph statistics
The three alternating graph statistics, alternating k-star,

alternating k-triangle and alternating k-twopath, are essen-
tially complex aggregations of traditional k-star, k-triangle
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and k-twopath statistics. Instead of considering a vector of k
terms, the alternating statistics aggregate over the terms but
enforce alternating signs between each consecutive term, to
weaken the correlation among different terms and effectively
reduce the weight on higher terms near k.

Alternating k-star. The k-star is a counting query of a star
pattern in the graph, where each star contains k edges, i.e.,
Sk =

∑

i

(

di
k

)

where di is the degree of node i.

Definition 3.1 (Alternating k-star [30]). With parameter
λ ≥ 1, alternating k-star S is defined as

S(x;λ) = S2 −
S3

λ
+ . . .+ (−1)n−1 Sn−1

λn−3

The λ parameter here is a good way to control the geo-
metrical weights on all k-stars.

Alternating k-triangle. A k-triangle is a graph pattern in
which k triangles share a common edge. The k-triangle
query asks for the total number of k-triangles in the graph.
Define the shared partner matrix C, where each entry (i, j)
in C is the count of shared partners between nodes i and j,
mathematically Cij(x) =

∑

l xilxlj . Formally, k-triangle Tk

is defined:

Tk =
∑

i<j

xij

(

Cij

k

)

(k ≥ 2), and T1 =
1

3

∑

i<j

xijCij

Alternating k-triangle is defined similarly as alternating k-
star, using parameter λ:

Definition 3.2 (Alternating k-triangle [30]). With param-
eter λ ≥ 1, alternating k-triangle T is:

T (x;λ) = 3T1 −
T2

λ
+

T3

λ2
− . . .+

(

−1

λ

)n−3

Tn−2

Alternating k-twopath. A k-twopath graph pattern is very
similar to k-triangle, except it does not require the shared
edge required by the k-triangle statistic. Using the shared
partners matrix C above, the counting query for k-twopath
Uk is:

Uk =
∑

i<j

(

Cij

k

)

(k 6= 2), and U2 =
1

2

∑

i<j

(

Cij

2

)

And alternating k-twopath is:

Definition 3.3 (Alternating k-twopath [30]). With param-
eter λ ≥ 1, alternating k-twopath U is

U(x;λ) = U1 −
2

λ
U2 +

n−2
∑

k=3

(

−1

λ

)k−1

Uk

Alternating k-star S is the only statistic that can be read-
ily solved using existing privacy mechanisms. Because the
degree sequence is a sufficient statistic for S, one natural ap-
proach is to use the mechanism described by Hay et al [13]
to compute a private degree sequence from x, and then use
it to compute S by Eq. (3). But, in fact, it can be shown
that the global sensitivity of S is at most 2λ. Thus, Laplace
noise may be a better choice (λ is usually set to a small in-
teger in practice). We make empirical comparisons between
these methods in Section 5.

Lemma 3.4. The global sensitivity of alternating k-star is
at most 2λ.

3.2 Bounding local sensitivity
Because the global sensitivity of alternating k-triangle and

k-twopath can be as large as O(n), we would like to use a
method which adds noise scaled to the local sensitivity, or
a quantity close to the local sensitivity. One approach is to
compute a smooth bound on the local sensitivity, however,
the following lemma shows the NP-hardness of computing
such a bound for these two statistics:

Lemma 3.5. Computing the smooth sensitivity for both al-
ternating k-triangle and alternating k-twopath is NP-hard.

We therefore employ a technique inspired by the Propose-
Test-Release framework [8], and formalized by Karwa et
al [17], where it was used to estimate k-triangles. The tech-
nique first computes a private over-estimate of the local sen-
sitivity, one that is higher than the local sensitivity with high
probability. That becomes a safe sensitivity value for cali-
brating Laplace noise, however, the result satisfies only the
weaker notion of (ǫ, δ)-differential privacy.

Let f(x) be the sensitive function/query. We use LSf,1(x)
to denote the local sensitivity of f , which is a function of
the input graph x.

Algorithm 1 Local sensitivity bounding algorithm (First
order)

Require: input graph x, query f and ǫ, δ

1: a = ln(1/δ)
ǫ

2: ỹ1 = LSf,1(x) + Lap(GS(LSf,1(x))/ǫ) + a · GS(LSf,1(x))
3: ỹ = f(x) + Lap(ỹ1/ǫ)
4: return ỹ, ỹ1

In Algorithm 1, ỹ1 is the private bound on the local sensi-
tivity, computed by adding scaled noise to LSf,1(x), as well
a positive offset, so that the bound is higher than LSf,1(x)
with high probability. Notice that the scale of the noise is
determined by the global sensitivity of the local sensitivity,
GS(LSf,1(x)).

If GS(LSf,1(x)) is large, it may cause ỹ1 to be a significant
over-estimate of LSf,1(x). We can repeat this approach by
using a safe upper bound of the local sensitivity of LSf,1(x),
as presented below. Thus, Algorithm 1 bounds the first-
order local sensitivity and the following algorithm bounds
the second-order local sensitivity.

Algorithm 2 Local sensitivity bounding algorithm (Second
order)

Require: input graph x, query f and ǫ, δ

1: a = ln(1/δ)
ǫ

2: ỹ2 = LSf,2(x) + Lap(GS(LSf,2(x))/ǫ) + a · GS(LSf,2(x))
3: ỹ1 = LSf,1(x) + Lap(ỹ2/ǫ) + a · ỹ2
4: ỹ = f(x) + Lap(ỹ1/ǫ)
5: return ỹ, ỹ1, ỹ2

Theorem 3.6. Algorithm 1 is (2ǫ, 1
2
eǫδ)-differential pri-

vacy. Algorithm 2 is (3ǫ, 1
2
eǫδ + 1

2
e2ǫδ)-differential privacy.

The step of replacing the global sensitivity by a high-
likelihood bound on the local sensitivity can be repeatedly
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applied to form more complex higher order algorithms. How-
ever, each additional bounding step requires splitting the
privacy budget and the combined effects of repeatedly over-
estimating higher order sensitivities may diminish utility.
For the two alternating statistics we consider, and the datasets
we tested on, we found that first order and second order is
sufficient.

Error analysis

Definition 3.7. Y0, Y1, . . . , Yn is a random variable chain,
when the following condition is satisfied: for any i ∈ [0, n−
2], Yi is conditionally independent of Yi+2, Yi+3, . . . Yn given
Yi+1.

From conditional independence, an important property of
a random variable chain is the following:

Pr(Yi|Yi+1, Yi+2, . . . , Yn) = Pr(Yi|Yi+1)

It is easy to see that ỹ, ỹ1, . . . is actually a random variable
chain. We use mean squared error (MSE) as the measure-
ment of error. In Algorithm 1 and 2, MSE of ỹ can be
written as E[(ỹ− f(x))2] = V[ỹ] + (E[ỹ]− f(x))2. Since ỹ is
always unbiased (Laplace noise in the last step with mean
zero), MSE = V[ỹ].

Without knowing the true value of the local sensitivities, it
is quite hard to compute the MSE. That is to say, we cannot
compute the error like we do for the Laplace mechanism,
since the noise in the latter is independent of input graph x.
But, by exploring properties of the random variable chain,
it is possible to utilize the following Lemma as a closed form
calculation tool for MSE. In fact, we extend law of total
expectation/variance [32].

Lemma 3.8. Y0, Y1, . . . , Yn is a random variable chain. Write
⊔

j,i E[·] as a shortcut for EYj |Yj+1
[EYj−1|Yj

[. . .EYi|Yi+1
[·]]]

when j < n and EYj
[EYj−1|Yj

[. . .EYi|Yi+1
[·]]] when j = n.

E[Y0] =
⊔

n,0

E[Y0]

V[Y0] =
⊔

n,1

E[ V
Y0|Y1

[Y0]]

+

n
∑

i=2

(

⊔

n,i

E[ V
Yi−1|Yi

[
⊔

i−2,0

E[Y0]]]

)

+ V
Yn

[
⊔

n−1,0

E[Y0]]

Applying Lemma 3.8, one can calculate the MSE of Al-
gorithms 1 and 2. Such error measurement, which needs
access to the input graph, can serve as an evaluation tool
for privacy researchers when working with our algorithms.
From the perspective of data owners, the analytic result of
MSE can help them to decide between Algorithm 1 and 2,
i.e., with fixed privacy parameters, selecting the algorithm
with lower error.

3.3 Alternating k-triangle and k-twopath
Now we apply the idea of bounding the local sensitivity to

alternating k-triangle and alternating k-twopath. Let β =
1−1/λ. By binomial coefficients, we can rewrite alternating
k-triangle T (x;λ) as

T (x;λ) = λ
∑

i<j

xij

{

1− βCij

}

(3)

Lemma 3.9. Set C′
iv = Civ − xij and C′

vj = Cvj − xij .
Let Nij be all shared partners of node i and j and Cmax =
maxi<j Cij . The local sensitivity of T is

LST,1(x) = max
i<j

λ
{

1− βCij

}

+
∑

v∈Nij

{

βC′

iv + βC′

vj

}

(4)

≤ λ+ 2Cmax (5)

As Cmax has global sensitivity 1, LST,1 has global sen-
sitivity at most 2. So we can construct a first-order local
sensitivity bound using LST,1 = λ+ 2Cmax to compute pri-
vate alternating k-triangle.

For alternating k-twopath U(x;λ), we can rewrite it as

U(x;λ) = λ
∑

i<j

{

1− βCij

}

(6)

Lemma 3.10. Let Ni be the set of neighbors of node i and
dmax be the maximum degree. Set C′

iv = Civ − xij and
C′

vj = Cvj − xij . We have local sensitivity

LSU,1(x) = max
i<j







∑

v∈Ni,v 6=j

βC′

vj +
∑

v∈Nj ,v 6=i

βC′

iv







(7)

≤ 2dmax (8)

LSU,2(x) ≤
max(4, 1 + Cmax)

λ
(9)

From Lemma 3.10 above, (8) has global sensitivity 2, since
dmax will change by at most 1 by adding or removing an
edge. (9) has global sensitivity 1/λ for Cmax > 3. Therefore,
we can construct either a first-order or second-order bound.
Note that (7) is the exact local sensitivity of alternating
k-twopath, but we cannot bound it in Algorithm 1 as the
global sensitivity of (7) is not clear. Instead we use (8).
When applying Algorithm 2, (7) is the local sensitivity to be
bounded at Line 4, as by that step the higher order (second-
order) local sensitivity (9) has already been safely bounded.
We compare the resulting error empirically in Section 5.

4. ERGM PARAMETER ESTIMATION
The parameter estimation step in our workflow takes the

private sufficient statistics ỹ from the previous perturbation
step and finds the best parameter vector θ. As stated above,
this step is essentially post-processing a differentially private
output, so the output θ is also differentially private. In this
section, we discuss different ways of estimating θ given ỹ.

4.1 Standard estimation
Current estimation techniques [29, 3] provide a baseline

solution for parameter estimation with private statistics. As
these procedures essentially only need access to model statis-
tics, our sufficient statistics in ỹ take the place of the true
model terms. The semantics is now to search for θ that
defines a probability distribution on graphs with expected
model statistics equal to ỹ. Intuitively, the utility of this
method depends on the amount of noise added into y0 and
how θ reacts to those changes in y0.
Prior to applying standard estimation, we post-process ỹ

to cope with some of the difficulties of the perturbed model
statistics. As the output of perturbed ỹ might not be graph-
ical (i.e., no graph has statistics equal to ỹ), standard esti-
mation may fail to converge. We propose generating a graph
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that has the closest statistics to ỹ and use the statistics from
that graph to replace ỹ, in order to avoid non-converging
situations and to potentially remove noise from ỹ simulta-
neously. We use simulated annealing for this purpose and,
in practice, we often see big improvements in the accuracy
of estimates.

4.2 Bayesian inference
Standard estimation is the direct way of post-processing

ỹ, but since we know the distribution of the noise added
to ỹ, we can “guess” the true values and incorporate them
into the estimation algorithm. This idea naturally fits into
Bayesian inference based post-processing. While based on
earlier work [3] on Bayesian inference for non-private esti-
mation, our method deals with the extra hidden variable of
graph x in our setting. And later we will see, by introducing
the unknown x, our method can utilize more information
from private statistics, such as the local sensitivity bounds.
In particular, we search for θ given ỹ, represented as the
posterior distribution of ERGM parameter θ:

p(θ|ỹ) ∝ p(ỹ|θ)p(θ) =
∑

x

p(ỹ|x)p(x|θ)p(θ)

=
∑

x

p(ỹ|x)q(x; θ)p(θ)/Zθ (10)

where x is our guess about x0, but the fact is that we need
to summarize over all possible x to get to the posterior. In
(10), p(ỹ|x) is the privacy distribution, defined by the dif-
ferential privacy mechanism applied on sufficient statistics.
p(x|θ) is the ERGM distribution, as shown in (1) and q(x; θ)
represents the unnormalized distribution.

q(x; θ) = exp(θ · f(x)) (11)

The probability distribution (10) is hard to calculate or
even sample from directly due to summarization over all
graphs and normalizing constant Zθ. Using the exchange
algorithm [23], we introduce extra variables x, θ′ and x′ to
bypass the difficult terms (10). By carefully choosing the
probability distribution of these new random variables, the
posterior distribution is now augmented as shown in (12).
The key is that the marginal posterior distribution for θ in
(12) is equivalent to (10). Thus, if we are able to sample from
the distribution in (12), the marginal posterior distribution
for θ can be obtained by summarizing over all samples.

p(θ, x, θ′, x′|ỹ) ∝ p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′) (12)

θ′ is sampled from proposal distribution p(θ′|θ), where, for
a given θ, a new θ′ can be proposed according to p(θ′|θ).
A common choice is a multivariate normal distribution or a
multivariate t distribution, with mean equal to θ. x, x′ are
sampled graphs under the ERGM with parameter θ and θ′.
A MCMC based sampling process for (12) is shown in Al-

gorithm 3. In particular, the initial input θ and x could be
any parameters and any graph. In Line 3, we need a sepa-
rated MCMC chain to sample x′ ∼ p(x′|θ′). In such MCMC
algorithms, at each iteration (T iterations in total), we pro-
pose adding or removing edges in the current state of graph,
calculate the new model statistics, compare the probability
of new state xnew to that of old state xold, and with prob-
ability p(xnew|θ

′)/p(xold|θ
′) the change is accepted. This

process should be run long enough so that final sample x′ is
truly from p(x′|θ′).

Algorithm 3 ERGM parameter estimation with private
model statistics

Require: ỹ, initial θ, x
1: for i in 1 to T do

2: Sample θ′ ∼ p(θ′|θ)
3: Sample x′ ∼ p(x′|θ′)
4: Replace θ with θ′ and x with x′, with probability

min(1, H) //H by (13) below

5: return samples of θ.

H in Line 4 is the ratio of accepting the exchange, com-
puted by comparing the probability before and after ex-
change. That is, we exchange θ with θ′ and x with x′ in
(12) and calculate the ratio. Then the complex terms are
cancelled out and each remaining term is easy to compute.

H =
p(ỹ|x′)p(x′|θ′)p(θ′)p(θ|θ′)p(x|θ)

p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
p(ỹ|x′)p(θ′)p(θ|θ′)

p(ỹ|x)p(θ)p(θ′|θ)
(13)

In practice, Algorithm 3 usually results in low acceptance
rates in the exchange step in Line 4 and thus long mixing
times for the MCMC process. We now propose to separate
that last step, isolating simultaneously updated θ and x into
two different steps, as shown in Algorithm 4, which improves
the acceptance rate significantly.

Algorithm 4 Improved ERGM parameter estimation with
private model statistics

Require: ỹ, initial θ, x
1: for i in 1 to T do

2: Sample θ′ ∼ p(θ′|θ)
3: Sample x′ ∼ p(x′|θ′)
4: Exchange θ with θ′, with probability min(1, H1)

//H1 by (14) below
5: Replace x with x′, with probability min(1, H2)

//H2 by (15) below

6: return samples of θ.

H1 and H2 in Algorithm 4 are defined as follows.

H1 =
p(ỹ|x)p(x|θ′)p(θ′)p(θ|θ′)p(x′|θ)

p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
q(x; θ′)p(θ′)p(θ|θ′)q(x′; θ)

q(x; θ)p(θ)p(θ′|θ)q(x′; θ′)
(14)

H2 =
p(ỹ|x′)p(x′|θ)p(θ)p(θ′|θ)p(x|θ′)

p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
p(ỹ|x′)q(x′; θ)q(x; θ′)

p(ỹ|x)q(x; θ)q(x′; θ′)
(15)

The correctness of Algorithm 4 can be proved briefly in
terms of a component-wise Metropolis-Hasting algorithm,
with hybrid Gibbs updating steps. In each iteration, θ′ and
x′ (Line 2 and 3) are drawn based on the full conditional
distribution, so the updating probability is always 1. In Line
4 and 5, we update θ and x with Hasting ratios. Although
we may end up updating θ′ and x′ more times in a iteration,
we still get to the detailed balance in MCMC [10].
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Figure 1: Perturbation error on alternating k-star on syn-
thetic graphs. Left: p = log(n)/n, varying size of graph n.
Right: n = 1000, varying λ.
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are non-private.

When applying Algorithm 4 to real ERGM models, the
key is correctly computing H1 and H2. Everything in H1 is
independent of the privacy mechanism used for the model

terms. In H2, the ratio of privacy distribution p(ỹ|x′)
p(ỹ|x)

is

mechanism dependent. Here, we illustrate the cases for
both Laplace mechanism and local sensitivity bounding al-
gorithms.

Example 4.1 (Laplace mechanism). If Laplace mechanism
is applied on a model term f , and ỹ, ǫ and GS are private
statistic, privacy parameter and global sensitivities respec-
tively, p(ỹ|x) is then:

p(ỹ|x) ∝ exp (−|ỹ − f(x)|ǫ/GS) (16)

Assume we use a symmetric proposal distribution for θ, i.e.,
p(θ′|θ) = p(θ|θ′). With Algorithm 4, ratio H1 and H2 can
be written as (after taking logarithm)

logH1 = log
p(θ′)

p(θ)
+ (θ − θ′) ·

(

f(x′)− f(x)
)

(17)

logH2 = (θ − θ′) ·
(

f(x′)− f(x)
)

+
ǫ

GS

(

|ỹ − f(x)| − |ỹ − f(x′)|
)

(18)

Example 4.2 (Local sensitivity bounding). Assume a sin-
gle model term and first-order local sensitivity bounding
(multiple model terms and second order can be adjusted
accordingly), and privacy parameter ǫ and δ is the input for
Algorithm 1. Let a = ln(1/δ)/ǫ.

In the process of MCMC, for current sampled graph x,
we write l1 as the local sensitivity on x and g1 as the global
sensitivity of local sensitivity. The first-order local sensitiv-
ity bounding (Algorithm 1) returns ỹ, ỹ1 for the observed
graph. p(ỹ, ỹ1|x) can be represented as follows by omitting

terms that will be cancelled out later in calculating p(ỹ,ỹ1|x
′)

p(ỹ,ỹ1|x)
.

p(ỹ, ỹ1|x) = p(ỹ|x, ỹ1)p(ỹ1|g1, l1)

∝ exp

(

−
|ỹ − f(x)|

ỹ1/ǫ
−

|ỹ1 − l1 − ag1|

g1/ǫ

)

(19)

Calculation of p(ỹ, ỹ1|x) deals with not only the private ver-
sion of local sensitivity ỹ1, but also more statistics from the
sampled graph in each iteration of MCMC (local sensitiv-
ity l1). Recall in the standard estimation, none of them are
incorporated in the process. In the next section, we em-
pirically show that such extra information can benefit the

estimation. As in the example above, assume a symmetric
proposal distribution. With Algorithm 4, ratio H1 is the
same as (17). H2 is:

logH2 = (θ − θ′) ·
(

f(x′)− f(x)
)

+
|ỹ − f(x)| − |ỹ − f(x′)|

ỹ1/ǫ

+
|ỹ1 − l1 − ag1| − |ỹ1 − l′1 − ag1|

g1/ǫ
(20)

Releasing θ. In Algorithm 3 and 4, we use multiple sam-
pled θ to represent the marginal distribution on θ. A straight-
forward way to generate a single instance of estimated θ is
to calculate the average of those samples. However, in prac-
tice, we found that marginal maximum a posterior (MMAP)
could give analysts better estimates instead. Formally, MMAP
of θ is defined as argmax

θ
p(θ|ỹ). A fast method we apply is

reusing the samples of θ from Algorithm 4, and performing
approximate MMAP estimation by histogram or density es-
timation. More sophisticated solutions will require further
expanding (12) before MCMC sampling [6, 16].

5. EVALUATION
Our evaluation has two goals. First we assess the per-

turbation error of our privacy mechanisms, particularly the
Laplace mechanism on alternating k-star and the local sen-
sitivity bounding algorithms on alternating k-triangle and
k-twopath. Second, we evaluate the ERGM parameter es-
timation with private statistics using different approaches
proposed in Section 4. All our experiments are run on Linux
servers with Intel Xeon CPU and 8GB memory. In the ex-
periments, we differ privacy parameters ǫ and δ. Note that,
whenever we clarify a value for ǫ or δ, it always means the
overall privacy budget of the entire perturbation process.

5.1 Perturbation error
Our datasets include synthetic and real graphs. Synthetic

graphs are generated using a random graph model, G(n, p),
where parameters n and p control the size of graph and
the probability of two nodes connecting, respectively. We
iterate from n = 100 to n = 1000 in steps of 100. p is
set to log(n)/n for relatively sparse graphs and then moved
to 0.1 and higher. Though we only report the sparse case
and p = 0.1, results for larger p generally agree with the
conclusions. Error measurement is root mean square error
(RMSE).

Alternating k-star
As described in Section 3.1, we can apply the Laplace mech-
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Figure 4: Perturbation error on real graphs

anism (LAP) directly or compute the degree distribution
privately first, by isotonic regression (ISO) from [13] and
use it as a sufficient statistic for alternating k-star. Figure 1
shows the error of the two methods by varying p and λ, with
different settings of ǫ = 1, 0.1, listed in the legend text. As
we do not have analytical RMSE for the ISO case, it is cal-
culated from 100 independent perturbations. We clearly see
LAP significantly outperforms ISO, even when λ = 10 at
both ǫ settings (and recall that the global sensitivity is 2λ).
For the rest of this section, if not stated, we set λ = 2 as it
is the value normally recommended [21] and usually plays a
minor part in the workflow.

Alternating k-triangle
The first-order local sensitivity bounding algorithm is ap-
plied here while setting ǫ to 1 and 0.1 and fixing δ = 0.01.
In Figure 2, we use “LSB” to represent Algorithm 1. For
comparison purposes, we plot the non-private noisy output
resulting from adding Laplace noise based on true local sen-
sitivity, marked as “LS” in Figure 2. We find that LSB can
add modest error when compared to this non-private base-
line, especially when the privacy budget ǫ is relatively large.

Alternating k-twopath

We discussed in Section 3.3 how a first-order or second-
order local sensitivity bound can be applied to alternating
k-twopath. We present these results in Figure 3, by distin-
guishing them as “1-LSB” and “2-LSB”. We find that for our
test cases with random graphs, 1-LSB is consistantly better
than 2-LSB, illustrated by RMSE in the left two subfigures.
Referring to Sec. 3.3, recall that in 1-LSB we bound (8)
while in 2-LSB we bound eqrefeq:ktwop1 by using bounded
(9). If (7) and (9) are not small enough compared to (8),
the fact that we split the budget of privacy one more time

Network nodes edges astar atri atwop

dolphins 62 159 418.1 177.5 705.4
lesmis 77 254 756.4 426.4 1565.5
polbooks 105 441 1355.4 715.5 2817.5
adjnoun 112 425 1292.9 452.1 3801.0
football 115 613 1992.4 922.3 3675.3

Table 1: Real networks for ERGM parameter estimation

Model Model terms Perturbation mech

M1 edges, astar LAP, LAP
M2 edges, atri LAP, 1-LSB
M3 edges, atwop LAP, 1-LSB

Table 2: Model descriptions

will outweigh the gain. In the right two subfigures of Fig-
ure 3, we plot the true local sensitivity and the expected
values of private, bounded local sensitivity for both LSB al-
gorithms. We see that 1-LSB results in a bound that is close
to the true value but that 2-LSB results in a significant over-
estimate, especially with a smaller ǫ = 0.1. Although 1-LSB
is superior across our tested networks, it remains possible
that 2-LSB could outperform 1-LSB for some input graphs
or large ǫ and λ.

Real graphs

For real graphs, we consider several collected networks from
the SNAP collection2 to determine if our alternating statis-
tics can be perturbed in a “meaningful” way, i.e., small rela-
tive noise that doesn’t destroy utility. Our metric is relative
RMSE, which is RMSE divided by the true statistic. As
shown in Figure 4, with ǫ = 0.1, all three alternating statis-
tics (with shortened names: astar, atri, atwop) are estimated
with low relative error. In particular, error for alternating
k-star is between 10−3 and 10−4, alternating k-triangle at
10−1 and alternating k-twopath at 10−2.

5.2 ERGM parameter estimation
For the evaluation of ERGM parameter estimation, we

want to compare the algorithms in Section 4. In practice, the
data owner will only perturb each statistic once and then re-
lease it to the analysts. As the perturbation is a randomized
process, our goal is to understand how good our estimation
algorithm is on average. So for each graph and each model
description, we perturb the statistics N = 50 times and
run the estimation algorithm on each perturbation, finally

2http://snap.stanford.edu

928



M1 M2 M3

0

10

20

30

40

dol les pol adj foo dol les pol adj foo dol les pol adj foo

R
M
S
E STD BINF

Figure 5: Parameter estimation with private statistics. Every four bars, from left to right, are θ1, θ1, θ2, θ2.

measuring their quality by RMSE with respect to estimates

in the non-private case,
√

1/N
∑

i∈[1,N ](θ̂i − θ)2, where θ is

the “true” value, calculated from the non-private estimation
algorithm from [15] or [3], θ̂i is θ from i-th perturbation.

As mentioned in [3], the estimation using the Bayesian
technique has general scalability issues, where it becomes
very slow for any graphs beyond a few hundred of nodes.
Moreover such time cost also varies with the model terms,
e.g., alternating k-twopath takes much more time than the
other two alternating statistics, as calculation of the accep-
tance ratio in MCMC sampling of x ∼ p(x|θ) is more com-
plicated. Therefore, here we focus on smaller graphs, and
this is the common practice for many ERGM works such
as [3, 5, 21]. Our test networks3 include dolphins, lesmis,
polbooks, adjnoun and football. Detailed facts are listed in
Table 1. We fix ǫ = 0.5 and δ = 0.01.

We experimented with three models, each of which corre-
sponds to one of the alternating statistics, with the purpose
of testing estimation by isolating other factors. We include
the count of edges as a shared term in all models, as it is
very common in ERGM applications. As shown in Table 2,
each model contains two terms, with correspondingly two
parameters, θ = (θ1, θ2). The estimation algorithms will be
standard estimation (STD) and Bayesian inference (BINF).
In all cases, the privacy budget is distributed evenly in a
way such that each generation of noise uses same share of
the overall ǫ. In Figure 5, each graph is represented with
4 bars, showing θ1 of STD, θ1 of BINF, θ2 of STD, θ2 of
BINF. In M1 and M2, we see a significant improvement of
θ from STD to BINF. Especially in M2, BINF limits all
errors to around 5 or smaller where STD can go up much
higher. We believe this is because BINF can utilize the ex-
tra information presented by the local sensitivity bound as
shown in Example 4.2. In M3, compared to the other mod-
els, we see that parameters of the model is quite insensitive
to the changes due to perturbation, i.e., all graphs show
much lower errors even under STD. In such situation, the-
oretically, there is not much room left for the improvement
from BINF. This is illustrated in our experiment by showing
comparable performance from both methods on M3. In gen-
eral, we think BINF can improve the accuracy of parameter
estimation significantly by leveraging the privacy distribu-
tion, while at the same time, the amount of benefit will vary
depending on intrinsic properties of the model.

6. RELATED WORK

3http://www-personal.umich.edu/˜mejn/netdata/

Differential privacy [9] has been actively studied in many
sub-areas of computer science. Although the original focus
was mainly on tabular data, the definition can be adapted to
graph data [13] as well as other data models. Most research
into differentially private analysis of graphs has focused on
releasing graph statistics, e.g., degree sequence [13], trian-
gle/star [17, 25], joint degree distribution/assortativity [26,
28] and clustering coefficient [31]. For modeling graphs pri-
vately, we are aware only of a private Kronecker graph mod-
eling approach under differential privacy [22]. While our
work relies on obtaining good private statistics, the ultimate
goal is to allow ERGM modeling under differential privacy.

All of these works, including ours, protect relationships,
i.e. they support edge-differential privacy. A stronger stan-
dard is to protect individuals, where neighbors are defined
by changing a single node. Recently, researchers have devel-
oped some mechanisms for calculating private graph statis-
tics under node differential privacy [18, 2, 4].

Parameter estimation for ERGMs has also evolved from
pseudo likelihood estimation (MPLE) [1], to Monte Carlo
maximum likelihood (MC-MLE) [11] to recent stochastic ap-
proximation [29] and Bayesian inference [3]. These advances
have helped ERGMs become central to social network anal-
ysis with many successful applications [21].

7. CONCLUSION AND FUTURE WORK
In this work, we consider the problem of estimating pa-

rameters for the exponential random graph model under dif-
ferential privacy. Our solution decomposes the process into
two steps: releasing private statistics first and running esti-
mation second. Our local sensitivity-based algorithms can
offer lower error than common baselines. The redesigned
Bayesian parameter estimation is flexible and more accurate
than standard methods. For future work, improving scala-
bility is an important direction as well exploring alternative
model terms.
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APPENDIX

A. PROOF OF THEOREM 3.6
The proof relies on Lemma 4.4 from [17], and we restate

it as follows:

Lemma A.1. If M is (ǫ1, δ1)-differentially private, and
Pr[M(x) ≥ LSf (x)] > 1 − δ2 for all x, the following al-
gorithm A, which returns a pair of values,

A(x) = (M(x), Lap(M(x)/ǫ2) )

is (ǫ1 + ǫ2, δ1 + eǫ1δ2)-differentially private.

Proof of Theorem 3.6. In Algorithm 1, ỹ1 is ǫ-differentially
private as it is based on Laplace mechanism and post-processing
(adding positive offset). Let g1 = GS(LSf,1(x)). If the sam-
pled Laplace noise in line 2 is z,

Pr[ỹ1 ≤ LSf,1(x)] = Pr[z ≤ −ag1]

=

∫ −ag1

−∞

1

2g1/ǫ
exp(−|z|ǫ/g1) dz

=
1

2
exp(−ag1 ∗ ǫ/g1) =

δ

2

So, Pr[ỹ1 ≥ LSf,1(x)] > 1 − δ/2. By applying Lemma A.1,
Algorithm 1 is (ǫ + ǫ, 0 + eǫ δ

2
)-differential privacy, which is

(2ǫ, 1
2
eǫδ)-differential privacy.

In Algorithm 2, both ỹ1 and ỹ2 are ǫ-differentially pri-
vate. Similarly, Pr[ỹ2 ≥ LSf,2(x)] > 1 − δ/2. As above,
by applying Lemma A.1, ỹ1 is (2ǫ, 1

2
eǫδ)-differential privacy.

Furthermore, applying Lemma A.1 one more time, the fi-
nal ỹ is (2ǫ + ǫ, 1

2
eǫδ + e2ǫ δ

2
)-differential privacy, which is

(3ǫ, 1
2
eǫδ + 1

2
e2ǫδ)-differential privacy.
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