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EXPONENTIAL RATE OF ALMOST-SURE

CONVERGENCE OF INTRINSIC MARTINGALES

IN SUPERCRITICAL BRANCHING RANDOM WALKS
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Abstract

We provide sufficient conditions which ensure that the intrinsic martingale in the

supercritical branching random walk converges exponentially fast to its limit. We include

in particular the case of Galton–Watson processes so that our results can be seen as a

generalization of a result given in the classical treatise by Asmussen and Hering (1983).

As an auxiliary tool, we prove ultimate versions of two results concerning the exponential

renewal measures which may be of interest in themselves and which correct, generalize,

and simplify some earlier works.
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1. Introduction and main result

The Galton–Watson process is the oldest and probably best understood branching process

in probability theory. There is a vast literature on different aspects of these processes ranging

from simple distributional properties to highly nontrivial results on convergence in function

spaces. In particular, in [3, Section II.3-4], Asmussen and Hering investigated the rate of the

almost-sure convergence of the normalized supercritical Galton–Watson process to its limit

and, among other things, pointed out a criterion for the exponential rate of convergence (see [3,

Theorem 4.1(i)]). The aim of the present paper is to prove a counterpart of this last result for

branching random walks (BRWs), which form a generalization of the Galton–Watson processes.

We proceed with a formal definition of the BRW. Consider an individual, the ancestor, which

we identify with the empty tuple ∅, located at the origin of the real line at time n = 0. At

time n = 1 the ancestor produces a random number J of offspring which are placed at points

along the real line according to a random point process M =
∑J

i=1 δXi
on R (particularly,

J = M(R)). We enumerate the ancestor’s children by 1, 2, . . . , J (note that we do not exclude

the case that J = ∞ with positive probability). The offspring of the ancestor form the first

generation. The population further evolves following the subsequently explained rules. An

individual u = u1 · · · un of the nth generation with position S(u) on the real line produces at

time n+1 a random number J (u) of offspring which are placed at random locations on R given
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by the points of the random point process

δS(u) ∗ M(u) =

J (u)∑

i=1

δS(u)+Xi (u),

where M(u) =
∑J (u)

i=1 δXi (u) denotes a copy of M (and J (u) = M(u)(R)). The offspring of

individual u are enumerated by u1 = u1 · · · un1, . . . , uJ (u) = u1 · · · unJ (u), the positions of

the offspring are denoted by S(ui), i = 1, . . . , J (u), and the set of all possible individuals

is denoted by V, i.e. V =
⋃

n≥0 N
n. It remains to state that (M(u))u∈V is assumed to be

a family of independent and identically distributed (i.i.d.) point processes. Note that this

assumption does not imply anything about the dependence structure of the random variables

X1(u), . . . , XJ (u)(u) for fixed u. The point process of the positions of the nth generation

individuals will be denoted by Mn. The sequence of point processes (Mn)n∈N0
is then called

a branching random walk. Throughout the paper, we assume that E J > 1 (supercriticality),

which means that the population survives with positive probability. Note that, provided that

J < ∞ almost surely (a.s.), the sequence of generation sizes in the BRW forms a Galton–

Watson process.

An important tool in the analysis of the BRW is the Laplace transform of the intensity

measure ξ := E M of M,

m : [0, ∞) → [0, ∞], θ �→

∫

R

e−θxξ(dx) = E

∫

R

e−θx
M(dx).

We define D(m) := {θ ≥ 0 : m(θ) < ∞}, and, as a standing assumption, we assume the

existence of some γ > 0 such that m(γ ) < ∞ (equivalently, D(m) �= ∅). Possibly after the

transformation Xi �→ γXi + log m(γ ), it is no loss of generality to assume that γ = 1 and

m(1) = E

∫

R

e−x
M(dx) = E

J∑

i=1

e−Xi = 1.

Set Yu := e−S(u) and

�n := E
∑

|u|=n

YuδS(u), n ∈ N,

where
∑

|u|=n denotes the summation over the individuals of the nth generation, and let (Sn)n∈N0

denote a zero-delayed random walk with increment distribution �1. We call (Sn)n∈N0
the

associated random walk . It is well known (see, e.g. [6, Lemma 4.1]) that, for any measurable

f : R
n+1 → [0, ∞),

E f (S0, . . . , Sn) = E
∑

|u|=n

Yuf (S(u|0), S(u|1), . . . , S(u)), (1.1)

where, for u = u1 · · · un, we write u|k for individual u1 · · · uk , the ancestor of u residing in the

kth generation. We note, in passing, that

ϕ(t) := E e−tS1 = m(1 + t), t ≥ 0.

Define

Wn :=

∫

R

e−x
Mn(dx) =

∑

|u|=n

Yu, n ∈ N0,
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Intrinsic martingales in supercritical branching random walks 515

and denote the distribution of W1 by F . Let F n be the σ -field generated by the first n

generations, i.e. F n = σ(M(u) : |u| < n), where |u| < n means u ∈ N
k for some k < n.

It is well known and easy to check that (Wn, F n)n∈N0
forms a nonnegative martingale and,

thus, converges a.s. to a random variable W , say, with E W ≤ 1. This martingale, which is

called the intrinsic martingale in the BRW, is of outstanding importance in the asymptotic

analysis of the BRW (see, e.g. [9] and [15]). In this paper, we give sufficient conditions for the

following statement to hold: for fixed a > 0,

∑

n≥0

ean(W − Wn) converges a.s. (1.2)

Clearly, (1.2) states that (Wn)n∈N0
converges a.s. to W exponentially fast.

There are already (at least) two articles which explore the rate of convergence of the intrinsic

martingale in the BRW to its limit. In [2] necessary and sufficient conditions were found for the

series in (1.2) to converge in Lp, p > 1. Sufficient conditions for the almost-sure convergence

of the series ∑

n≥0

f (n)(W − Wn),

where f is a function regularly varying at ∞ with an index larger than −1, were obtained in

[12]. The results derived in both the paper at hand and [12] form a generalization of the results in

[3, Section II.4], where the rate of the almost-sure convergence of the normalized supercritical

Galton–Watson process to its limit was investigated. We want to remark that the scheme of our

proofs borrows heavily from the ideas laid down in [3, Section II.4], but the technical details are

much more involved. The source of complication can be easily understood: given Fn, Wn+1

in the setting of Galton–Watson processes is just the sum of a finite number of i.i.d. random

variables, whereas Wn+1 in the setting of the BRW is a weighted sum of a, possibly infinite,

number of i.i.d. random variables.

Before stating our main results, we need some more notation and explanations. If 0 <

inf1≤θ≤2 m1/θ (θ) < 1 then there exists a ϑ0 ∈ (1, 2] such that m1/ϑ0(ϑ0) = inf1≤θ≤2 m1/θ (θ).

The derivative of the function θ �→ m1/θ (θ) is well defined and negative on (1, ϑ0), and the

left derivative is well defined and nonpositive on (1, ϑ0]. From this we conclude that the left

derivative of m (to be denoted by m′ in what follows) is well defined and negative on (1, ϑ0],

i.e.

m′(ϑ0) < 0.

Theorem 1.1. Let a > 0 be given. Assume that

eam1/r(r) ≤ 1 for some r ∈ (1, 2), (1.3)

and define ϑ to be the minimal r > 1 such that earm(r) = 1. Assume further that

E Wϑ
1 < ∞, (1.4)

and in the case where a = − log infr≥1 m1/r(r) (which implies that ϑ = ϑ0) assume that

−
log m(ϑ0)

ϑ0
< −

m′(ϑ0)

m(ϑ0)
.

Then
∑

n≥0 ean(W − Wn) converges a.s.
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Figure 1: A typical situation in which Theorem 1.1 applies. Here m(1) = 1, and m is strictly decreasing

in a right neighborhood of 1. The bottom point of the graph of m1/x(x) is marked by a circle. The

vertical dashed line connects this point to the x-axis indicating the point ϑ0. The solid horizontal line

and the dotted horizontal line at 1 indicate the interval of possible values of e−a such that a > 0 and

eam1/ϑ0m(ϑ0) < 1. For those as, the assumptions of Theorem 1.1 are satisfied. The vertical dotted lines

at 1 and 2 emphasize the importance of the interval (1, 2) in which ϑ0 is supposed to be located.

Remark 1.1. The point (ϑ0, m
1/ϑ0(ϑ0)) either belongs to the strictly decreasing branch of

the graph {(x, m1/x(x)) : x ∈ D(m)}, equivalently, − log m(ϑ0)/ϑ0 < −m′(ϑ0)/m(ϑ0), or

it is the bottom point of that graph, which is equivalent to log m(ϑ0)/ϑ0 = m′(ϑ0)/m(ϑ0).

From this we conclude that the theorem implies that (1.2) with a = − log m(ϑ0)/ϑ0 holds

when the former occurs. Intuitively, while the second situation is somewhat exceptional, the

first situation illustrated in Figure 1 is more or less typical. In conclusion, the condition that

ea inf1≤r≤2 m1/r(r) < 1 is ‘typically’ sufficient for (1.2) to hold. A similar remark with an

obvious modification also applies to Theorem 2.1(a) and Theorem 2.2, below.

Remark 1.2. Let p ∈ (1, 2). By using a completely different argument, in [2] it was proved

that the conditions

E W r
1 < ∞ and eam1/r(r) < 1 for some r ∈ [p, 2]

are sufficient for the Lp, and, hence, the almost-sure convergence of
∑

n≥0 ean(W − Wn).

Plainly, the conditions of our Theorem 1.1 are weaker.

Remark 1.3. Under the assumptions of Theorem 1.1, the martingale (Wn)n∈N0
is uniformly

integrable, equivalently, P(W > 0) > 0. An ultimate criterion of uniform integrability of the

intrinsic martingale was recently presented in [1], following earlier investigation in [5], [13],

and [14].

Example 1.1. (Galton–Watson processes.) Suppose that m := E J ∈ (1, ∞) and that e−Xi =

m−1 1{i≤J }, i ∈ N. Then (Wn)n∈N0
forms a normalized supercritical Galton–Watson process.

Choose p and q such that p ∈ (1, 2) and 1/p + 1/q = 1. Theorem 4.1 of [3] proves that

W − Wn = o(m−n/q) a.s. as n → ∞ (1.5)
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if and only if

E W
p
1 < ∞. (1.6)

The sufficiency of condition (1.6) for (1.5) to hold follows from our Theorem 1.1. To see this,

take a = q−1 log m and note that the equality m(θ) = m1−θ , θ ≥ 0, implies that eam1/r(r) =

m1/r−1/p < 1 for r > p. Therefore, (1.3) holds (with strict inequality). Furthermore, ϑ

defined in Theorem 1.1 equals p ∈ (1, 2) in the present situation, which shows that (1.4) holds.

By Theorem 1.1, (1.5) holds.

The rest of the paper is organized as follows. In Section 2 we present auxiliary renewal-

theoretic results which correct, generalize, and simplify some earlier results from [10] and [11].

Statements of this section are an important ingredient of the proof of Theorem 1.1, which is

given in Section 3.

2. Ultimate results for the exponential renewal function

For a random variable T with proper distribution which we assume to be nondegenerate at 0,

let ψ be its Laplace transform:

ψ : [0, ∞) → (0, ∞], ψ(t) := E e−tT .

In what follows, we denote by ψ ′ the left derivative of ψ .

Set R := − log inf t≥0 ψ(t). Then R ≥ 0 since ψ(0) = 1, and unless T ≥ 0 a.s., the infimum

in the definition of R is attained, i.e. there exists some γ0 ∈ [0, ∞) such that ψ(γ0) = e−R . Note

that γ0 = 0 is equivalent to R = 0 since we assume that the distribution of T is nondegenerate

at 0. When R > 0 and a ∈ (0, R], let γ denote the minimal (finite) t > 0 satisfying ψ(t) = e−a

if such a t exists. Note that γ = γ0 if a = R and the infimum is attained. Let (Tn)n∈N0
be a

zero-delayed random walk with a step distributed like T . Whenever γ as above exists, we use

it to define a new probability measure Pγ such that

Pγ (Tn ∈ A) = ψ(γ )−n E e−γ Tn 1{Tn∈A}, n ∈ N0, (2.1)

for any Borel set A ⊆ R. As a consequence of Eγ eγ T1 = ψ(γ )−1 < ∞, we have

Eγ T +
1 < ∞. (2.2)

Since ψ is nonincreasing on [0, γ0], we conclude that if γ0 > 0 then

Eγ0 T1 = E e−γ0T T = −ψ ′(γ0)

should be nonnegative and finite in view of (2.2).

In the first theorem in this section we investigate the finiteness of the exponential renewal

function

V (x) :=
∑

n≥0

ean P(Tn ≤ x), x ∈ R .

Theorem 2.1. Assume that P(T = 0) �= 1, and let a > 0 be given.

(a) Assume that P(T < 0) > 0.

(i) If a ∈ (0, R) then V (x) is finite for every x ∈ R.
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(ii) If a = R > 0 and
−ψ ′(γ0) = E e−γ0T T > 0, (2.3)

then V (x) is finite for every x ∈ R.

(iii) If a > R then V (x) = +∞ for all x ∈ R.

(iv) If a = R > 0 and ψ ′(γ0) = 0 (equivalently, if (2.3) does not hold), then V (x) =

+∞ for all x ∈ R.

(b) Assume that P(T > 0) = 1. Then V (x) is finite for every x ∈ R.

(c) Assume that P(T ≥ 0) = 1 and β := P(T = 0) > 0. Then R = − log β and if
a ∈ (0, R) then V (x) is finite for every x ∈ R, and if a ≥ R then V (x) is infinite for all
x ≥ 0.

Theorem 2.1 constitutes a generalization of Theorem B of [10], but can also be partly deduced

(excluding the case a = R) from the more general Theorem 2 of [8]. Our contribution here is

a streamlined derivation of the exact value of R, a simple proof of dichotomy a < R versus

a > R, and an investigation of the most delicate case a = R.

The main tool for the analysis in Section 3 is the following result, which provides the asymp-

totic behavior of the exponential renewal function V (x). Note in advance that Theorem 2.2 will

be applied to (Sn − an)n∈N0
, where (Sn)n∈N0

is the associated random walk of the given BRW.

Theorem 2.2. Let a > 0 be given. Assume that either a ∈ (0, R) or a = R and (2.3) holds.
Then, with γ being the minimal t > 0 satisfying ψ(t) = e−a ,

V (x) ∼
e−a

γ (−ψ ′(γ ))
eγ x as x → ∞ (2.4)

if (Tn)n∈N0
is a nonarithmetic random walk, and

V (λn) ∼
λe−a

(1 − e−λγ )(−ψ ′(γ ))
eγ λn as n → ∞ (2.5)

if (Tn)n∈N0
is arithmetic with span λ > 0. Moreover, in the arithmetic case,

V (λn) − V (λ(n − 1)) ∼
λe−a

(−ψ ′(γ ))
eγ λn as n → ∞. (2.6)

Remark 2.1. (a) Theorem 2.2 describes the asymptotics of V (x) whenever it is finite.

(b) Provided that a < R or a = R and (2.3) holds, the equation ψ(t) = e−a has positive

solutions.

Theorem 2.2 is a generalization and correction of Theorem 4 of [11], the differences being

that

• we do not assume that E |T | is finite;

• the exponential (wrong) rate a/ E T claimed in [11] under the assumption that E T ∈

(0, ∞) is replaced by the rate γ in the nonarithmetic case, and a similar substitution is

proved to hold true in the arithmetic case;

• unlike Heyde [11] we treat, among others, the boundary case a = R.
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We think that an error in the proof of Theorem 4 of [11] appears at the end of page 706 where the

dependence of the real number ξ(n) ∈ (β, µ) on n cannot be ignored since possibly ξ(n) → µ

and then P(Sn ≤ ξ(n)) does not necessarily decay at an exponential rate (retaining the original

notation from [11]).

Proof of Theorem 2.1. (a) (i) If R = 0 then condition a ∈ (0, R) cannot hold. So assume

that R > 0, a ∈ (0, R), and pick any x ∈ R. With γ0 defined at the beginning of the section,

choose r ∈ (0, γ0) such that a < − log ψ(r). Now use Markov’s inequality to obtain
∑

n≥0

ean P(Tn ≤ x) ≤
∑

n≥0

eanerx E e−rTn = erx
∑

n≥0

en(a+log ψ(r)) < ∞,

which proves the assertion under assumption (i).

Consider parts (ii) and (iv) of (a). Assume that a = R > 0. The function g(y) :=

e−γ0y 1[0,∞)(y) is directly Riemann integrable. If (2.3) holds then the random walk (Tn)n∈N0

is transient under Pγ0 , the probability measure defined in (2.1), and if (2.3) does not hold then

(Tn)n∈N0
is recurrent under Pγ0 . As a consequence, the renewal measure Uγ0 of (Tn)n∈N0

under

Pγ0 satisfies Uγ0(I ) < ∞ if (2.3) holds and Uγ0(I ) = ∞ if (2.3) does not hold for any bounded

open nonempty interval I if (Tn) is nonarithmetic, and for any bounded open nonempty interval

I which contains some point nλ, n ∈ Z, if (Tn) is arithmetic with span λ. Therefore, if (2.3)

holds then
∑

n≥0

ean P(Tn ≤ x) =
∑

n≥0

Eγ0 eγ0Tn 1{Tn≤x}

= eγ0x
∑

n≥0

Eγ0 g(x − Tn)

< ∞, x ∈ R .

Whereas, if (2.3) does not hold then
∑

n≥0

ean P(Tn ≤ x) = eγ0x
∑

n≥0

Eγ0 g(x − Tn) = ∞, x ∈ R .

(Note that this argument with γ0 replaced by γ also applies in the situation of (a)(i).)

(iii) To complete the proof of (a), it remains to check that V (x) = +∞ for all x ∈ R provided

that a > R. Note that the case R = 0 is not excluded and is equivalent to γ0 = 0. Furthermore,

note that ψ assumes its infimum on [0, ∞) since we assume that P(T < 0) > 0. Recall that

the unique minimizer of ψ is denoted by γ0 and that ψ ′(γ0), the left derivative of ψ at 0, exists

and is less than or equal to 0 if γ0 > 0.

Subcase (iii.1): γ0 > 0. If ψ ′(γ0) < 0 then, for any c > 0, we consider a zero-delayed

random walk, (Tc,n)n∈N0
say, with steps distributed like T 1{T ≥−c}. Set ψc(t) := E e−tTc,1 , and

note that ψc is finite on [0, ∞) and that Rc := − log inf t≥0 ψc(t) ≥ R. If c is large enough,

ψc(t) → ∞ as t → ∞. Thus, ψc has a unique minimizer on [0, ∞), γc say, and ψ ′
c(γc) = 0.

It is easily seen that γ0 ≤ γc and that γc ↓ γ0 as c ↑ ∞. Some elementary analysis now shows

that Rc converges to R as c → ∞. Moreover,
∑

n≥0

ean P(Tn ≤ x) ≥
∑

n≥0

ean P(Tc,n ≤ x), x ∈ R .

Therefore, if we can prove that, provided a > Rc, the series
∑

n≥0 ean P(Tc,n ≤ x) diverges,

then this will imply (after choosing c sufficiently large) that, provided a > R, the series
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∑
n≥0 ean P(Tn ≤ x) diverges. Thus, we have shown that, without loss of generality, we can

work under the additional assumption that ψ ′(γ0) = 0. The condition a > R now reads

as ψ(γ0) > e−a . By using the probability measure Pγ0 defined in (2.1) we conclude that

Eγ0 T1 = 0. Hence, the random walk (Tn)n∈N0
is recurrent under Pγ0 . As a consequence,

the renewal measure Uγ0 of (Tn)n∈N0
under Pγ0 satisfies Uγ0(I ) = ∞ for any open nonempty

interval I if (Tn) is nonarithmetic, and for any open nonempty interval I which contains some

point nλ, n ∈ Z, if (Tn) is arithmetic with span λ, respectively. As a consequence,
∑

n≥0

ean P(Tn ≤ x) =
∑

n≥0

(ψ(γ0)e
a)n Eγ0 eγ0Tn 1{Tn≤x}

≥

∫

(−∞,x]

eγ0yUγ0(dy)

= ∞

for every x ∈ R.

Subcase (iii.2): γ0 = 0. We have ψ(t) ∈ (1, ∞] for all t > 0. If Tn → −∞ a.s. then

P(Tn ≤ x) → 1 as n → ∞, and the infinite series
∑

n≥0 ean P(Tn ≤ x) diverges. Thus,

we are left with the situation that either Tn → ∞ a.s. or (Tn)n∈N0
oscillates. In both cases,

E T1,c ∈ (0, ∞], where T1,c is defined as above, and the Laplace transform ψc of Tc,1 is finite

on [0, ∞) and assumes its minimum at some γc > 0 satisfying ψ ′
c(γc) = 0. Now we can argue

as in subcase (iii.1) to show that
∑

n≥0 ean P(Tn ≤ x) = ∞ for all x ∈ R.

(b) In this case R = +∞. Choose any x > 0 (V (x) = 0 for x ≤ 0), choose r > 0 such that

a < − log ψ(r), and proceed in the same way as under (a)(i).

(c) Note that we have β ∈ (0, 1). Choose a ∈ (0, − log β). The subsequent proof literally

repeats that given under assumption (a)(i).

Conversely, P(Tn = 0) = βn, n ∈ N0. Therefore, if a ≥ − log β then V (0) = +∞, which

implies that V (x) = +∞ for all x ≥ 0.

Proof of Theorem 2.2. By Theorem 2.1, V (x) < ∞ for every x ∈ R. Under Pγ , the

probability measure defined in (2.1), (Tn)n∈N0
forms a random walk with Laplace transform

ψγ (t) = Eγ e−tT1 = ea E e−(γ+t)T = eaψ(γ + t)

and drift

νγ = −ψ ′
γ (0) = −eaψ ′(γ ) ∈ (0, ∞). (2.7)

For x ∈ R, we write V (x) in the following form:

V (x) =
∑

n≥0

Eγ eγ Tn 1{Tn≤x} =

∫

(−∞,x]

eγyUγ (dy) =: eγ xZ(x),

where Uγ denotes the renewal measure of the process (Tn)n≥0 under Pγ . Assume that (Tn)n∈N0

is nonarithmetic. Since

Z(x) = e−γ x

∫

(−∞,x]

eγyUγ (dy) =

∫
e−γ (x−y) 1[0,∞)(x − y)Uγ (dy)

and the function x �→ e−γ x 1[0,∞)(x) is directly Riemann integrable, we can invoke the key

renewal theorem on the whole line to conclude that

e−γ x
∑

n≥0

ean P(Tn ≤ x) = Z(x)
x→∞
−→

1

νγ

∫ ∞

0

e−γy dy =
1

γ νγ

,
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where we have used the fact that νγ > 0. This, in combination with (2.7), immediately implies

(2.4).

Asymptotics (2.5) in the arithmetic case can be treated similarly. Finally, (2.6) follows by

an application of (2.5) to

e−γ λn(V (λn) − V (λ(n − 1))) = e−γ λnV (λn) − e−γ λ(e−γ λ(n−1)V (λ(n − 1))).

3. Proof of Theorem 1.1

For any u ∈ V, let W1(u) denote a copy of W1 but based on the point process M(u)

instead of M = M(∅), that is, if W1 = ψ(M) for an appropriate measurable function ψ then

W1(u) := ψ(M(u)). In this situation, let

W̃n+1 :=
∑

|u|=n

YuW1(u) 1{eanYuW1(u)≤1}

and Rn := E(Wn − W̃n+1 | F n), n ∈ N0 .

For a > 0, define a measure Va on the Borel subsets of R
+ by

Va(x) := Va((0, x]) :=
∑

n≥0

ean P(Sn − an ≤ log x), x > 0,

where (Sn)n∈N0
is the associated random walk of the given BRW.

We now present a result on the asymptotic behavior of Va and two integrals involving Va

which play an important role in the proof of Theorem 1.1.

Lemma 3.1. Let a > 0 be given. Assume that eam1/r(r) ≤ 1 for some r > 1, and define ϑ to
be the minimal r > 1 such that eam1/r(r) = 1. In the case where a = − log infr≥1 m1/r(r)

(which implies that ϑ = ϑ0) assume further that

−
log m(ϑ0)

ϑ0
< −

m′(ϑ0)

m(ϑ0)
. (3.1)

Then, as x → ∞,

Va(x) ∼
xϑ−1

(ϑ − 1)(eaϑ (−m′(ϑ)) − a)
, (3.2)

∫

(0,x]

yVa(dy) ∼
xϑ

ϑ(eaϑ (−m′(ϑ)) − a)
, (3.3)

if the random walk (Sn)n∈N0
is nonarithmetic. If (Sn − an)n∈N0

has span λa > 0 then,
analogously, as n → ∞,

Va(e
λan) ∼

λae(ϑ−1)λan

(1 − e−λa(ϑ−1))(eaϑ (−m′(ϑ)) − a)
, (3.4)

∫

(0,eλan]

yVa(dy) ∼
λaeϑλan

(1 − e−λaϑ )(eaϑ (−m′(ϑ)) − a)
. (3.5)

Furthermore, if ϑ < 2 then in the nonarithmetic case, as x → ∞,
∫

(x,∞)

y−1Va(dy) ∼
xϑ−2

(2 − ϑ)(eaϑ (−m′(ϑ)) − a)
, (3.6)
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whereas in the arithmetic case, as n → ∞,
∫

[eλan,∞)

y−1Va(dy) ∼
λae(ϑ−2)λan

(1 − e(ϑ−2)λa )(aaϑ (−m′(ϑ)) − a)
. (3.7)

Proof. Let ϕ and ϕa be the Laplace transforms of the increment distributions of the associated

random walk (Sn)n∈N0
defined by (1.1) and of the shifted random walk (Sn − an)n∈N0

,

respectively. Our aim is to check that, under the assumptions of the lemma, Theorem 2.2

applies to the random walk (Sn − an)n∈N0
with ψ = ϕa and R = − log inf t≥0 ϕa(t).

By definition, ϕa(t) = eatϕ(t) = eatm(1 + t), which implies that

eaϕa(r − 1) = earm(r) ≤ 1. (3.8)

Therefore, in the notation of Theorem 2.2, the condition that a ≤ R holds. In the case a =

− log inf t≥1 m1/t (t), we have a = − log inf t≥0 ϕa(t) = R in view of (3.8). With ψ = ϕa ,

γ0 defined at the beginning of Section 2 equals ϑ0 − 1. Therefore, condition (2.3) reads

ϕ′
a(ϑ0 − 1) < 0 and is a consequence of (3.1). In any case, Theorem 2.2 applies with γ being

the minimal t > 0 satisfying ϕa(t) = e−a , that is, γ = ϑ − 1, and yields

Va(x) ∼
e−a

(ϑ − 1)(−ϕ′
a(ϑ − 1))

xϑ−1, x → ∞, (3.9)

in the case where (Sn − an)n∈N0
is nonarithmetic, and

Va(e
λan) ∼

λae−a

(1 − e−λa(ϑ−1))(−ϕ′
a(ϑ − 1))

e(ϑ−1)λan, n → ∞, (3.10)

in the case where (Sn − an)n∈N0
is arithmetic with span λa .

Now first note that (3.9) proves (3.2) and that (3.10) implies (3.4). Secondly, in the

nonarithmetic case, asymptotics (3.3) and (3.6) follow from (3.2) by integration by parts and

subsequent application of Propositions 1.5.8 and 1.5.10 of [7], respectively. Finally, in the

lattice case, asymptotics (3.5) and (3.7) follow by an elementary analysis from (3.4) and the

corresponding asymptotic for Va(e
λan) − Va(e

λa(n−1)), which can be derived from (2.6). We

omit the details.

Lemma 3.2. Let a > 0 be given. Assume that eam1/r(r) ≤ 1 for some r > 1, and define ϑ to
be the minimal r > 1 such that eam1/r(r) = 1. In the case where a = − log infr≥1 m1/r(r)

(which implies that ϑ = ϑ0) assume further that

−
log m(ϑ0)

ϑ0
< −

m′(ϑ0)

m(ϑ0)
.

Then E Wϑ
1 < ∞ implies that

∑

n≥0

P(W̃n+1 �= Wn+1) < ∞ and E
∑

n≥0

eanRn < ∞. (3.11)

If, moreover, ϑ < 2 then (Mn)n∈N0
is an L

2-bounded martingale, where

Mn :=

n∑

k=0

eak(W̃k+1 − Wk + Rk), n ∈ N0 .
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Remark 3.1. Note that the second infinite series in (3.11) is well defined since all summands

are nonnegative. Indeed, for any n ∈ N0, by the independence of W1(v) and F n for |v| = n,

Rn =
∑

|v|=n

Yv E(1 − W1(v) 1{eanYvW1(v)≤1} | F n)

=
∑

|v|=n

Yv E(W1(v) − W1(v) 1{eanYvW1(v)≤1} | F n)

=
∑

|v|=n

Yv

∫

(e−anY−1
v ,∞)

xF(dx)

≥ 0 a.s.,

where F denotes the distribution of W1.

Proof of Lemma 3.2. By using (1.1) we have

∑

n≥0

P(W̃n+1 �= Wn+1) ≤
∑

n≥0

E
∑

|v|=n

P(eanYvW1(v) > 1 | F n)

=
∑

n≥0

E
∑

|v|=n

YveS(v)

∫
1(e−aneS(v),∞)(x)F (dx)

=
∑

n≥0

E eSn

∫
1(eSn−an,∞)(x)F (dx)

=

∫ ∑

n≥0

E eSn 1{eSn−an<x} F(dx)

=

∫ ∑

n≥0

ean E eSn−an 1(0,x)(e
Sn−an)F (dx)

=

∫ ∫

(0,x)

yVa(dy)F (dx).

Using (3.3) or (3.5), respectively, yields

∑

n≥0

P(W̃n+1 �= Wn+1) ≤

∫
O(xϑ )F (dx) < ∞.

Concerning the second series in (3.11), we obtain, using the calculations from Remark 3.1,

E
∑

n≥0

eanRn =
∑

n≥0

ean E
∑

|v|=n

Yv

∫

(e−anY−1
v ,∞)

xF(dx)

=
∑

n≥0

ean E

∫

(eSn−an,∞)

xF(dx)

=

∫
x

∑

n≥0

ean P(Sn − an < log x)F (dx)

≤

∫
xVa(x)F (dx).

https://doi.org/10.1239/jap/1276784906 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784906


524 A. IKSANOV AND M. MEINERS

In view of (3.2) and (3.4), we conclude that

E
∑

n≥0

eanRn ≤

∫
xO(xϑ−1)F (dx) =

∫
O(xϑ )F (dx) < ∞.

Now we turn to the final assertion of the lemma. Since Rn = E(Wn − W̃n+1 | F n), we

have W̃n+1 − Wn + Rn = W̃n+1 − E(W̃n+1 | F n) a.s. In particular, (Mn)n≥0 constitutes a

martingale. It remains to prove that (Mn)n∈N0
is L

2-bounded. For this purpose, note that

E(ean(W̃n+1 − Wn + Rn))
2 = e2an E(W̃n+1 − Wn + Rn)

2

= e2an E var(W̃n+1 | F n)

≤ e2an E
∑

|v|=n

Y 2
v

∫

(0,e−anY−1
v ]

x2F(dx).

Thus, ∑

n≥0

E(ean(W̃n+1 − Wn + Rn))
2

≤
∑

n≥0

e2an E
∑

|v|=n

Y 2
v

∫

(0,e−anY−1
v ]

x2F(dx)

=
∑

n≥0

ean E
∑

|v|=n

Yvean−S(v)

∫

(0,eS(v)−an]

x2F(dx)

=
∑

n≥0

ean E e−(Sn−an)

∫

(0,eSn−an]

x2F(dx)

=

∫

(0,∞)

x2
∑

n≥0

ean E e−(Sn−an) 1{eSn−an≥x} F(dx)

=

∫

(0,∞)

x2

∫

[x,∞)

y−1Va(dy)F (dx).

Now use (3.6) or (3.7) to obtain the finiteness of the last expression.

The proof of the next result can be found in Remark 3.2 of [2].

Lemma 3.3. Equation (1.2) holds if and only if
∑

n≥0

ean(Wn+1 − Wn) converges a.s.

Proof of Theorem 1.1. Under the assumptions of the theorem, Lemma 3.2 implies that

(Mn)n∈N0
is an L

2-bounded martingale, in particular,

∑

n≥0

ean(W̃n+1 − Wn + Rn) converges a.s.

This is equivalent to the almost-sure convergence of the series
∑

n≥0 ean(W̃n+1 − Wn) since∑
n≥0 eanRn < ∞ a.s. in view of (3.11). Another appeal to (3.11) yields

∑

n≥0

P(W̃n+1 �= Wn+1) < ∞,
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which directly implies that P(W̃n+1 �= Wn+1 infinitely often) = 0 by an application of the

Borel–Cantelli lemma. Hence,

∑

n≥0

ean(Wn+1 − Wn) converges a.s.,

which is equivalent to (1.2) by Lemma 3.3.
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Added in proof

After the present paper was accepted for publication we learned that parts (b) and (c) of our

Theorem 2.1 have been proved in [4] via a more complicated argument.
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