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Abstract
For a parameter dimension d ∈ N, we consider the approximation of many-parametric
maps u : [− 1, 1]d → R by deep ReLU neural networks. The input dimension d may
possibly be large, and we assume quantitative control of the domain of holomorphy of
u: i.e., u admits a holomorphic extension to a Bernstein polyellipse Eρ1 ×· · ·×Eρd ⊂
C
d of semiaxis sums ρi > 1 containing [− 1, 1]d . We establish the exponential rate

O(exp(− bN 1/(d+1))) of expressive power in terms of the total NN size N and of the
input dimension d of the ReLU NN in W 1,∞([− 1, 1]d). The constant b > 0 depends
on (ρ j )

d
j=1 which characterizes the coordinate-wise sizes of the Bernstein-ellipses for

u. We also prove exponential convergence in stronger norms for the approximation
by DNNs with more regular, so-called “rectified power unit” activations. Finally, we
extend DNN expression rate bounds also to two classes of non-holomorphic functions,
in particular to d-variate, Gevrey-regular functions, and, by composition, to certain
multivariate probability distribution functions with Lipschitz marginals.

Keywords Deep ReLU neural networks · Approximation rates · Exponential
convergence · Gevrey Regularity

Dedicated to Professor Ron De Vore on the occasion of his 80th anniversary.

Communicated by Wolfgang Dahmen, Ronald A. DeVore, and Philipp Grohs.

This work was supported in part under an SNSF Early Postdoc.Mobility Fellowship 184530 to JZ.

B Ch. Schwab
christoph.schwab@sam.math.ethz.ch

J. A. A. Opschoor
joost.opschoor@sam.math.ethz.ch

J. Zech
jakob.zech@uni-heidelberg.de

1 Seminar for Applied Mathematics, ETH Zürich, 8092 Zurich, Switzerland

2 Department of Mathematics and IWR, Heidelberg University, 69120 Heidelberg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00365-021-09542-5&domain=pdf


538 Constructive Approximation (2022) 55:537–582

Mathematics Subject Classification 41A10 · 41A25 · 41A46 · 41A63

1 Introduction

In recent years, so-called deep artificial neural networks (“DNNs” for short) have seen
dramatic development in applications from data science and machine learning.

Accordingly, after early results in the 1990s on genericity and universality of DNNs
(see [27] for a survey and references), in recent years the refinedmathematical analysis
of their approximation properties, viz. “expressive power,” has received increasing
attention. A particular class of many-parametric maps whose DNN approximation
needs to be considered in many applications are real-analytic and holomorphic maps.
Accordingly, the question of DNN expression rate bounds for such maps has received
some attention in the approximation theory literature [21,22,36].

It is well known that multi-variate, holomorphic maps admit exponential expres-
sion rates by multivariate polynomials. In particular, countably parametric maps
u : [− 1, 1]∞ → R can be represented under certain conditions by so-called gener-
alized polynomial chaos expansions with quantified sparsity in coefficient sequences.
This, in turn, implies N -term truncations with controlled approximation rate bounds
in terms of N , with approximation rates which do not depend on the dimension of
the active parameters in the truncated approximation [6,7]. The polynomials which
appear in such expansions can, in turn, be represented by DNNs, either exactly for
certain activation functions, or approximately for example for the so-called rectified
linear unit (“ReLU”) activation with exponentially small representation error [18,37].

The purpose of the present paper is to establish corresponding DNN expression
rate bounds in Lipschitz-norm (i.e.,W 1,∞-norm) for high-dimensional, analytic maps
u : [− 1, 1]d → R. We focus on ReLU DNNs, but comment in passing also on
versions of our results for other DNN activation functions. Next, we briefly discuss
the relation of previous results to the present work and also outline the structure of
this paper.

1.1 Recent Mathematical Results on Expressive Power of DNNs

The survey [27] presented succinct proofs of genericity of shallow NNs in various
function classes, as shown originally, e.g., in [15,16,20] and reviewed the state of
mathematical theory of DNNs up to that point. Moreover, exponential expression
rate bounds for analytic functions by neural networks had already been achieved in
the 1990s. We mention in particular [22] where smooth, nonpolynomial activation
functions were considered.

More closely related to the present work are the references [21,36]. In [21], approx-
imation rates for deep NN approximations of multivariate functions which are analytic
have been investigated. Exponential rate bounds in terms of the total size of the NN
have been obtained, for sigmoidal activation functions. In [37], it was observed that
the multiplication of two real numbers, and consequently polynomials, can efficiently
be approximated by deep ReLU NNs. This was used in [36] to prove bounds on the
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DNNapproximation of certain functions u : [− 1, 1]d → Rwhich admit holomorphic
extensions to some open subset ofCd by deepReLUNNs. In particular, it was assumed
that u admits a Taylor expansion about the origin of Cd which converges absolutely
and uniformly on [− 1, 1]d . It is well known that not every u which is real-analytic in
[− 1, 1]d admits such an expansion. In the present paper, we prove sharper expression
rate bounds for both, the ReLU activation σ1 and RePU activations σr , for functions
which merely are assumed to be real-analytic in [− 1, 1]d , in L∞([− 1, 1]d) and in
stronger norms, thereby generalizing both [21,36].

1.2 Contributions of the Present Paper

We prove exponential expression rate bounds of DNNs for d-variate, real-valued
functions which depend analytically on their d inputs. Specifically, for holomorphic
mappings u : [− 1, 1]d → R, we prove expression error bounds in L∞([− 1, 1]d) and
in Wk,∞([− 1, 1]d), for k ∈ N (the precise range of k depending on properties of the
NN activation σ ). We consider both, ReLU activation σ1 : R → R+ : x �→ x+
and RePU activations σr : R → R+ : x �→ (x+)r for some integer r ≥ 2.
Here, x+ = max{x, 0}. The expression error bounds in our main result, Theo-
rem 3.6, with ReLU activation σ1 are in W 1,∞([− 1, 1]d) and of the general type
O(exp(−bN 1/(d+1))) in terms of the NN size N , with a constant b > 0 depend-
ing on the domain of analyticity, but independent of N (however, with the constant
implied in the Landau symbol O(·) depending exponentially on d, in general). With
activation σr for r ≥ 2, Theorem 3.10 has corresponding expression error bounds
in Wk,∞([− 1, 1]d) for arbitrary fixed k ∈ N and of the type O(exp(−bN 1/d)) in
terms of the NN size N . For all r ∈ N, the parameters of the σr -neural networks
approximating u (so-called “weights” and “biases”) are continuous functions of u in
appropriate norms. All of our proofs are constructive, i.e., they demonstrate how to
build sparsely connected DNNs achieving the claimed convergence rates. We com-
ment in Remarks 3.7 and 3.11 how these statements imply results for (the simpler
architecture of) fully connected neural networks.

The main results, Theorems 3.6 and 3.10, are expression rate bounds for holomor-
phic functions. Similar bounds for Gevrey-regular functions are given in Sect. 4.3.4.
In Sect. 4.3.5, we conclude the same bounds also for certain classes of nonholomor-
phic, merely Lipschitz-continuous functions, by leveraging the compositional nature
of DNN approximation and Theorems 3.6 and 3.10.

1.3 Outline

The structure of the paper is as follows. In Sect. 2, we present the definition of the
DNN architectures and fix notation and terminology. We also review in Sect. 2.2 a
“ReLU DNN calculus,” from recent work [10,26], which will facilitate the ensuing
DNN expression rate analysis. A first set of key results are ReLU DNN expression
rates in W 1,∞([− 1, 1]d) for multivariate Legendre polynomials, which are proved in
Sect. 2.3. These novel expression rate bounds are explicit in the W 1,∞-accuracy and
in the polynomial degree. They are of independent interest and remarkable in that the
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ReLUDNNs which emulate the polynomials at exponential rates, as we prove, realize
continuous, piecewise affine functions. They are based on [18,37]. The proofs, being
constructive, shed a rather precise light on the architecture, in particular depth and
width of the ReLU DNNs, that is sufficient for polynomial emulation. In Sect. 2.4,
we briefly comment on corresponding results for RePU activations; as a rule, the
same exponential rates are achieved for slightly smaller NNs and in norms which are
stronger than W 1,∞.

Section3 then contains themain results of this note: exponentialReLUDNNexpres-
sion rate bounds for d-variate, holomorphic maps. They are based on a) polynomial
approximation of these maps and on b) ReLU DNN reapproximation of the approx-
imating polynomials. These are presented in Sects. 3.1 and 3.2. Again we comment
in Sect. 3.3 on modifications in the results for RePU activations. Section 4 contains a
brief indication of further directions and open problems.

1.4 Notation

Weadopt standard notation consistentwith our previousworks [40,41]:N = {1, 2, . . .}
and N0 := N ∪ {0}. We write R+ := {x ∈ R : x ≥ 0}. The symbol C will stand for
a generic, positive constant independent of any asymptotic quantities in an estimate,
which may change its value even within the same equation.

In statements about polynomial expansions we require multi-indices ν =
(ν j ) j=1,...,d ∈ N

d
0 for d ∈ N. The total order of a multi-index ν is denoted by

|ν|1 := ∑d
j=1 ν j . The notation supp ν stands for the support of the multi-index,

i.e., supp ν = { j ∈ {1, . . . , d} : ν j 	= 0}. The size of the support of ν ∈ N
d
0 is

| supp ν|; it will, subsequently, indicate the number of active coordinates in the multi-
variate monomial term yν :=∏d

j=1 y
ν j
j .

A subset Λ ⊆ N
d
0 is called downward closed1, if ν = (ν j )

d
j=1 ∈ Λ implies

μ = (μ)dj=1 ∈ Λ for all μ ≤ ν. Here, the ordering “≤” on N
d
0 is defined as μ j ≤ ν j ,

for all j = 1, . . . , d. We write |Λ| to denote the finite cardinality of a set Λ.
We write BC

ε := {z ∈ C : |z| < ε}. Elements of Cd will be denoted by boldface
characters such as y = (y j )dj=1 ∈ [− 1, 1]d ⊂ C

d . For ν ∈ N
d
0 , standard notations

yν := ∏d
j=1 y

ν j
j and ν! = ∏d

j=1 ν j ! will be employed (with the conventions 0! := 1

and 00 := 1). For n ∈ N0 we let Pn := span{y j : 0 ≤ j ≤ n} be the space
of polynomials of degree at most n, and for a finite index set Λ ⊂ N

d
0 we denote

PΛ := span{ yν : ν ∈ Λ}.

1 Index sets with the ”downward closed” property are also referred to in the literature [24] as lower sets.
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2 Deep Neural Network Approximations

2.1 DNN Architecture

We consider deep neural networks (DNNs for short) of feed forward type. Such a NN
f canmathematically be described as a repeated composition of affine transformations
with a nonlinear activation function.

More precisely: For an activation function σ : R → R, a fixed number of hidden
layers L ∈ N0, numbers N� ∈ N of computation nodes in layer � ∈ {1, . . . , L + 1},
f : RN0 → R

NL+1 is realized by a feedforward neural network, if for certain weights
w�
i, j ∈ R, and biases b�

j ∈ R it holds for all x = (xi )
N0
i=1

z1j = σ

(
N0∑

i=1

w1
i, j xi + b1j

)

, j ∈ {1, . . . , N1} , (2.1a)

and

z�+1
j = σ

⎛

⎝
N�∑

i=1

w�+1
i, j z�i + b�+1

j

⎞

⎠ , � ∈ {1, . . . , L − 1}, j ∈ {1, . . . , N�+1},

(2.1b)

and finally

f (x) = (zL+1
j )

NL+1
j=1 =

( NL∑

i=1

wL+1
i, j zLi + bL+1

j

)NL+1

j=1

. (2.1c)

In this case, N0 is the dimension of the input, and NL+1 is the dimension of the
output. Furthermore, z�j denotes the output of unit j in layer �. The weight w�

i, j has
the interpretation of connecting the i th unit in layer � − 1 with the j th unit in layer �.

If L = 0, then (2.1c) holdswith Z0
i := Xi for i = 1, . . . , N0. Exceptwhen explicitly

stated, we will not distinguish between the network (which is defined through σ , the
w�
i, j and b�

j ) and the function f : R
N0 → R

NL+1 it realizes. We note in passing
that this relation is typically not one to one, i.e., different NNs may realize the same
function as their output. Let us also emphasize that we allow the weights w�

i, j and

biases b�
j for � ∈ {1, . . . , L + 1}, i ∈ {1, . . . , N�−1} and j ∈ {1, . . . , N�} to take any

value in R, i.e., we do not consider quantization as, e.g., in [1,26].
As is customary in the theory of NNs, the number of hidden layers L of a NN is

referred to as depth2 and the total number of nonzero weights and biases as the size

2 In other recent references (e.g., [25]), slightly different terminology for the number L of layers in the
DNN differing from the convention in the present paper by a constant factor, is used. This difference will
be inconsequential for all results that follow.
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of the NN. Hence, for a DNN f as in (2.1), we define

size( f ) := |{(i, j, �) : w�
i, j 	= 0}| + |{( j, �) : b�

j 	= 0}| and depth( f ) := L.

In addition, sizein( f ) := |{(i, j) : w1
i, j 	= 0}| + |{ j : b1j 	= 0}| and sizeout( f ) :=

|{(i, j) : wL+1
i, j 	= 0}| + |{ j : bL+1

j 	= 0}|, which are the number of nonzero weights
and biases in the input layer of f and in the output layer, respectively.

The proofs of our main results Theorems 3.6 and 3.10 are constructive, in the
sense that we will explicitly construct NNs with the desired properties. We construct
these NNs by assembling smaller networks, using the operations of concatenation
and parallelization, as well as so-called “identity-networks” which realize the identity
mapping.Below,we recall the definitions. For these operations,we also provide bounds
on the number of nonzero weights in the input layer and the output layer of the
corresponding network, which can be derived from the definitions in [26].

2.2 DNN Calculus

Throughout, as activation function σ we consider either the ReLU activation function

σ1(x) := max{0, x} x ∈ R

or, as suggested in [17,19,21], for r ∈ N, r ≥ 2, the RePU activation function

σr (x) := max{0, x}r x ∈ R.

If a NN uses σr as activation function, we refer to it as σr -NN. ReLU NNs are referred
to as σ1-NNs. We assume throughout that all activations in a DNN are of equal type.

Remark 2.1 (Historical note on rectified power units) “Rectified power unit” (RePU)
activation functions are particular cases of so-called sigmoidal functions of order k ∈ N

for k ≥ 2, i.e., limx→∞ σ(x)
xk

= 1, limx→−∞ σ(x)
xk

= 0 and |σ(x)| ≤ K (1 + |x |)k for
x ∈ R. The use ofNNswith such activation functions for function approximation dates
back to the early 1990s, cf. e.g., [19,21]. Proofs in [21, Sect. 3] proceed in three steps.
First, a given function f was approximated by a polynomial, then this polynomial was
expressed as a linear combination of powers of a RePU, and finally, it was shown that
for r ≥ 2 and arbitrary A > 0 the RePU σr can be approximated on [−A, A] with
arbitrarily small L∞([−A, A])-error ε by aNNwith a continuous, sigmoidal activation
function of order k = r , which has depth 1 and fixed network size independent of A and
ε [21, Lemma 3.6]. As remarked directly below [21, Lemma 3.6], this result remains
true for the L∞(R)-norm (instead of L∞([−A, A])) if, additionally, σ is uniformly
continuous on R. As also remarked below [21, Lemma 3.6], a similar statement holds
for the approximation of the ReLU σ1 by a NN with sigmoidal activation function of
the order k = 1.

For any r ∈ N, in the proof of [21, Lemma 3.6] it was observed that for continuous,
sigmoidal σ of order k = r , the σ -NN that approximates σr is uniformly continuous
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on [−A, A]. From this, it follows that σr -NNs can be approximated up to arbitrarily
small L∞([−A, A])-error by σ -NNs with NN size independent of A and ε. Again,
uniform continuity of σ on R implies the same result w.r.t. the L∞(R)-norm.

The exact realization of polynomials by σr -networks for r ≥ 2 was observed in the
proof of [21, Theorem 3.3], based on ideas in the proof of [5, Theorem 3.1]. The same
result was recently rediscovered in [17, Theorem 3.1], whose authors were apparently
not aware of [5,21].

We now indicate several fundamental operations on NNs which will be used in the
following. These operations have been frequently used in recent works [10,25,26].

2.2.1 Parallelization

We now recall the parallelization of two networks f and g, which in parallel emulates
f and g. We first describe the parallelization of networks with the same inputs as in
[26, Definition 2.7], the parallelization of networks with different inputs is similar and
introduced directly afterward.

Let f and g be two NNs with the same depth L ∈ N0 and the same input dimension
n ∈ N. Denote by m f the output dimension of f and by mg the output dimension of
g. Then there exists a neural network ( f , g), called parallelization of f and g, which
in parallel emulates f and g, i.e.,

( f , g) : Rn → R
m f × R

mg : x �→ ( f (x), g(x)).

It holds that depth(( f , g)) = L and that size(( f , g)) = size( f ) + size(g),
sizein(( f , g)) = sizein( f ) + sizein(g) and sizeout(( f , g)) = sizeout( f ) + sizeout(g).

We next recall the parallelization of networks with inputs of possibly different
dimension as in [10, Setting 5.2]. To this end, we let f and g be two NNs with the
same depth L ∈ N0 whose input dimensions n f and ng may be different, and whose
output dimensions we will denote by m f and mg , respectively.

Then there exists a neural network ( f , g)d, called full parallelization of networks
with distinct inputs of f and g, which in parallel emulates f and g, i.e.,

( f , g)d : Rn f × R
ng → R

m f × R
mg : (x, x̃) �→ ( f (x), g(x̃)) .

It holds that depth(( f , g)d) = L and that size(( f , g)d) = size( f ) + size(g),
sizein(( f , g)d) = sizein( f )+sizein(g) and sizeout(( f , g)d) = sizeout( f )+sizeout(g).

Parallelizations of networkswith possibly different inputs can be used consecutively
to emulate multiple networks in parallel.

2.2.2 Identity Networks

We now recall identity networks [26, Lemma 2.3], which emulate the identity map.
For all n ∈ N and L ∈ N0 there exists a σ1-identity network IdRn of depth L which

emulates the identity map IdRn : Rn → R
n : x �→ x. It holds that

size (IdRn ) ≤ 2n (depth (IdRn ) + 1) , sizein (IdRn ) ≤ 2n, sizeout (IdRn ) ≤ 2n.

(2.2)
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Analogously, for r ≥ 2 there exist σr -identity networks. To construct them, we use
the concatenation f • g of two NNs f and g as introduced in [26, Definition 2.2].
As we shall make use of it subsequently in Propositions 2.3 and 2.4, we recall its
definition here for convenience of the reader.

Definition 2.2 [26, Definition 2.2] Let f , g be such that the output dimension of g
equals the input dimension of f , which we denote by k. Denote the weights and biases
of f by {u�

i, j }i, j,� and {a�
j } j,� and those of g by {v�

i, j }i, j,� and {c�
j } j,�. Then, we denote

by f • g be the NN with weights and biases

w�
i, j =

⎧
⎪⎨

⎪⎩

v�
i, j � ≤ depth(g),
∑k

q=1 v�
i,qu

1
q, j � = depth(g) + 1,

u�−depth(g)
i, j � > depth(g) + 1,

b�
j =

⎧
⎪⎨

⎪⎩

c�
j � ≤ depth(g),
∑k

q=1 c
�
qu

1
q, j + a1j � = depth(g) + 1,

a�−depth(g)
j � > depth(g) + 1,

for � = 1, . . . , depth( f ) + depth(g) + 1.

It is easy to check, that the network f • g emulates the composition x �→ f (g(x))

and satisfies depth( f • g) = depth( f ) + depth(g).
The concatenation ofDefinition 2.2will only be used in the proof of Propositions 2.3

and 2.4. Throughout the remainder of this work, we use sparse concatenations f ◦ g
introduced in Sect. 2.2.3, whose network size can be estimated byC(size( f )+size(g))
for an absolute constantC . The reason for introducing ◦ in addition to •, is that the size
of f • g cannot be bounded by C(size( f ) + size(g)) for an absolute constant C . This
can be seen by considering the number of nonzero weights in layer � = depth(g)+ 1,
e.g., for k = 1, and arbitrary layer sizes Ndepth(g) of g and N1 of f .

Proposition 2.3 For all r ≥ 2, n ∈ N and L ∈ N0 there exists a σr -NN IdRn of depth
L which emulates the identity function IdRn : Rn → R

n : x �→ x. It holds that

size (IdRn ) ≤ nL
(
4r2 + 2r

)
, sizein (IdRn ) ≤ 4nr , sizeout (IdRn ) ≤ n(2r + 1).

Proof First we consider n = 1 and proceed in two steps: We discuss L = 0, 1 in Step
1 and L > 1 in Step 2.
Step 1. For L = 0, let IdRn be the network with weights w1

i, j = δi, j , b1j = 0,
i, j = 1, . . . , n. We next consider L = 1. It was shown in [17, Theorem 2.5] that
there exist (ak)rk=0 ∈ R

r+1 and (bk)rk=1 ∈ R
r such that for all x ∈ R

x = a0 +
r∑

k=1

ak (x + bk)
r = a0 +

r∑

k=1

akσr (x + bk) +
r∑

k=1

ak(−1)rσr (−x − bk) .

123



Constructive Approximation (2022) 55:537–582 545

This shows the existence of a network IdR1 : R → R of depth 1 realizing the identity
onR. The network employs 2r weights and 2r biases in the first layer, and 2r weights
and one bias (namely a0) in the output layer. Its size is thus 6r + 1.
Step 2. For L > 1, we consider the L-fold concatenation IdR1 • · · · • IdR1 of the
identity network IdR1 fromStep 1. The resulting network has depth L , input dimension
1 and output dimension 1. The number of weights and the number of biases in the
first layer both equal 2r , the number of weights in the output layer equals 2r , and
the number of biases 1. In each of the L − 1 other hidden layers, the number of
weights is 4r2, and the number of biases 2r . In total, the network has size at most
4r + (L − 1)(4r2 + 2r) + 2r + 1 ≤ L(4r2 + 2r), where we used that r ≥ 2.

Identity networks with input size n ∈ N are obtained as the full parallelization with
distinct inputs of n identity networks with input size 1. �

2.2.3 Sparse Concatenation

The sparse concatenation of two σ1-NNs f and g was introduced in [26, Definition
2.5].

Let f and g be σ1-NNs, such that the number of nodes in the output layer of g
equals the number of nodes in the input layer of f . Denote by n the number of nodes
in the input layer of g, and by m the number of nodes in the output layer of f . Then,
with “•” as in Definition 2.2, the sparse concatenation of the NNs f and g is defined
as the network

f ◦ g := f • IdRk •g, (2.3)

where IdRk is the σ1-identity network of depth 1. The network f ◦ g realizes the
function

f ◦ g : Rn → R
m : x �→ ( f (g(x)),

i.e., by abuse of notation, the symbol “◦” has twomeanings here, depending onwhether
we interpret f ◦g as a function or as a network. This will not be the cause of confusion
however. It holds depth( f ◦ g) = depth( f ) + 1 + depth(g),

size( f ◦ g) ≤ size( f ) + sizein( f ) + sizeout(g) + size(g) ≤ 2 size( f ) + 2 size(g)
(2.4)

and

sizein( f ◦ g) ≤
{
sizein(g) depth(g) ≤ 1,

2 sizein(g) depth(g) = 0,

sizeout( f ◦ g) ≤
{
sizeout( f ) depth( f ) ≤ 1,

2 sizeout( f ) depth( f ) = 0.

For a proof, we refer to [26, Remark 2.6].
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A similar result holds for σr -NNs. In this case we define the sparse concatenation
f ◦ g as in (2.3), but with IdRk now denoting the σr -identity network of depth 1 from
Proposition 2.3.

Proposition 2.4 For r ≥ 2 let f , g be two σr -NNs such that the output dimension
of g, which we denote by k ∈ N, equals the input dimension of f , and suppose that
sizein( f ), sizeout(g) ≥ k. Denote by f ◦ g the σr -network obtained by the σr -sparse
concatenation. Then depth( f ◦ g) = depth( f ) + 1 + depth(g) and

size( f ◦ g) ≤ size( f ) + (2r − 1) sizein( f ) + (2r + 1)k + (2r − 1) sizeout(g)

+ size(g)

≤ size( f ) + 2r sizein( f ) + (4r − 1) sizeout(g) + size(g)

≤ (2r + 1) size( f ) + 4r size(g). (2.5)

Furthermore,

sizein( f ◦ g) ≤
{
sizein(g) depth(g) ≥ 1,

2r sizein(g) + 2rk ≤ 4r sizein(g) depth(g) = 0,

sizeout( f ◦ g) ≤
{
sizeout( f ) depth( f ) ≥ 1,

2r sizeout( f ) + k ≤ (2r + 1) sizeout( f ) depth( f ) = 0.

Proof It follows directly from Definition 2.2 and Proposition 2.3 that depth( f ◦ g) =
depth( f ) + 1 + depth(g). To bound the size of the network, note that the weights
in layers � = 1, . . . , depth(g) equal those in the first depth(g) layers of g. Those in
layers � = depth(g)+3, . . . , depth(g)+2+depth( f ) equal those in the last depth( f )
layers of f . Layer � = depth(g)+ 1 has at most 2r sizeout(g) weights and 2rk biases,
whereas layer � = depth(g) + 2 has at most 2r sizein( f ) weights and k biases. This
shows Eq. (2.5) and the bound on sizein( f ◦ g) and sizeout( f ◦ g). �

Identity networks are often used in combination with parallelizations. In order to
parallelize two networks f and g with depth( f ) < depth(g), the network f can be
concatenated with an identity network, resulting in a network whose depth equals
depth(g) and which emulates the same function as f .

2.3 ReLU DNN Approximation of Polynomials

2.3.1 Basic Results

In [18], it was shown that deep networks employing both ReL and BiS (“binary step”)
units are capable of approximating the product of two numbers with a network whose
size and depth increase merely logarithmically in the accuracy. In other words, cer-
tain neural networks achieve uniform exponential convergence of the operation of
multiplication (of two numbers in a bounded interval) w.r.t. the network size. Inde-
pendently, a similar result for ReLU networks was obtained in [37]. Here, we shall use
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the latter result in the following slightly more general form shown in [32]. Contrary
to [37], it provides a bound of the error in the W 1,∞([− 1, 1])-norm (instead of the
L∞([− 1, 1])-norm).

Proposition 2.5 [32, Proposition 3.1] For any δ ∈ (0, 1) and M ≥ 1 there exists a
σ1-NN ×̃δ,M : [−M, M]2 → R such that

sup
|a|,|b|≤M

|ab − ×̃δ,M (a, b)| ≤ δ,

ess sup|a|,|b|≤M max

{∣
∣
∣
∣b − ∂

∂a
×̃δ,M (a, b)

∣
∣
∣
∣ ,

∣
∣
∣
∣a − ∂

∂b
×̃δ,M (a, b)

∣
∣
∣
∣

}

≤ δ,

where ∂
∂a ×̃δ,M (a, b) and ∂

∂b ×̃δ,M (a, b) denote weak derivatives. There exists a con-
stant C > 0 independent of δ ∈ (0, 1) and M ≥ 1 such that sizein(×̃δ,M ) ≤ C,
sizeout(×̃δ,M ) ≤ C,

depth(×̃δ,M ) ≤ C(1 + log2(M/δ)), size
(×̃δ,M

) ≤ C
(
1 + log2(M/δ)

)
.

Moreover, for every a ∈ [−M, M], there exists a finite set Na ⊆ [−M, M] such that
b �→ ×̃δ,M (a, b) is strongly differentiable at all b ∈ (−M, M)\Na.

It is immediate that Proposition 2.5 implies the existence of networks approximating
the multiplication of n different numbers. We now show such a result, generalizing
[32, Proposition 3.3] in that we consider the error again in the W 1,∞([−1, 1])-norm
(instead of the L∞([−1, 1])-norm).

Proposition 2.6 For any δ ∈ (0, 1), n ∈ N and M ≥ 1, there exists a σ1-NN
∏̃

δ,M :
[−M, M]n → R such that

sup
(xi )ni=1∈[−M,M]n

∣
∣
∣
∣
∣
∣

n∏

j=1

x j −
∏̃

δ,M
(x1, . . . , xn)

∣
∣
∣
∣
∣
∣
≤ δ, (2.6a)

ess sup(xi )ni=1∈[−M,M]n sup
i=1,...,n

∣
∣
∣
∣
∣
∣

∂

∂xi

n∏

j=1

x j − ∂

∂xi

∏̃

δ,M
(x1, . . . , xn)

∣
∣
∣
∣
∣
∣
≤ δ, (2.6b)

where ∂
∂xi

denotes a weak derivative.
There exists a constant C independent of δ ∈ (0, 1), n ∈ N and M ≥ 1 such that

size

(∏̃

δ,M

)

≤C
(
1 + n log

(
nMn/δ

))
, (2.7a)

depth

(∏̃

δ,M

)

≤C
(
1 + log(n) log

(
nMn/δ

))
. (2.7b)

Proof We proceed analogously to the proof of [32, Proposition 3.3], and construct
∏̃

δ,1 as a binary tree of ×̃·,·-networks from Proposition 2.5 with appropriately chosen
parameters for the accuracy and the maximum input size.
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We define ñ := min{2k : k ∈ N, 2k ≥ n}, and consider the product of ñ numbers
x1, . . . , xñ ∈ [−M, M]. In case n < ñ, we define xn+1, . . . , xñ := 1, which can be
implemented by a bias in the first layer. Because ñ < 2n, the bounds on network size
and depth in terms of ñ also hold in terms of n, possibly with a larger constant.

It suffices to show the result for M = 1, since for M > 1, the network defined
through

∏̃
δ,M (x1, . . . , xn) := Mn∏̃

δ/Mn ,1(x1/M, . . . , xn/M) for all (xi )ni=1 ∈
[−M, M]n achieves the desired bounds as is easily verified. Therefore, w.l.o.g.M = 1
throughout the rest of this proof.

Equation (2.6a) follows by the argument given in the proof of [32, Proposition 3.3],
we recall it here for completeness. By abuse of notation, for every even k ∈ N let a
(k-dependent) mapping R = R1 be defined via

R (y1, . . . , yk) := (×̃δ/ñ2,2 (y1, y2) , . . . , ×̃δ/ñ2,2 (yk−1, yk)
) ∈ R

k/2. (2.8)

For � ≥ 2 set R� := R ◦ R�−1. That is, for each product network ×̃δ/ñ2,2 as in
Proposition 2.5we choosemaximum input size “M = 2” and accuracy “δ/ñ2.” Hence,
R� can be interpreted as amapping fromR

2� → R.We now define
∏̃

δ,1 : [− 1, 1]n →
R via

∏̃

δ,1
(x1, . . . , xn) := Rlog2(ñ) (x1, . . . , xñ)

and next show the error bounds in (2.6) (recall that by definition xn+1 = · · · = xñ = 1
in case ñ > n).

First, by induction we show that for � ∈ {1, . . . , log2(ñ)} and for all x1, . . . , x2� ∈
[− 1, 1]

∣
∣
∣
∣
∣
∣

2�
∏

j=1

x j − R�(x1, . . . , x2� )

∣
∣
∣
∣
∣
∣
≤ δ

22�

ñ2
. (2.9)

For � = 1 it holds that R(x1, x2) = ×̃δ/ñ2,2(x1, x2), hence (2.9) follows
directly from the choice for the accuracy of ×̃δ/ñ2,2, which is δ/ñ2. For � ∈
{2, . . . , log2(ñ)}, we assume that Eq. (2.9) holds for � − 1. With |∏2(�−1)

j=1 x j | ≤ 1

and 22(�−1)

ñ2
δ < 1, it follows that

∣
∣R�−1(x1, . . . , x2(�−1) )

∣
∣ < 2, hence R�−1(x1, . . . , x2(�−1) )

may be used as input of ×̃δ/ñ2,2. We find

∣
∣
∣
∣
∣
∣

2�
∏

j=1

x j − R�
(
x1, . . . , x2�

)
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

2�−1
∏

j=1

x j − R�−1 (x1, . . . , x2�−1

)
∣
∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣
∣

2�
∏

j=2�−1+1

x j

∣
∣
∣
∣
∣
∣
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+
∣
∣
∣R�−1 (x1, . . . , x2�−1

)∣∣
∣ ·
∣
∣
∣
∣
∣
∣

2�
∏

j=2�−1+1

x j − R�−1 (x2�−1+1, . . . , x2�

)
∣
∣
∣
∣
∣
∣

+
∣
∣
∣R�−1 (x1, . . . , x2�−1

)
R�−1 (x2�−1+1, . . . , x2�

)

− ×̃δ/ñ2,2

(
R�−1 (x1, . . . , x2�−1

)
, R�−1 (x2�−1+1, . . . , x2�

)) ∣∣
∣

≤ 22(�−1)

ñ2
δ + 22(�−1)

ñ2
δ

(

1 + 22(�−1)

ñ2
δ

)

+ 1

ñ2
δ

≤ 22(�−1) + 2 · 22(�−1) + 1

ñ2
δ ≤ 22�

ñ2
δ,

where we used (1 + δ22(�−1)/ñ2) ≤ 2. This shows (2.9) for �. Inserting � = log2(ñ)

into (2.9) gives (2.6a).
We next show (2.6b). Without loss of generality, we only consider the derivative

with respect to x1, because each ×̃δ/ñ2,2-network is symmetric under permutations of
its arguments. For � ∈ {1, . . . , log2(ñ)} we show by induction that for almost every

(xi )2
�

i=1 ∈ [− 1, 1]2�

∣
∣
∣
∣
∣
∣

∂

∂x1

2�
∏

j=1

x j − ∂

∂x1
R�
(
x1, . . . , x2�

)
∣
∣
∣
∣
∣
∣
≤ δ

22�

ñ2
. (2.10)

Again, R(x1, x2) = ×̃δ/ñ2,2(x1, x2) and for � = 1 Eq. (2.10) follows from Proposi-
tion 2.5 and the choice for the accuracy of ×̃δ/ñ2,2, which is δ/ñ2.

For � > 1, under the assumption that (2.10) holds for � − 1, we find

∣
∣
∣
∣
∣
∣

∂

∂x1

2�
∏

j=1

x j − ∂

∂x1
R�
(
x1, . . . , x2�

)
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

2�
∏

j=2�−1+1

x j

∣
∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣
∣

∂

∂x1

2�−1
∏

j=1

x j − ∂

∂x1
R�−1 (x1, . . . , x2�−1

)
∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

2�
∏

j=2�−1+1

x j − R�−1 (x2�−1+1, . . . , x2�

)
∣
∣
∣
∣
∣
∣
·
∣
∣
∣
∣

∂

∂x1
R�−1 (x1, . . . , x2�−1

)
∣
∣
∣
∣

+
∣
∣
∣
∣R

l−1 (x2�−1+1, . . . , x2�

)

−
(

∂

∂a
×̃δ/ñ2,2

)(
Rl−1 (x1, . . . , x2�−1

)
, Rl−1 (x2�−1+1, . . . , x2�

))
∣
∣
∣
∣

·
∣
∣
∣
∣

∂

∂x1
R�−1(x1, . . . , x2�−1)

∣
∣
∣
∣
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≤ 22(�−1)

ñ2
δ + 22(�−1)

ñ2
δ

(

1 + 22(�−1)

ñ2
δ

)

+ 1

ñ2
δ

(

1 + 22(�−1)

ñ2
δ

)

≤ 22(�−1) + 2 · 22(�−1) + 2

ñ2
δ ≤ 22�

ñ2
δ,

where ∂
∂a ×̃δ/ñ2,2 denotes the (weak) derivative of ×̃δ/ñ2,2 : [−2, 2] × [−2, 2] → R

w.r.t. its first argument as in Proposition 2.5. This shows (2.10) for � > 1, as desired.
Filling in � = log2(ñ) gives (2.6b).

The number of binary tree layers (each denoted by R) is bounded by O(log2(ñ)).
With the bound on the network depth from Proposition 2.5, for M = 1 the second part
of (2.7) follows.

To estimate the network size, we cannot use the estimate size( f ◦ g) ≤ 2 size( f )+
2 size(g) from Eq. (2.4), because the number of concatenations log2(ñ) − 1 depends
on n, hence the factors 2 would give an extra n-dependent factor in the estimate on
the network size. Instead, from Eq. (2.4) we use size( f ◦ g) ≤ size( f ) + sizein( f ) +
sizeout(g) + size(g) and the bounds from Proposition 2.5. We find (2log2(ñ)−� being
the number of product networks in binary tree layer �)

size

(∏̃

δ,1

)

≤
log2(ñ)∑

�=1

2log2(ñ)−�
(
sizein

(×̃δ/ñ2,2
)+ size

(×̃δ/ñ2,2
)

+ sizeout
(×̃δ/ñ2,2

))

≤
log2(ñ)∑

�=1

2log2(ñ)−�
(
C + C

(
1 + log

(
2ñ2/δ

))
+ C

)

≤ (ñ − 1)C (1 + log (ñ/δ)) ≤ C(1 + n log(n/δ)),

which finishes the proof of (2.7) for M = 1. �
The previous two propositions can be used to deduce bounds on the approximation

of univariate polynomials on compact intervals w.r.t. the normW 1,∞. One such result
was already proven in [25, Proposition 4.2], which we present in Proposition 2.9 in
a slightly modified form, allowing for the simultaneous approximation of multiple
polynomials reusing the same approximate monomial basis. This yields a smaller
network and thus gives a slight improvement over using the parallelization of networks
obtained by applying [25, Proposition 4.2] to each polynomial separately. To prove
the result, we first recall the following lemma:

Lemma 2.7 [25, Lemma 4.5] For all � ∈ N and δ ∈ (0, 1) there exists a σ1-NN Ψ̃
�

δ

with input dimension one and output dimension 2�−1 + 1 such that

max
j=2l−1,...,2�

∥
∥
∥
∥x

j −
(
Ψ̃

�

δ

)

1+ j−2�−1

∥
∥
∥
∥
W 1,∞([− 1,1])

≤ δ,

depth
(
Ψ̃

�

δ

)
≤ C(�3 + � log2(1/δ)), size

(
Ψ̃

�

δ

)
≤ C

(
�2� + 2� log2(1/δ)

)
,

(2.11)
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where C is independent of � and δ.

Corollary 2.8 Let n ∈ N and δ ∈ (0, 1). There exists a NN Ψ n
δ with input dimension

one and output dimension n + 1 such that (Ψ n
δ (x))1 = 1 and (Ψ n

δ (x))2 = x for all
x ∈ R, and

max
�∈{3,...,n+1}

∥
∥
∥x�−1 − (Ψ n

δ )�

∥
∥
∥
W 1,∞([− 1,1]) ≤ δ, (2.12)

and

size
(
Ψ n

δ

) ≤ C (1 + n log(n) + n log(1/δ)) , (2.13a)

depth
(
Ψ n

δ

) ≤ C(1 + log(n)3 + log(n) log(1/δ)), (2.13b)

where C is independent of n and δ.

Proof Define k := �log2(n)� and for � ∈ {1, . . . , k} let φ� : R → R be an identity

network with depth(φ�) = maxi∈{1,...,k} depth(Ψ̃
i
δ) − depth(Ψ̃

�

δ) as in (2.2). Set

Ψ̂
n
δ :=

(
Ψ̃

1
δ ◦ φ1, . . . , Ψ̃

k
δ ◦ φk

)
.

Then by Lemma 2.7, Ψ̂
n
δ (x) is an approximation to

⎛

⎜
⎜
⎝x1, x2
︸ ︷︷ ︸

Ψ̃
1
δ◦φ1

, x2, . . . , x4
︸ ︷︷ ︸

Ψ̃
2
δ◦φ2

, x4, . . . , x2
k−1

, x2
k−1

, . . . , x2
k

︸ ︷︷ ︸

Ψ̃
k
δ◦φk

⎞

⎟
⎟
⎠ ,

where the braces indicate which part of the network approximates these outputs.
Adding one layer to eliminate the double entries and (in case 2k > n) the approxima-
tions xk with k > n, and adding the first entry which always equals 1 = x0, we obtain
a network Ψ n : R → R

n+1 satisfying (2.12). The depth bound is an immediate con-

sequence of depth(Ψ n
δ ) ≤ C + maxi∈{1,...,k} depth(Ψ̃

i
δ), (2.11) and k ≤ C log(n). To

bound the size, first note that by (2.2) and (2.11) holds size(φ�) ≤ C(k3 + k log(1/δ))
for a constant C > 0 independent of n and δ. Thus,

size
(
Ψ n

δ

) ≤ C(n + 1) + C size
(
Ψ̂

n
δ

)
≤ Cn + C

k∑

�=1

(
size

(
Ψ̃

�

δ

)
+ size (φ�)

)

≤ Cn + C
k∑

�=1

(
�2� + 2� log(1/δ) +

(
k3 + k log(1/δ)

))

≤ C (n + n log(n) + n log(1/δ)) ,

where we used k ≤ C log(n) and n ≥ 1. This shows (2.13). �
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Proposition 2.9 There exists a constant C > 0 such that the following holds: For every
δ > 0, n ∈ N0, N ∈ N and N polynomials pi = ∑n

j=0 c
i
j y

j ∈ Pn, i = 1, . . . , N

there exists a σ1-NN p̃δ : [− 1, 1] → R
N such that

max
i=1,...,N

∥
∥pi − ( p̃δ

)
i

∥
∥
W 1,∞([− 1,1]) ≤ δ

and, with C0 := max{maxi=1,...,N
∑n

j=2 |cij |, δ},

size
(
p̃δ

) ≤C (1 + nN + n log(n) + n log(C0/δ)) ,

depth
(
p̃δ

) ≤C
(
1 + log(n)3 + log(n) log (C0/δ)

)
.

Proof We apply a linear transformation to the network in Corollary 2.8. Specifically,
let Φ : Rn → R

N be the network expressing the linear function with i th component
(Φ(x))i = ∑i

j=0 c
i
j x j+1, where x = (xi )

n+1
i=1 . In other words, with W ∈ R

N×(n+1)

given byWi� = ci�−1,Φ is the depth 0 ReLUNNΦ(x) = W x of size atmost N (n+1).
Then by (2.12),

p̃δ := Φ ◦ Ψ n
δ/C0

satisfies for each i ∈ {1, . . . , N }
∥
∥pi − ( p̃δ)i

∥
∥
W 1,∞([− 1,1]) ≤

n∑

�=0

ci�

∥
∥
∥
∥x

� −
(
Ψ n

δ/C0
(x)
)

�+1

∥
∥
∥
∥
W 1,∞([− 1,1])

≤
n∑

�=2

δ

C0
ci� ≤ δ.

By (2.13)

size
(
p̃δ

) ≤ C
(
size(Φ) + size

(
Ψ n

δ/C0

))
≤ C (1 + nN + n log(n) + n log(C0/δ)) ,

and finally

depth
(
p̃δ

) ≤ depth(Φ) + 1 + depth
(
Ψ̃

n
δ/C0

)
≤ C

(
1 + log(n)3 + log(n) log(C0/δ)

)
.

�
Remark 2.10 If y0 ∈ R and pi (y) =∑n

j=0 c
i
j (y − y0) j , i = 1, . . . , N , then Proposi-

tion 2.9 can still be applied for the approximation of pi (y) for y ∈ [y0 − 1, y0 + 1],
since the substitution z = y − y0 corresponds to a shift, which can be realized
exactly in the first layer of a NN, cp. (2.1a). Thus, if qi (z) := ∑n

j=0 c
i
j z

j and if
∥
∥qi − (q̃δ)i

∥
∥
W 1,∞([− 1,1]) ≤ δ as in Proposition 2.9, then y �→ p̃δ(y) := q̃δ(y − y0)

is a NN satisfying the accuracy and size bounds of Proposition 2.9 w.r.t. the
[W 1,∞([y0 − 1, y0 + 1])]N -norm.

123



Constructive Approximation (2022) 55:537–582 553

2.3.2 ReLU DNN Approximation of Univariate Legendre Polynomials

For j ∈ N0 we denote by L j the j th Legendre polynomial, normalized in
L2([− 1, 1], λ/2), where λ/2 denotes the uniform probability measure on [− 1, 1].
For j ∈ N0 it holds that L j (x) =∑ j

�=0 c
j
� x

�, where, with m(�) := ( j − �)/2,

c j� =
{
0 j − � ∈ {0, . . . , j} ∩ 2Z + 1,

(−1)m2− j
( j
m

)( j+�
j

)√
2 j + 1 j − � ∈ {0, . . . , j} ∩ 2Z,

see, e.g., [11, Sect. 10.10 Equation (16)], (the factor
√
2 j + 1 is needed to obtain the

desired normalization). We define c j� := 0 for � > j .

Analogous to [25, Equation (4.13)] it holds that
∑ j

�=0 |c j� | ≤ 4 j for all j ∈ N

(we use that
√
2 j + 1 ≤ √

π j). Inserting this into Proposition 2.9 with N = n and
pi = Li for i = 1, . . . , N , we find the following result on the approximation of
univariate Legendre polynomials by σ1-NNs (similar to [23, Proposition 2.5] for the
approximation of Chebyšev polynomials).

Proposition 2.11 [25, Proposition 4.2 and Equation (4.13)] For every n ∈ N and for
every δ ∈ (0, 1) there exists a σ1-NN L̃n,δ with input dimension one and with output
dimension n such that for a positive constant C independent of n and δ there holds

∥
∥
∥
∥L j −

(
L̃n,δ

)

j

∥
∥
∥
∥
W 1,∞([− 1,1])

≤ δ, j = 1, . . . , n,

depth
(
L̃n,δ

)
≤C(1 + log2 n)

(
n + log2(1/δ)

)
,

size
(
L̃n,δ

)
≤Cn

(
n + log2(1/δ)

)
. (2.14)

Remark 2.12 Alternatively, the σ1-NN approximation of Legendre polynomials of
degree n could be based on the three term recursion formula for Legendre poly-
nomials or the Horner scheme for polynomials in general, by concatenating n product
networks from Proposition 2.5 (and affine transformations). Because, depending on
the scaling of the Legendre polynomials, either the accuracy δ of the product networks
or the maximum input size M needs to grow exponentially with n, both the network
depth and the network size of the resulting NN approximation of univariate Legendre
polynomials would be bounded by Cn(n + log(1/δ)). That network size is of the
same order as in Proposition 2.11, but the network depth has a worse dependence
on the polynomial degree n. For more details, see [23, Proposition 2.5], where this
construction is used to approximate truncated Chebyšev expansions based on the three
term recursion for Chebyšev polynomials, which is very similar to that for Legendre
polynomials.

For future reference, we note that by (2.14) and Eq. (2.16), for all n ∈ N, j =
1, . . . , n, δ ∈ (0, 1) and k ∈ {0, 1}
∥
∥
∥(L̃n,δ) j

∥
∥
∥
Wk,∞([− 1,1]) ≤ (2 j + 1)1/2+2k + δ ≤ (2 j + 1)1/2+2k + 1 ≤ (2 j + 2)2k+1.

(2.15)
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2.3.3 ReLU DNN Approximation of Tensor Product Legendre Polynomials

Let d ∈ N. Denote the uniform probability measure on [− 1, 1]d by μd , i.e.,
μd := 2−dλ where λ is the Lebesgue measure on [− 1, 1]d . Then, for all ν ∈ N

d
0 the

tensorized Legendre polynomials Lν( y) := ∏d
j=1 Lν j (y j ) form a μd -orthonormal

basis of L2([− 1, 1]d , μd). We shall require the following bound on the norm of
the tensorized Legendre polynomials which itself is a consequence of the Markoff
inequality, and our normalization of the Legendre polynomials: for any k ∈ N0

∀ν ∈ N
d
0 : ‖Lν‖Wk,∞([− 1,1]d ) ≤

d∏

j=1

(1 + 2ν j )
1/2+2k . (2.16)

To provide bounds on the size of the networks approximating the tensor product
Legendre polynomials, for finite subsets Λ ⊂ N

d
0 we will make use of the quantity

m(Λ) := max
ν∈Λ

|ν|1. (2.17)

Proposition 2.13 For every finite subset Λ ⊂ N
d
0 and every δ ∈ (0, 1) there exists a

σ1-NN fΛ,δ with input dimension d and output dimension |Λ|, such that the outputs

{L̃ν,δ}ν∈Λ of fΛ,δ satisfy

∀ν ∈ Λ :
∥
∥
∥Lν − L̃ν,δ

∥
∥
∥
W 1,∞([− 1,1]d )

≤ δ,

sup
y∈[− 1,1]d

|L̃ν,δ((y j ) j∈supp ν)| ≤ (2m(Λ) + 2)d ,

and for a constant C > 0 that is independent of d, Λ and δ it holds

depth
(
fΛ,δ

) ≤C(1 + d log d)
(
1 + log2 m(Λ)

) (
m(Λ) + log2(1/δ)

)
,

size
(
fΛ,δ

) ≤Cd2m(Λ)2 + Cdm(Λ) log2(1/δ)

+ Cd2|Λ|(1 + log2 m(Λ) + log2(1/δ)
)
.

Proof Let δ ∈ (0, 1) and a finite subset Λ ⊂ N
d
0 be given.

The proof is divided into three steps. In the first step, we define ReLU NN approx-
imations of tensor product Legendre polynomials {L̃ν,δ}ν∈Λ and fix the parameters
used in the NN approximation. In the second step, we estimate the error of the approx-
imation, and the L∞([− 1, 1]d)-norm of the L̃ν,δ , ν ∈ Λ. In the third step, we describe
the network fΛ,δ and estimate its depth and size.
Step 1. For all ν ∈ N

d
0 , we define nν := | supp ν| and Mν := 2|ν|1 + 2. We can now

define

L̃ν,δ

((
y j
)
j∈supp ν

)
:=
∏̃

M−3
ν δ/2,Mν

({(
L̃m(Λ),δ′

(
y j
))

ν j

}

j∈supp ν

)

, (2.18)
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where
∏̃

M−3
ν δ/2,Mν

: [−Mν, Mν]| supp ν| → R is as in Proposition 2.6. For the network

approximating univariate Legendre polynomials L̃m(Λ),δ′ from Proposition 2.11, we
set the accuracy parameter as δ′ := 1

2d
−1(2m(Λ) + 2)−d−1δ < 1. Let us point out

that by (2.15) for all ν ∈ N
d
0 and all j ∈ supp ν

∥
∥
∥
∥

(
L̃m(Λ),δ′

)

ν j

∥
∥
∥
∥
L∞([− 1,1])

≤ 2ν j + 2 ≤ 2|ν|1 + 2 = Mν ≤ 2m(Λ) + 2,

so that, as required by Proposition 2.6, the absolute values of the arguments of
∏̃

M−3
ν δ/2,Mν

in (2.18) are all bounded by Mν .

Step 2. For the L∞([− 1, 1])-error of L̃ν,δ we find

sup
y∈[− 1,1]d

∣
∣
∣Lν( y) − L̃ν,δ

((
y j
)
j∈supp ν

)∣
∣
∣

≤ sup
y∈[− 1,1]d

∣
∣
∣
∣
∣
∣
Lν( y) −

∏

j∈supp ν

(
L̃m(Λ),δ′

(
y j
))

ν j

∣
∣
∣
∣
∣
∣

+ sup
y∈[− 1,1]d

∣
∣
∣
∣

∏

j∈supp ν

(
L̃m(Λ),δ′

(
y j
))

ν j

−
∏̃

M−3
ν δ/2,Mν

({(
L̃m(Λ),δ′

(
y j
))

ν j

}

j∈supp ν

) ∣
∣
∣
∣

≤ sup
y∈[− 1,1]d

∑

k∈supp ν

∣
∣
∣
∣
∣
∣
∣
∣

∏

j∈supp ν:
j<k

(
L̃m(Λ),δ′

(
y j
))

ν j

∣
∣
∣
∣
∣
∣
∣
∣

·
∣
∣
∣
∣Lνk (yk) −

(
L̃m(Λ),δ′ (yk)

)

νk

∣
∣
∣
∣

·

∣
∣
∣
∣
∣
∣
∣
∣

∏

j∈supp ν:
j>k

Lν j (y j )

∣
∣
∣
∣
∣
∣
∣
∣

+ δ

2M3
ν

.

Using Proposition 2.13, (2.15), (2.16) and Mν = 2|ν|1 + 2 ≤ 2m(Λ) + 2, the last
term can be bounded by

| supp ν|Mnν−1
ν δ′ + δ

2
≤ | supp ν|

d

Mnν−1
ν

(2m(Λ) + 2)d+1

δ

2
+ δ

2
≤ δ.

It follows that for all ν ∈ Λ

sup
y∈[− 1,1]d

∣
∣
∣L̃ν,δ

((
y j
)
j∈supp ν

)∣
∣
∣ ≤ sup

y∈[− 1,1]d
|Lν( y)|

+ sup
y∈[− 1,1]d

∣
∣
∣Lν( y) − L̃ν,δ

((
y j
)
j∈supp ν

)∣
∣
∣
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≤
d∏

j=1

(
1 + 2ν j

)1/2 + δ

≤
d∏

j=1

(
1 + 2ν j

)1/2 + 1 ≤ Md
ν .

To determine the error of the gradient, without loss of generality we only consider the
derivative with respect to y1. In the case 1 /∈ supp ν, we trivially have ∂

∂ y1
(Lν( y) −

L̃ν,δ( y)) = 0 for all y ∈ [− 1, 1]d . Thus, let ν1 	= 0 in the following. Then, with
δ′ = 1

2d
−1(2m(Λ) + 2)−d−1δ

sup
y∈[− 1,1]d

∣
∣
∣
∣

∂

∂ y1
Lν( y) − ∂

∂ y1
L̃ν,δ

((
y j
)
j∈supp ν

)∣∣
∣
∣

≤ sup
y∈[− 1,1]d

∣
∣
∣
∣
∣
∣

∂

∂ y1
Lν( y) − ∂

∂ y1

∏

j∈supp ν

(
L̃m(Λ),δ′

(
y j
))

ν j

∣
∣
∣
∣
∣
∣

+ sup
y∈[− 1,1]d

∣
∣
∣
∣

∂

∂ y1

∏

j∈supp ν

(
L̃m(Λ),δ′

(
y j
))

ν j

− ∂

∂ y1

∏̃

M−3
ν δ/2,Mν

({(
L̃m(Λ),δ′

(
y j
))

ν j

}

j∈supp ν

) ∣
∣
∣
∣

≤ sup
y∈[− 1,1]d

∣
∣
∣
∣

∂

∂ y1
Lν1(y1) − ∂

∂ y1

(
L̃m(Λ),δ′ (y1)

)

ν1

∣
∣
∣
∣ ·

∣
∣
∣
∣
∣
∣
∣
∣

∏

j∈supp ν:
j>1

Lν j

(
y j
)

∣
∣
∣
∣
∣
∣
∣
∣

+ sup
y∈[− 1,1]d

∑

1 	=k∈supp ν

∣
∣
∣
∣

∂

∂ y1

(
L̃m(Λ),δ′ (y1)

)

ν1

∣
∣
∣
∣ ·

∣
∣
∣
∣
∣
∣
∣
∣

∏

1 	= j∈supp ν:
j<k

(
L̃m(Λ),δ′

(
y j
))

ν j

∣
∣
∣
∣
∣
∣
∣
∣

·
∣
∣
∣
∣Lνk (yk) −

(
L̃m(Λ),δ′ (yk)

)

νk

∣
∣
∣
∣ ·

∣
∣
∣
∣
∣
∣
∣
∣

∏

j∈supp ν:
j>k

Lν j

(
y j
)

∣
∣
∣
∣
∣
∣
∣
∣

+ sup
y∈[− 1,1]d

∣
∣
∣
∣

∏

1 	= j∈supp ν

(
L̃m(Λ),δ′(y j )

)

ν j

−
(

∂

∂x1

∏̃

M−3
ν δ/2,Mν

)({
(L̃m(Λ),δ′(y j ))ν j

}

j∈supp ν

) ∣
∣
∣
∣

·
∣
∣
∣
∣

∂

∂ y1

(
L̃m(Λ),δ′ (y1)

)

ν1

∣
∣
∣
∣ ,
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where ∂
∂x1

∏̃
M−3

ν δ/2,Mν
denotes the (weak) derivative of

∏̃

M−3
ν δ/2,Mν

: [−Mν, Mν]| supp ν| → R

with respect to its first argument, cf. Proposition 2.6.
Using (2.16) and Proposition 2.11 for the first term, Proposition 2.11, (2.15) and

(2.16) for the second term and Proposition 2.6 and (2.16) for the third term, we further
bound the NN approximation error by

δ′Mnν−1
ν + (| supp ν| − 1)M3

ν M
nν−2
ν δ′ + δ

2M3
ν

M3
ν

≤ | supp ν|Mnν+1
ν

1
2d

−1 (2m(Λ) + 2)−d−1 δ + δ

2
≤ δ.

Step 3. We now describe the network fΛ,δ , which in parallel emulates {L̃ν,δ}ν∈Λ.
The network is constructed as the concatenation of two subnetworks, i.e.,

fΛ,δ = f (1)
Λ,δ ◦ f (2)

Λ,δ.

The subnetwork f (2)
Λ,δ evaluates, in parallel, approximate univariate Legendre poly-

nomials in the input variables (y j ) j≤d . It is defined as

f (2)
Λ,δ :=

({
L̃m(Λ),δ′

}d

j=1

)

,

where the pair of round brackets denotes a parallelization.
The subnetwork f (1)

Λ,δ takes the output of f (2)
Λ,δ as input and computes

fΛ,δ

(
(y j ) j≤d

) = f (1)
Λ,δ

(
f (2)

Λ,δ

(
(y j ) j≤d

))

=
({

L̃ν,δ

(
(y j ) j≤d

)}

ν∈Λ

)

=
({

IdR ◦
∏̃

M−3
ν δ/2,Mν

({(
L̃m(Λ),δ′(y j )

)

ν j

}

j∈supp ν

)}

ν∈Λ

)

,

where in the last two lines the outer pair of round brackets denotes a parallelization.
The depth of the identity networks is such that all components of the parallelization
have equal depth.

We have the following expression for the network depth:

depth( fΛ,δ) = depth
(
f (1)

Λ,δ

)
+ 1 + depth

(
f (2)

Λ,δ

)
.
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Definition here and in the remainder of this proof by C > 0 constants independent of
d, Λ and δ ∈ (0, 1),

depth
(
f (2)

Λ,δ

)
= depth

(
L̃m(Λ),δ′

)

≤C
(
1 + log2 m(Λ)

) (
m(Λ) + log2(1/δ

′)
)

≤C
(
1 + log2 m(Λ)

) (
m(Λ) + log2(d) + 1 + (d + 1) log2 (4m(Λ))

+ log2(1/δ)
)

≤Cd
(
1 + log2 m(Λ)

) (
m(Λ) + log2(1/δ)

)
,

where we used that 2m(Λ) + 2 ≤ 4m(Λ) when Λ 	= {0}.
Similarly, due toMν = 2|ν|1+2 ≤ 4m(Λ) (ifΛ 	= {0}), we can choose the identity

networks in the definition of f (1)
Λ,δ such that

depth
(
f (1)

Λ,δ

)
= 1 + max

ν∈Λ
depth

(∏̃

M−3
ν δ/2,Mν

)

≤ max
ν∈Λ

C
(
1 + log2(nν) log2(nνM

nν+3
ν 2/δ)

)

≤C max
ν∈Λ

(
1 + log2(nν)

(
log2 nν + 1 + (nν + 3) log2 (4m(Λ))

+ log2(1/δ)
))

≤C(1 + d log d)
(
1 + log2 m(Λ) + log2(1/δ)

)
,

where we used that nν ≤ d. Finally, we find the following bound on the network
depth:

depth
(
fΛ,δ

) ≤C(1 + d log d)
(
1 + log2 m(Λ)

) (
m(Λ) + log2(1/δ)

)
.

For the network size, we find that

size( fΛ,δ) ≤ 2 size
(
f (1)

Λ,δ

)
+ 2 size

(
f (2)

Λ,δ

)
.

With Proposition 2.11, we estimate the size of f (2)
Λ,δ as

size
(
f (2)

Λ,δ

)
= d size

(
L̃m(Λ),δ′

)

≤Cdm(Λ)
(
m(Λ) + log2(1/δ

′)
)

≤Cdm(Λ)
(
m(Λ) + log2(d) + 1 + (d + 1) log2(4m(Λ)) + log2(1/δ)

)

≤Cd2m(Λ)2 + Cdm(Λ) log2(1/δ).

The depth of each of the identity networks in the definition of f (1)
Λ,δ is bounded by

depth( f (1)
Λ,δ) ≤ C(1 + d log d)

(
1 + log2 m(Λ) + log2(1/δ)

)
.
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It follows that

size
(
f (1)

Λ,δ

)
=
∑

ν∈Λ

size

(

IdR ◦
∏̃

M−3
ν δ/2,Mν

)

≤
∑

ν∈Λ

2 size (IdR) + 2 size

(∏̃

M−3
ν δ/2,Mν

)

≤ 4|Λ|
(
depth

(
f (1)

Λ,δ

)
+ 1
)

+ C
∑

ν∈Λ

(
1 + nν log2(nνM

nν+3
ν 2/δ)

)

≤C(1 + d log d)|Λ|(1 + log2 m(Λ) + log2(1/δ)
)+ C(1 + d log d)|Λ|

+ Cd
∑

ν∈Λ

(
1 + (nν + 3) log2(4m(Λ)) + log2(1/δ)

)

≤Cd2|Λ|(1 + log2 m(Λ) + log2(1/δ)
)
.

Hence, we arrive at

size
(
fΛ,δ

) ≤ 2 size
(
f (1)

Λ,δ

)
+ 2 size

(
f (2)

Λ,δ

)

≤Cd2m(Λ)2 + Cdm(Λ) log2(1/δ) + Cd2|Λ|(1 + log2 m(Λ)

+ log2(1/δ)
)
.

�

2.4 RePU DNN Emulation of Polynomials

The approximation of polynomials by neural networks can be significantly simplified
if instead of the ReLU activation σ1 we consider as activation function the so-called
rectified power unit (“RePU” for short): recall that for r ∈ N, r ≥ 2, the RePU
activation is defined by σr (x) = max{0, x}r , x ∈ R. In contrast to σ1-NNs, as shown
in [17], for every r ∈ N, r ≥ 2 there exist RePU networks of depth 1 realizing the
multiplication of two real numbers without error. This yields the following result
proven in [17, Theorem 4.1] for r = 2. With [17, Theorem 2.5] this extends to all
r ≥ 2. To render the presentation self-contained, an alternative proof is provided in
Appendix A, based on ideas in [25]. Unlike in [17], it is shown that the constant C is
independent of d. This is relevant in particular when considering RePU emulations of
truncated polynomial chaos expansions of countably parametricmaps u : [− 1, 1]N →
R, shortly discussed in Sect. 4.3.3. Polynomial approximations of such maps depend
on a finite number d(ε) ∈ N of parameters only, but with d(ε) → ∞ as ε ↓ 0.

Proposition 2.14 Fix d ∈ N and r ∈ N, r ≥ 2. Then there exists a constant C > 0
independent of d but depending on r such that for any finite downward closedΛ ⊆ N

d
0

and any p ∈ PΛ there is a σr -network p̃ : Rd → R which realizes p exactly and such
that size( p̃) ≤ C |Λ| and depth( p̃) ≤ C log2(|Λ|).
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Remark 2.15 Let ψ : R → R be an arbitrary C2 function that is not linear, i.e., it does
not hold ψ ′′(x) = 0 for all x ∈ R. In [29, Theorem 3.4] it is shown that ψ-networks
can approximate the multiplication of two numbers a, b in a fixed bounded interval
up to arbitrary accuracy with a fixed number of units. We also refer to [32, Sect. 3.3]
where we explain this observation from [29] in more detail. From this, one can obtain
a version of Proposition 2.14 for arbitrary C2 activation functions. To state it, we fix
d ∈ N. Then there exists C > 0 (independent of d) such that for every δ > 0, for
every downward closed Λ ⊆ N

d
0 and every p ∈ PΛ, there exists a ψ-neural network

q : [−M, M]d → R such that supx∈[−M,M]d |p(x) − q(x)| ≤ δ, size(q) ≤ C |Λ| and
depth(q) ≤ C log2(|Λ|).

As discussed in Remark 2.1, the same also holds, e.g., for NNs with continuous,
sigmoidal activation σ of order k ≥ 2.

Recently, there has been some interest in the approximation of ReLU NNs by
rational functions and NNs with rational activation functions and vice versa, e.g., in
[3,34]. In the latter, σ = p/q is used as activation for polynomials p, q of prescribed
degree, but within each computational node trainable coefficients of p and q. For all
prescribed deg(p) ≥ 2 and deg(q) ∈ N0, each node in such a network can emulate
the multiplication of two numbers exactly ([3, Proposition 10] and its proof), hence
Proposition 2.14 also holds for such NNs (the proof in Appendix A applies, using that
also the identity map can be emulated by networks with such activations).

As a result, Theorem 3.10 also holds for all activation functions discussed in this
remark.

3 Exponential Expression Rate Bounds

We now proceed to the statement and proof of the main result of the present note,
namely the exponential rate bounds for the DNN expression of d-variate holomorphic
maps. First, in Sect. 3.1 we recall (classical) polynomial approximation results for
analytic functions, similar to those in [35]. Subsequently, these are used to deduce
DNN approximation results for ReLU and RePU networks.

3.1 Polynomial Approximation

Fix d ∈ N. For ρ > 1 define the open Bernstein ellipse

Eρ :=
{
z + z−1

2
: z ∈ C, 1 ≤ |z| < ρ

}

⊂ C,

and for the poly-radius ρ = (ρ j )
d
j=1 ∈ (1,∞)d define the poly-ellipse

Eρ :=
d×
j=1

Eρ j ⊆ C
d . (3.1)
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Let u : [− 1, 1]d → R admit a complex holomorphic extension to the polyellipse Eρ .
Such a function can be approximated on [− 1, 1]d by multivariate Legendre expan-
sions, with the error decaying uniformly like exp(−βN 1/d) for some β > 0 and in
terms of the dimension N of the approximation space. This statement is made precise
in Theorem 3.5.

Remark 3.1 Suppose thatu : [− 1, 1]d → R is (real) analytic. Then it allows a complex
holomorphic extension to some open set O ⊆ C

d containing [− 1, 1]d . Since for
ρ > 1 close to 1, the maximal distance of a point in Eρ to the interval [− 1, 1]
becomes arbitrarily small, there always exists ρ > 1 such that u allows a holomorphic
extension to×d

j=1 Eρ .

For the proof of the theorem, we shall use the following result mentioned in [38,
Equation (1.5)].

Lemma 3.2 Let (a j )
d
j=1 ∈ (0,∞)d . Then, with a :=∑d

j=1 1/a j

∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
ν ∈ N

d
0 :

d∑

j=1

ν j

a j
≤ 1

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
≤ 1

d! (1 + a)d
d∏

j=1

a j . (3.2)

The lemma is proved by computing (as an upper bound of the left-hand side in (3.2))

the volume of the set {(x j )dj=1 ∈ R
d+ : ∑d

j=1
(x j−1)

a j
≤ 1}, which equals the right-

hand side in (3.2). The significance of this result is, that it provides an upper bound
for the size of multi-index sets of the type

Λε := {ν ∈ N
d
0 : ρ−ν ≥ ε}, ε ∈ (0, 1). (3.3)

To see this, note that due to log(ρ−ν) = −∑d
j=1 ν j log(ρ j ), for any ε ∈ (0, 1) we

have

Λε =
⎧
⎨

⎩
ν ∈ N

d
0 :

d∑

j=1

ν j log(ρ j ) ≤ log(1/ε)

⎫
⎬

⎭
.

Applying Lemma 3.2 with a j = log(1/ε)/ log(ρ j ) we thus get (see also [2, Lemma
4.4]):

Lemma 3.3 It holds

|Λε| ≤ 1

d!

⎛

⎝log(1/ε) +
d∑

j=1

log(ρ j )

⎞

⎠

d
d∏

j=1

1

log
(
ρ j
) . (3.4)

Remark 3.4 Note that

{

ν ∈ N
d
0 : 0 ≤ ν j ≤ − log(ε)

d log(ρ j )
∀ j

}

⊆ Λε ⊆
{

ν ∈ N
d
0 : 0 ≤ ν j ≤ − log(ε)

log(ρ j )
∀ j

}

.

(3.5)
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This implies the existence of a constant C (depending on ρ but independent of d)
such that for all ε ∈ (0, 1) with ρmin := min j=1,...,d ρ j and ρmax := max j=1,...,d ρ j

[cp. (2.17)]

m (Λε) = max{|ν|1 : ρ−ν ≥ ε} = max{n ∈ N0 : ρ−n
min ≥ ε}

= max

{

n ∈ N0 : n ≤ − log(ε)

log(ρmin)

}

≤ d
log(ρmax)

log (ρmin)

⎛

⎝
d∏

j=1

− log(ε)

d log(ρ j )

⎞

⎠

1/d

≤ Cd|Λε|1/d . (3.6)

We are now in position to prove the following theorem, variations of which can be
considered as classical.

Theorem 3.5 Let d ∈ N and ρ = (ρ j )
d
j=1 ∈ (1,∞)d . Let u : Eρ → C be holomor-

phic. Then, for all k ∈ N0 and for any β > 0 such that

β <

⎛

⎝d!
d∏

j=1

log(ρ j )

⎞

⎠

1/d

(3.7)

there exists C > 0 (depending on d, ρ, k, β and u) such that with

lν :=
∫

[− 1,1]d
u( y)Lν( y)dμd( y), ν ∈ N

d
0 (3.8)

and Λε in (3.3) it holds for all ε ∈ (0, 1)

∥
∥
∥
∥
∥
∥
u −

∑

ν∈Λε

lνLν

∥
∥
∥
∥
∥
∥
Wk,∞([− 1,1]d )

≤ C e−β|Λε |1/d .

Proof Due to the holomorphy of u on Eρ , for a constant C > 0 depending on d and
ρ, lν ∈ R satisfies the bound

|lν | ≤ C ‖u‖L∞(Eρ) ρ−ν
d∏

j=1

(1 + 2ν j )
1/2, ν ∈ N

d
0 . (3.9)

For d = 1 a proof can be found in [9, Chapter 12]. For general d ∈ N the bound
follows by application of the one dimensional result in each variable. For more details
we refer for instance to [6, Eqs. (2.14) and (2.16)] or [39, Corollary B.2.7].

Since (Lν)ν∈Nd
0
forms an orthonormal basis of (theHilbert space) L2([− 1, 1]d , μd)

we have

u( y) =
∑

ν∈Nd
0

lνLν (3.10)
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converging in L2([− 1, 1]d , μd). Furthermore, with (3.9) and (2.16), for k ∈ N0 and
every ν ∈ N

d
0

|lν | ‖Lν‖Wk,∞([− 1,1]d ) ≤ C ‖u‖L∞(Eρ ) ρ−ν
d∏

j=1

(1 + 2ν j )
1+2k .

Using [41, Lemma 3.10] (which is a variation of [7, Lemma 7.1])

∑

ν∈Nd
0

|lν | ‖Lν‖Wk,∞([− 1,1]d ) < ∞,

and thus, (3.10) also converges in Wk,∞([− 1, 1]d).
Next, for j ∈ {1, . . . , d} let e j := (δi j )

d
i=1 and introduce

Aε := {ν ∈ N
d
0 : ρ−ν < ε, ∃ j ∈ supp ν s.t. ρ−(ν−e j ) ≥ ε}.

Note that for ε ∈ (0, 1)

{ν ∈ N
d
0 : ρ−ν < ε} = {μ + η : μ ∈ Aε, η ∈ N

d
0}. (3.11)

Furthermore, since for every ν ∈ Aε there exists j ∈ supp ν ⊆ {1, . . . , d} such that
ρ−(ν−e j ) ≥ ε and therefore ν −e j ∈ Λε, we find with (3.4) that there exists a constant
C depending on d and ρ but independent of ε ∈ (0, 1) such that for all ε ∈ (0, 1)

|Aε| ≤ d|Λε| ≤ C(1 + log(1/ε))d . (3.12)

Furthermore, for such ν ∈ Aε and j ∈ supp ν ⊆ {1, . . . , d} with ρmin :=
mini∈{1,...,d} ρi we get

ρ
−|ν|1+1
min = ρ

−|ν−e j |1
min ≥ ρ−(ν−e j ) ≥ ε

and therefore

|ν|1 − 1 ≤ log(1/ε)

log (ρmin)
. (3.13)

Using (3.11), there is C > 0 depending on d, ρ, k but independent of ε ∈ (0, 1), with
∥
∥
∥
∥
∥
∥
u −

∑

ν∈Λε

lνLν

∥
∥
∥
∥
∥
∥
Wk,∞([− 1,1]d )

≤
∑

{ν∈Nd
0 : ρ−ν<ε}

|lν | ‖Lν‖Wk,∞([− 1,1]d )

≤
∑

{ν,μ : ν∈Aε, μ∈Nd
0 }
C ‖u‖L∞(Eρ ) ρ−(ν+μ)

d∏

j=1

(1 + 2(ν j + μ j ))
1+2k
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≤ C ‖u‖L∞(Eρ )

∑

{ν,μ : ν∈Aε, μ∈Nd
0 }

ρ−νρ−μ
d∏

j=1

(
(1 + 2ν j )(1 + 2μ j )

)1+2k

≤ C ‖u‖L∞(Eρ ) ε

⎛

⎝
∑

ν∈Aε

d∏

j=1

(1 + 2ν j )
1+2k

⎞

⎠

⎛

⎜
⎝
∑

μ∈Nd
0

ρ−μ
d∏

j=1

(1 + 2μ j )
1+2k

⎞

⎟
⎠ .

The sum in the second brackets is finite independent of ε by [41, Lemma 3.10]. The
sum in the first brackets can be bounded using (3.12) and (3.13) to obtain a constant
C > 0 depending on u, d, ρ and k such that for all ε ∈ (0, 1)

∥
∥
∥
∥
∥
∥
u −

∑

ν∈Λε

lνLν

∥
∥
∥
∥
∥
∥
Wk,∞([− 1,1]d )

≤Cε|Aε|max
ν∈Aε

d∏

j=1

(1 + 2ν j )
1+2k

≤Cε(1 + log(1/ε))2d+2dk .

To finish the proof, note that our above calculation shows that for any τ ∈ (0, 1)
there exists Cτ > 0 depending on u, d, ρ and k such that

∥
∥
∥
∥
∥
∥
u −

∑

ν∈Λε

lνLν

∥
∥
∥
∥
∥
∥
Wk,∞([− 1,1]d )

≤ Cτ ε
τ

for all ε ∈ (0, 1). Moreover, (3.4) implies

d∑

j=1

log
(
ρ j
)−

⎛

⎝|Λε|d!
d∏

j=1

log(ρ j )

⎞

⎠

1/d

≥ log(ε).

Hence for all ε ∈ (0, 1)

∥
∥
∥
∥
∥
∥
u −

∑

ν∈Λε

lνLν

∥
∥
∥
∥
∥
∥
Wk,∞([− 1,1]d )

≤ Cτ ε
τ ≤ Cτ exp

⎛

⎜
⎝τ

⎛

⎜
⎝

d∑

j=1

log(ρ j ) −
⎛

⎝|Λε|d!
d∏

j=1

log(ρ j )

⎞

⎠

1/d
⎞

⎟
⎠

⎞

⎟
⎠

= C exp
(
−β|Λε|1/d

)
,

where C := Cτ exp(τ
∑d

j=1 log(ρ j )), β := τ(d!∏d
j=1 log(ρ j ))

1/d and where τ ∈
(0, 1) can be arbitrarily close to 1. �
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For later use, we note that the right-hand side of (3.7) can be estimated by Stirling’s
inequality, with ρmin = mindj=1 ρ j and ρmax = maxdj=1 ρ j :

(d/e) log (ρmin) ≤
⎛

⎝d!
d∏

j=1

log
(
ρ j
)
⎞

⎠

1/d

≤ (d/e)(e2d)1/(2d) log(ρmax). (3.14)

3.2 ReLU DNN Approximation

We now come to the main result, concerning the approximation of holomorphic func-
tions on bounded intervals by ReLU networks.

Theorem 3.6 Fix d ∈ N and let ρ = (ρ j )
d
j=1 ∈ (1,∞)d . Assume that u : [− 1, 1]d →

R admits a holomorphic extension to Eρ .
Then, there exist constants β ′ = β ′(ρ, d) > 0 and C = C(u, ρ, d) > 0, and for

every N ∈ N there exists a σ1-NN ũN : [− 1, 1]d → R satisfying

size(ũN ) ≤ N , depth(ũN ) ≤ CN
1

d+1 log2(N ) (3.15)

and the error bound

‖u(·) − ũN (·)‖W 1,∞([− 1,1]d ) ≤ C exp
(
−β ′N

1
d+1

)
. (3.16)

Proof Throughout this proof, let β > 0 be fixed such that (3.7) holds. We proceed in
three steps: In Step 1, we introduce a NN approximation of u, whose error, network
depth and size we estimate in Step 2. Based on these estimates, we show Equations
(3.15)–(3.16) in Step 3.
Step 1. Let d ∈ N. In this step, for any ε ∈ (0, 1) we introduce a network ûε approxi-
mating u (with increasing accuracy as ε → 0).

Fix ε ∈ (0, 1) arbitrary, let Λε ⊆ N
d
0 be as in (3.3) and set uε :=∑ν∈Λε

lνLν with
the Legendre coefficients lν of u as in (3.8).

Let Affineu be a NN of depth 0, with input dimension |Λε|, output dimension 1 and
size atmost |Λε|which implements the affine transformationR|Λε | → R : (zν)ν∈Λ �→∑

ν∈Λε
lνzν . Furthermore, let fΛε,δ

be the network from Proposition 2.13, emulating
approximations to all multivariate Legendre polynomials (Lν)ν∈Λε . We define a NN

ûε := Affineu ◦ fΛε,δ
.

Then

ûε( y) =
∑

ν∈Λε

lν L̃ν,δ( y), y ∈ [− 1, 1]d ,
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where (with β > 0 as in (3.7)) the accuracy δ > 0 of the σ1-NN approximations of
the tensor product Legendre polynomials is chosen as

δ := exp
(
−β|Λε|1/d

)
.

Step 2. For the NN ûε we obtain the error estimate

∥
∥uε − ûε

∥
∥
W 1,∞([− 1,1]d )

≤
∑

ν∈Λε

|lν |
∥
∥
∥Lν − L̃ν,δ

∥
∥
∥
W 1,∞([− 1,1]d )

≤
∑

ν∈Λε

|lν | δ

=
∑

ν∈Λε

|lν | exp
(
−β|Λε|1/d

)
.

With Theorem 3.5 this yields the existence of a constant C > 0 (depending on d, ρ,
β and u) such that

∥
∥u − ûε

∥
∥
W 1,∞([− 1,1]d )

≤ C exp
(
−β|Λε|1/d

)
. (3.17)

We now bound the depth and the size of ûε. Using Proposition 2.13 and (3.6), we
obtain

depth
(
ûε

) ≤ depth (Affineu) + 1 + depth
(
fΛε,δ

)

≤C(1 + d log d)
(
1 + log2 m (Λε)

) (
m (Λε) + log2(1/δ)

)

≤C(1 + d log d)(1 + log2(d) + log2 |Λε|)
(
Cd|Λε|1/d + β|Λε|1/d

)

≤C(1 + β)(1 + d2(log d)2)(1 + |Λε|1/d log2 |Λε|) (3.18)

for C > 0 depending on ρ. To bound the NN size, Proposition 2.13 and (3.6) give

size(ûε) ≤ 2 size(Affineu) + 2 size( fΛε,δ
)

≤ 2|Λε| + 2Cd2m(Λ)2 + 2Cdm(Λ) log2(1/δ)

+ 2Cd2|Λε|
(
1 + log2 m(Λε) + log2(1/δ)

)

≤ 2|Λε| + Cd4(|Λε|1/d)2 + Cd2|Λε|1/dβ|Λε|1/d
+ Cd2|Λε|

(
1 + log(d) + log2 |Λε| + β|Λε|1/d

)

≤C(1 + β)d4|Λε|2/d + C(1 + β)(1 + d2 log d)|Λε|1+1/d

≤C2(1 + β)d4|Λε|1+1/d (3.19)

for a constant C2 > 0 which depends on ρ, but is independent of d, β, u and of
ε ∈ (0, 1).
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Step 3. Finally, we define ũN . Fix β > 0 satisfying (3.7) and N ∈ N such that
N > N0 := C2(1 + β)d4, with the constant C2 as in (3.19). Set

N̂ :=
( N
N0

)d/(d+1)

∈ R. (3.20)

Next, let ε ∈ (0, 1) be such that

N̂ =
d∏

j=1

(
log(1/ε)

log(ρ j )
+ 1

)

, (3.21)

which is possible since N̂ > 1 due to the assumption N > N0 = C2(1 + β)d4.
Define ũN := ûε.

First let us estimate the size of ũN . By (3.5)

N̂ ≥
d∏

j=1

(⌊
log(1/ε)

log(ρ j )

⌋

+ 1

)

=
∣
∣
∣
∣

{

ν ∈ N
d
0 : 0 ≤ ν j ≤ log(1/ε)

log(ρ j )
∀ j

}∣
∣
∣
∣ ≥ |Λε|.

Hence (3.19) and the definition of N̂ imply

size (ũN ) = size
(
ûε

) ≤ C2(1 + β)d4|Λε|1+1/d ≤ C2(1 + β)d4N̂ 1+1/d ≤ N .

Similarly one obtains the bound on the depth of ũN by using (3.18). This shows (3.15).
Next we estimate the error ‖u − ũN ‖W 1,∞([− 1,1]d ). By (3.5)

N̂ ≤
d∏

j=1

(

d

⌊
log(1/ε)

d log(ρ j )

⌋

+ d + 1

)

=
d∏

j=1

(⌊
log(1/ε)

d log(ρ j )

⌋

+ 1

) d∏

j=1

⎛

⎝d + 1
⌊

log(1/ε)
d log(ρ j )

⌋
+ 1

⎞

⎠ ≤ |Λε|(d + 1)d .

Thus, (3.17) gives

‖u − ũN ‖W 1,∞([− 1,1]d ) ≤ C exp
(
−β|Λε|1/d

)
≤ C exp

(
−β(d + 1)−1N̂ 1/d

)
.

By (3.20) this is (3.16) for any N > N0 and with

β ′ = β(d + 1)−1(C2(1 + β)d4)−1/(d+1)

forC2 as in (3.19) (independent of d, β and u). With ũN := 0 (i.e., a trivial NN giving
the constant value 0) for all (finitely many) N ≤ N0, we conclude that (3.16) holds
for all N ∈ N (by increasing C > 0 in (3.16) if necessary). �
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Remark 3.7 (Fully connected networks) In the proof of Theorem 3.6 we explicitly
constructed a sparsely connected DNN to approximate u. In practice, it might be
tedious to implement this type of architecture. Instead one can set up a fully connected
network, containing our sparse architecture. We shortly discuss the implications of
Theorem 3.6 in this case.

The width w ∈ N of a neural network φ (i.e., the maximum number of nodes
in one of its layers) is trivially bounded by size(φ). For a fully connected network
of width w, the weight matrix connecting two layers may have w2 nonzero weights.
Denote now by ûN a fully connected σ1-NN of widthw = N and depth depth(ûN ) ≤
CN 1/(d+1) log2(N ) (withC as in (3.15)) realizing the function ũN fromTheorem 3.6.
The existence of ûN is an immediate consequence of the depth and size bounds given
in Theorem 3.6. Then by (3.15), denoting its total number of weights, also counting
vanishing weights, by #weights(ûN ),

#weights
(
ûN
) ≤CN 2+ 1

d+1 log2(N ) = CN
2d+3
d+1 log2(N ),

depth
(
ûN
) ≤CN

1
d+1 log2(N )

and by (3.16)

∥
∥u − ûN

∥
∥
W 1,∞([− 1,1]d )

≤ C exp
(
−β ′N

1
d+1

)
.

This yields the error bound

∥
∥u − ûN

∥
∥
W 1,∞([− 1,1]d )

≤C exp
(
−β ′N

1
d+1

)

≤ exp

(

−β̂
(#weights(ûN ))

1
2d+3

log(#weights(ûN ))

)

,

for fully connected networks, and where β̂ > 0 is some constant independent of N .
Hence, the exponent in the error estimate has (up to logarithmic terms) decreased
from 1

d+1 for the sparsely connected network in Theorem 3.6 to 1
2d+3 for the fully

connected network.

Remark 3.8 Note that in Step 2 of the proof, the network ûε depends on u only via
the Legendre coefficients {lν}ν∈Λε , appearing only as weights in the output layer.
In particular, the weights and biases of ûε continuously depend on u with respect
to the L2([− 1, 1]d , μd)-norm, because the Legendre coefficients do so. Finally, the
L2([− 1, 1]d , μd)-norm is bounded by the L∞([− 1, 1]d)-norm.

Remark 3.9 The same result does not follow ifwe approximate the basis ofmultivariate
polynomials by applying Proposition 2.6 to approximate the product of m(Λε) linear
factors. With δ := exp(−β|Λε|1/d), each basis polynomial would have a network size
of the order O(m(Λε) log(1/δ)) = O(m(Λε)

2) = O(|Λε|2/d), hence the total net-
work size would be of the order O(|Λε|1+2/d), corresponding toC exp(−β ′N 1/(d+2))

in the right-hand side of (3.16).
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3.3 RePU DNN Approximation

For RePU approximations, with activation σr (x) for integer r ≥ 2, we may combine
Proposition 2.14 (which is almost identical to [17, Theorem 4.1]) and Theorem 3.5 to
infer the following result. Note that the decay of the provided upper bound of the error
in (3.23) in terms of the network sizeN is slightly faster than the one we obtained for
ReLU approximations in (3.16).

Theorem 3.10 Fix d ∈ N, k ∈ N0 and r ∈ N, r ≥ 2. Let ρ = (ρ j )
d
j=1 ∈ (1,∞)d .

Assume that u : [− 1, 1]d → R admits a holomorphic extension to Eρ .
Then, there exists C > 0 and a constant C1 > 0 which only depends on r such

that with β as in (3.7), for every N ∈ N, there exists a σr -NN ũN : [− 1, 1]d → R

satisfying

size (ũN ) ≤ C1N , depth (ũN ) ≤ C1 log2(N ) (3.22)

and, with β ′ := β/(d + 1),

‖u( y) − ũN ( y)‖Wk,∞([− 1,1]d ) ≤ C exp
(
−β ′N 1

d

)
. (3.23)

Here, we can consider theWk,∞([− 1, 1]d)-norm of (u− ũN ) for k ∈ N independent
of r , because u is holomorphic on [− 1, 1]d , and ũN is a polynomial by construction.
Also, we note with (3.14) that β ′ = log(ρmin)/(2e) is attainable for all d ∈ N.

Proof For ε ∈ (0, 1) letΛε be as in (3.3). This set is finite anddownward closed.Hence,
by Proposition 2.14 there exists a σr -NN ûε such that ûε( y) =∑ν∈Λε

lνLν( y) for all
y ∈ [− 1, 1]d . According to this proposition, the NN ûε satisfies size(ûε) ≤ C1|Λε|
and depth(ûε) ≤ C1 log |Λε|. This is (3.22) for N := |Λε|. By Theorem 3.5, it holds
(3.23) for such N , with β ′ = β.

For generalN > 1, it follows as inStep3of the proof ofTheorem3.6 (withN taking
the role of N̂ in (3.21)) that there exists ε ∈ (0, 1) such that (d+1)−dN ≤ |Λε| ≤ N .
This implies that (3.23) holds for any N ∈ N with β ′ := β/(d + 1) and a constant C
depending on d. �
Remark 3.11 (Fully connected networks) A similar statement as in Remark 3.7 also
holds for σr -NNs with r ≥ 2. By the same arguments, we obtain an error bound of
the type

∥
∥u( y) − ûN ( y)

∥
∥
Wk,∞([− 1,1]d )

≤ C exp

(

−β̂
#weights(ûN )

1
2d

log(#weights(ûN ))

)

for a fully connected σr -NN ûN , whose total number of weights, also counting van-
ishing weights, we denote by #weights(ûN ). Here k ∈ N is arbitrary but fixed, and
β̂ > 0 is a constant independent of N .
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Remark 3.12 It follows from the proof of Proposition 2.14 that the weights of ũN
depend continuously on the Legendre coefficients of u, which themselves depend
continuously on u w.r.t. the L2([− 1, 1]d , μd)-norm, which is bounded by the
L∞([− 1, 1]d)-norm.

Remark 3.13 A similar result as in Theorem 3.10 was obtained in [21, Theorem 3.3]. It
assumed a different class of activation functions, termed “sigmoidal functions of order
k ≥ 2” (see Remark 2.1). The L∞([− 1, 1]d) error bound provided in [21, Theorem
3.3] is, in our notation, of the type exp(−bN 1/d) for a suitable constant b > 0 and a
DNN of size N log(N ). This is slightly worse than Theorem 3.10. Also note that in
[21] the number of neurons is used as measure for the NN size, which may be smaller
but not larger than the number of nonzero weights if all neurons have at least one
nonzero weight.

4 Conclusion

We review in Sect. 4.1 the main results obtained in the previous sections. In Sect. 4.2,
we relate these results to results which appeared in the literature. In Sect. 4.3, we
discuss several novel implications of the main results, which could be of interest in
various applications. We point out that although the present analysis is developed in
detail for DNNs with ReLU activation, as explained in Remarks 2.1 and 2.15, all DNN
expression error bounds proved up to this point, and also in the ensuing remarks remain
valid (possibly even with slightly better estimates for the DNN sizes) for smoother
activation functions, such as sigmoidal, tanh, or softmax activations.

4.1 Main Results

We have established for analytic maps u : [− 1, 1]d → R exponential expression
rate bounds in Wk,∞([− 1, 1]d) in terms of the DNN size for the ReLU activation
(for k = 0, 1) and for the RePU activations σr , r ≥ 2 (for k ∈ N0). The present
analysis improves earlier results in that theNN sizes are slightly reduced andwe obtain
exponential convergence of ReLU and RePU DNNs for general d-variate analytic
functions, without assuming the Taylor expansion of u around 0 ∈ R

d to converge
on [− 1, 1]d . We also point out that by a simple scaling argument our main results
in Theorems 3.6 and 3.10 imply corresponding expression rate results for analytic
functions defined on an arbitrary cartesian product of finite intervals ×d

j=1[a j , b j ],
where −∞ < a j < b j < ∞ for all j ∈ {1, . . . , d}.

4.2 Related Results

We already commented on [36] where ReLU NN expression rates for multivari-
ate, holomorphic functions u were obtained. Assumptions in [36, Theorem 2.6]
included absolute convergence of Taylor expansions of u about the origin with
convergence radius sufficiently large to contain the unit cube [− 1, 1]d , implying
existence of a complex holomorphic extension to (BC

1 )d . Under those assumptions
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L∞([−(1 − δ), (1 − δ)]d)-error bounds were obtained for any δ ∈ (0, 1). With a lin-
ear coordinate transformation, error bounds on [− 1, 1]d follow under the assumption
that the Taylor expansion converges absolutely on [−(1 − δ)−1, (1 − δ)−1]d . The
presently proposed argument being based on (classical) Bernstein ellipses is admis-
sible for functions u which are real analytic merely in [− 1, 1]d (cp. Remark 3.1).
Our proofs are constructive, with constructions being based on ReLU NN emula-
tions of Legendre polynomials, drawing on [25]. In [33], alternative constructions of
so-called RePU NNs are proposed which are based on NN emulation of univariate
Chebyšev polynomials. It is argued in [33] (and verified in numerical experiments)
that the numerical size of NN weights scales more favorably than the weights in the
presently proposed emulations. “Chebyšev” versions of the present proofs could also
be facilitated, resulting in the same scalings of NN sizes and depths, however, as are
obtained here.

4.3 Applications and Generalizations

4.3.1 Solution Manifolds of PDEs

One possible application of our results concerns the approximation of (quantities of
interest of) solution manifolds of parametric PDEs depending on a d-dimensional
parameter y ∈ [− 1, 1]d . Such a situation arises in particular in Uncertainty Quantifi-
cation (UQ). There, a mathematical model is described by a PDE depending on the
parameters y, which in turn can for instance determine boundary conditions, forcing
terms or diffusion coefficients. It is known for a wide range of linear and nonlinear
PDE models (see, e.g., [6]), that parametric PDE solutions depend analytically on the
parameters. In addition, for these models usually one has precise knowledge on the
domain of holomorphic extension of the objective function u, i.e., knowledge of the
constants (ρ j )

d
j=1 in Theorem 3.5. These constants determine the sets of multi-indices

Λε in (3.3). As our proofs are constructive and based on the sets Λε, such information
can be leveraged to a priori guide the identification of suitable network architectures.

4.3.2 ReLU DNN Expression of Data-to-QoI Maps for Bayesian PDE Inversion

The exponential σ1-DNN expression rate bound, Theorem 3.6, implies exponential
expressivity of data-to-quantity of interest maps in Bayesian PDE inversion, as is
shown in [14]. Here, the assumption of centered, additive Gaussian observation noise
in the data model underlying the Bayesian inverse theory implies holomorphy of the
data to prediction map in the Bayesian theory as we show [14]. This, combined with
the present results in Theorems 3.6 and 3.10 implies exponential expressivity of σr
DNNs for this map, for all r ≥ 1.

4.3.3 Infinite-Dimensional (d = ∞) Case

The expression rate analysis becomes more involved, if the objective function u
depends on an infinite dimensional parameter (i.e., a parameter sequence) y ∈
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[− 1, 1]N. Such functions occur in UQ for instance if the uncertainty is described
by a Karhunen–Loeve expansion. Under certain circumstances, u can be expressed
by a so-called generalized polynomial chaos (gpc) expansion. Reapproximating trun-
cated gpc expansions by NNs leads to expression rate results for the approximation
of infinite dimensional functions, as we showed in [32]. One drawback of [32] is
however, that the proofs crucially relied on the assumption that u is holomorphic on
certain polydiscs containing [− 1, 1]N. This criterion is not always met in practice [6].
To overcome this restriction, we will generalize the expression rate results of [32] in a
forthcoming paper, by basing the analysis on the present results for the approximation
of d-variate functions which are merely assumed to be analytic in some (possibly
small) neighborhood of [− 1, 1]d .

4.3.4 Gevrey Functions

DNN approximations of tensor product Legendre polynomials constructed in Sect. 2
can be used more generally than for the approximation of holomorphic functions by
truncated Legendre expansions.We consider as an example, for d ∈ N, the approxima-
tion of non-holomorphic, Gevrey-regular functions (see, e.g., [28] and the references
there for definitions and properties of such functions). Gevrey-regular functions appear
as natural solution classes for certain PDEs (e.g., [13] and [4, Chapter 8]). Here, for
some δ ≥ 1 we consider maps u : [− 1, 1]d → R that satisfy, for constants C, A > 0
depending on u, the bound

∀ν ∈ N
d
0 :

∥
∥
∥
∥

∂ |ν|1u
∂

ν1
x1 · · · ∂νd

xd

∥
∥
∥
∥
L∞([− 1,1]d )

≤ CA|ν|1(ν!)δ. (4.1)

Wewriteu ∈ Gδ([− 1, 1]d ,C, A) foru satisfying (4.1). Evidently,Gδ([− 1, 1]d ,C, A)

⊂ C∞([− 1, 1]d). These maps are analytic when δ = 1, but possibly non-analytic
when δ > 1.

Proposition 4.1 For dimension d ∈ N, and for constants C, A > 0, for u ∈
Gδ([− 1, 1]d ,C, A) exist C ′(d, δ, u) > 0 and β ′(d, δ, u) > 0, and for every N ∈ N

there exists a ReLU DNN ũN such that

size (ũN ) ≤ N , depth (ũN ) ≤ C ′Nmin
{
1
2 ,

1
d+1/δ

}

log(N ),

‖u − ũN ‖W 1,∞([− 1,1]d) ≤ C ′ exp
(

−β ′Nmin
{
1
2δ ,

1
dδ+1

})

.

In the proof, which is provided in Appendix B, we furthermore show that there exist
constants C ′, β ′ > 0 such that for every p ∈ N and every u ∈ Gδ([− 1, 1]d ,C, A)

holds

inf
vp∈⊗d

j=1Pp([− 1,1])
‖u − vp‖W 1,∞([− 1,1]d) ≤ C ′ exp

(
−β ′N 1/(δd)

)
. (4.2)
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Here, N = dim(⊗d
j=1Pp([− 1, 1])) = (p + 1)d denotes the dimension of the space

of all d-variate polynomials of degree at most p in each variable.

4.3.5 ReLU Expression of Non-smooth Maps by Composition

The results were based on the quantified holomorphy of the map u : [− 1, 1]d → C.
While this could be perceived as a strong requirement (and, consequently, limitation)
of the present results, by composition the present deep ReLU NN emulation rate
bounds cover considerably more general situations. The key observation is that deep
ReLU NNs are closed under concatenation (or under composition of realizations) as
we explained in Sect. 2.2.3.

Let us give a specific example from high-dimensional integration, where the task
is to evaluate the integral

∫

[− 1,1]d
u( y)π( y)d y. (4.3)

Here, u : [− 1, 1]d → R is a function which is holomorphic in a polyellipse Eρ

as in (3.1) and π denotes an a-priori given probability density on the coordinates
y1, . . . , yd w.r.t. the measure μd (i.e., π : [− 1, 1]d → [0,∞) is measurable and
satisfies

∫
[− 1,1]d π(x)dμd(x) = 1). Assuming that the coordinates are independent,

the density π factors, i.e., π = ⊗d
j=1 π j with certain marginal probability densities

π j which we assume to be absolutely continuous w.r. to the Lebesgue measure, i.e.,
∫ 1
−1 π j (ξ)dξ = 2. In the case that the marginals π j > 0 are simple functions for
example on finite partitions T j of [− 1, 1] (as, e.g., if π j is a histogram for the law of
y j estimated from empirical data), the changes of coordinates in (4.3)

Tj (y j ) := −1 +
∫ y j

−1
π j (ξ j )dξ j : [− 1, 1] → [− 1, 1], j = 1, . . . , d

are bijective. Furthermore, in this case each component map Tj : [− 1, 1] → [− 1, 1]
is bijective, continuous and piecewise affine, and can therefore be exactly represented
by a σ1-NN of depth 1 and width proportional to #(T j ).

Denote by T = (T1, . . . , Td)� the d-variate diagonal transformation, and let T−1 :
[− 1, 1]d → [− 1, 1]d denote its inverse (which is also continuous, piecewise linear).
Denoting by dT−1(x) the Jacobian matrix of T−1 at x ∈ [− 1, 1]d we may then
rewrite (4.3) as

∫

[− 1,1]d
u( y)π( y)d y =

∫

[− 1,1]d
u
(
T−1(x)

)
π
(
T−1(x)

)
det dT−1(x)dx

=
∫

[− 1,1]d
g(x)dx, (4.4)
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where g = u ◦ T−1 is not continuously differentiable. Here we have used
that dT−1(T ( y)) = (dT ( y))−1 and det(dT ( y)) = π( y), i.e., det dT−1(x) =
π(T−1(x))−1.

Now, the function g̃N := ũN ◦ T−1 with the σ1-NN ũN constructed in Theorem
3.6 is a σ1-NN which still affords the error bound (3.16): Denote for n ∈ N0 and
f ∈ W 1,∞([− 1, 1]d ,Rn)

| f |W 1,∞([− 1,1]d ,Rn) := sup
x 	= y∈[− 1,1]d

‖ f (x) − f ( y)‖
‖x − y‖ ,

where ‖·‖ is the Euclidean norm on R
n resp. on R

d . As usual, for n = 1 we write
| f |W 1,∞([− 1,1]d ) := | f |W 1,∞([− 1,1]d ,R) instead. With these conventions, it holds

‖g(·) − g̃N (·)‖W 1,∞([− 1,1]d )

=
∥
∥
∥u ◦ T−1(·) − ũN ◦ T−1(·)

∥
∥
∥
W 1,∞([− 1,1]d )

=
∥
∥
∥u ◦ T−1(·) − ũN ◦ T−1(·)

∥
∥
∥
L∞([− 1,1]d )

+ |u ◦ T−1(·) − ũN ◦ T−1(·)|W 1,∞([− 1,1]d )

≤ ‖u(·) − ũN (·)‖L∞([− 1,1]d )

+ |u(·) − ũN (·)|W 1,∞([− 1,1]d )|T−1|W 1,∞([− 1,1]d ,Rd )

≤ C exp
(
−β ′N

1
d+1

)
(4.5)

for a constant C which now additionally depends on |T−1(·)|W 1,∞([− 1,1]d ,Rd ).
The approximation of the integral (4.3) can thus be reduced to the problem of
approximating the integral of the surrogate g̃N , which can be efficiently repre-
sented by a σ1-NN. In the case that u is merely assumed Gevrey-regular as in
Sec. 4.3.4, a similar calculation leads to a bound of the type (4.5), but with exp

(−β ′N
1

d+1 ) replaced by exp
(

− β ′Nmin
{
1
2δ ,

1
dδ+1

})
.

More generally, if π : [− 1, 1]d → (0,∞) is, for example, a continuous density
function (not necessarily a product of its marginals), there exists a bijective transport
T : [− 1, 1]d → [− 1, 1]d such that analogous to (4.4) it holds ∫[− 1,1]d u( y)π( y)d y =
∫
[− 1,1]d u(T−1(x))dx (contrary to the situation above, this transformation T is not
diagonal in general). One explicit representation of such a transport is provided by the
Knothe–Rosenblatt transport, see, e.g., [30, Sect. 2.3]. It has the property that T inherits
the smoothness of π , cp. [30, Remark 2.19]. In case T−1 can be realized without error
by a σ1 (or σr ) network, we find again an estimate of the type (3.16). If T−1 does not
allow an explicit representation by a NN, however, we may still approximate T−1 by
a NN S̃N to obtain a NN g̃N := ũN ◦ S̃N approximating g = u ◦ T−1. This will
introduce an additional error in (4.5) due to the approximation of T−1.
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A Proof of Proposition 2.14

Proof The proof consists of 2 steps. In Step 1, we define subnetworks, similar to those
in [25, Lemma 4.5], to emulate all monomials xν for ν ∈ Λ of order 2k−1 ≤ |ν|1 ≤ 2k .
In Step 2, we use them to construct p̃.
Step 1. Throughout this proof, we denote the NN input by x ∈ R

d .
For k ∈ N0, we define the index sets Λk := {ν ∈ Λ : |ν|1 = k} and �k := {ν ∈

Λ : 2k−1 < |ν|1 ≤ 2k}.
In this first step of the proof, we define subnetworks to emulate xν for ν ∈ Λ2k−1 ∪

�k .
We will use that there exists a σr -NN ×̃r of depth 1, with input dimension 2 and

output dimension 1, which exactly emulates the product operatorR2 → R : (x, y) �→
xy.

For r = 2, this was shown in [17, Lemma 2.1]; for r > 2 it follows from [17,
Theorem 2.5] and the polarization identity xy = 1

4 (x + y)2 − 1
4 (x − y)2, which was

used in the proof of [17, Lemma 2.1].
We note that the size of ×̃r depends on r .
Next, for all k ∈ N such that �k 	= ∅ we define the σr -NN Ψk as

Ψk :=
(
{IdR}|Λ2k−1 |

j=1 ,
{×̃r

}|�k |
j=1

)
,

where the identity networks have depth 1.
With the convention that Λ1/2 := ∅, we define Ψk such that applied to the inputs

{xν : ν ∈ Λ2k−2 ∪ �k−1} the identity networks compute the input values xν : ν ∈
Λ2k−1 ⊂ �k−1 and the product networks compute xν : ν ∈ �k .

This is possible, because Λ is downward closed: for all ν ∈ �k and all μ ≤ ν

such that 2k−2 ≤ |μ|1 ≤ 2k−1, we assumed that xμ is part of the input of Ψk (ν ∈ Λ

implies μ ∈ Λ, hence μ ∈ Λ2k−1
⋃

�k−1).
In particular, there exists μ ∈ �k−1 such that |μ|1 = �|ν|1/2�. This implies that

|ν − μ|1 = �|ν|1/2� and thus ν − μ ∈ Λ2k−2 ∪ �k−1.
As a result, xν can be computed as xν = ×̃r (xμ, xν−μ).
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Next, we estimate the NN depth and size of Ψk . It holds that depth(Ψk) = 1,

size (Ψk) ≤ |Λ2k−1 | size(IdR) + |�k | size
(×̃r
) ≤ C(r)

(|Λ2k−1 | + |�k |
)

≤C(r) (|�k−1| + |�k |) ,

sizein (Ψk) ≤C(r) (|�k−1| + |�k |) ,

sizeout (Ψk) ≤C(r) (|�k−1| + |�k |) .

Step 2. In this step, we construct p̃.
Let m := m(Λ) as defined in Eq. (2.17) and k := min{k ∈ N : 2k ≥ m}. In

addition, we will write p(x) =:∑ν∈Λ tνxν .
We define p̃ as

p̃ := Affine ◦ (Ψk, psumk

) ◦ (Ψk−1, psumk−1
) ◦ · · · ◦ (Ψ1, psum1

)
,

where for j = 1, . . . , k

psum j

(
{xν}ν∈Λ2 j−2 , {xν}ν∈� j−1 , psum j−1

)
:= IdR

⎛

⎝psum j−1 +
∑

ν∈� j−1

tνxν

⎞

⎠ ,

where the σr -identity network has depth 1.
In addition, denote by ν(i), i = 1, . . . , |�k | an enumeration of �k whose order

corresponds to the output of Ψk . Then, Affine is a NN of depth 0, input dimension
|Λ2k−1 | + |�k | + 1, output dimension 1, computing the affine transformation

Affine(w1, . . . , w|Λ2k−1 |, xν(1)
, . . . , xν(|�k |)

,w|Λ2k−1 |+|�k |+1)

:= t0 + w|Λ2k−1 |+|�k |+1 +
|�k |∑

j=1

xν( j)
tν( j) ,

where the constant t0 is a NN bias. Thus, Affine ignores the first |Λ2k−1 | inputs, takes
an affine combination of the then following |�k | inputs, and adds the last input.

As a result, p̃(x) = p(x) for all x ∈ R
d .

To bound the network depth and size, we note that for j = 1, . . . , k

sizein
(
psum j

) ≤C(r)
(
1 + |� j−1|

)
,

sizeout
(
psum j

) ≤C(r),

size
(
psum j

) ≤C(r)
(
1 + |� j−1|

)
,

size(Affine) = sizein(Affine) = sizeout(Affine) ≤ 2 + |�k |.

We obtain the following bounds on the depth and size of p̃: In case |Λ| = 1, the
constant polynomial p can be emulated exactly by a σr -NN p̃ of depth 0 and size 1.
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In case |Λ| ≥ 2, it holds by Proposition 2.4:

depth( p̃) ≤ depth(Affine) +
k∑

j=1

(
1 + depth

(
Ψ j
)) = 2k ≤ 2 + 2 log2(m) ≤ C log2(|Λ|),

size( p̃) ≤C(r)

⎛

⎝size(Affine) + sizein(Affine) +
k∑

j=1

(
sizeout

(
Ψ j
)+ sizeout

(
psum j

)

+ size(Ψ j ) + size
(
psum j

)+ sizein
(
Ψ j
)+ sizein

(
psum j

))
⎞

⎠

≤C(r)

⎛

⎝(2 + |�k |) + (2 + |�k |) +
k∑

j=1

(
C(r)

(|� j−1| + |� j |
)+ C(r)

+ C(r)
(|� j−1| + |� j |

)+ C(r)
(
1 + |� j−1|

)+ C(r)

⎛

⎝|� j−1| + |� j |
⎞

⎠

+C(r)
(
1 + |� j−1|

)))

≤C(r)

⎛

⎝1 +
k∑

j=0

|� j |
⎞

⎠ ≤ C(r)|Λ|,

sizein( p̃) ≤ sizein (Ψ1) + sizein
(
psum1

) ≤ C(r) (|�0| + |�1|) ≤ C(r)|Λ|,
sizeout( p̃) ≤C(r) sizeout(Affine) ≤ C(r)|�k | ≤ C(r)|Λ|,

where C,C(r) are independent of d. �

B Proof of Proposition 4.1

Proof As in the holomorphic case, to approximate functions u ∈ Gδ([− 1, 1]d ,C, A),
we first build a tensor product polynomial approximation by H2-projection to the
space Qp of polynomials in d variables with coordinatewise degree at most p ∈ N.
Evidently, dim(Qp) = (p + 1)d .

For d = 1, we denote by I3 : H2([− 1, 1], μ1) → P3 the Hermite interpola-
tion operator defined by I3u(±1) = u(±1) and (I3u)′(±1) = u′(±1) for all u ∈
H2([− 1, 1], μ1). For p ∈ N, p ≥ 3, denote by πp−2,0 : L2([− 1, 1], μ1) → Pp−2
the L2([− 1, 1], μ1)-orthogonal projection to Pp−2. For all v ∈ L2([− 1, 1], μ1) it

holds that v = ∑∞
j=0 l j L j �→ ∑p−2

j=0 l j L j =: πp−2,0v, where analogous to (3.8) it
holds l j = ∫[− 1,1] vL jdμ1. Bounds on Legendre coefficients required in DNN emu-
lation expression rate bounds from Sect. 2.3.3 are implied by stability of πp−2,0 in
L2([− 1, 1], μ1):

∥
∥πp−2,0v

∥
∥2
L2([− 1,1],μ1)

=
p−2∑

j=0

|l j |2 ≤
∞∑

j=0

|l j |2 = ‖v‖2L2([− 1,1],μ1)
.
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Based on this projector, we define the H2([− 1, 1], μ1)-projector πp,2 : H2([− 1, 1],
μ1) → Pp by πp,2u(x) = I3u(x) + ∫ x−1

∫ y1
−1 πp−2,0((u − I3u)′′)(y2)dy2dy1 for all

u ∈ H2([− 1, 1], μ1), as in [8, Sect. A.1], where it is shown that πp,2u satisfies
πp,2u(±1) = u(±1) and (πp,2u)′(±1) = u′(±1).

For general d ∈ N, for all p ∈ N, p ≥ 3 we consider the tensor product projector
Πd

p,2 := π
(1)
p,2 ⊗ · · · ⊗ π

(d)
p,2, where π

(i)
p,2 denotes the coordinate-wise projection with

respect to x j , j = 1, . . . , d. We recall stability and error bounds in terms of the
H2
mix([− 1, 1]d , μd)-norm, which is defined as

‖u‖2
H2
mix([− 1,1]d ,μd )

=
∑

ν:|ν|∞≤2

∥
∥
∥
∥

∂ |ν|1u
∂

ν1
x1 · · · ∂νd

xd

∥
∥
∥
∥

2

L2([− 1,1]d ,μd )

.

By the continuous embedding H2
mix([− 1, 1]d , μd) ↪→ W 1,∞([− 1, 1]d), the bounds

below imply error bounds w.r.t. the W 1,∞([− 1, 1]d)-norm. By [31, Propositions 5.2
and 5.3], the former of which is [8, Theorem A.1 and Proposition A.1], for all u ∈
Gδ([− 1, 1]d ,C, A) it holds for all p ∈ N, p ≥ 3 and for all s ∈ {2, . . . , p − 1}
∥
∥
∥Πd

p,2u
∥
∥
∥
H2
mix([− 1,1]d ,μd)

≤C(d) ‖u‖H2
mix([− 1,1]d ,μd) ,

∥
∥
∥u − Πd

p,2u
∥
∥
∥
H2
mix([− 1,1]d ,μd )

≤C(d)

d∑

j=1

∥
∥
∥u − π

( j)
p,2u

∥
∥
∥
H2
mix([− 1,1]d ,μd)

≤C(d)

d∑

j=1

√
(p − 1 − s)!
(p − 1 + s)!

∑

ν j=s+2,
νi∈{0,1,2}∀i 	= j

∥
∥
∥
∥

∂ |ν|1u
∂

ν1
x1 · · · ∂νd

xd

∥
∥
∥
∥
L2([− 1,1]d ,μd )

≤C(d)

d∑

j=1

√
(p − 1 − s)!
(p − 1 + s)!

∑

ν j=s+2,
νi∈{0,1,2}∀i 	= j

∥
∥
∥
∥

∂ |ν|1u
∂

ν1
x1 · · · ∂νd

xd

∥
∥
∥
∥
L∞([− 1,1]d )

≤C(d, u)max{A, 1}s+2d

√
(p − 1 − s)!
(p − 1 + s)! ((s + 2)!2d−1)δ. (B.1)

We fix α = (4max{A, 1})−1/δ ∈ (0, 1) and similar to [12, Proposition 4, Equation
(40)] substitute s = max{2, ⌊α p1/δ

⌋}. For sufficiently large p ∈ N it holds that
2 ≤ α p1/δ and thus s ≤ α p1/δ ≤ s + 1. The estimates that follow are derived
under this assumption, but hold for all p ≥ 3 after possibly increasing multiplicative
constants. With Stirling’s inequality,

√
2π

√
n(n/e)n ≤ n! ≤ e

√
n(n/e)n for n ∈ N,

we estimate the square of the right-hand side of (B.1):

max{A, 1}2(s+2d) (p − 1 − s)!
(p − 1 + s)!

(
(s + 2)!2d−1

)2δ

≤ max{A, 1}2(s+2d) e
2s+1(p − 1 − s)p−1−s+1/2

√
2π(p − 1 + s)p−1+s+1/2

(s + 2)4δsδ(2s+1)e2δ(1−s)22δ(d−1)
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≤ C(d, δ, A)max{A, 1}2se2(1−δ)s(
p−1−s
p−1+s )

p−1−s+1/2 p−2ss2δssδ(s + 2)4δ,

whereweused ((s+2)!)2δ ≤ (s+2)4δ(s!)2δ . Now, since 1−δ ≤ 0 and p−1−s+ 1
2 ≥ 0

for s < p,

e2(1−δ)s
(
p−1−s
p−1+s

)p−1−s+1/2
p−2s ≤ Cp−2s ≤ (α/s)2δs

due to s ≤ α p1/δ . Using that there existsC > 0 depending on δ such that sδ(s+2)4δ ≤
C22s for all s ≥ 2, we arrive at

max{A, 1}2(s+2d) (p − 1 − s)!
(p − 1 + s)! ((s + 2)!2d−1)2δ

≤ C(d, δ, A)max{A, 1}2s(α/s)2δss2δssδ(s + 2)4δ

≤ C(d, δ, A)max{A, 1}2sα2δssδ(s + 2)4δ

≤ C(d, δ, A)222−2(s+1)

≤ C(d, δ, A) exp(−2 log(2)α p1/δ).

Substituting into (B.1) shows that

∥
∥
∥u − Πd

p,2u
∥
∥
∥
H2
mix([− 1,1]d ,μd )

≤ C(d, δ, u) exp(− log(2)α p1/δ).

Now, Πd
p,2u can be approximated by ReLU DNNs from Proposition 2.13. We

set Λp := {ν : |ν|∞ ≤ p}, and express Πd
p,2u in the basis of tensor product

Legendre polynomials. The size of the Legendre coefficients (cν)ν∈Λp of Πd
p,2u

can be estimated crudely by |cν |2 ≤ ∑
ν∈Λp

|cν |2 =
∥
∥
∥Πd

p,2u
∥
∥
∥
2

L2([− 1,1]d ,μd )
≤

C(d) ‖u‖2
H2
mix([− 1,1]d ,μd )

= C(d, u)2 for all ν ∈ Λp, and their sum by
∑

ν∈Λp
|cν | ≤

C(d, u)(p + 1)d .
As in Step 1 in the proof of Theorem 3.6, we reapproximate the polynomial Πd

p,2u

by û p := Affineu ◦ fΛp,ε
, for fΛp,ε

from Proposition 2.13 and Affineu : R|Λp | →
R : (zν)ν∈Λp �→ ∑

ν∈Λp
cνzν . We take ε = (p + 1)−d exp(− log(2)α p1/δ) as the

accuracy parameter of fΛp,ε
, so that we obtain

∥
∥
∥Πd

p,2u − û p

∥
∥
∥
W 1,∞([− 1,1]d )

≤
∑

ν∈Λp

|cν |
∥
∥
∥Lν − L̃ν,ε

∥
∥
∥
W 1,∞([− 1,1]d )

≤
∑

ν∈Λp

|cν | ε

=
∑

ν∈Λp

|cν | (p + 1)−d exp
(
− log(2)α p1/δ

)

≤C(d, u) exp
(
− log(2)α p1/δ

)
.
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Together with the estimate of the polynomial interpolation error, it holds that

∥
∥u − û p

∥
∥
W 1,∞([− 1,1]d )

≤ C(d, δ, u) exp
(
− log(2)α p1/δ

)
.

Wefinally estimate theNNdepth and size, using that |Λp| = (p+1)d andm(Λp) =
dp:

depth(û p) ≤ depth(Affineu) + 1 + depth( fΛp,ε
)

≤C(1 + d log d)(1 + log2 m(Λp))(m(Λp) + log2(1/ε))

≤C(1 + d log d)(1 + log(dp))(dp + d log2(p + 1) + log(2)α p1/δ)

≤C(1 + d2 log2 d)(1 + p log p),

size(û p) ≤ 2 size(Affineu) + 2 size( fΛp,ε
)

≤ 2(p + 1)d + Cd2m(Λ)2 + Cdm(Λ) log2(1/ε)

+ Cd2|Λ|(1 + log2 m(Λ) + log2(1/ε)
)

≤C(p + 1)d + Cd2(dp)2 + Cd(dp)(d log2(p + 1) + log(2)α p1/δ)

+ Cd2(p + 1)d
(
1 + log2(dp) + d log2(p + 1) + log(2)α p1/δ

)

≤C1(α)d4((p + 1)2 + (p + 1)d+1/δ)

for someC1(α) > 0. For allN ∈ N satisfyingN ≥ C1(α)d4(42+4d+1/δ), we choose
p := max{p ∈ N : C1(α)d4((p + 1)2 + (p + 1)d+1/δ) ≤ N }, so that p ≥ 3 and

C1(α)d4((p + 1)2 + (p + 1)d+1/δ) ≤N < C1(α)d4((p + 2)2 + (p + 2)d+1/δ)

≤C(d, δ, A)d4 pmax{2,d+1/δ},

and define ũN := û p, which shows the proposition for suchN . For the finitely many
N ∈ N satisfying N < C1(α)d4(42 + 4d+1/δ), we define ũN := 0, for which the
proposition holds after increasing the constants, if necessary. This completes the proof
of Proposition 4.1. �
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