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Abstract. A class of representations of the canonical cofmutation relations is in-
vestigated. These representations, which are called exponential representations, are given
by explicit formulas. Exponential representations are thus comparable to tensor product
representations in that one may compute useful criteria concerning various properties. In
particular, they are all locally Fock, and non-trivial exponential representations are globally
disjoint from the Fock representation. Also, a sufficient condition is obtained for two
exponential representations not to be disjoint. An example is furnished by Glimm’s model
for the :®* interaction for boson fields in three space-time dimensions.

I. Introduction

In this paper we investigate a certain class of representations of the
canonical commutation relations. Our representations will be called
exponential Weyl systems. A representation of the canonical commuta-
tion relations, or a Weyl system, is a map f — W(f) from a complex inner
product space J to unitary operators on a complex Hilbert space H,
such that

W(f) Wig)= "2 W(f +g)

(the Weyl relations), and t— (¢, W(t f)) is continuous at t =0. If {f}}
is an orthonormal basis of J, then

Wisf)=e"%,  Wtfi)=e",
by Stone’s theorem, where Q;, P, are self-adjoint. The Weyl relations are
eiSQjeilPk — eistéjkeitpkeist ,

which is an exponentiated version of

Q;P,~P,Q;=1id,.
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A theorem of von Neumann states if dimJ = n < oo, then W is essentially
(up to multiplicity) the Schrodinger Weyl system of quantum mechanics:

Q, = multiplication by x;, P,=i"" a—i—, H=L,(RY.
k
If dimJ = co, there are uncountably many inequivalent irreducible
Weyl systems. The best known example is the Fock representation.
J=L,(R%, d=1, is called the single particle space. Let H=F = XF,
be the direct sum of Hilbert spaces

F,=SL,(R™),
where S is the symmetrization projection defined on X Z,(R?") by

Swulky, .o k) =011 Y k) o5 Kogny) -

geSn

Here k; € RY, S, is the permutation group on n letters, and F, is the field
of complex numbers. Thus p =Xy, e F if p, € F, is symmetric, square
integrable, and X |y,||*> = |[w||* <oco. F is the Fock space for a neutral
scalar boson field. y, € F, represents a state of the quantum field in which
there are n particles; if [i,|| =1, then |y, (k;, ..., k)? is the probability
density that their momenta are ki, ..., k,. Since p, is symmetric, the
particles are indistinguishable.

Q=(1,0,0,..)eF

is the Fock vacuum, and it is the unique (normalized) state in which no
particles are present. In general there are an indefinite number of particles
in the state we F. If fe L,(RY, the annihilation operator a(f) maps
F,—F,_,, annihilating a particle with wave function f, and the creation
operator a*(f) maps F,— F, ,, creating a particle with wave function f:

(a(f) 1/)n) (kh cees kn—l) = n1/2 jf(kn) wn(kl’ ey kn) dkn
a*(f)pa =+ 1" S(f®w,) .

The normalization constants are chosen so that a*(f) and a(f) are
adjoints; moreover

¢(f) =2""La(/) + a*(f)]

is self adjoint. W(f)=e'*Y) is the Fock representation. The Weyl
relations follow from the commutation relations

a(f) a*(g) — a*(g) a(f) = | f(K) g(k)dk .
Exponential representations are constructed as follows. If

w=w(ky, ..., k) e L,(R"),



Exponential Representations of CCR 3

the creation operator a*'(w) maps F,—F, ., creating v particles with
wave function w:

a*wy,=[m+1D.. e+ SWwRyp,) .
Let
D= {y=2Zy,eF:yp,=0, large n; suppy, compact}

be the set of vectors in F with a finite number of particles and bounded
momentum. Let v=wv(k,, ..., k) be a symmetric measurable function,
and let g, o be lower and upper cutoffs on the magnitude of the largest
momentum:

Ugo'(k) = U(k), IIE?SXV |k1| € [Q, O-)
=0 otherwise.

Note that v,, =0 for ¢ > 0. Let v, = vy,. Fix a>1, and let

af)=o, j=1
—0 j=0.

Thus o denotes both the constant and the corresponding function of j.
Let vj4, v Qenote Ua(iyos Vaiiyaty TESPECtively. Suppose v, € L,(R?) so
that a**(v,,) is defined. Observe that for k</, a()) < o,

exXpa*’(vy,) = expa*’ (v, +v;,) = expa*’(v,) expa**(v,,)

as formal power series.

If v is almost in L, in a certain technical sense, we construct a family
of cutoff operators T;,, j= 0, which are modifications of expa*’(v;,).
For k=1 a()) £ o, '

Tkaw = T}aH s
where 6 e D is a modification of expa*'(vy)y. Let T;=T,,,. If v¢ L,,
then T; maps D out of Fock space. However, T;D is contained in the
algebraic direct sum [11] of F,, n = 0, and has a natural Hilbert space

structure after division by an infinite constant. We view T,DC T,D,
k < I, with the identification T,y = T;0. Then the limit

lim (5,9, Ti,p)e ™11 = (T, Ty),

exists for ¢, we D and defines a positive definite inner product on the
set 9= | ) T;D. The subscript denotes “renormalized”. Let H = F, be

jz0
the completion of 2. Let
J={feL,(RY: uky fe L,(RY, some &> 0},

1*
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where pu(k) = (ud + |k|*)*/? is the energy of a particle with momentum
k; po >0 is the rest mass. Then the limit

lim (T d, W() Tigp)e™" 11" = (T, W, () Tp),

defines a Weyl system W,(f), feJ. W, is called an exponential Weyl
system.

We now define T;,. In general, the power series for expa**(v;,)0,
0 e F, does not converge; see [7]. Indeed,

la* (v;,)" 211> ~K"n!",

so that convergence cannot be expected for v> 2. Convergence occurs
when v=1, or v=2 and v;, has Hilbert Schmidt norm less than 1/2
[11, Lemma 4; 12, Lemma 2]. Thus we must omit portions of expa*”(v;,).

Suppose j <L a(l £ o Z a(l+1). Now

expa**(v;,) = expa* v( Y Vkkert Ula>

jskg1-1

= [l exp¥,

jsks!
as formal power series, where
Vie ='W 1+1)s  kS1-1

— a**(v,,) k=1
Let exp,x = Y, x'/I!. Then for any sequence n(k), k = 0,

=0

T, = H leXPn(k) Vie

JSk=

1A

converges absolutely on D.

Thus F, and W, depend on the parameters v, a, n{k). Note that as «
decreases and n(k) increases, T}, creates more high energy particles. The
choice of n(k) must balance two conflicting objectives. We do not want
T;, to create so many high energy particles that (-, -), doesn’t exist. On
the other hand, we want T}, to create enough high energy particles to
overcome the effect of the factor e *!I*=ll* 5o that ||-|, is definite. Thus,
we require that n(k) be strictly increasing but polynomial bounded in k.

In Ch. II, a basic estimate controlling products of operators of the
form a*¥(w) or a**(w)* is obtained. In the process, quantized bilinear
forms are discussed [6]. Ch. III is devoted to the construction of F,. We
say that an operator B in F, is the weak limit of an operator A4 in F
(Written B= lign A)if 9 (B)= 2% and

(Tidy BT, = lim (Tho . ATy )1l
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If li‘ITnA is bounded, then it extends uniquely by continuity to F,; the
extension is also written lig_nA. Thus if I, is the identity in F,, then
I= Ii}rnl. Ch. IIT is also devoted to obtaining operators in F, as weak

limits of quantized operators in F.

Ch. IV contains some results concerning unitary operators and
n-parameter unitary groups in F, which are defined by weak limits. We
then conclude (Theorem 2) that lign W(f) defines a Weyl system

W.(f) = e* ) feJ. Moreover, & is a dense set of entire vectors for
¢,(f), and ¢, (fY D lim(fY, jZ 0. If |u*(f,— />0, some £>0, then

&.(f)— &,(f) and W,(f,)— W,(f) strongly on 2.
We also show (Theorem 3) that the local systems W, (), |supp f (k)] < o,

i.e. localized in momentum space, have a non-negative number operator
in the sense of Chaiken, and hence are unitarily equivalent to a direct
sum of Fock representations. In Theorem 3, we also prove that if the
kernel is not in L,, then the global systems W.(f), f € J, are disjoint from
the Fock representation because every vector in F, has an infinite number
of particles. Finally, in Theorem 4, it is shown that the choice of n(k) is
somewhat a matter of technical convenience in the sense that two Weyl
systems W! and W? with the same kernel v and same choice of o are not
disjoint. That is, there are invariant subspaces S;C F for W/} such that
W} | S, is unitarily equivalent to W2 | S,. Moreover, if n, (k) = n,(k) for
almost all k, then W?! and W? are unitarily equivalent. If the kernel of W,
is perturbed by a sufficiently small function, then the new Weyl system
is not disjoint from the old one. A sufficient condition for unitary equiv-
alence is given. It is hoped that a family of inequivalent exponential
representations may be obtained from kernels whose pairwise differences
are sufficiently large.

Remarks. 1. ¢(f) is related to the Newton-Wigner field ¢y  and the
relativistic field ¢,., by the formulas

nw (@ =00, bealg)=d([(—4+ud) *g]),

where §(k) is the Fourier transform of g(x). Then if we replace ¢ by ¢,
the local systems (localized in momentum space) are still unitarily equiv-
alent to a direct sum of Fock representations because |suppg| < ¢ if and
only if
lsupp[(—4 +p3) " gl1<e.
2. Exponential Weyl systems have some of the advantages of tensor
product representations: explicit formulas for them are given, and one

may compute criteria for various properties of the representations. Tensor
product representations have been useful for linear problems in quantum
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field theory. M. Reed [15] has even shown that a certain class of re-
normalized Hamiltonians with nearly diagonal non-linear interactions
acts on infinite tensor product spaces. However, tensor product rep-
resentations cannot be expected to provide solutions to most physical
problems. This point of view has been supported by Powers [14] in the
case of the representations of the canonical anticommutation relations
(CAR) provided by Fermi fields. He proves that a translation invariant
vector state of a tensor product representation of the CAR is a generalized
free state, i.e. the truncated n point functions vanish for n> 2.

Powers’ point of view may apply somewhat to exponential representa-
tions. Nevertheless, certain renormalized Hamiltonians, with inter-
actions possessing large momentum singularities different from those of
Reed’s model, are defined on exponential representation spaces. Indeed,
exponential representations are suitable for some superrenormalizable
interactions which may be far from diagonal. An example is furnished by
Glimm’s model for the :@*: interaction for boson fields in three space-
time dimensions [5]. This model has an infinite mass renormalization
caused by the off-diagonal part of the interaction in the sense that there
is fairly strong coupling between low and high energy parts of the inter-
action. Hepp has demonstrated [8] that the renormalized Hamiltonian
for a simplified version of the interaction acts on a closed subspace, the
completion of T, D, of an exponential representation space. The inter-
action is taken to be

a*4(— Z (o) + a**(— Ep(kyo)*
Here v=4,d=2,nk)=k, « =2 and
o(kys ..., ko) = = p(k) ™% (Zpk)) ™ Ak,

where |v,|* is logarithmically divergent. v is almost in L,, but is not
close to diagonal. For example, v is not in L, on the set

1k 2|k | < fkyl, ksl Tl £ 31k,1}

h is the Fourier transform of the space cutoff function, which is any non-
negative smooth function with compact support. It would be of interest
to construct a family of inequivalent representations by choosing different
space cutoff functions. Incidentally, Hepp has independently obtained
[8,9] a Weyl system whose propertics are similar to those of
W, = W,(v,2,k). It is conjectured that the two representations are
unitarily equivalent.

Note that “exponential” has been applied to representations in a
different context [10].
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II1. Basic Estimates

In this section we obtain an estimate controlling products of the
form a*'(v)*?a** (). Products involving v, and v are considered
because we want sufficient generality to compare two different exponential
Weyl systems in Ch. IV. First we must discuss quantized operators and
bilinear forms in Fock space [6]. In order to control the proliferation of
constants in the sequel, K >0 will denote possibly different constants
from one line to the next.

Let B’ be a bilinear form, with distribution kernel b, densely defined
in F, x F,. We associate to B’ the quantized bilinear form B defined in
FxF by

(¢, By) = i [(t+m)! (¢ +n)I]H2 1t o
N Bt 2) B 1) Wy, 2) dx dy dz .

Ifb=fi® ® fren [i€L,(R%, then one can easily check that

B=a*(f)...a*(fp)alfm+1) - a(frsn)- Also, if b=wiky, ..., k,) € Ly(R™),
then B = a*™(w). Thus B creates m particles and annihilates n particles.

If 6 is the Dirac delta function, then § is a distribution kernel densely
defined in F, x F,. Then a(k), the quantized operator given by o(- —k),
is defined by

(a(k)¢ )(kla rees n 1= n1/2¢ (k kl: cery kn—l) . (22)
Thus a(k) annihilates a particle with momentum k. The adjoint a*(k) of
a(k) is a quantized bilinear form with distribution kernel densely defined
in F; x Fy, and it is defined by the improper operator
(@ (k) (kg ooy iyrg) =+ 1)12 SOk — k) ® Pulkss - s kyiy) - (23)
That is,

Wpr1> a*(R)Py) = 0+ 12 (i1 (k Ky, oy Kyio), Dbz, oo Kyt

Thus a*(k) creates a particle with momentum k. Let a*(k) denote a*(k)
or a(k). One may verify that

B=[blky, ..., kp, K ... K) a*(ky) ... a*(k,) a(k)) .. a(k}) dkdk’
La(k), a*(l)] =a(k)ya*() —a*() a(k) = o(k—1) 24

La(k), a(l]] = 0 = [a*(k), a*(])] .
That is,
(#, By) = [ (Ha(k) ¢, blk, k') Da(k)yp)dkdk',
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and
§ (¢, bk) I a*(k)w)dk = | (b, b(k) I a* (k)w)dk
= j(d), b(k) .*Hﬂ at(k;) 6(k; — k,-+1)w>dk

+§ (¢, b() IT"a* (k) dk

where II' denotes a transposition of two factors a(k), a(k;, ) or a*(k),
a*(k;1,), and " denotes a transposition of two factors a(k), a*(k; ).

Note that if B’ is a bounded operator from F, to F,, {for example, if
be L,(R¥™*™M)) then B is a densely defined unbounded operator in F.
Indeed, if I is the identity operator on F;, with distribution kernel
o(k — k'), let N be the quantization of I. Then, by (2.1), Ny, = ny,, and
N is called the number of particles operator. By (2.1),

(Blp)zzl'l/z(l m+n)‘1/2( m)' 1SB/1/)1 m+n>

where B’ acts on the first n variables of y;_,,,,, so that B'y;_, ., is an
unsymmetrized function of i variables. Hence

IBy|?< ) it —m+mli—m!=2 S| [BI* lwi-psul?

SKIBI? Y G+ y,)?
j=0
SK|B|1? (N +1)tmmi2y)2
Thus
Byl < K|IB'|| [I(N + )72 2.5

Hence D C 9(B), so that B is densely defined.
By (2.4), we may write N = [ a*(k) a(k)dk. Similar operators to be
considered in the sequel are:

N(B,) = [ a*(k)ak)dk,
[kl<e
N, = ju(k)r a*(k)a(k)dk, <0,
Ho(B,) = |k|§ (k) a*(k) a(k)dk,

where B, is the ball of radius ¢>0 in R’ N(B,), N,, and H,(B,) are
quantizations of operators on F; given by multiplication by x,, u(k),
and pu(k) x, respectively, where y, is the charactenstlc functlon of B,. By

(2.1), they act on F, by multiplication by z X (), Z uk), a

Zi u(k) x,(k;) respectively. N(B,) is the number of particles operator
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Fig.1: m=2,n=3. Fig- 2: j=1.

over L,(B,) for the Fock representation and measures the number of
particles with momenta bounded by ¢. H,(B,) measures the free energy
of these particles.

Suppose B is a quantized bilinear form

B=[bk, k) [ a*(k) [ ] alk)dkdk’.
i=1 i=1
To B we associate a graph with m (creating) legs pointing to the left, n
(annihilating) legs pointing to the right; all legs issue from a common
vertex [4, 5]. (See Fig. 1.) B is also called a Wick ordered bilinear form
because the a*(k;) all appear to the left of the a(k)). It is determined by its
graph and its kernel b. The product of two Wick ordered bilinear forms
B,, B, is not Wick ordered, but it is a sum of Wick ordered bilinear forms,
by repeated application of the commutation relations (2.4). The term
with no ¢ functions has a kernel b; ® b, and is denoted :B; B,:, the Wick
product of B; and B,. If a term contains a J function §(k — I), we say that
the variables k, [ have been contracted. The term with jo functions,
denoted B, —0-B,, has a kernel obtained from b; ® b, by equating con-

tracted variables and summing over all possible contractions with jo
functions. To B, ~?fBZ is associated a graph obtained by connecting j

of the annihilating legs of B with j of the creating legs of B,. (See Fig. 2.)
B, ‘?‘Bz is determined by its graph and its kernel. Similarly, B, ... B, is
a sum of Wick ordered bilinear forms B, each of which is determined by
its graph and its kernel. Its graph has ¢ ordered vertices and is obtained
by specifying the number of annihilating legs of the graph of B; which
are connected to creating legs of B;, i <j. Its kernel b is obtained from
b;® --- @b, by equating variables and then summing over all possible
contractions which produce the same graph. Then B = { b(k) ITd*(k;)dk,
where the product extends over the legs of the graph which do not connect
two vertices (external legs). Legs which do connect vertices are called
internal. Note that there is one variable in b for each leg in the graph, so
that one speaks of external and internal variables.
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If M is a measurable subset of all variables of b, then
[ b(k) I1a*(k;)dk
M

is called a truncation. A truncation of a product B, ... B, is given by a
truncation of each of its Wick ordered terms. A truncated power series
is given by a truncation of each of its terms.

A subgraph of a graph is a subset of the vertices of the graph, together
with all legs issuing from these vertices. Two subgraphs are disjoint if
they have no common vertices. (They may have common legs.) Note
that a leg may be internal in the full graph but external in a subgraph. In
the sequel, let u, = u(k,), let 11, denote the product over external variables,
IT the product over all variables, I = I(G) the internal variables with
respect to the graph G, and [ the integral over internal variables [5, p. 8].

I

Let v, v be symmetric, measurable functions, and V = a**(v),
V'= a**(v') the corresponding bilinear forms. We shall be concerned
with v, v’ which satisfy the following property:

Let b be the kernel of B=V*—o-V', 1 Zr<v-1; for a>0 and

1 £t £ v, there exists > 0 such that
J bl e Ly(R*2077),
I

vl pruy o v ppy @ € Ly(RY), (2.6)
0401l 1054l < K(log(a/g) +1).

Suppose that (2.6) is satisfied for v = v. Then we say that v is almost in L,.
In particular, an L, function is almost in L,, and

A(o) = vtv,|?

is at worst logarithmically divergent. Choose & > 1, n(k) strictly increasing
but polynomially bounded, and construct

Ty, = l—[ l €XDuiiy Vo

sk

A

as described in Ch. L. T; = Tj(v, o, n(k)) is called an exponential dressing
transformation. Note that T}, is the truncation of expa**(v;,) in which
V., appears to at most the power n(k), k = j, and does not appear for
k<j.

Now V*P(V') is a sum of Wick ordered bilinear forms; a bilinear
form in this sum is called reduced if its graph contains no

X=V* -V’
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components. Each graph is a union of its connected components. If the
number of vertices of a connected component is greater than one, then
the kernel is in L,. The improvement of the kernels, as the order of the
graph increases, demonstrates the sort of behavior to be expected of
superrenormalizable quantum field theories [5, p. 10]. Such estimates
have been studied systematically by Eckmann [3]. The following lemma
establishes geometric growth of L, norms.

Lemma 2.1. Suppose v, v’ satisfy (2.6). Let B be a reduced term from
V*PV'4 b its kernel, and n=p—+q. Then for a>0, there exists K>0
such that for ¢ >0 sufficiently small,

Hneu"“ Ij 15 )b| H =K. 2.7)

Here a, & do not depend on p, q or the reduced term.

Proof. We may suppose that the graph G of B is connected because
both sides of (2.7) are products of similar expressions involving the
connected components. The cases n =1, 2 follow from (2.6). Let n = 3. G
may be written as a disjoint union of subgraphs of v types: a central
vertex contracted with 1 < s <v vertices [5, p. 8]. This decomposition
is obtained by induction on n = 3. For n= 3, use inspection. Suppose
we have the decomposition for 3<n<N. Let n=N +1. Since G is
connected, we may choose a subgraph H C G of type s =1. Then G— H
is a disjoint union of connected components H;. Let H' be the union of
H with all those H; which consist of a single vertex. Clearly H' is connected.
If H' % G, then apply induction to H' and the components of G — H'.
If H' = G, then one can show directly that G is decomposable into either
one or two subgraphs of the proper type.

Thus, for n = 3, we may write G = U H;, a disjoint union of subgraphs
of the proper type. Let y = ny;, where y; is the kernel of H;. Then the
Cauchy-Schwarz inequality in the variables kel(G)—( JI(H,) implies

J

that

[ oyl
1(Hj)

b

”Heu“’ f H/fIyluéK”ﬂ

IG) J

where K compensates in the region of small |k| for the factors u(k)

which appear twice in the right hand side. Since these are a finite number

of graphs of the proper type, it suffices to show that | ITuf|y|eL,,
IH

where H is a subgraph of type s with kernel y. By assump;ti)on, there are

no X components, so the case s =1 follows from (2.6). For s = 2, choose

a subgraph H, C H of type 1. Let H; be the graphs of the other vertices,

and let y,, y; be the corresponding kernels. Multiply y, by  [] #°

I(H)~—1I(Ho)
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and y; by [l u* Then for a> 0 sufficiently small, we may apply
I(H)—I(Hj)

the Cauchy-Schwarz inequality in the variables I(H)— I(H,) and use

the first part of (2.6) for the first factor and the second part of (2.6) for

the remaining s — 1 factors. This completes the proof.

IT1. Renormalized Hilbert Space

In this chapter we construct F,, and, in the process, obtain operators
in F, as weak limits of products of Wick ordered operators in F. We first
establish a combinatorial lemma which is sufficiently general for the
needs of this paper. Suppose Y, 1 <i<m, is a Wick ordered operator
in F of the form

fyilky, ..y k) f[l d(k)dk or |y(k)a*(k)a(k)ydk,

where y, is a measurable kernel and y is measurable. Let

T,=T, (U, o, n(i))’ Tl/ = T;(U,’ &, I’l/(])) >
Vo= Ve Vi= Z Vi,, and X(o)=V}—o-V,=v!(v,,v,).
J

. o =
J

Note thgt we require o = a, so that Vi—o-V =0, i+ Let ¢, weD.
We consider

(Tk.,qb, I m;w)e*“”=(¢, T 11 Ym;w)e-’“a). 31)
i= i=1

(For m=0, I1Y,=1) Now TXIIY; T is a truncated power series in
V* Y, V,and is an infinite sum of Wick ordered terms with distribution
kernels. A term will be called reduced if it contains no X components [4].
Let Ry, be a reduced term, and let R;, be the sum of all terms whose
graphs differ from the graph G of R, by jX components. (G is called the
reduced graph of R;,.) Let e¥ R, be the bilinear form with graph G
and kernel equal to the kernel of ) R,,, after integration over the

jz0
variables in the X components. Thus, (3.1) equals ) (¢, R, ), where the
G

summation extends over all reduced graphs G. R, does not necessarily
have a measurable kernel because of the § function in | y(k)d(k— 1)
-a*(kya(l)dkdl. However, by (2.1) and the form of Y;, (¢, Rg,¥) is a sum
of integrals of the form

Cpq J‘ aprGawq
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over the variables (some coinciding) of ¢,, rg,, and y,. Here 15, is a
measurable function, ¢, and v, are the p and g particle components of
¢, p, and the choices of p, g depend on G.

Let E be the direct sum over all reduced graphs G, and over per-
missible p, g for each G, of the measure spaces associated with

Cpq | PpTeow, Thus (3.1) equals
j.ho ’
E

where h, is a measurable function; we sometimes use the notation
hy = ¢rg,p. Similarly, Z(d) Ry, p) = jqﬁro p, where ry, is a measur-

able function dependmg on G. Let |ROG| IRl be the bilinear form
associated with [ro| = |rgel-

Lemma 3.1. Let X;(0) = Vi5—¢-V],. Suppose 0V’ is non-negative. Let
m(j) = min(n()), n'(j)). Let & denote a fixed value of the variables of 7y,
ros Then

roo(8) =[] e ™ exp, ;) X;(0) 0,() (32

where m'(j) < m(j) depends on G and &, m'(j) is independent of o, m'(j) = m(j)
Jor almost all j, and m'(j) = 0 for j <max(k, ).

Proof. Suppose G has pV* and g V, vertices. It is convenient to regard
T 1Y, T, as a power series in V%, Y;, V},. Let v; = v;,,. A Wick ordered
term will be called reduced if it has no X; = X;(o0) = v!(v;, vj) components.
Then G is a reduced graph from

[T VP9 T Y, [ Vii9a (),
jzk jzli

and ry,(£) is the value at & of the measurable function associated to G.
Here p(j), q(j) are determined by G and £. Note that

Zp()=p, Zq()=q, pH=nG), ().

Then e*@R;, is the sum of all terms (after integration over the
variables in the X; components) whose reduced graph is G. Consider
all such terms with x(j)X; components, j= max(k, ), and hence
p()+x()V;* and q() + x()V; vertices. By the truncations in Ty,, Ti,,

0 < x() < min(n() — p(, W () —q()) =m'(), jzmax(k,])
x()=0=m'(j), j<max(k]).
There are

(W);;;(i)) (q(;)xz;c(n) 0
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ways to contract 2x(j) vertices into x(j)X; components. The remaining
legs are contracted according to G. Summing over all such sequences

()},
reo(=e"* [ p(Ma(! PG +x{) @) +x@)] ™ ro,(8)

jZzmax(k,!)

, PO+ xO\ (WD + XG0~ v )
0§x(j)§m’(j)< x(j) )( x(j) )x(’)!X’(a) (3.2)

=e 0 3 [T X(0F9x()! ro,(8)

02 x()=m' (j) jZ max(k,1)

=[] e M exp, ;3 X;(0) 1o, (&) .

j
Clearly, m'(j) has the desired properties.
Lemma 3.2. Let

c(jo, 0) = c(v, V', jo, 0) = [] e P exp,,;, X;(0). (3.3)

JZjo
Then for all j, = 0,
0<ali_)r£10c(jo,a)§1 (3.4
exists. Moreover

Jh_l;l}o C(U, 0/7.].07 0) =1 (35)
uniformly in o, v, V', such that X; = v!(v;, v)) < K.
Proof. Let
a;(0) = e Vexp,,;, X;(0) .
By (2.6), for ¢ = #()),

X;(0) S vHvy sl 0,541l < K(loge + 1)?

uniformly in ¢. Thus X;(c0) and a;(c0) exist and 0 < a;(0), a;(c0) < 1.
Thus, by [1, p. 190], it suffices to show that

Y (l—a(0) =K,

J

where K is independent of ¢.
Observe that, for x>0,

l—e  exp,x < x""Ymn+1)!.
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Therefore, since m(j) is strictly increasing,

2 (1= aye) £ L X0 fm() +1)!

J

<2Y KIj'<K.
J

The lemma is proved.
Let |¢|e F be the vector with n-particle component |¢,].

Corollary. (3.1) is equal to | h,, where {h,} is a family of measurable
E

Sfunctions which converge pointwise as o —00. Moreover, |h,| < h, where
h is a measurable function on E, and

)J; h= }G:(lqbl, IRogl Il . (3.6)

Proof. By (34), jo=0, rg,(8)—cro(&), where ¢ is some constant.
Hence h, = ¢rq,yp converges pointwise as g —o0. Let

h=1¢| ol [l -

Then, by (3.2), jrg.l = |rol, and |h| £ h. Q.E.D.

Thus, in order to remove the momentum cutoff in (3.1), it suffices to
show that h is integrable, i.e. (3.6) is bounded. Then (3.1) possesses a limit
as ¢ —» oo by the bounded convergence theorem. In order to bound (3.6),
we strengthen the hypothesis. Let

J,={ye L,(R"™): Iy € L,(R™), some ¢>0}.

We consider two cases:

Si

a) v—vel, Yi={[y [] ak)dk, yel, 1sism,

j=1
b) v=0, Y,=Y=|yk)a*(k)ak)dk, 1<i<m,
where y is a bounded non-negative measurable function such that

— i j .
@Y = [ie| Y ) 0S KL 1Zjsm. G)
i=1

Lemma 3.3. Let n = |G| be the number of V* or V' vertices in G, and

m

let s= )" s;. Then the following estimates are valid:
i=1

a) (18], IRol lwl) < K**" [T 1 iyl e ",

i=1
b) (¢, Rl lpl) = Kmtngeentto
where c, 5> 0.
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Proof. a) First, v, v’ satisfy (2.6) as follows. Let v" =v—v'eJ,, and
I =r=v—1 Letw,w, and w" be the kernels of V*—o-V, V*—o-V", and

V*—o-V" respectively. Then |IIu‘jwle L, by (2.6). Moreover, by the
I
Cauchy-Schwarz inequality,

“ Ij Hpew|| < [T p~o|| | p® "]l < oo

for ¢ sufficiently small. Thus,

IfH/fIW’I = }fH/fIWl + [Hpfw'le L, .
I

Observe that in case (a), |ro| is the kernel of |Ry|. Let B be the bilinear
form given by the graph of |R,| and the kernel IT u"“|ry|, where a> 0.
We may suppose that ¢, i; vanish off a sphere of radius ¢ in RY, j 2 0,
and ¢, v have ny or fewer particles. Then, by (2.5)

(6L IRl lph = 3 Wl Bl

i,jZno

= ¢"™(1¢l, Blyl) (3-8)
< o™nf T2l vl 18]

< Ko [ ol
I

Since n(j), n'(j) are polynomially bounded,
j—1
Y m@)+r@) <y, jz0,
i=0

for some integer y. Then there are fewer than j* = i vertices from T.% or
T,, with the magnitude of the largest momentum less than o/ = «*°, for
5=7y"'<1. Thus

[(n+1)/2)

M o (3.9

i=1

< Ks+n

op™ [ Irol op™ [ ol
I I
because G contains at least [(n+ 1)/2], the greatest integer less than or
equal (n +1)/2, vertices from one of T¥ or T;. K compensates in the region
of small |k| for factors u(k)’, and o < u(k)® for some of the factors.

The first factor in (3.9) is bounded by K**" [ ] | II w*y"||, by Lemma 2.1

i
and the Cauchy-Schwarz inequality in the contracted variables between
T T, and I1Y,. The exponent of the second factor is bounded by
[(n+1)/2] n/2
— ) &= —¢ [ Pdig—ecn't?
i=1 0
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where ¢ = (1 +6)27@*9, The lemma follows, in this case, from (3.8)
and (3.9).

b) Here |R,| does not have a measurable kernel since it contains &
functions. Observe that Y conserves the number of particles. Thus, every
reduced graph from case (b) is the disjoint union of three subgraphs.
The first is the union of all components without any V*, V' vertices; the
second is the union of all components which have exactly one V* and
one V' vertex, at least one Y vertex, and no external legs, for example

V* *V‘QT(Y—?_ V,) .

The third subgraph is a reduced graph from case (a), s = 0; of course,
the corresponding kernel does not arise from case (a) because of the Y’s.
Some of the legs from a case (a) reduced graph are replaced by legs
contracted with one or more Y vertices.

Therefore [R,| is a product of three factors, corresponding to the three
subgraphs. The first factor is estimated by Y/|¢p| < K¥|¢|, Y/ |p| < KI|yl.
The second factor is estimated by (3.7). The third factor has a measurable
kernel |rp| which can be estimated by Y'|v,| < K¥|v,|, uniformly in o.
Thus, by (3.8) and (3.9)

(g1, [Rol [wl) < K™ I, 1™ Il H
I

é Km+noc—acn1+°' .

(3.10)

The lemma is proved.

Lemma 3.4. There are at most
a) Ks*(s/2)! (vn)!?
or b) K™*"m!(vn)!?

reduced graphs G such that |G| = n.

Proof. We overestimate by bounding the number of contraction
schemes, so that schemes which produce the same graph are counted
separately. We use the fact that, for a, b positive integers,

“) (’l))z' < min (g, b)! K“*?

0§i§min(u,b)(i
G can have pV* vertices, 0 < p < n. For fixed p, there are at most
min{(vp, va —vp)! K¥2t¥" 7P < (yp)l K*

possible contraction schemes between the V* and V' vertices.
In case (a) there are at most

min(s, va)! K37V < (va)! K5*"

2 Commun. math. Phys., Vol. 19
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possible contraction schemes between [1Y; and the V*, V' vertices. In
case (b), the corresponding bound is (va)! K™*".
Suppose I1Y; has g creating legs in case (2). Then there are at most

min(g, s — q)! K4T 71 < (s/2)1 K®

possible contraction schemes among the Y;. In case (b) the corresponding
bound is m! K™,
There are n + 1 choices for p. The lemma follows from these estimates.

Lemma 3.5. Let T, = T, (v, n(j)), T, =T,(v', 0, n'(j)), Y; be as in
Lemma 3.2. Then for ¢, weD

(sztﬁ, I1 YiT/aw>€_X(“)= h, (3.11)
i=1 E
and both limits
lim | h, = j lim h, (3.12)
G'_'(DE E a0

exist, where E is a measure space, {h,} is a family of measurable functions
dominated by an integrable function h. Moreover

@ A< K21 [T 1w
or (b) [h<K™m!.

Proof. Let E, {h,}, h be given by the Corollary to Lemmas 3.1, 3.2.
The lemma then follows from the bounded convergence theorem and a
bound on (3.6). By Lemmas 3.3 and 3.4, (3.6) is bounded by

@ K62 ] e (X Ko 2|

i=1 n

or (b) K'”m!(Z K"(vn)!zoc“”"”6>.

But
Z Kn(vn)!2a—£cn‘+‘5 _S_ z:I{rteZvnlogvnOC—acM"‘5
n n

—eenlté
é Z (xKnlogn ecn

n

SK+ Y a7 ¢ some ng

nzng

<K<ow.
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Theorem 1. Let T, = T;(v, «, n(k)), Then for ¢, e D, the limit

lim (T, ¢, Ty w)e ™ = (T, Tyw), (3.13)
exists. If k =1, o = a(k), then T;,p = T, .0, where
k—1
0= 11 expu VieweD. (3.14)
j=1

(-,-), provides a positive definite inner product for 9 = \ | T;D, whose
Jjzo
completion is denoted F,.

Proof. (3.13) is the special case of (3.11) in which v = v/, n(k) = n'(k),
and s = 0. (3.14) follows from the definition of T,. (-, -), is clearly an inner
product for &. It remains to show that it is positive definite, i.e. if O+ p e D,
then | Twll? = (Tyw, T;y),>0.

Let m be the smallest integer such that y,, 0. Let t be a lower cutoff
on the magnitude of the smallest momentum:

vk =o(k.  min ki
=0, otherwise .

Then T; = T;(v", o, n(k)) is an exponential dressing transformation.
Suppose that 1, vanishes off a sphere of radius 7, in R?", n=0. Let
o=a(k)=1, and let ) nP,(B,,) be the spectral decomposition of
N(B, ). Then nz0

” o'wHZ = “P (Ba(k)) awHZ = ”Pm(Bak)) 'a'lpmHZ
= 1Tl = 1Tl
because T;, does not annihilate any particles. Let
A%e) = v e @12, Aje) = 5P)12.
Now

o (k)* oz(k)
G

(¥m> T¢ Y (3.15)

is a sum of terms given by graphs from TZ®" 72, By (3.2), the sum over
all graphs with the empty set for reduced graph is given explicitly by

T exPuiy 45©@) llwml?
Izk

which is equal to
exp A4(0) (lwnll* + 8 (k, o))

by (3.5), where 6(k, 6)—0 as k—oco uniformly in o.

%
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We may bound the other contributions to (3.15) as follows. Since
G =@ for these terms,

”Heu‘“ § I ilrl| < Ko(k)™
I

e [ I |
I

Thus, by (3.8), (3.9), Lemmas 3.1, 3.3, and 3.4, these contributions are
bounded by Ka(k) ® exp A*(c). Hence

1T wl|? e 4@ 2 e= 4 exp 4%(0) (llp ] — (k, 0) — Ka(k) %)

zem{—v!i i |mﬂUWMV—5m¢ﬂ—Kamr3

=1 Jl| Za(k)
z exp(—K loga(k)) (| p,l* ~ o(k, 0) — Ka(k) ™)
= a(k) " (Il — 0k, 6) — Ka(k) ™)
>0
for k sufficiently large. Therefore ||T;y|,>0. The theorem is proved.

Lemma 3.6. Let Y; be as in Lemma 3.5. Then lim [ | Y; exists and
7 =1

a) S KU TT 1H gyl
r i=1

lim [ Y. Ty
i=1

or b) ||li£n Y*T.p|, < K™"m!.
Proof. By Lemma 3.5, the limits

}%(Tka(p’ H Yi’I;o'w>e_A(a)7 (316)
i=1
m 2
Jim [T ¥, T,y e (3.17)
©Hli=1

exist. Hence (3.16) is bounded by

m

[1YT,v

i=1

e~ A@12

[Tl lim

g— oo

and a bound on (3.17) is obtained in Lemma 3.5. The lemma follows from
the Riesz representation theorem.

Corollary. Let f;€ J. Then lign [T ¢(f) exists, and

i=1

< K"m!2 ] |ef . (3.18)
r i=1

lip [T () i
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Let Y be N(B,), N,, 1<0, or Hy(B,). Then litrrn Y™ exists, and
[[lim "Lyl = K"m!. (3.19)
Proof. ]_[ ¢(f) is the sum of 2™ terms of the form n Y;, where

=1
—a*( f) and a*(f) denotes a*(f) or a(f). Thus, the existence of
hm H ¢(f;) and (3.18) follow from Lemma 3.6. The existence of hm Ym

and (3 19) also follow from Lemma 3.6, provided that (3.7) is established
for Y= N(B)), N,, or Hy(B,). This is verified as follows:

(v, TN (BY v) < Kv p(o)** |y py “v|* S KV,
(v, I Njv) S Kv | usvf? S K7,
(v, T Ho (B,Y v) < KV (oY p(e)* | H iy “v)|* £ KV,
for j = 1, by (2.6). _
Let fed,||f|| =1, andlet N(f)= a*(f)a(f) be the number operator

over {f} for W [2]. N(f) measures the number of particles with wave
function f. Let Ty; = Ty, (- We need the following estimates for Theorem 2.

Lemma 3.7. Let F, = F,(v, o, n(k)). Let A be ¢(f), N(f), N(B,), Hy(B,),
or N,. Let > 0. Then for p,1=k sufficiently large and |t| £ t,, some ty:

o0

Y G /m! T, pl e 42 (3.20)
m=p-+1
}4
+ ). IlGeAy/m!, T, Typl e 472 (3.21)
m=1

&.

Proof. By (3.18) or (3.19), (3.20) is bounded by

IIA

0

Y (Klth" =2/2

m=p+1

for p sufficiently large and ¢, sufficiently small. To estimate (3.21), observe
that
TaLA™, T,1* A", 1,1 T,

is the sum of all Wick ordered terms from
T A*™T,,

in which there is at least one contraction between 4 and Vj¥ or V;,. Thus,
by Lemma 2.1, the Cauchy-Schwarz inequality in one of the above
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contracted variables, (3.8)—(3.10), and Lemmas 3.1-3.4, (3.21) is bounded
either by

K™= £ iy T oy | (3.22)
or

K[|Avyll - (3.23)

(3.22) holds in case A4 is ¢(f) or N(f), and (3.23) holds in case 4 is N (B,),
Hy(B,), or N,. By (2.6) or (3.7), (3.22) and (3.23) are less than ¢/2 for [ = k
sufficiently large.

1V. Exponential Weyl Systems

In this chapter we prove some general results concerning unitary
operators and n-parameter unitary groups in F, which are defined by
weak limits. Particular examples are lim W{tf), feJ, ligne”N Bo) and

g

lime'***NaU) fe J Properties of these one-parameter groups and

exponential Weyl systems are studied in Theorems 2 and 3. Sufficient con-
ditions for two exponential Weyl systems not to be disjoint (or to be
unitarily equivalent) are given in Theorem 4.

For later purposes, we generalize the notion of weak limit. We say
that an operator B, which maps a subspace of F, into F,, is the weak
limit of an operator A in F written B = LignA if 9(B)=92' =) T;D

J

and
(Ted, BT, ), = lim (T, ¢, AT, p)e™ 4. 4.1)
If LlirmA is bounded, then it extends uniquely by continuity to F,; the

extension is also written Lti’m A. If F,=F,, then Lim4 = 1i£n A.

Lemma 4.1. Suppose that v—v'eJ, and DV’ is non-negative. Suppose
that U,V are unitary operators on F such that LimU is an operator
a

mapping F, into F,, and such that limV, lim'V are unitary operators on
F,, F] respectively. Then ’ ’
L[irm U lign’ V= Lim uv, 1ig1 VL£m U= Lli’m Vu. 4.2)
Proof. Choose Ty, 0, such that
” T 00 — 1i£n' VTy

10, 4.3)

Let w=v—1". By (2.6), (w,v") and (w, v) exist since we J,. Note that

lim exp3(4'(0) — A(0)) = expv!(— |w]|*/2 — Re (w, v))

=c(v,0)>0. “4)
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Then
[Lim U 0, i VT )], 0

and
lim sup|(T; ¢, Lim U im' VT ), — (Tio 6, UV T, p)e ™4
= 11_1}1 limﬁsup I(U* Tko’ d)’ T;,(n)cr 0,, - VT;,G 1/))' e 1@

§ C(U, vl) ”Tk¢||r tlg{-lo Oh_,nolo ”T;,(n)agn - VT:’HP” e—A'(o’)/Z
< K lim (1 Ty 0,17 + 1T/ 12 = 2Re Ty 0, lim VT 1)1 2)
= K(I Ty pl? = i’ VT pl;2)= 0.

Thus Ljrm UV exists and L(irm U li‘IIn’ V= L,i,m Uv.

Taking adjoints, we observe that
Lim ¥+ U* = (Lim U lim' V)* = (lim' V}* (Lim U)*
= lim’ V*Lim U* .,
Replacing V* U* by V, U respectively, and interchanging F; and F,,

we conclude that the second equality in (4.2} follows from the first. The
lemma is proved.

Corollary. Suppose that U, 1 £i < m, are unitary operators on F and
U,, = im U; are unitary operators on F,. Then
G

[1Uw=1lim[] U;. 4.5)
i=1 i=1

Proof. The general case follows immediately from the case m =2,
which in turn follows from the lemma (with F,=F)). Q.E.D.
It is natural to ask for a sufficient condition that L(i’m U be a unitary

mapping from F, onto F,.

Lemma 4.2, Suppose U is a unitary operator on F and L(iTmU is an
operator mapping F, into F,. Suppose that for each k,1=0, there exist
0,,0, €D and k(n), l(n) = 0 such that

}1—% 011_1;{}0 sup [UT,p— T yo 0, e~ =
and
lim limsup |U* T, — Ty, Ol €4 @2 =0. 4.6)

Then Lim U is a unitary operator mapping F, onto F,.
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Proof. By (4.1), (Lim U)* = Léfm U* is an operator mapping F, into
F. 1t suffices to show that Lgm U is isometric. Then, replacing U by U*
and interchanging F, and F,, we conclude that (L}Tm U)* is isometric, so

that Lim U is unitary.

a

By (4.6),
}1_1:1;10 ‘(Tk ¢7 L})_m U T;/lp - ’Tl(n) en)r

= lim Jim [(Ty, &, UT}op — Ty O, ~4©
< | Tl lim limsup | U Ty, 1 — Ty, 0, ¢4
=0.

Thus T,,0,— Lim UT/yin F,, so that

= lim ||| T} 0,17 — | T; I,

n— o0

é '}1_1;13) 01_1_1};10 ‘(’I’l(n)aen - UT}/o'w’ U Tl/¢71p)| e—A(a)
+ hm hm (’Tl(n)a en’ ’Tl(n)a Bn— U‘T‘llaw)| e—A(ﬂ')

n—=>00 ¢

ILim UT )7 ~ | T wl,?

2K li{}l_,so})lp [U T/, — Ty Ol e =42
=0.
The lemma is proved.

Lemma 4.3. Suppose that U(x) is an n-parameter unitary group on I
and 1i§n Ux)=UJx) is an n-parameter unitary group on F,. Let

Rfe"(x'y)dPy, [ €®NdP,, be spectral decompositions of U(x) and U,(x)
n R"

respectively. If g is a bounded continuous function on R, then
{ g0)dP,,=1im | g()dP, . @7
RH Rn

Suppose n=1 and A, A, are the infinitesimal generators for U, U,
respectively. If lim A7 exists for j =0, then AJDlim A%, j =0, so that 9

is a dense set of C® vectors for A,.
Proof. By definition,
&SP, T2 = (T, U,(x) Tp),
RYI
= lim (T, U Ty e 4@

= lim [ &d(|P, T;,ple ™).
o> 0 Rn
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By the Levy continuity theorem for distributions [13, p. 191, p. 205] and
the Helly-Bray Theorem [13, p. 182],

IQ(Y)d”Pryle”rz = 011_1"1010 _f gy d(“PyngU)HZe_A(“)).

(4.7) is then obtained by polarization.
Suppose n=1 and | AdP,, [ AdP,, are the spectral decompositions
R R

of A, A, respectively. Then, by the moment convergence theorem for
distributions [13, p. 184],

j}’jd ”Prlnlp”f = }l_l}%ﬁ /de(”PlTlasze“A(G)) ,

so that 2(4/)> @ for all j > 0. Again by polarization,

(Tk (:b’ AiTiW)r = j’pd(Tk ¢7 Pr),ﬂW)r
= 01,1_1;{)10 jl )'jd((Tko'qS’ PA Tla w)e—A(a))

= lim (T, ¢, AT, ).

This completes the proof.

Theorem 2. Let F, = F,(v, o, n(k)). Let A be $(f), N(f), N(B,), Ho(B,),
or N,. Let V(t)=e"*. Then V,(t)= 1i£r1 V(t) exists and defines a one-

parameter unitary group €'4r on F,. AI>limA’, j 20, and 9 is a dense
a

set of entire vectors for ¢,(f) and analytic vectors for the remaining self
adjoint generators.

Corollary. W,(f) =lim W(f) = el fel], is a Weyl system on F,.

If 1p(fa— N =0, some >0, then ¢,(f,)— f) and W.(f,)—W.(f)
strongly on 9.

Definition. W,(f), feJ, is called an exponential Weyl system.

Let
af(f)=2""2[,(f) +id(if)],
a,(f) =272 (f)—id,(if)]

be the creation and annihilation operators for the representation. Then

a*(f) a,(f) is the self adjoint number operator over {f} for W, [2].

Lemma 4.4. N,(f)=a}(f)a,(f). The spectra of N.(f) and N.(B,)
are the non-negative integers, and, for fe L,(B,),

eitNr(Be) VVr(f)e—itNr(Bg) — I/Vr(eitf) . (48)

Theorem 3. W, is locally Fock: W,(f), f € L,(B,), is unitarily equivalent
to a direct sum of Fock representations. If v¢ L,(R®"), then every vector in
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F, has an infinite number of particles for the global system W.(f), fe J.
W.(f), fed, is disjoint from the Fock representation.

Proof of Theorem 2. By (3.18) or (3.19), and the bounded convergence
theorem,

V,(t) = lim S (iAyim = Y lim (it AY"/m! 4.9)
m=0 m=0

exists for [t| £ t,, some t,. Since V(¢) is unitary, V,(¢) is bounded in norm
by one and extends uniquely to F,. Now V()* = V(—¢) so that V,(¢)*
= V,(—1). We first prove that V,(¢) is unitary. Let e D and let

)4
6= > (tA)™"/m! T, ,weD.
m=0
Then by Lemma 4.2, it suffices to show that, given ¢> 0,
V) Tow—T,0e™ @2 < e (4.10)

for p, I = k sufficiently large, |t| <t,. Now (4.10) is bounded by

0

Y lGeAym! Ty, ) e

m=p+1
r
+ Y ITGtA)y"/m!, T,,) Tplle™ @2,
m=1

By Lemma 3.7, this is bounded by ¢ for p, [ = k sufficiently large, |¢| < ¢,.
Thus V,(t), [t| < tg, is unitary. By (4.5), we may define V,(¢), for all ¢, by

V.(6) = V,(t/m)" =lim V (t/m)" = litxrn VvV, 4.11)
where m is chosen such that |t/m| < t,. Thus, by (4.5),

V.o V.@)= 1i£r1 Vo vi) = li(rrn Vie+t)=V.(t+1t).
Moreover, by (3.18) or (3.19), and (4.9), V.(t) is weakly continuous
att=0:

(T, (V) L) Tip)| < Z (Kel)™

=Klt|(1 - Kle)™ =0
as t—0.
Thus V,(f) is a one-parameter unitary group. Let A,(f) be its self
adjoint generator. By Lemma 4.3, (3.18), and (3.19), A{DlignAj, j=z0,

and 9 is a dense set of entire vectors for ¢,(f) and analytic vectors for
the remaining self adjoint generators.
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Proof of Corollary. By (4.5), W, satisfies the Weyl relations:
W.(f) W,(g) = im W(f) W(g) = lim '™ 92 W(f + g)
=m0 (f+g).

We now prove the regularity properties. By the real linearity of and the
Weyl relations for W,, it suffices to show that ||y’ f,| >0 implies that
¢.(f,)—0and W,(f,)— I, strongly on Z. This follows directly from (3.18)
and (4.9):

o, (f,) Tewl, = K[ £, =0

and
W, (f) = L) Twll, < Zl K [l follyrm! =12
K|Sl =0
as 1—o0.

Proof of Lemma4.4. For the first conclusion, it suffices to prove
that for f, g eJ,

&,(f) ¢,(9) D lim o(f) ¢(g) - (4.12)
Then by Theorem 2,

N,(f)> im N(f) = lima*(/) a(})
= lim 272 [p(f) + ip /)] 272 [$() — ip(~if)]
C272[,(f)+ i (if 1272 [ ]) — igh,(—if)]
= a*(f) a,(]).

Thus N,(f) and a*(f) a,(f) are self adjoint operators which agree on a
dense set of analytic vectors. Hence they are equal.
(4.12) is established as follows.

8. 6 Tep = lim (W, ()= 1) 49) ™" (W, tg) ~ 1) G1)* T
= lim lim (W(s/)~ 1)69) " (Weg)— ()" T
= lim lim Y, 57 9V Y 60V blg Ty

o]

~tim lim 3 5/ 9V T G0V $lg) To
= lim¢(f) o) Trv »

by (3.18) and the bounded convergence theorem.
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By Lemma 4.3, the spectra of N(f) and N(B,), both of which are the
non-negative integers, coincide with the spectra of N,(f) and N,(B,)
respectively.

By (4.5) and [2], for fe L,(B,),

eitN,.(BQ) W,,(f)e_itN’(BQ) — Iigne”N(Be) W(f)e—itN(BQ)

=mW(e" f) = W,(e" f).

4.8)

Proof of Theorem 3. By (4.8), N,(B,) is a number operator for W,(f),
feL,(B,), which is therefore unitarily equivalent to a direct sum of
Fock representations [2, Theorem 2].

Suppose v¢L2(R‘”). Let {f}i2., f;€J, be an orthonormal basis of
J, and let Z (), Y, mP,(f) be the spectral decompositions of

mz0

N,(f), N( f ) respectlvely Let
I' = {y = {y;}: y, non-negative integers, y; = 0 almost always},

and let I" be assigned the measure for which each point has measure one.
ForyeT, let

H ryl(fi) Py= HPyl(fi)'

Then [2, p.31 and Prop.3.1] implies that {P,.},.r, {P,},.r arc both
mutually orthogonal families of projections. Fix k,p = 0. Let g,, g be
functions mapping I' into R and defined by

9.0 =P, Ti,w|?e @ Zy,Zp

=0 Zy;>p
g = 1P, Twl? Zy<p
=0, Zy,>p.

By Lemma 4.3, with U(x) = ¢>*¥U3) g g pointwise as ¢ — 0.
For M C J, dim.# <o, let Y, mP,,(#) Y, mP,(#)be the spectral

mz0 mz0

decompositions of N,(.#), N(.#) respectively. Let

Q,, (A Z vm( ), QM) = Z P, (M),
Q,p=lim 0,,(4), Q,=lim Q,(4).
Here convergence of finite dimensional subspaces is net convergence, and

Q, is the projection onto Y F, [2].

m=p
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We assert that @, , < limQ, = 0. Hence the projection
[
Q, =stronglimQ, ,
pooo

onto the finite particle subspace is zero. Thus every vector in F, has an
infinite number of particles, so that no subrepresentation is unitarily
equivalent to the Fock representation [2, Theorem 2].

Let ., = {f:}i-1. Noting that Q, ,(.#) decreases as .4 increases, we
prove that Q,, < Ii;‘n 0,=0:

1Q,, Tewll? = }}I}}J 19, () T}
< lim Q, (4,) Tepll?
lim [ g0
{y:yi=0,i>n}
= {g(y) < liminf { g,(y) (Fatouws Lemma)
r g7
= liminflim { g.(7)

G>0 h—o .
(r:yi=0,i>n}

= liminf lim 0, (4#£,) T, p|*e ™4
= liminf |Q, Ty, v|e ™1

= 1igglfK exp,A(o)e 1 =0

because A(o) —co0. The theorem is proved.

We now compare two exponential Weyl systems.

Theorem 4. W, = W, (v, o, n(k)), W, = W,(v', a, n'(k)) are not disjoint
if v—v eJ, and vV is non-negative. If, moreover, (4.6) holds, for U =1,
then W, and W, are unitarily equivalent.

Corollary. If v=1v" and n(k) = n'(k) for almost all k, then W, and W,
are unitarily equivalent.

Proof of Corollary. Let ye D and let 6 = TjyeD. Then for k>j
sufficiently large,

T}law = Tkae .

The same statement holds with T and T interchanged. Thus (4.6) holds
trivially.
Proof of Theorem. By Theorem 2, litrrn W(f)and 11(1711’ W(f) are unitary

operators on F,, F, respectively. By Lemma 3.6 and (4.4), V= LiamI

is an operator mapping F, into F, and bounded in norm by c(v, v'). U is
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non-zero because
(T, VT, = ;1_1%10 l_[ e~ Xil® eXp,,(j)Xj(o) X040 -,
j

by (3.2), 34), and LiglOO(X (0)— A(0)) = —v!(v, w). Finally, by (4.2),
VW/(f)=LimIW(f) = LimW(f)I = W.(/)V.

Thus V intertwines W,(f) and W/(f), which are therefore not disjoint.
If (4.6) holds for U = I, then, by Lemma 4.2, V is unitary. The theorem
is proved.
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