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Exponential Sensitivity and its Cost 
in Quantum Physics
András Gilyén1,2, Tamás Kiss1 & Igor Jex3

State selective protocols, like entanglement purification, lead to an essentially non-linear quantum 
evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum 
systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we 
demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential 

sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, 
any complex rational polynomial map, including the example of the Mandelbrot set, can be directly 
realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases 
with each iteration. We prove that exponential sensitivity to initial states in any quantum system has 
to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying 
initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict 
bound on the number of copies needed.

Quantum technology progresses at a fast pace. Preparation, control and measurement of coherent quantum sys-
tems1 became possible on an unprecedented level leading to a wealth of proposals of applications ranging from 
quantum information processing to high precision measurements and sensors. In these protocols, increasingly 
sophisticated sequences of coherent evolution, measurement and post-selection are applied in order to control 
the state of quantum systems. Dynamics achieved by state selective protocols was proven essential for a large 
number of quantum information protocols2,3 and quantum communication4. Prominent examples of probabilistic 
protocols are the KLM scheme2 for linear optical quantum gates or the entanglement puri�cation protocols5–7 
employing measurement and selection in order to increase the entanglement between subsystems.

Manipulation by measurement and selection breaks the linearity of quantum mechanics, thereby broadening 
the possibilities for quantum evolution8–11. In contrast, in the well established �eld of quantum chaos12 one stud-
ies the signatures of chaos in closed quantum systems with linear evolution. In such systems the linearity of time 
evolution prevents distance growing between two initial quantum states. However, the essential non-linearity of 
an iterated, state selective protocol can result in truly chaotic behaviour13–15, meaning that initially close quantum 
states can get separated rapidly. �e existence of such sensitive quantum protocols has been shown in13, but sensi-
tivity was proved only for a tiny fractal subset of initial states having zero measure. In this article we demonstrate 
that exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, 
we show that any complex rational polynomial map, including the example of the Mandelbrot maps16, can be 
directly realised using state selective protocols, bringing a whole new class of quantum protocols to life.

From a fundamental point of view, one can search for the most general evolution for a quantum system. A very 
general dynamics is sometimes imagined as the action of both unitary evolution and non-selective measurements 
on a system together with one or more ancillas. �e evolution reduced for the system only is called a quantum 
channel. When talking about quantum states in practice, it is unavoidable to be able to repeat experiments on an 
ensemble of identically prepared initial states in order to uncover the underlying probabilistic laws. �is ensemble 
view of quantum states allows for the following trick when designing the most general dynamics for a given initial 
state. Let us, for example, consider systems from the ensemble pairwise and let them interact with each other. 
A�er the interaction one can perform a measurement on one of the pairs and then discard the measured member 
of the pair. In case of selective measurement, one may also discard the unmeasured member of the pair, depend-
ing on the measurement result. �e resulting ensemble will be reduced in size, but some of its properties may be 
changed in a bene�cial way, e.g. entanglement between subsystems. �e above procedure goes beyond the usual 
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notion of quantum channels in the following sense. �e initial step of the procedure, namely taking the systems 
pairwise, can be viewed as splitting the original ensemble into two parts and employing one part as an ancilla. In 
other words, the state of the ancilla will be dependent on the state of the system. �e state dependent ancilla lies 
at the heart of the non-linearity of the process.

Results
A linear optical experimental scheme implementing a family of non-linear maps. We propose 
here a simple experimental setup that implements a non-linear process exhibiting exponential sensitivity to the 
initial state. Our scheme is inspired by an experimentally tractable entanglement puri�cation protocol17,18 and 
uses only linear optical elements. At the beginning of each iterative step we form pairs of photonic qubits from the 
ensemble of identically prepared photons and apply a post-selective transformation on the pairs. A�er measuring 
the polarization of one photon we either keep or discard the other photon depending on the measurement result. 
�e post-selection induces a non-linear, deterministic transformation on the remaining photons; therefore, the 
kept photons remain identically prepared.

�e key element of our scheme is the polarizing beam splitter (PBS). When two photons arrive at the same 
time but from di�erent spatial input modes, this linear optical element introduces entanglement between the 
spatial modes and the polarization degrees of freedom, see Fig. 1. We apply post-selection and accept the output 
of the PBS only if there is a photon in both spatial output modes.

Let H  and V  denote the horizontal and vertical polarization states for our photonic qubits. Consider the 
e�ect of the PBS acting on a product state of two incoming photons:
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A�er post-selection the remaining quantum state is

( )

( )

α β

α β α β

+

= ( + ) + + ( − ) −
( )

N H H V V

N
H V H V

2 2

2

3 4

2

3 4

2 2

3 4

2 2

3 4

where ± = ( ± )/H V 2  and α β= / +N 1 4 4  is a norming factor. �e success probability of the pro-
tocol is / ≥ /N1 1 22 . If we measure the photon at output mode 4 in the basis { | + 〉, | − 〉}, then the other photon 
collapses to α β⋅ ( ± )N H V2 2  corresponding to the measurement result. To get a definite outcome 

α β+H V2 2  we may apply a Pauli-Z gate whenever we measure −  (Fig. 1(f)) or simply neglect such cases, 
introducing another level of post-selection (Fig. 1(g)). Either way the protocol implements a non-linear transfor-
mation α β α β+ ⋅ ( + )S H V N H V: 2 2  which maps the identical qubit states of an ensemble to another 
qubit state of a smaller identical ensemble. If we iterate this process S amended with an additional unitary step U, 
the iterates (US)n exhibit increasingly rich dynamics.

It has been shown13 that by iteratively applying US on an ensemble of identically prepared qubits, the one qubit 
state of the ensemble a�er n iterations ψ α β= +H Vn n n  may evolve sensitively. By sensitivity we mean that for 
some initially similar quantum states ψ ψ, ′

0 0  the evolving states ψ ψ, ′
n n  can get very di�erent during iteration, 

i.e. using some quantum information distance d (e.g. the Bures distance) we can get ψ ψ ψ ψ( , ′ ) ( , ′ )d dn n 0 0 . 
More precisely we call the process sensitive at some initial state ψ0  if arbitrarily close quantum states can get sepa-
rated from it to a constant distance C, i.e. ε ψ ψ ψ ε ψ ψ∀ > , ∃ ′ ( , ′ ) < , ( , ′ ) >d d C0 : n n0 0 0 . We call this 
exponential sensitivity if it also holds requiring ~ ε( / )n log 1 .

Sensitivity has been shown for initial states lying on a fractal subset of the Bloch sphere called the Julia set16,19, 
see Fig. 2. �e speci�c fractals that were examined regarding the protocol US13 all had zero measure. However 
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rated Julia set images (see Fig. 2) suggesting that it may reach a point where the whole Bloch sphere is covered by 
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Exponential sensitivity for all initial states. In order to handle the arising non-linear maps better we 
project the surface of the Bloch sphere to the complex plane using stereographic projection. �us a (photonic) 
qubit ψ α β= +H V  may be described using a single complex parameter including infinity: 
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α
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ˆz { }. �is representation yields () a new description of our protocol in terms of rational 

functions16,19:
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Using this formalism, it turns out that f is one of a few special so-called Lattès maps20 and as such has gained a 
lot of attention in the theory of complex dynamical systems19. We can better understand the special properties of 
our Lattès map by analysing its relationship to the corresponding linear transformation of the 2 dimensional 
torus. We will represent the torus C Z/ i[ ] as the complex plane modulo the Gaussian integers 
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 = + | , ∈i a bi a b[ ] { } .  It s  t ransformat ion is  represented by  mult ipl icat ion with  ⋅( − )i1 : 

→ ( − ) ⋅ ( , ) z i z i1 mod 1 , which rotates and folds the torus 2 times over itself. �e correspondence between the 
torus and the sphere is established via the so called Weierstrass elliptic function21 C Z C℘ /  ˆi: [ ] . Relating the 

two surfaces gives rise to the identity  ( ) = ℘(( − ) ⋅ ℘ ( ))−f z i z1n n 1  showing that iterating f on ̂ has essentially 
the same e�ect as repeatedly applying multiplication ⋅( − )i1  on C Z/ i[ ], see Fig. 3 and Methods.

Viewing Φ  through these glasses it becomes clear that it shows chaotic behaviour on the whole Bloch sphere. 
�e map representing Φ  on the torus uniformly stretches the surface of the torus by a factor of 2  and folds over 
itself two times. It is intuitively clear that the iterative application of such a transformation shows exponential 
sensitivity to the initial position on the torus and has a positive Lyapunov exponent. Even more strikingly, it 
exhibits exponential mixing, yielding that during the iteration of Φ  even a tiny uncertainty about the initial state 
evolves exponentially fast to a complete uncertainty, meaning that the iterated state may be any point of the Bloch 
sphere, as depicted on Fig. 3. For a rigorous derivation of the exponential mixing see Methods.

Figure 1. �e proposed experimental setup. (a) A Polarizing beam splitter (PBS) with two spatial input/
output modes. (b–e) �e e�ect of the PBS acting on the four possible two photon input states regarding 
polarizations. (f) A post-selective linear optical scheme inducing a non-linear transformation (g) and its 
simpli�ed version utilising a polarizer reducing the success probability by 1/2. (h) A two level scheme amended 
by a unitary transformation U acting on the polarization state of the photons. We consider a run of this 
experimental setup successful if all the detectors click. �is condition introduces the post-selection to the 
system.
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Emergence of general complex rational dyanmics and the Mandelbrot set. We may �nd even 
more exotic transformations by generalising the protocol to allow the physical realisation of any rational map 

→
∑

∑

=

=

z
c z

d z

k
n

k
k

k
n

k
k

0

0

 of degree n ≥  2. Our generalised scheme proceeds by forming n-tuples of identical pure qubits 

α β⊗ ( + )= 0 1j
n

j1  and applying an appropriate n-qubit unitary V. �e �nal step of one iteration is measuring 

all the qubits except the last one and keeping it only if all measurements resulted 0; this post-selective step can be 
shortly described by the projection | 〉〈 … | + | 〉〈 … |[ 0 0 00 1 0 01 ]. Implementing a speci�c rational map reduces to 
�nding a V unitary satisfying:
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with arbitrary γ  ≠ 0, providing the desired post-selected state. �e existence of such V follows from a simple linear 
algebraic argument explicated in Methods.

A notable consequence is that we found a direct quantum physical realisation of the Mandelbrot maps 
→ +z z c2  and can devise a quantum circuit for it. Figure 4 shows a possible quantum circuit implementation 

for this family of maps. �e scheme demonstrates how the corresponding family of 2-qubit unitaries may be con-
structed using only controlled 1-qubit gates, which are considered experimentally more feasible in general.

For the sake of completeness we note that recently another strong connection between rational functions and 
quantum computing with post-selection was discovered22 from an algorithmic perspective.

Figure 2. Julia sets consisting of the sensitive initial states lying on the Bloch sphere. Julia sets (blue) are 
plotted for various choices of θ ϕ,U . (a–c) Shows how the Julia set starts covering the whole Bloch sphere while 
increasing the value of θ. (d) Transition from a web to a simple closed curve. (e) �e sensitive initial states form 
a completely disconnected set. (f) �e result of a parabolic explosion (implosion)30 where a stable �xpoint has 
become unstable - breaking a circle like connected Julia set into in�nitely many parts.
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The cost of non-linearity and the Schrödinger microscope. We have just shown that using 
post-selection one can implement a wide range of non-linear maps, which may be useful for various tasks. A 
highly non-linear map, like Φ , provides a sort of “Schrödinger microscope”23 enabling one to exponentially mag-
nify tiny di�erences between quantum states. Consider for example the behavior of Φ  around the �xed state 

+ = Φ + . Using our representation in terms of rational functions this �xed point becomes 1 =  f (1). �en 

| = −
( )

=
i2

df z

dz z 1
 translates to that Φ  doubles in�nitesimal distances around + , analogously to a microscope.

Figure 3. Iterations of an exponentially mixing map. (a–l) Visualisation of the iteratives of f. Each sub�gure 
shows ∈ − , × − ,z i i[ 2 2] [ 2 2 ]; the domains are coloured according to whether  |>f 1n (black) or ≤ 1 (white) 
distinguishing the northern and southern half of the Bloch sphere. A�er a few iterations even very close states 
get mapped to di�erent halves of the Bloch sphere as indicated by the rapid alternation of black and white 
domains. (m) �e iterative map Φn acts on the Bloch sphere correspondingly to the action of multiplication by 
(1 −  i)n on the torus, explaining the regular pattern.
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Having such a tool we are tempted to develop powerful quantum algorithms utilising it. It is well known that 
introducing post-selection to Quantum Computing makes it extremely powerful - the corresponding complexity 
class PostBQP24 includes NP and even PP. �e question of e�ciency and resource needs naturally arises. We 
address it using a black box argument considering results about state discrimination25–27.

Suppose we have a quantum device implementing n iterations of Φ  processing a qubit ensemble of size N.  
The size M of the successfully processed output ensemble may be probabilistic. We would like to determine  
its success rate, i.e. the average ratio M/N. To derive a bound on the success rate consider applying this  
quantum device to the qubit ensemble having state either ψ0  or ψ ψ≠1 0  with equal probability 1/2. If  
their distance ψ ψ ψ ψ( , ) = − /d N1 10 1 0 1

2 , then the distance of the full ensemble states is 

ψ ψ ψ ψ(⊗ , ⊗ ) ≈ ⋅ ( , )d N dN N
0 1 0 1

. �us we cannot distinguish the possible ensemble states with error 
probability less than ψ ψ≈( − ⋅ ( , ))/N d1 20 1 , see [26, Chapter IV §2]. Suppose ψ( , | + 〉) /d 1 2j

n for 
j =  0, 1 then, a�er n iterations of our process Φ , the distance of the two states increases by a factor of roughly 2n since 
Φ  doubles in�nitesimal distances around the �xed point + . If the device outputs M copies of the transformed  
states then we can distinguish the ensembles with error probability ψ ψ≈( − ⋅ ⋅ ( , ))/M d1 2 2n

0 1 . For large  
N the success rate is roughly constant because of the law of large numbers; thus we can treat the value M/N �xed.  
But ⋅ /M N2n  cannot exceed 1 as the error probability of discrimination cannot decrease and so the success  
rate is upper bounded by 4−n. �is holds for states lying close to + , in better cases the rate may be higher. For our 
implementation scheme each iteration has a success rate at least 1/4 (up to a negligible term − 1/N due to parity) 
implying that this scheme provides the best possible worst case success rate.

In this way we have shown that exponentially many copies are needed for n iterations of the process. Similar 
upper bound can be devised to any non-linear map that have a region where the separation of close states can 
be described by a multiplicative factor λ >  1. If we follow the above argument it turns out that the worst case 
success rate of such protocol is bounded by 1/λ2. Note that the particular choice of metric by which we measured 
separation does not limit the scope of the argument too much – we could use any other metric that agrees in�ni-
tesimally, e.g. the Bures metric. �us it turns out that the implementation of any kind of Schrödinger microscope 
needs exponentially many copies of the states in terms of magni�cation steps (more precisely, quadratically many 
in terms of the total magni�cation).

Discussion
While exploring the possible dynamical properties of state selective protocols, we found that any complex 
rational map can be implemented using state selection. Such a general and natural correspondence between 
a physical system and the theory of complex dynamical systems is unique to our knowledge. We could also 
devise a realistic optical experimental scheme, which implements particularly interesting quadratic rational 
dynamics.

We showed that a speci�c setting of the proposed optical scheme implements an exponentially mixing map. 
At several regions of the Bloch sphere this protocol magni�es initial di�erences between quantum states almost 
uniformly, thus we may call it a Schrödinger microscope. �e term Schrödinger microscope was introduced by 
Lloyd and Slotine23 in connection with a non-linear quantum protocol emerging from collective weak measure-
ments and coherent feedback. Even though23 introduces Schrödinger microscope at a conceptual level, there was 
no explicit example shown unlike in this article. Although the collective weak measurement approach seems very 
di�erent from our post-selective scheme, they are connected at a deep level: the e�ective non-linearity comes 
from the underlying ensemble of identical quantum states in both cases.

During our study of the emergence of exponential sensitivity, we were led to the analysis of implementation 
cost, which turned out to be exponential. We found a general bound on the number of copies needed for the 
successful implementation of any expanding non-linear map. We proved that a protocol capable of magnifying 
di�erences between close quantum states by a factor λ >  1 necessarily has a worst case rate of loss at least 1 −  1/λ2 
in the number of copies of the unknown input quantum states. �is “Quantum magni�cation bound” is basically 
another reformulation of the fact that one cannot bootstrap quantum information without an external source, 
somewhat resembling the quantum no-cloning theorem.

Figure 4. A quantum circuit implementing Mandelbrot maps. �e controlled gate labelled by the real 

number rj is essentially a rotation composed with a Pauli-Z-gate 
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c
, then the resulting map is z2 +  c, provided  

that we accept only the 0 measurement outcome on the second qubit.
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We used the “Quantum magni�cation bound” principle to show the optimality of our implementation of a 
Schrödinger microscope. In general, this principle helps to understand the advantages and limitations of any kind 
of Schrödinger microscope, regardless of the actual implementation method. �us it also overcomes the di�cul-
ties coming from approximative arguments required to describe complex systems, like the protocol23 involving 
collective weak measurements and coherent feedback. �is fundamental bound may be applied to other quantum 
information protocols, providing a general tool for bounding the success rate of particular probabilistic protocols.

Looking at general processes, with inspiration coming from this principle, may also provide a new insight to 
the relation of classical and quantum chaos28, suggesting that classical deterministic chaos may be just an approx-
imation with a characteristic time scale. Classical deterministic chaotic systems explode quickly, and observing 
the deterministic evolution of the system, even at a macroscopic level, enables the determination of the initial 
conditions increasingly precisely29. But there is a level of precision that is prohibited by quantum uncertainty rela-
tions. �is is an apparent philosophical contradiction, provided we believe classical physics is based on quantum 
mechanics; a possible dissolution is saying that on long time scales one cannot treat a classical process determin-
istically chaotic, just chaotic in some statistical sense.

Methods
Connection to Lattès maps. �e map =
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is a well-known Lattès map20, and +
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 is a self inverse Möbius transformation19. Since conjugation by Möbius 

transformation does not change the iterative features, it implies that f exhibits the same dynamics as f . To give a 
physical meaning to this Möbius transformation, we mention that it corresponds to a rotation of the Bloch sphere, 
i.e. f and f  essentially describe the same process, just written in a di�erent qubits basis.

As we already indicated in this article, f is conjugate to the map 
C Z

( − ) ⋅ /i1 id i[ ] via the Weierstrass-℘ func-

tion. In fact, we need a slightly transformed version of the Weierstrass-℘ that is amended by our Möbius transfor-
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℘ induces a two sheet branched covering with 4 exceptional points that are covered only once. (�ese points 
can be easily spotted on Fig. 3). With the exception of these 4 points, ℘ is a two-to-one map so it does not have a 
well de�ned inverse. A general point ∈ˆ ˆz  has pre-images C Z, − ∈ /z z i[ ], but the linear map on C Z/ i[ ] carries 
opposite numbers to opposite ones so fortunately the identity ( ) = ℘(( − ) ⋅ ℘ ( )) ∀ ∈− ˆ ˆ ˆ ˆf z i z z1 1  holds 
regardless which branch of ℘− 1 is considered. In this sense we can say, that the stronger identity 
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Metric on the Bloch sphere ̂ and the torus C Z i/ [ ]. We would like to show exponential mixing of our 
Lattès map, thus we need to understand how distances are distorted by ℘. In order to trace the problem, we need 
to introduce some proper distance concepts.

A possible metric on pure quantum states is given by using the distance defined by the quantum angle 

( )ψ ψ ψ ψ, =d : arccosA z z z00
. Note that this distance coincides with the natural spherical metric of the 

Bloch sphere, up to a multiplicative factor of 2. �is metric is similar to the Bures metric de�ned by the distance 
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 as we indicated.

�e Möbius transformation is just an isometry of ̂, so we can concentrate on the other part 
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( = )=g L i 0
3

 the �nal formula is: 
ρ = | ℘( ) − ℘( )| =





| ℘( ) | +






| ℘( ) − ℘( ) |

( |℘( ) | + )
z g z g4 64

z
g

z g z

z g

2 16

1

4 3
2 2

4

4

g

4

2

2
2

2

3
2

2
2

2 . Using the tri-

angle inequality we get 

)(
ρ ≤ =

|℘( ) + ℘( )

|℘( ) +

℘( )

|℘( ) +
g g64 64

z g z

z g

z

z g

2
2

4

4
2 4

3
2

2
2

2 2
2

. This function has its maximum when 

℘( ) = /z g 42
2

; substitution yields ρ ≤ g162
2

. Finally using that ≈ .g 13 7504
2

, we arrive at the conclusion 

ρ <  16.
�e conformal metric ρ <  16 is upper bounded, so the image of any two points from the surface of the torus 

gets mapped to points having spherical distance less than 16 times their torical distance. �us for any point s on 
the surface of the Bloch sphere and a radius ε ball ε( , )B sdR

 around it, the ball’s pre-image  ε℘ ( ( , ))− B sd
1

R
 contains 

another ball 
C Z

ε(℘ ( ), / )
−

/
B s 16d

1

i[ ]
.

Exponential mixing. Suppose we have a one qubit state ψz  that we know with ambiguity ε. In other  
words it  is  a  pure quantum state ψz  close to some ψ| 〉z0

,  such that  the quantum angle 

ψ ψ ψ ψ ε(| 〉, | 〉) = |〈 | 〉| ≤d arc cosA z z z z0 0
. So ψz  lies in the diameter ε ball around ψ| 〉z0

, i.e. ψ ψ ε| 〉 ∈ (| 〉, )Bz d zA 0
. 

This ball corresponds to ε( , )B z 2d 0R
 using the (Bloch) spherical representation. As we already discussed 

 ε ε℘ ( ( , )) ⊃ (℘ ( ), / )− −

/C Z
B z B z2 8d d

1
0

1
0R i[ ]

.

It is easy to show that a�er multiplying each point of 
C Z

ε(℘ ( ), / )
−

/
B z 8d

1
0i[ ]

 with (1 −  i)n the image covers the 

whole C Z/ i[ ], provided that ε≥ ( / )n log 8
2

. �us for ε= + ( / )n log6 1
2

 we have  ( )ε= ( , )ˆ f B zn
d 0A

. It means 

that a�er ε+ ( / )log6 1
2

 iterations the initial uncertainty about the state ψz  evolves so much that ψΦ ( )n
z  may 

be any pure state. �is statement is basically a translation of the fact that the linear map ⋅( − )i1  has Lyapunov 
exponent ( )ln 2  on C Z/ i[ ], and shows exponential mixing and sensitivity on the surface of the Bloch sphere.

Construction of n-qubit unitaries for degree n rational maps. We would like to implement the 

rational function →
∑

∑

=

=

z
c z

d z

k
n

k
k

k
n

k
k

0

0

. Our generalised protocol starts by forming n-tuples of identical pure qubits of 

our ensemble, then continues by the application of a speci�c n-qubit unitary V. �e �nal step is a measurement 
on all the qubits except the last one of every tuple. �e protocol succeeds if all the measurements resulted in 0, 
the unmeasured qubit is kept only in such cases.

Initially the state of the n-tuples is the following product state:

( ) ∑ ∑φ α β α β φ φ= ⊗ + = =

( )
= =

−

∈ ,
# = =

b0 1 where

5
i

n

i i
k

n
k n k

k k
b1 0 {0 1}n

bi bi k{ 1}

As before we use the parametrisation z =  α/β for a qubit α β( + )0 1 . �en the parameter of the unmeas-
ured, post-selected qubit can be described as follows:

φ

φ

φ α β

φ α β

α β

α β

〈 … |

〈 … | |
=
∑ 〈 … | |

∑ 〈 … | |
=
∑

∑
=
∑

∑

( )

−

−

=
−

=
−

=
−

=
−

=

=

�

�

� ������� �������

� ������ ������

V

V

V

V

c

d

c z

d z

0 0 0

0 0 1

0 00

0 01

6

n

n

k
n

k

c

k n k

k
n

k

d

k n k
k
n

k
k n k

k
n

k
k n k

k
n

k
k

k
n

k
k

1zeros

1zeros

0

0

0

0

0

0

k

k

We present a linear algebraic argument showing that for any rational map of degree ≥ 2 there is a suitable uni-
tary V. We show how to construct a unitary for any coe�cients ck, dk describing such a rational map.

First let us introduce some vector ω| 〉 = (| … 〉 − | … 〉)/

− −

 0 0 10 0 0 01 2

n n2zeros 2zeros

 that is orthogonal to all the φk  

vectors. We set 

) )( (
ω= ∑ ⋅ + ⋅

φ

=v xk
n c

n
k

n
k

0 0
k k  and 

) )( (
ω= ∑ ⋅ + ⋅

φ

=v yk
n d

n
k

n
k

1 0
k k . Then by choosing 

, ∈x y  appropriately, we can always satisfy the equalities:

( ) ( )
∑ ∑= − ⇔ + = ⇔ =

( )
= =

 ⁎

⁎ ⁎

⁎x y
c d

n
k

c d
n
k

x y v v0 0

7
k

n
k k

k

n
k k

0 0
0 1

( ) ( ) ( )
∑ ∑ ∑− =

−
⇔ + = + ⇔ =

( )
= = =

 x y
d c

n
k

c

n
k

x
d

n
k

y v v

8
k

n
k k

k

n
k

k

n
k2 2

0

2 2

0

2
2

0

2
2

0
2

1
2

Finally, setting 〈 | = 〈 |/| |

−

�⋯ � �V v v0 0 0 :

n 1zeros

0 0
 and 〈 … | = 〈 |/| |

−

� � �V v v0 0 1 :

n 1zeros

1 0
 satis�es (6). Due to (7),(8) / v v0 0  and 

/ v v1 0  are orthonormal vectors so we can extend V to a full n-qubit unitary by de�ning the remaining 2n −  2 
orthonormal rows arbitrarily.

Without loss of generality we can assume that ∑ = c zk
n

k
k

0  and ∑ = d zk
n

k
k

0  has no common roots; otherwise  
we can cancel it .  So the probability that the process succeeds φ φ+ V V0 00 0 012 2 
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=( ∑ + ∑ )/= =c z d z vk
n

k
k

k
n

k
k

0

2

0

2

0
2 is non-zero. �en this success probability is also greater than some p prob-

ability for a �xed map, regardless the state φ  due to compactness of the state space. (However, depending on the 
map, this lower bound may be arbitrarily low.)

�us using the above de�ned V unitary we can implement the rational function ∑

∑

=

=

c z

d z

k
n

k
k

k
n

k
k

0

0

 where as before this 

means a transformation

∑ ∑α β α β α β( + ) →





+




 ( )=

−

=

−N c d0 1 0 1
9k

n

k
k n k

k

n

k
k n k

0 0

where z =  α/β and N is a norming factor.
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