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One-Way Communication Complexity
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Spot a difference!
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Are the images the sameX



One-Way Communication Complexity

00111010001101...

Input x Input y
Goal: Output P(x,y)

( minimum communication )

Applications of Communication Complexity

VLSI design, Boolean circuits, Data structures, Automata, Formulae
size, Data streams, ...

Encoding/Compression scheme C(x), such that P(x,y)=g(C(x),y)



Quantum one-way communication complexity
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Input x Input y
Goal: Output P(x,y)

( minimum communication )

Main question:

What is the relation between classical and quantum one-way
communication?



) Quantum one-way communication complexity

" Holevo's bound
= We cannot compress information by using qubits.
We need n qubits to transmit n classical bits.

" [Kremer95] defined a complete problem for boolean promise
problems of logarithmic quantum communication complexity.

" [Raz 99] also considers the same problem. He gives an
exponential separation for two-way communication.



] Quantum one-way communication complexity

" Holevo's bound
= We cannot compress information by using qubits.
We need n qubits to transmit n classical bits.

" [Kremer95] defined a complete problem for boolean promise
problems of logarithmic quantum communication complexity.

" [Raz 99] also considers the same problem. He gives an
exponential separation for two-way communication.

Our result:

The first exponential separation of classical and
quantum one-way communication complexity.




; Hidden matching problem HM,
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Input: x 2 {0,1}n Input: a matching M on [n]

e.g. {(1,3),(2,5),(4,8),(6,7)}
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Input: x 2 {0,1}» Output: Input: a matching M on [n]
((4,5),z; © xj), e.g.{(1,3),(2,5),(4,8),(6,7)}
for (i,5) € M .
le %\ ‘.3




; Complexity of HM,
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: n Input: a matching M on [n]
Input: x 2 {0,1} Output
((27.])7 T D xj)a
for (i,5) e M
Theorem

» There exists a quantum algorithm with complexity O(logn)

* Any randomized algorithm with public coins has complexity Q(>v/n)



] Quantum algorithm for HM,

Let M = {(i1,i2), (i3,%4), .- -, (in_1,in)} € Bob's matching.

" Alice sends the state
1 X .
— Y (—1)%i)
" Bob measures in the basis
B = {|i1) & [ig), |i3) £ |ia), ..., in—1) £ |in)}

and outputs ((,k),0) if he measures 7) + k)
((G.k),1) ifhe measures |j) — |k)



Quantum algorithm for HM,

W

= Alice sends the state

—Eni —1)%2) =%«(—1)%|z'1>+<—1>%'2|7:2>>+...+(<—1>x"n—1|in_1>+<—1>xin|z'n>>)

3

" Bob measures in the basis

B = {li1) £ [i2),li3) £ ]24), .- -, |in—1) £ [in)}

" Probloutcome is |j)+]|k)] = 2n(( 1)%i4(—1)%k)2
Probloutcome is |5)—|k)] = 5 ((—1)%—(—1)%k)?

" Bob can compute the XOR of a pair of the matching with prob. 1



) HM,, and Other problems

L ocally Decodable Codes

The quantum algorithm relies on the property that we can compute
efficiently the XOR of a pair of a matching from a uniform superposition.

Same property was used in [K., deWolf] to prove a lower bound for
2-query Locally Decodable Codes.



] HM,, and Other problems

L ocally Decodable Codes

" The quantum algorithm relies on the property that we can compute
efficiently the XOR of a pair of a matching from a uniform superposition.

" Same property was used in [K., deWolf] to prove a lower bound for
2-query Locally Decodable Codes.

Complete Problems

" We can define a variant of Kremer’s problem which is complete for non-
boolean promise problems of logarithmic on-way quantum
communication complexity.

® Our bounds extend to this problem.



; Other models of communication complexity

" Two-way communication

00111010001101...
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= [Raz99] proved an exponential separation.
= The quantum protocol needs two rounds.



; Other models of communication complexity

= Sampling model

= [ASTVWO98] proved an exponential separation.
" The separation does not hold with public coins.



) Other models of communication complexity

= Simultaneous Messages

’ »

Referee

" Quantum fingerprints [BCWdWO01]
The separation does not hold with shared public coins

Our problem provides the first exponential separation in the
model of Simultaneous Messages with public coins.




] Neat application [Harry Buhrman]

Hidden matching Problem as a non-locality game

" Using EPR pairs and NO communication, we can create
correlations for which we need exponential classical
communication even to approximate them!



; Hidden matching problem HM,
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: n Input: a matching M on [n]
Input: x 2 {0,1} Output
((27.])7 T D xj)a
for (i,5) e M
Theorem

» There exists a quantum algorithm with complexity O(logn)

* Any randomized algorithm with public coins has complexity Q(>v/n)



] Lower bound for HM,,

" By Yao’'s Lemma we will construct a “hard” distribution over
instances of HM, and prove a distributional lower bound w.r.t.
deterministic one-way protocoils.



] Lower bound for HM,,

" By Yao’'s Lemma we will construct a “hard” distribution over
instances of HM, and prove a distributional lower bound w.r.t.
deterministic one-way protocoils.

" Distribution of Alice’s input: x 2, {0,1}"

" Distribution of Bob’s input: M 2, M
M. 1s any set of Q(n) pairwise edge-disjoint matchings.
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] Lower bound for HM,

Intuition :

Alice’s message must contain information about at least one
edge of each matching (©2(n) edges).

(e.g. x©0%,,x0x;,x0Xx;, ...)
There are 2(1v/n) independent edges.
Hence, the message needs to be of length 2(y/n)




Lower bound for HM,

Intuition :

Alice’s message must contain information about at least one edge of
each matching (©2(n) edges).

(e.9. x,©0x,,x0%x,,X,0x,,X,0X; ...)
There are €2(4/n) independent edges.
Hence, the message needs to be of length 2(+/n)

Idea of Proof :

We prove that Alice cannot send the same message for too many
inputs x.

Every matching imposes a linear constraint on x. (e.g. x,©x, =0,...)
There are at least €2(1/n) linearly independent constraints,
hence only 27n—2(v/n) x’s can be mapped to the same message.

We need to take care of errors!!!



Lower bound for HM,,

M, M, . . . M.,

Xl
X2
X3 The Matrix
(i)  x©Ox))

= At least a (1-0) fraction of the entries are correct.
" At least half the columns are (1-25)-"good”.
" At least half the rows are (1-258)-"good”.



! Step 1:Pick “good” rows corresponding to the same msg.

M, M, . . . M.,

Xl
XZ
X3

XN




; Step 1:Pick “good” rows corresponding to the same msg.

M, M, . . . M.,

Xl
XZ
X3

" Eachrowis (1-20)-"good”.



) Step 1:Pick “good” rows corresponding to the same msg.

M, M, . . . M.,

" Eachrowis (1-20)-"good”.
" Let S_be the set of x’s that correspond to the most “popular” message .

= Number of Alice’s distinct message , 2"/|S/|

5

" | need to bound the size of |S_| !



! Step 2: Pick "good"” , independent columns

M, M, . . . M.,




! Step 2: Pick "good"” , independent columns

G

" Each column is (1-40)-"good”. |G| =Q(n)



] Step 2: Pick "good"” , independent columns

G

" Each column is (1-40)-"good”. |G| =Q(n)
= All the rows of the matrix are the same.
" Each row contains Q(n) entries of the form ((i,)).x; © x,)



) Step 2: Pick "good"” , independent columns

G

" Each column is (1-40)-"good”. |G| =Q(n)
®= All the rows of the matrix are the same.

" Each row contains Q(n) entries of the form ((i,)).x; © x,)
"  Define the Graph G.

] ®
(e.g8.X,0%;,X0%x,,X0X,,X0X;,X0X, ...) ; A

De__ e



] Step 2: Pick "good” , independent columns

G

" Each column is (1-40)-"good”. |G| =Q(n)
= All the rows of the matrix are the same.
" Each row contains Q(n) entries of the form ((i,)).x; © x,)

"  Define the Graph G.
(e.g8.X,0%;,X0%x,,X0X,,X0X;,XOX, ...) ;

| S—

" There are Q(n) edges )

There exists a forest of size 2(1/n) * /



; Step 2: Pick "good"” , independent columns

F

" The columns in F are independent and |[F|=2(1/n)



; Pick “good” rows againl

F

" The columns in F are independent and |[F|= Q(1/n)

" Each row is (1-85)-"good”



] Lower bound for HM,,

F

" The rows correspond to inputs mapped to the same message.
" The columns correspond to independent edges, |F|=2(1/n)
" |n each row, (1- 89) fraction of the entries are correct.



) Lower bound for HM,

How many x’s can be mapped to the same message?

n variables and a set F of $2(y/n) independent linear constraints.

= There are Qn_Q(\/ﬁ) solutions.

We also need to count all x’s that satisfy a set of constraints which
agrees with F on at least a (1-89) fraction.

® There are 2H2(85)Q(\/ﬁ) such sets of constraints.

Total number of x’s mapped to the same message:

S |- on—(1-H2(86))Q(V/n)



] Lower bound for HM,

" Total number of x’'s mapped to the same message:

s |- 2n—(1-Ha(88)Q(yn)

rl

= Size of Alice’s message = log (2"/|S,|) = 2(/n)

Theorem:
The one-way randomized communication complexity of HM, is @ (1/1)

Upper bound: It's sufficient for Alice to send O(\/ﬁ) random bits of x.




; Boolean Hidden Matching Problem
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Input: x 2 {0,110 Input: a matching M on [n],

Output: L
{ 0 if w is correct w2 {0,1}

1 if w is wrong

Theorem

There exists a quantum algorithm with complexity O(logn)

* Any linear randomized algorithm with public coins has complexity Q(n1/3)



) Open problems

" Work in progress

= Boolean HM, : extend the lower bound to general randomised
protocols.

= Provide a separation between quantum one-way and classical
two-way communication.

= Open problems

= One-way communication complexity of total functions
= Simultaneous Messages

" Quantum advice: BQP/poly vs. BQP/qpoly
= Quantum proofs: QMA vs. QCMA



