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Are the images the same?



One-Way Communication Complexity

Applications of Communication Complexity
VLSI design, Boolean circuits, Data structures, Automata, Formulae 
size, Data streams, …

Encoding/Compression scheme C(x), such that P(x,y)=g(C(x),y)

00111010001101…

Input  x Input  y
Goal: Output P(x,y)

( minimum communication )



Quantum one-way communication complexity

Main question:
What is the relation between classical and quantum one-way 
communication?

Input  x Input  y
Goal: Output P(x,y)

( minimum communication )



Quantum one-way communication complexity

Holevo’s bound
We cannot compress information by using qubits.
We need n qubits to transmit n classical bits.

[Kremer95] defined a complete problem for boolean promise 
problems of logarithmic quantum communication complexity.

[Raz 99] also considers the same problem. He gives an 
exponential separation for two-way communication.



Quantum one-way communication complexity

Holevo’s bound
We cannot compress information by using qubits.
We need n qubits to transmit n classical bits.

[Kremer95] defined a complete problem for boolean promise 
problems of logarithmic quantum communication complexity.

[Raz 99] also considers the same problem. He gives an 
exponential separation for two-way communication.

Our result:
The first exponential separation of classical and 
quantum one-way communication complexity.



Hidden matching problem HMn

Input:  x 2 {0,1}n Input: a matching M on [n]

e.g. {(1,3),(2,5),(4,8),(6,7)}
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Hidden matching problem HMn

Input:  x 2 {0,1}n Input: a matching M on [n]

e.g. {(1,3),(2,5),(4,8),(6,7)}
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Complexity of HMn

Input:  x 2 {0,1}n Input: a matching M on [n]

Theorem

• There exists a quantum algorithm with complexity  

• Any randomized algorithm with public coins has complexity

Output



Quantum algorithm for HMn

Let be Bob’s matching.

Alice sends the state

Bob measures in the basis

and outputs ( (j,k) , 0 ) if he measures 
( (j,k) , 1 ) if he measures



Quantum algorithm for HMn

Alice sends the state

Bob measures in the basis

Bob can compute the XOR of a pair of the matching with prob. 1



HMn and Other problems

Locally Decodable Codes

The quantum algorithm relies on the property that we can compute
efficiently the XOR of a pair of a matching from a uniform superposition.

Same property was used in [K., deWolf] to prove a lower bound for     
2-query Locally Decodable Codes.



HMn and Other problems

Locally Decodable Codes

The quantum algorithm relies on the property that we can compute
efficiently the XOR of a pair of a matching from a uniform superposition.

Same property was used in [K., deWolf] to prove a lower bound for     
2-query Locally Decodable Codes.

Complete Problems

We can define a variant of Kremer’s problem which is complete for non-
boolean promise problems of logarithmic on-way quantum 
communication complexity. 

Our bounds extend to this problem.



Other models of communication complexity

Two-way communication

[Raz99] proved an exponential separation.
The quantum protocol needs two rounds.

00111010001101…



Other models of communication complexity

Sampling model

[ASTVW98] proved an exponential separation.
The separation does not hold with public coins.



Other models of communication complexity

Simultaneous Messages

Quantum fingerprints [BCWdW01]
The separation does not hold with shared public coins

Our problem provides the first exponential separation in the 
model of Simultaneous Messages with public coins. 

Referee



Neat application [Harry Buhrman]

Hidden matching Problem as a non-locality game

Using EPR pairs and NO communication, we can create 
correlations for which we need exponential classical 
communication even to approximate them! 



Hidden matching problem HMn

Input:  x 2 {0,1}n Input: a matching M on [n]
Output

Theorem

• There exists a quantum algorithm with complexity  

• Any randomized algorithm with public coins has complexity



Lower bound for HMn

By Yao’s Lemma we will construct a “hard” distribution over 
instances of HMn and prove a distributional lower bound w.r.t. 
deterministic one-way protocols.



Lower bound for HMn

By Yao’s Lemma we will construct a “hard” distribution over 
instances of HMn and prove a distributional lower bound w.r.t. 
deterministic one-way protocols.

Distribution of Alice’s input: x 2R {0,1}n

Distribution of Bob’s input:  M 2R Mn

Mn is any set of Ω(n) pairwise edge-disjoint matchings.
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Lower bound for HMn

Intuition :
Alice’s message must contain information about at least one 
edge of each matching (Ω(n) edges).

(e.g.  x1© x2 , x2© x3 , x1© x3 ,  …)
There are independent edges.
Hence, the message needs to be of length 



Lower bound for HMn

Intuition :
Alice’s message must contain information about at least one edge of 
each matching (Ω(n) edges).

(e.g.  x1© x2 , x3© x4 , x1© x4 , x2© x3 …)
There are independent edges.
Hence, the message needs to be of length 

Idea of Proof :
We prove that Alice cannot send the same message for too many 
inputs x. 
Every matching imposes a linear constraint on x. (e.g. x1© x2 = 0,…)
There are at least linearly independent constraints,
hence only x’s  can be mapped to the same message.

We need to take care of errors!!!



Lower bound for HMn

At least a (1-δ) fraction of the entries are correct.
At least half the columns are (1-2δ)-”good”.
At least half the rows are (1-2δ)-”good”.
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XN

M1 M2 .    .      .                                Mn/2

The Matrix
((i,j) , xi©xj)



Step 1:Pick ”good” rows corresponding to the same msg.
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Step 1:Pick ”good” rows corresponding to the same msg.

X1

X2

X3

.

.

M1 M2 .    .      .                                Mn/2

Each row is  (1-2δ)-”good”. 



Each row is  (1-2δ)-”good”. 

Let Sτ be the set of x’s that correspond to the most “popular” message τ. 

Number of Alice’s distinct message ¸ 2n  / |Sτ|

I need to bound the size of |Sτ| !

Sτ

M1 M2 .    .      .                                Mn/2

Step 1:Pick ”good” rows corresponding to the same msg.



Sτ

M1 M2 .    .      .                                Mn/2

Step 2: Pick ”good” , independent columns



Step 2: Pick ”good” , independent columns

Each column is (1-4δ)-”good”.     |G| =Ω(n)

Sτ

G



Step 2: Pick ”good” , independent columns

Each column is (1-4δ)-”good”.     |G| =Ω(n)
All the rows of the matrix are the same.
Each row contains Ω(n) entries of the form  ((i,j),xi © xj)

Sτ

G



Step 2: Pick ”good” , independent columns

Each column is (1-4δ)-”good”.     |G| =Ω(n)
All the rows of the matrix are the same.
Each row contains Ω(n) entries of the form  ((i,j),xi © xj)
Define the Graph G.

(e.g. x1© x3 , x1© x4 , x2© x4 , x2© x3 , x6© x8 …)

Sτ

G
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Step 2: Pick ”good” , independent columns

Each column is (1-4δ)-”good”.     |G| =Ω(n)
All the rows of the matrix are the same.
Each row contains Ω(n) entries of the form  ((i,j),xi © xj)
Define the Graph G.

(e.g. x1© x3 , x1© x4 , x2© x4 , x2© x3 , x6© x8 …)

There are Ω(n) edges )
There exists a forest of size 

Sτ

G



Step 2: Pick ”good” , independent columns

The columns in F are independent and |F|=  

Sτ

F



Pick ”good” rows again!

The columns in F are independent and |F|=

Each row is (1-8δ)-”good”  

Sτ’

F



Lower bound for HMn

The rows correspond to inputs mapped to the same message.
The columns correspond to independent edges, |F|=
In each row, (1- 8δ) fraction of the entries are correct.

Sτ’

F



Lower bound for HMn

How many x’s can be mapped to the same message?

n variables and a set F of independent linear constraints.

There are solutions.

We also need to count all x’s that satisfy a set of constraints which 
agrees with F on at least a (1-8δ) fraction.

There are such sets of constraints.

Total number of x’s mapped to the same message:

|Sτ| ·



Lower bound for HMn

Total number of x’s mapped to the same message:

|Sτ| ·

Size of Alice’s message = log ( 2n / |Sτ| ) =

Theorem:
The one-way randomized communication complexity of HMn is 

Upper bound: It’s sufficient for Alice to send random bits of x.  



Boolean Hidden Matching Problem

Theorem

• There exists a quantum algorithm with complexity  

• Any linear randomized algorithm with public coins has complexity

Input:  x 2 {0,1}n Input: a matching M on [n],

w 2 {0,1}n/2 
Output:
0 if w is correct
1 if w is wrong



Open problems

Work in progress

Boolean HMn : extend the lower bound to general randomised
protocols.
Provide a separation between quantum one-way and classical 
two-way communication. 

Open problems

One-way communication complexity of total functions
Simultaneous Messages

Quantum advice:  BQP/poly vs. BQP/qpoly
Quantum proofs:  QMA vs. QCMA


