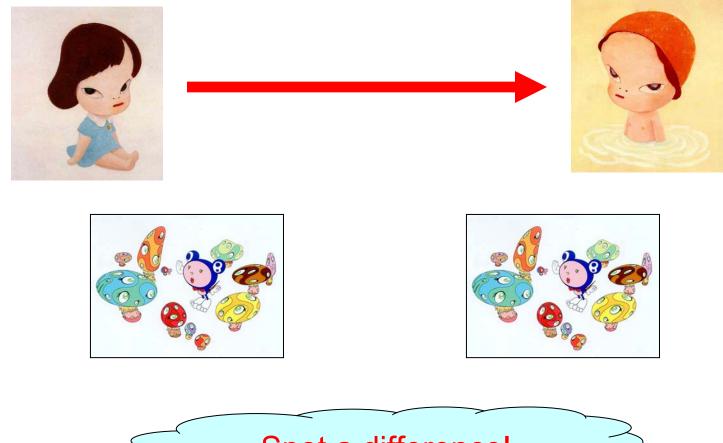
Exponential Separation of Quantum and Classical One-Way Communication Complexity

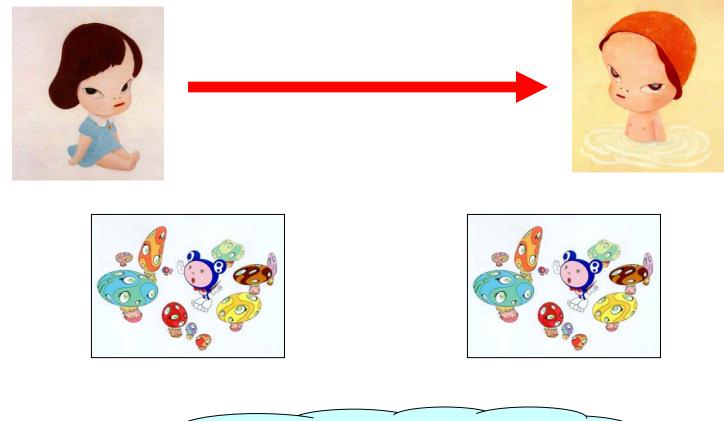
> Iordanis Kerenidis UC Berkeley

Joint work with: Ziv Bar-Yossef T. S. Jayram IBM Almaden Research

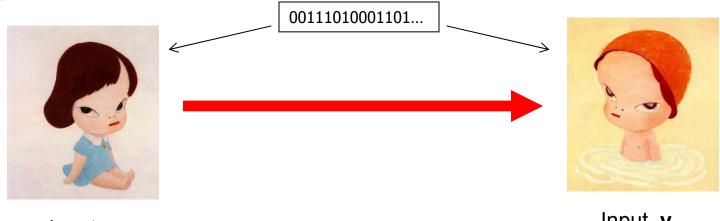












Input x

Input y

Goal: Output P(**x**,**y**) ( minimum communication )

- Applications of Communication Complexity
  VLSI design, Boolean circuits, Data structures, Automata, Formulae size, Data streams, …
- Encoding/Compression scheme C(x), such that P(x,y)=g(C(x),y)

# Quantum one-way communication complexity



Input x

Input **y** 

Goal: Output P(**x**,**y**) ( minimum communication )

#### Main question:

What is the relation between classical and quantum one-way communication?

## Quantum one-way communication complexity

- Holevo's bound
  - We cannot compress information by using qubits.
    We need n qubits to transmit n classical bits.
- [Kremer95] defined a complete problem for boolean promise problems of logarithmic quantum communication complexity.
- [Raz 99] also considers the same problem. He gives an exponential separation for two-way communication.

# Quantum one-way communication complexity

- Holevo's bound
  - We cannot compress information by using qubits.
    We need n qubits to transmit n classical bits.
- [Kremer95] defined a complete problem for boolean promise problems of logarithmic quantum communication complexity.
- [Raz 99] also considers the same problem. He gives an exponential separation for two-way communication.

<u>Our result:</u>

The first exponential separation of classical and quantum one-way communication complexity.

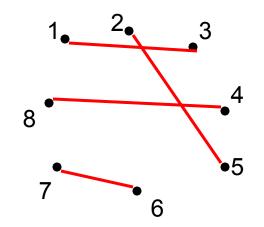
# Hidden matching problem HM<sub>n</sub>



Input: x 2  $\{0,1\}^n$ 

Input: a matching M on [n]

e.g. {(1,3),(2,5),(4,8),(6,7)}



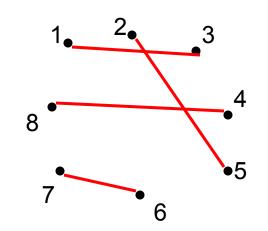
# Hidden matching problem HM<sub>n</sub>



Input: x 2  $\{0,1\}^n$ 

Output:  $((i, j), x_i \oplus x_j),$ for  $(i, j) \in M$  Input: a matching M on [n]

e.g. {(1,3),(2,5),(4,8),(6,7)}



# Complexity of HM<sub>n</sub>



Input: x 2  $\{0,1\}^n$ 

Output $((i, j), x_i \oplus x_j),$ for  $(i, j) \in M$ 

Input: a matching M on [n]

#### <u>Theorem</u>

- There exists a quantum algorithm with complexity  $O(\log n)$
- Any randomized algorithm with public coins has complexity  $\ \Omega(\sqrt{n})$

Let  $M = \{(i_1, i_2), (i_3, i_4), \dots, (i_{n-1}, i_n)\}$  be Bob's matching.

Alice sends the state

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(-1)^{x_{i}}|i\rangle$$

Bob measures in the basis

$$B = \{ |i_1\rangle \pm |i_2\rangle, |i_3\rangle \pm |i_4\rangle, \dots, |i_{n-1}\rangle \pm |i_n\rangle \}$$

and outputs  $\begin{cases} ((j,k), 0) & \text{if he measures } |j\rangle + |k\rangle \\ ((j,k), 1) & \text{if he measures } |j\rangle - |k\rangle \end{cases}$ 

# Quantum algorithm for HM<sub>n</sub>

Alice sends the state

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(-1)^{x_{i}}|i\rangle = \frac{1}{\sqrt{n}}(((-1)^{x_{i_{1}}}|i_{1}\rangle + (-1)^{x_{i_{2}}}|i_{2}\rangle) + \ldots + ((-1)^{x_{i_{n-1}}}|i_{n-1}\rangle + (-1)^{x_{i_{n}}}|i_{n}\rangle))$$

Bob measures in the basis

$$B = \{ |i_1\rangle \pm |i_2\rangle, |i_3\rangle \pm |i_4\rangle, \dots, |i_{n-1}\rangle \pm |i_n\rangle \}$$

- Prob[outcome is  $|j\rangle + |k\rangle] = \frac{1}{2n}((-1)^{x_j} + (-1)^{x_k})^2$ Prob[outcome is  $|j\rangle - |k\rangle] = \frac{1}{2n}((-1)^{x_j} - (-1)^{x_k})^2$
- Bob can compute the XOR of a pair of the matching with prob. 1



Locally Decodable Codes

- The quantum algorithm relies on the property that we can compute efficiently the XOR of a pair of a matching from a uniform superposition.
- Same property was used in [K., deWolf] to prove a lower bound for 2-query Locally Decodable Codes.



#### Locally Decodable Codes

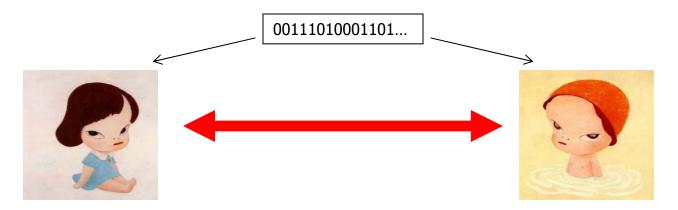
- The quantum algorithm relies on the property that we can compute efficiently the XOR of a pair of a matching from a uniform superposition.
- Same property was used in [K., deWolf] to prove a lower bound for 2-query Locally Decodable Codes.

#### Complete Problems

- We can define a variant of Kremer's problem which is complete for nonboolean promise problems of logarithmic on-way quantum communication complexity.
- Our bounds extend to this problem.

# Other models of communication complexity

Two-way communication



- [Raz99] proved an exponential separation.
- The quantum protocol needs two rounds.

# Other models of communication complexity

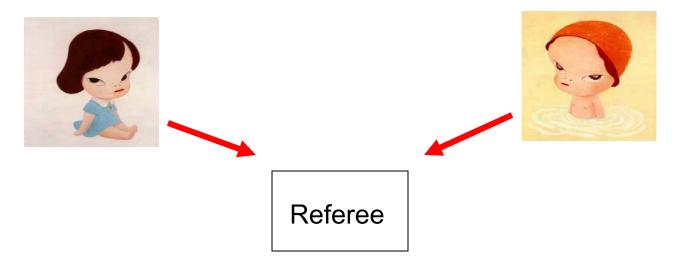
Sampling model



- [ASTVW98] proved an exponential separation.
- The separation does not hold with public coins.

# Other models of communication complexity

Simultaneous Messages



Quantum fingerprints [BCWdW01]
 The separation does not hold with shared public coins

Our problem provides the first exponential separation in the model of Simultaneous Messages with public coins.

<u>Hidden matching Problem as a non-locality game</u>

Using EPR pairs and NO communication, we can create correlations for which we need exponential classical communication even to approximate them!

# Hidden matching problem HM<sub>n</sub>



Input: x 2  $\{0,1\}^n$ 

Output  $((i, j), x_i \oplus x_j),$ for  $(i, j) \in M$  Input: a matching M on [n]

#### <u>Theorem</u>

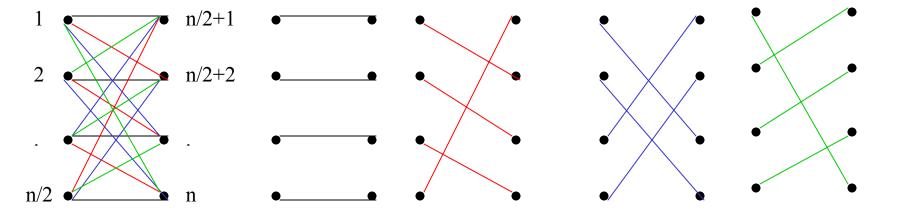
- There exists a quantum algorithm with complexity  $O(\log n)$
- Any randomized algorithm with public coins has complexity  $\ \Omega(\sqrt{n})$



By Yao's Lemma we will construct a "hard" distribution over instances of HM<sub>n</sub> and prove a distributional lower bound w.r.t. deterministic one-way protocols.

## Lower bound for HM<sub>n</sub>

- By Yao's Lemma we will construct a "hard" distribution over instances of HM<sub>n</sub> and prove a distributional lower bound w.r.t. deterministic one-way protocols.
- Distribution of Alice's input:  $X 2_R \{0,1\}^n$
- Distribution of Bob's input:  $M 2_R M_n$  $M_n$  is any set of  $\Omega(n)$  pairwise edge-disjoint matchings.



#### Intuition :

Alice's message must contain information about at least one edge of each matching ( $\Omega(n)$  edges).

(e.g.  $x_1 \otimes x_2$ ,  $x_2 \otimes x_3$ ,  $x_1 \otimes x_3$ , ...)

There are  $\Omega(\sqrt{n})$  independent edges.

Hence, the message needs to be of length  $\Omega(\sqrt{n})$ 

#### Intuition :

Alice's message must contain information about at least one edge of each matching ( $\Omega(n)$  edges).

(e.g.  $x_1 \otimes x_2, x_3 \otimes x_4, x_1 \otimes x_4, x_2 \otimes x_3...$ )

There are  $\Omega(\sqrt{n})$  independent edges.

Hence, the message needs to be of length  $\Omega(\sqrt{n})$ 

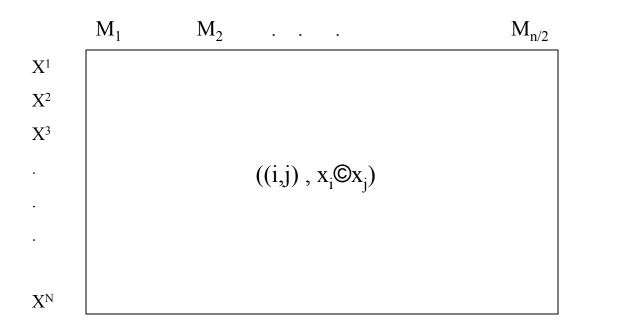
Idea of Proof :

We prove that Alice cannot send the same message for too many inputs x.

Every matching imposes a linear constraint on x. (e.g.  $x_1 \otimes x_2 = 0,...$ ) There are at least  $\Omega(\sqrt{n})$  linearly independent constraints, hence only  $2^{n-\Omega(\sqrt{n})}$  x's can be mapped to the same message.

We need to take care of errors!!!

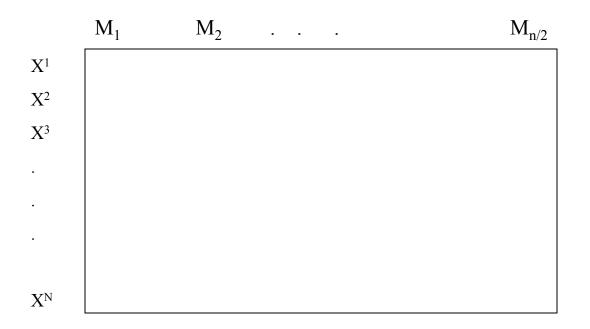
## Lower bound for HM<sub>n</sub>



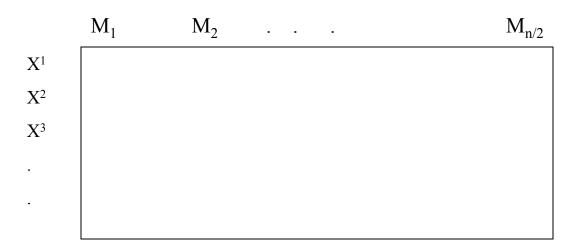
**The Matrix** 

- At least a  $(1-\delta)$  fraction of the entries are correct.
  - At least half the columns are (1-2δ)-"good".
  - At least half the rows are  $(1-2\delta)$ -"good".

### Step 1: Pick "good" rows corresponding to the same msg.

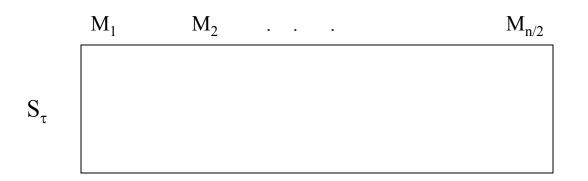


### Step 1: Pick "good" rows corresponding to the same msg.

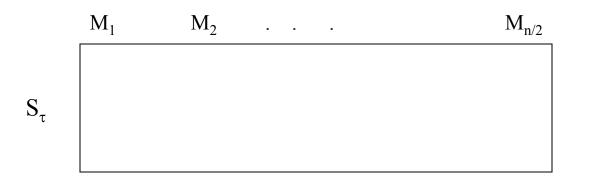


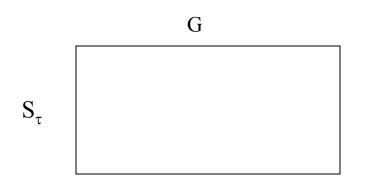
• Each row is  $(1-2\delta)$ -"good".

### Step 1: Pick "good" rows corresponding to the same msg.

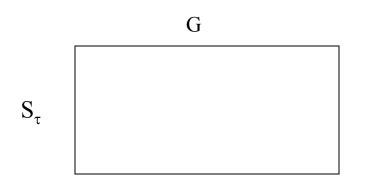


- Each row is (1-2δ)-"good".
- Let  $S_{\tau}$  be the set of x's that correspond to the most "popular" message  $\tau$ .
- Number of Alice's distinct message  $2^n / |S_{\tau}|$
- I need to bound the size of  $|S_{\tau}|$  !

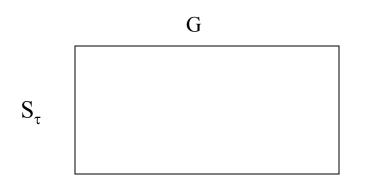




• Each column is (1-4 $\delta$ )-"good".  $|G| = \Omega(n)$ 



- Each column is  $(1-4\delta)$ -"good".  $|G| = \Omega(n)$
- All the rows of the matrix are the same.
- Each row contains  $\Omega(n)$  entries of the form  $((i,j),x_i \otimes x_j)$

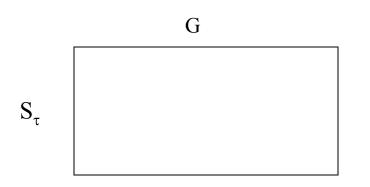


- Each column is  $(1-4\delta)$ -"good".  $|G| = \Omega(n)$
- All the rows of the matrix are the same.
- Each row contains  $\Omega(n)$  entries of the form  $((i,j),x_i \otimes x_j)$
- Define the Graph G.

(e.g.  $x_1 \otimes x_3$ ,  $x_1 \otimes x_4$ ,  $x_2 \otimes x_4$ ,  $x_2 \otimes x_3$ ,  $x_6 \otimes x_8$ ...)



6



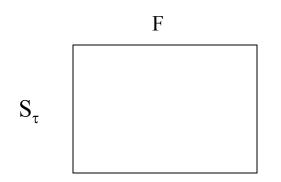
- Each column is  $(1-4\delta)$ -"good".  $|G| = \Omega(n)$
- All the rows of the matrix are the same.
- Each row contains  $\Omega(n)$  entries of the form  $((i,j),x_i \otimes x_j)$
- Define the Graph G.

(e.g.  $x_1 \otimes x_3$ ,  $x_1 \otimes x_4$ ,  $x_2 \otimes x_4$ ,  $x_2 \otimes x_3$ ,  $x_6 \otimes x_8$ ...)

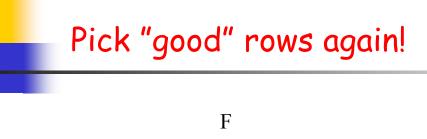
• There are  $\Omega(n)$  edges ) There exists a forest of size  $\Omega(\sqrt{n})$ 







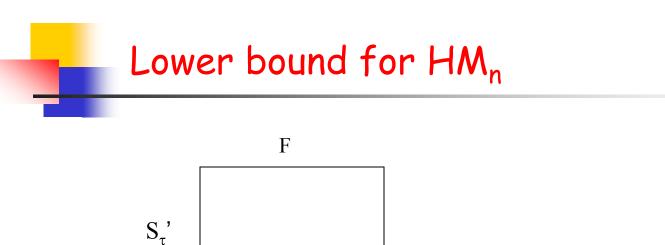
• The columns in F are independent and  $|F| = \Omega(\sqrt{n})$ 





• The columns in F are independent and  $|F| = \Omega(\sqrt{n})$ 

Each row is (1-8δ)-"good"



- The rows correspond to inputs mapped to the same message.
- The columns correspond to independent edges,  $|F|=\Omega(\sqrt{n})$
- In each row,  $(1 8\delta)$  fraction of the entries are correct.

# Lower bound for HM<sub>n</sub>

- How many x's can be mapped to the same message?
- n variables and a set F of  $\Omega(\sqrt{n})$  independent linear constraints.
  - There are  $2^{n-\Omega(\sqrt{n})}$  solutions.
- We also need to count all x's that satisfy a set of constraints which agrees with F on at least a (1-8δ) fraction.
  - There are  $2^{H_2(8\delta)\Omega(\sqrt{n})}$  such sets of constraints.
- Total number of x's mapped to the same message:

$$|\mathbf{S}_{\tau}| \cdot 2^{n-(1-H_2(8\delta))\Omega(\sqrt{n})}$$

# Lower bound for HM<sub>n</sub>

• Total number of x's mapped to the same message:

$$|\mathbf{S}_{\tau}| \cdot 2^{n-(1-H_2(8\delta))\Omega(\sqrt{n})}$$

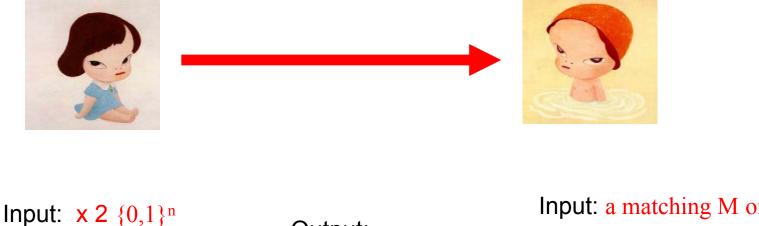
• Size of Alice's message =  $\log (2^n / |S_{\tau}|) = \Omega(\sqrt{n})$ 

#### Theorem:

The one-way randomized communication complexity of HM<sub>n</sub> is  $\Theta(\sqrt{n})$ 

<u>Upper bound</u>: It's sufficient for Alice to send  $O(\sqrt{n})$  random bits of x.

# **Boolean Hidden Matching Problem**



Output: 0 if w is correct 1 if w is wrong Input: a matching M on [n], w 2  $\{0,1\}^{n/2}$ 

#### <u>Theorem</u>

- There exists a quantum algorithm with complexity  $O(\log n)$
- Any linear randomized algorithm with public coins has complexity  $\Omega(n^{1/3})$

## Open problems

- Work in progress
  - Boolean HM<sub>n</sub>: extend the lower bound to general randomised protocols.
  - Provide a separation between quantum one-way and classical two-way communication.

- Open problems
  - One-way communication complexity of total functions
  - Simultaneous Messages
  - Quantum advice: BQP/poly vs. BQP/qpoly
  - Quantum proofs: QMA vs. QCMA