Exponential Separation of Quantum and Classical One-Way Communication Complexity

Iordanis Kerenidis
UC Berkeley

Joint work with: Ziv Bar-Yossef T. S. Jayram
IBM Almaden Research

One-Way Communication Complexity

One-Way Communication Complexity

One-Way Communication Complexity

Are the images the same?

One-Way Communication Complexity

- Applications of Communication Complexity VLSI design, Boolean circuits, Data structures, Automata, Formulae size, Data streams, ...
- Encoding/Compression scheme $C(x)$, such that $P(x, y)=g(C(x), y)$

Quantum one-way communication complexity

Main question:
What is the relation between classical and quantum one-way communication?

Quantum one-way communication complexity

- Holevo's bound
- We cannot compress information by using qubits. We need n qubits to transmit n classical bits.
- [Kremer95] defined a complete problem for boolean promise problems of logarithmic quantum communication complexity.
- [Raz 99] also considers the same problem. He gives an exponential separation for two-way communication.

Quantum one-way communication complexity

- Holevo's bound
- We cannot compress information by using qubits. We need n qubits to transmit n classical bits.
- [Kremer95] defined a complete problem for boolean promise problems of logarithmic quantum communication complexity.
- [Raz 99] also considers the same problem. He gives an exponential separation for two-way communication.

Our result:

The first exponential separation of classical and quantum one-way communication complexity.

Hidden matching problem $H M_{n}$

Input: $\times 2\{0,1\}^{\text {n }}$

Input: a matching M on [n]

$$
\text { e.g. }\{(1,3),(2,5),(4,8),(6,7)\}
$$

Hidden matching problem $H M_{n}$

Input: $\times 2\{0,1\}^{\text {n }}$
Output:

$$
\begin{aligned}
& \left((i, j), x_{i} \oplus x_{j}\right) \\
& \quad \text { for }(i, j) \in M
\end{aligned}
$$

Input: a matching M on [n]
e.g. $\{(1,3),(2,5),(4,8),(6,7)\}$

Complexity of HM_{n}

Input: x $2\{0,1\}^{\text {n }}$

Output

Input: a matching M on [n]

$$
\begin{gathered}
\left((i, j), x_{i} \oplus x_{j}\right) \\
\text { for }(i, j) \in M
\end{gathered}
$$

Theorem

- There exists a quantum algorithm with complexity $O(\log n)$
- Any randomized algorithm with public coins has complexity $\Omega(\sqrt{n})$

Quantum algorithm for HM_{n}

Let $M=\left\{\left(i_{1}, i_{2}\right),\left(i_{3}, i_{4}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}$ be Bob's matching.

- Alice sends the state

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}(-1)^{x_{i}}|i\rangle
$$

- Bob measures in the basis

$$
B=\left\{\left|i_{1}\right\rangle \pm\left|i_{2}\right\rangle,\left|i_{3}\right\rangle \pm\left|i_{4}\right\rangle, \ldots,\left|i_{n-1}\right\rangle \pm\left|i_{n}\right\rangle\right\}
$$

and outputs $\quad\left\{\begin{array}{lll}((\mathrm{j}, \mathrm{k}), 0) & \text { if he measures } & |j\rangle+|k\rangle \\ ((\mathrm{j}, \mathrm{k}), 1) & \text { if he measures } & |j\rangle-|k\rangle\end{array}\right.$

Quantum algorithm for HM_{n}

- Alice sends the state

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}(-1)^{x_{i}|i\rangle}=\frac{1}{\sqrt{n}}\left(\left((-1)^{x_{i 1}}\left|i_{1}\right\rangle+(-1)^{x_{i 2}}\left|i_{2}\right\rangle\right)+\ldots+\left((-1)^{\left.\left.x_{i_{n-1}}\left|i_{n-1}\right\rangle+(-1)^{x_{i_{n}}}\left|i_{n}\right\rangle\right)\right)}\right.\right.
$$

- Bob measures in the basis

$$
B=\left\{\left|i_{1}\right\rangle \pm\left|i_{2}\right\rangle,\left|i_{3}\right\rangle \pm\left|i_{4}\right\rangle, \ldots,\left|i_{n-1}\right\rangle \pm\left|i_{n}\right\rangle\right\}
$$

- $\operatorname{Prob}[$ outcome is $|j\rangle+|k\rangle]=\frac{1}{2 n}\left((-1)^{x_{j}}+(-1)^{x_{k}}\right)^{2}$
$\operatorname{Prob}[$ outcome is $|j\rangle-|k\rangle]=\frac{1}{2 n}\left((-1)^{x_{j}}-(-1)^{x_{k}}\right)^{2}$
- Bob can compute the XOR of a pair of the matching with prob. 1

$H M_{n}$ and Other problems

Locally Decodable Codes

- The quantum algorithm relies on the property that we can compute efficiently the XOR of a pair of a matching from a uniform superposition.
- Same property was used in [K., deWolf] to prove a lower bound for 2-query Locally Decodable Codes.

$H M_{n}$ and Other problems

Locally Decodable Codes

- The quantum algorithm relies on the property that we can compute efficiently the XOR of a pair of a matching from a uniform superposition.
- Same property was used in [K., deWolf] to prove a lower bound for 2-query Locally Decodable Codes.

Complete Problems

- We can define a variant of Kremer's problem which is complete for nonboolean promise problems of logarithmic on-way quantum communication complexity.
- Our bounds extend to this problem.

Other models of communication complexity

- Two-way communication

- [Raz99] proved an exponential separation.
- The quantum protocol needs two rounds.

Other models of communication complexity

- Sampling model

- [ASTVW98] proved an exponential separation.
- The separation does not hold with public coins.

Other models of communication complexity

- Simultaneous Messages

- Quantum fingerprints [BCWdW01]

The separation does not hold with shared public coins

Our problem provides the first exponential separation in the model of Simultaneous Messages with public coins.

Neat application [Harry Buhrman]

Hidden matching Problem as a non-locality game

- Using EPR pairs and NO communication, we can create correlations for which we need exponential classical communication even to approximate them!

Hidden matching problem $H M_{n}$

Input: x $2\{0,1\}^{\text {n }}$

Output

Input: a matching M on [n]

$$
\begin{gathered}
\left((i, j), x_{i} \oplus x_{j}\right) \\
\text { for }(i, j) \in M
\end{gathered}
$$

Theorem

- There exists a quantum algorithm with complexity $O(\log n)$
- Any randomized algorithm with public coins has complexity $\Omega(\sqrt{n})$

Lower bound for $H M_{n}$

- By Yao's Lemma we will construct a "hard" distribution over instances of HM_{n} and prove a distributional lower bound w.r.t. deterministic one-way protocols.

Lower bound for HM_{n}

- By Yao's Lemma we will construct a "hard" distribution over instances of HM_{n} and prove a distributional lower bound w.r.t. deterministic one-way protocols.
- Distribution of Alice's input: $\quad \mathrm{X} 2_{\mathrm{R}}\{0,1\}^{\mathrm{n}}$
- Distribution of Bob's input: $\mathrm{M}_{\mathrm{R}} \mathrm{M}_{\mathrm{n}}$
M_{n} is any set of $\Omega(\mathrm{n})$ pairwise edge-disjoint matchings.

Lower bound for $H M_{n}$

Intuition:

Alice's message must contain information about at least one edge of each matching ($\Omega(\mathrm{n})$ edges).

$$
\text { (e.g. } \left.x_{1} \odot x_{2}, x_{2} \odot x_{3}, x_{1} \odot x_{3}, \ldots\right)
$$

There are $\Omega(\sqrt{n})$ independent edges. Hence, the message needs to be of length $\Omega(\sqrt{n})$

Lower bound for HM_{n}

Intuition:

Alice's message must contain information about at least one edge of each matching ($\Omega(\mathrm{n})$ edges).
(e.g. $\mathrm{x}_{1} \odot \mathrm{x}_{2}, \mathrm{x}_{3} \odot \mathrm{x}_{4}, \mathrm{x}_{1} \odot \mathrm{x}_{4}, \mathrm{x}_{2} \odot \mathrm{x}_{3} \ldots$)

There are $\Omega(\sqrt{n})$ independent edges. Hence, the message needs to be of length $\Omega(\sqrt{n})$

Idea of Proof :

We prove that Alice cannot send the same message for too many inputs x.
Every matching imposes a linear constraint on x. (e.g. $\mathrm{x}_{1} \odot \mathrm{x}_{2}=0, \ldots$) There are at least $\Omega(\sqrt{n})$ linearly independent constraints, hence only $2^{n-\Omega(\sqrt{n})}$ x's can be mapped to the same message.

We need to take care of errors!!!

Lower bound for HM_{n}

The Matrix

- At least a $(1-\delta)$ fraction of the entries are correct.
- At least half the columns are (1-2 $)$-"good".
- At least half the rows are (1-2 δ)-"good".

Step 1:Pick "good" rows corresponding to the same msg.

Step 1:Pick "good" rows corresponding to the same msg.

- Each row is (1-28)-"good".

Step 1:Pick "good" rows corresponding to the same msg.

- Each row is (1-2 $)$-"good".
- Let S_{τ} be the set of x 's that correspond to the most "popular" message τ.
- Number of Alice's distinct message , $2^{n} /\left|S_{\tau}\right|$
- I need to bound the size of $\left|\mathrm{S}_{\tau}\right|$!

Step 2: Pick "good" , independent columns

Step 2: Pick "good" , independent columns

- Each column is (1-48)-"good". $\quad|\mathrm{G}|=\Omega(\mathrm{n})$

Step 2: Pick "good" , independent columns

- Each column is (1-4 $)$-"good". $\quad|\mathrm{G}|=\Omega(\mathrm{n})$
- All the rows of the matrix are the same.
- Each row contains $\Omega(\mathrm{n})$ entries of the form $\left((\mathrm{i}, \mathrm{j}), \mathrm{x}_{\mathrm{i}} \bigcirc \mathrm{x}_{\mathrm{j}}\right)$

Step 2: Pick "good" , independent columns

- Each column is (1-4)-"good". $\quad|\mathrm{G}|=\Omega(\mathrm{n})$
- All the rows of the matrix are the same.
- Each row contains $\Omega(\mathrm{n})$ entries of the form $\left((\mathrm{i}, \mathrm{j}), \mathrm{x}_{\mathrm{i}} \bigodot \mathrm{x}_{\mathrm{j}}\right)$
- Define the Graph G.

$$
\left(\text { e.g. } x_{1} \odot x_{3}, x_{1} \odot x_{4}, x_{2} \odot x_{4}, x_{2} \bigcirc x_{3}, x_{6} \odot x_{8} \ldots\right)
$$

Step 2: Pick "good" , independent columns

- Each column is (1-4)-"good". $\quad|\mathrm{G}|=\Omega(\mathrm{n})$
- All the rows of the matrix are the same.
- Each row contains $\Omega(\mathrm{n})$ entries of the form $\left((\mathrm{i}, \mathrm{j}), \mathrm{x}_{\mathrm{i}} \bigcirc \mathrm{x}_{\mathrm{j}}\right)$
- Define the Graph G.

$$
\left(\text { e.g. } x_{1} \odot x_{3}, x_{1} \odot x_{4}, x_{2} \odot x_{4}, x_{2} \odot x_{3}, x_{6} \odot x_{8} \ldots\right)
$$

- There are $\Omega(n)$ edges)

There exists a forest of size $\Omega(\sqrt{n})$

Step 2: Pick "good" , independent columns

- The columns in F are independent and $|\mathrm{F}|=\Omega(\sqrt{n})$

Pick "good" rows again!

- The columns in F are independent and $|\mathrm{F}|=\Omega(\sqrt{n})$
- Each row is (1-88)-"good"

Lower bound for HM_{n}

- The rows correspond to inputs mapped to the same message.
- The columns correspond to independent edges, $|\mathrm{F}|=\Omega(\sqrt{n})$
- In each row, (1-88) fraction of the entries are correct.

Lower bound for HM_{n}

- How many x's can be mapped to the same message?
- n variables and a set F of $\Omega(\sqrt{n})$ independent linear constraints.
- There are $2^{n-\Omega(\sqrt{n})}$ solutions.
- We also need to count all x's that satisfy a set of constraints which agrees with F on at least a (1-8 $)$ fraction.
- There are $2^{H_{2}}(8 \delta) \Omega(\sqrt{n})$ such sets of constraints.
- Total number of x's mapped to the same message:

$$
\left|\mathrm{S}_{\tau}\right| \cdot 2^{n-\left(1-H_{2}(8 \delta)\right) \Omega(\sqrt{n})}
$$

Lower bound for HM_{n}

- Total number of x's mapped to the same message:

$$
\left|\mathrm{S}_{\tau}\right| \cdot 2^{n-\left(1-H_{2}(8 \delta)\right) \Omega(\sqrt{n})}
$$

- Size of Alice's message $=\log \left(2^{\mathrm{n}} /\left|\mathrm{S}_{\tau}\right|\right)=\Omega(\sqrt{n})$

Theorem:

The one-way randomized communication complexity of HM_{n} is $\Theta(\sqrt{n})$
Upper bound: It's sufficient for Alice to send $O(\sqrt{n})$ random bits of x .

Boolean Hidden Matching Problem

Input: $\times 2\{0,1\}^{\text {n }}$
Output:
$\left\{\begin{array}{l}0 \text { if } w \text { is correct } \\ 1 \text { if } w \text { is wrong }\end{array}\right.$

Input: a matching M on [n],
w $2\{0,1\}^{\mathrm{n} / 2}$

Theorem

- There exists a quantum algorithm with complexity $O(\log n)$
- Any linear randomized algorithm with public coins has complexity $\Omega\left(n^{1 / 3}\right)$

Open problems

- Work in progress
- Boolean HM_{n} : extend the lower bound to general randomised protocols.
- Provide a separation between quantum one-way and classical two-way communication.
- Open problems
- One-way communication complexity of total functions
- Simultaneous Messages
- Quantum advice: BQP/poly vs. BQP/qpoly
- Quantum proofs: QMA vs. QCMA

