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Abstract. In this paper we consider equations of linear and nonlinear thermoelasticity
with various boundary conditions. We assume radial symmetry of the initial data to prove
exponential decay and to show the global existence of solutions of the nonlinear problem
for small initial data.

1. Introduction. In this article we consider the equations of thermoelasticity. In
the linearized case they take the following form (where u : G C Kn —> Rn denotes the
displacement vector and 6 : G —> R denotes the temperature):

(1) utt — /uAu — (n + A) Vdiv u + /3V9 = 0,
(2) cOt — kAO + /3div ut = 0,

together with initial data and various boundary conditions as will be specified later.
An existence theory for this problem is well established and there are also local exis-

tence results for the nonlinear case. For an overview on this, see [4j.
The time asymptotic behaviour is, in general, quite complicated. We expect very

different behaviour for the hyperbolic (elasticity) and the parabolic (heat equation) part
of the system. In two and three dimensions, the hyperbolic part tends to dominate the
behaviour of the hole systems as there is in general no decay rate, see e.g. [5]. However,
in special cases one can prove exponential decay for the linear system and apply this
to prove global existence for small initial data in the nonlinear case. This was done
for rotation free solutions in the case of Dirichlet boundary conditions by Jiang, Muhoz
Rivera, and Racke in [3]. Here we extend their ideas to different boundary conditions of
Neumann- and Robin-type. In Sec. 2 we consider the linear case and prove exponential
decay for the solution. In Sec. 3 we study the nonlinear case and prove global existence
for small initial data. The new difficulties we have to solve for the nonlinear problem
arise in particular from the nonlinearity of the Neumann boundary conditions (whereas
the Dirichlet boundary condition studied in [3] is the same as in the linear case). This
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leads to interesting technical problems, especially we need an elliptic regularity property
that is proved in Sec. 4.

This work is based upon a diploma thesis at the University of Konstanz [10]. I am
very grateful to Prof. Reinhard Racke (University of Konstanz) for his support. Also I
am grateful to Dr. Ute Durek for her suggestions and Prof. Song Jiang for his help during
his stay at the University of Konstanz.

2. Linear Thermoelasticity. In this section we study the system of linear thermoe-
lasticity (l)-(2) for a homogenous, isotropic medium (with appropriate initial conditions).
For a physical derivation of these equations, see [1] and the references therein.

Throughout this paper we always consider initial boundary value problems in bounded
domains G C Rn, where n = 2 or n = 3 in most cases. (The results of this section may
also be extended to other dimensions.) We denote the space of functions on G with k weak
derivatives in C2(G) by Hk(G) (often abbreviating this by Hk)\ i.e., Hk(G) := Wk'2(G).
The standard norms in these Sobolev spaces are denoted by || ■ ||#fc. We denote the
£2-norm on G by || • ||£2 or simply || • ||. By | • | we denote the absolute value of a number
or the length of a vector in Kn. Finally, by (•, •) we denote the scalar product in £2(G),
i.e., (u,v) := fG u(x)v(x) dx.

Our goal will be to describe the asymptotic behaviour of special solutions for various
boundary conditions. For u and 9 we consider Dirichlet and Neumann conditions and
for 0 we consider also a mixed boundary condition, the so-called Robin condition.

The physical meaning of these boundary conditions is shown in the following table:

Dirichlet Neumann Robin boundary condition
body fixed on the boundary free boundary

temperature fixed on the boundary perfect isolated boundary heat flow on the boundary

To prove the existence of solutions to these problems we can use semigroup theory. We
only want to state the result; a proof can be found, for example, in [6].

Remark 2.1. There exists a unique solution (m, 6) of the initial boundary value prob-
lems with it G C2([0, oo), £2) n Cx([0, oo), H1), 9 e C1([0, oo), £2), A9 £ C([0, oo), £2),
VSVu G C([0, oo), £2). (For a definition of S and V see the next subsection.)

We will assume radially symmetric initial data and therefore explicit radially symmet-
ric solutions (m, 8).

The boundary condition u |dG= 0, 9 |aG= 0 was considered by Jiang, Munoz Rivera,
and Racke. They proved exponential decay in the case of rotation-free solutions [3]. In
the next two sections we try to find similar results for the Neumann boundary condition
in u resp. the Robin boundary condition in 9. The case u \dG= 0, |aG= 0 is omitted
because it is the easiest case, where the assumptions of rotation free solutions without
explicit radial symmetry is sufficient; for a proof, see [10].

2.1. The Neumann boundary conditions for u. To investigate the Neumann boundary
conditions for u we assume explicitly radial symmetry, so we only consider discs, balls,
and annular discs and spheres as domain G with radially symmetric initial values. The
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resulting solutions u(x,t) and 6(x,t) can be written as:

(3) u(x,t) = w(\x\,t)x, 0(x,t) = 0(|a;|,i).

We notice that under these assumptions 8(-, t) is locally constant on dG, i.e., it is constant
on all components of dG.

We now define some auxiliary operators to formulate the Neumann boundary condition
in the cases n = 2 and n = 3.

Definition 2.2. Let t, A, /x be the Lame moduli, then define for n = (ni,..., nn):

r A 0
n = 2 : V = \ 0 d2 \ , N = \ 0 n2 I , S = I A r 0

n = 3 : V —

( d1 0 0 \
0 d2 0
0 0 d3
0 d3 d2
d3 0 di

\ d2 01 0 J

M ■■

( m o o \
0 n2 0
0 0 713
0 7l3 712

713 0 711

y n2 711 0 J

s =

0 0 fi
( T AA0 0 0\

A t A 0 0 0
A A r 0 0 0
0 0 0 [i 0 0
0 0 0 0 n 0

yooooo n J
As a convention we denote in this context the transposed matrix VT with V. The

equations of thermoelasticity take the form:

(4) Utt-VSDu + VpB = 0,
(5) 0t + cA6 - p'Vut = 0,

where we have defined for n = 2: 0 (/?,/?, 0)T and for n — 3: 0 (/3,/?,/?, 0,0,0)T.
We are now able to formulate the boundary conditions we want to study:

(6) Af'SVu |qg— 0, 0 \dG= 0.

Before we start our energy estimates we need the following lemmata:

Lemma 2.3. For v € H1 we have for a.e. x G G: \T>v(x)\2 > j|div v(x)\2.

Lemma 2.4. For v £ H1 and rot v = 0 we have for a.e. x £ G: \Dv(x)\2 > |Vv(x)|2 >
\\Vv(x)\*.

Lemma 2.5. For v e H1 radially symmetric we have: ||divi>||2 > ||Vv||2 > |||divt;||2.

Proof. One can easily check the lemmata 2.3 and 2.4 using the Cauchy-Schwarz in-
equality. The same is true for the first inequality in 2.5. For the proof of the second
inequality it is necessary to use explicit radial symmetry to show that the boundary
terms appearing by the partial integration fit together, i.e., that one gets:

(Vim — div vn)v = — (n — l)w(|x|)2|a;|.
JdGJ dG

Now we are ready to state the main result of this section and to prove it:
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Theorem 2.6 (Exponential decay). Let (u, 0) be a solution of (4)-(5) with respect to
the boundary condition (6) with radially symmetric initial values (u° ,u1,6°), and let

(7) E(t) := e7t j ^ \\d?u(t)\\2H2_k + \\dt(t)\\2 + ||0(t)||M .
U=o J

Then there are constants T > 1 and 7 > 0 such that for all t > 0:

(8) E{t) + f eH|V0t(a)||2ds<r£(O).
Jo

Proof. To apply an energy method we define the "energies":

Flit) := l-{\\ut\\2 + (Vu,SVu)+c\\e\\2) («),

Fi{t) := - (\\utt\\~ + (Dut.SVut) + c\\6t\\2) (t),

F3(t) := ±(\\Au\\2 + (Vut,SVut)+c\m\2)(t).

For F\ and F2 we derive by multiplying the differential equations with suitable terms
and integrating by parts:

(9) ±Fl(t) = -K ||V0||2, ±F2{t) = -K ||V0(||2.

For F3 we get:

(10) ±F3(t) =-K\\Ae\\2 + 0 [ f?divut-- f UuM'Wt.
at JdG On t JdG

As an important tool we need the Poincare inequality and the Korn inequality for u in
the same form as in the Dirichlet case. We have two possible attempts stated in the two
following lemmata, where we have X>0 := 6 [H1 (G))n\Vv = 0}:

Lemma 2.7 (Korn inequality for u). Let uo and mi G then:
u(t) e Vq for all t > 0, and there exists C > 0 with: ||u|| < C||Pu||.

Remark 2.8. This is the "classical" attempt resulting from the nullspace of the dif-
ferential operator. With lemma 2.4 we get the intended type of the Poincare inequality
for u (see lemma 2.9).

Proof. It follows from the (normal) Korn inequality (see, e.g., [9]):

IMI2 < c (\\Vu\\2 + sup I(u,v)|]
V vex>0,IMI=i /

On the other hand we have u G T>q , because for v £ T>0 we have:

(utt,v) = (V'SDu - V/36, v) = —(SDu -f30,T)v)+ [ Af'SVu - Af'06> = 0.
^ JdGv   '

=0 =0

Lemma 2.9 (Poincare inequality for u). Let fGu0 = 0 and JGui =0 (which we can
assume after appropriate normalization); then there exists a C > 0, such that:

IMI < c||Vu||.
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Proof. We start with the (normal) Poincare inequality:

Ml < c||Vu|| + fJg
u.

G

Under the given assumptions we have jGu = 0 (using the differential equation, the
divergence theorem and the boundary condition).

With the help of lemma 2.4 we again arrive at the Korn inequality in the form of
lemma 2.7.

Of course this leads to the question whether the assumptions made for the initial
data are satisfied by the physics. Furthermore we have to find some radially symmetric
functions satisfying the assumptions to avoid an "empty" result. In the first case we
can show that for simply connected domains (i.e., balls and discs), all radially symmetric
functions are automatically in Vg (for the simple proof consider [10]). In the second
case we even have a stronger result: For radially symmetric functions we obviously have
u(—x) = —u(x), so it follows (independently of the topology of G) that JG u — 0. (This
corresponds to choosing the center of gravity of the body G in the origin.) Using (10)
we get:

(11) ^-F3(t) =-k\\A6\\2 + (3 [ |^divut.at JqG on

We decompose the boundary integral with the Young inequality to:

2
(12) pl Tpdiv ut < /3— f +pe f |di

JdG dn £ JdG dn JdG 11V Ut I2 .

:=/1 :=/2

To estimate I\ and I2 we need two theorems. We will also apply these theorems in the
next section for the nonlinear case; for this purpose it makes sense to extend the results
needed in this section slightly and not to use the boundary condition.

Theorem 2.10. Assume that 9 satisfies the differential equation:

(13) c0t + kA6 = h2.

Furthermore let 0 be locally constant on dG and a € (Cl(G))n with a = n on dG.
(Such a a can be constructed by gluing appropriate functions with a partition of unity
argument; see [8].)
Then we have:

(14)

K
dG

de_2
dn

= 2c f 6to~V6 + 2K ( ^Jd^akdkO — k f div cr|V0|2 — f h^a\79.
Jg Jg Jg Jg

Proof. We start with (13), multiply with and integrate over G. 6 is locally
constant on dG, so we have: || = V0. If we apply this, an elementary calculation and
partial integration leads to the theorem's statement.
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Theorem 2.11. Let v(x) = (i>i,... ,vn)(x) = w(\x\)x be a radially symmetric solution
of:

(15) vtt — t Au = h\.

Let a £ (C1(G))™ with a = n 011 dG.
Then we have:

r / |divu|2+ / \vt\2 - t / (n - l)u;(|x|)divv
J dG JdG J dG

= 2-^ J vtcrkdkv + /div^t|2-r j dwa\dwv\2

(16) +r / divvVakdkv - 2 / hiakdkv.
Jg Jg

Proof. We start with equation (1), multiply with crkdkv and integrate over G:

(17) / vttcrkdkv-T / Vdiv vcrkdkv.
Jg Jg

Using integration by parts we get:

j: [ vtakdkv+ ^ [ \vt\2dkak - ]- [ \vt\2
at Jg - Jg 1 JdG

+t f div vS7crkdkv — —t I div er|div v|2
Jg 2 JG

+ ]-t [ |div v\2 — t I diVi(jj<jkdkVj = / hiakdkv.
2 JdG Jog Jg

Now we explicitly use the radial symmetry of v to "sum up" the boundary integrals.
After an elementary calculation where we use that a \qg= we arrive at (16).

We can apply this theorem for thermoelasticity. It is useful to extend the equations
slightly for reasons we will see later, so we reach the following corollary:

Corollary 2.12. Let u and 9 be a smooth radially symmetric vector field respective a
smooth radially symmetric function. For a smooth vector field / we assume the differ-
ential equation:

utt ~ tAu + /?V0 = /.

Furthermore we assume the Poincare inequality:

IMI2 < c||Vw||2.

Then we have:

\dwu\2+ [ h|2 < [ ut(Tkdku + C\\(ut,\7u,V6)\\2 + C [ fakdk
JdG dt Jg Jg

u.
I dG

Proof. The proof is an immediate consequence of theorem 2.11 that we get using the
Young inequality, the Sobolev trace theorem, and the assumed Poincare inequality.
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Remark 2.13. We get other useful inequalities of the same type by differentiating
with respect to t. For example we get:

[ |div ut\2 + f \utt|2 < C^- [ utt(rkdkut + C\\(utt, Vut, V0t)||2 + C [ ftakdkut.
JdG JdG at JG JG

Now we use corollary 2.12 and theorem 2.10 to estimate the terms I\ and I2 to get

(18)

jtF3(t) < -k||A0||2 + Kjt uttakdkut + Ce\\(utt,Vuu V0t)||2 + ^||(Vfl, V0t)l|2-

We are now able to prove three auxiliary estimates we will need below:

(19) Jt JGUtU ~ ~^TSlllVuH2 + C'll(6l'ut)ll2'

A
dt I divutdivu < -^||Am||2 + C||V0||2

J G 2

+Kia (IL uttakdkut + ||(utt, Vut, V0t)|

(20) +~a\^ktj UtakdkU+ IKUt'V0)H2| + llVutll2'

and

(21) - ^l|AU||2 < - J|AW||2 - ^||Utt||2 + ^||V0||2.

To prove these statements we have to use the differential equation in the form (4) resp.
(1), the lemmata 2.4 and 2.5 and the corollary 2.12.

We now define the auxiliary energy

H(t) := r)Fi + rjF2 + F3 - (K + K\a) [ utt(Jkdkut - — f utakdkuJg a Jg

4-e1^4 / utu + e1/2 / divudivut.
Jg Jg
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Now our goal is to show the exponential decay of the auxiliary energy H(t) by using the
Gronwall inequality. For a suitably large r] we estimate ^H(t):

^-H(t) < -Ct7||(V6», V0t)||2-C||A<9||2 + |e1/4 j utu + s1/2Jdivudivujj

+Ce\\(utt,Vut,V6t)\\2 - Kia^jtJGUttakdkut^

iU'ut(rkdku f using (9) and (18)
Ki
a

< -Cri\\(V6,6, V6t, 6t)\\2 m C||(A6», Vut,ut)\\2
d

+Jtu J utu + e1//2 J div udiv ut j + Ce\\utt \ |2

HL-Kl^j2— J uttcrkdkut

   < 2 — [ utcrkdku\ using Poincare for 9, (5) and Poincare for uta dt JG J

< —C1(r?)||(V0,6, S70t, 6t, A6, Vu(, ut)\f' 4- £1/4 {--^||Vw||2 + C\\(0, ut)||2}

+e1/2|-^||AW||2 + ^||K,VU, V0)||2 + Ca.\\(utt, Vut, V#t)||2 + ||Vut||2|

+Ce\\utt\\2 using (19) and (20)

< -c^vMvo^^et^uAe^uuu^w2 + E1/* {-^\\S7u\\2 + C\\(0,ut)\\2}

+e1'2 {~\\Au\\2 - -^IMI2 + —IIV^II2 + -\\(ut,Vu,V6)\\24 8r 4r a

+Ca\\(utt, Vut, V0t)||2 4- ||V«t||2 j + C^||wtt112 using (21).

Now we define: a := s:1'8, and we choose e small enough. Then using the Poincare
inequality we get:

jtH{t) < -0x11(^6,6,^6,, A9,^ut,ut)\\2 -Ce^WVuW2-Ce^M2 -Ce^WAuW2

-Ce\\utt\\2.

Using the elliptic regularity property ||u||^2 < C||Au||^2 (see Sec. 4), we have for large
rj constants C\, C2 > 0, such that:

(22) CiE{t) < tf(t)e7t < C2E(t).

This is an immediate consequence of the definitions of E(t) and H(t). Hence we have:

< —CE(t) - C||Wf||2 < -CH(t) - C||Wt|i2.
at
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Now we can use the Gronwall inequality and (22) to get:

(23) E(t) < e_7t ̂ (0) - f ||Wt||2eCr<ir j .

This is the statement of theorem 2.6. □
2.2. The Robin boundary condition for 9. In this section we want to consider the Robin

boundary condition (sometimes called "third kind boundary condition") for 9 combined
with the Dirichlet boundary condition for u. (It should be possible to modify these argu-
ments slightly for the Neumann boundary condition in u.) The physical interpretation
to this problem is a thermoelastic body fixed on its boundary with heat flow through
its boundary. We normalize the constant temperature of the environment to zero. This
leads to

39
(24) a(x)— = —b(x)9 on dG,

on
where a and b describe the heat flow in x e dG.

We assume:

dG = rD uiv urR,
a(x) = 0, b(x) = 1 for igTo,

a(x) = 1, b(x) = 0 for x £ Tjv,
b(x)

(25) ^>0.a(x) alx)
bounded for x € Tr.

Furthermore, we assume in this section that (u, 9) is a radially symmetric solution. Our
goal is to prove the following theorem:

Theorem 2.14 (Exponential decay for Robin boundary condition). If or T# have
positive (n — l)-measure, we have under the assumptions (25) for a radially symmetric
solution (u,9) of the equations (1), (2) together with appropriate initial conditions and
the boundary condition (24):
There exist constants T > 1 and 7 > 0 with

(26) E{t)+ [ e^||V6»t(s)||2 rfs < TE(0),
Jo

where

(27) E(t) := \\d?u(t)\\2H2-k + ||0((i)||2 + \\9{t)\\2^ } •
U=o J

To prove this we need again a certain form of Poincare inequality for 9. We therefore
quote the following lemma (see [11]):

Lemma 2.15 (Poincare inequality for 9). Let dG = Tlet or have posi-
tive (n — l)-measure. Furthermore let 9 £ H2(G), and 9 satisfy (24) and the assumptions

(25).
Then there is a C > 0 with: ||#||2 < C||V6>||2.
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Proof. To prove the exponential decay we use a modification of the proofs for the
other boundary conditions. Estimating the integral fgG QjLO we get:

dO,. f 00 f 00 f 09 f b(x) 2i /. , i " ' -\0\ ■f p - f f? * + / £»+( p-fJog dn JTd dn ^ JTn dn JVr dn JVr=o
=0

a(x)

We put this into the equation for Jj-Fi(i) and arrive at:

jF^t) = -k||V0||2 - f ^ |0|2 < —«||V(9||2.dt JT a{x)
l R v 

>0

Similarly we can estimate the other integrals on the boundary, e.g.:

f _ _/' x*)-Jog J r

< C f
i{x) 1

b(x)12

i(x)

< C\\S70\\2 +C\\V0t\\2.

\0\2 + cf \ot\2
J r„

(Such a term is small if rj (compare with the previous section) is large enough.
The estimate of

cM 2
dn

f 00 [ C f
(28) / div ut — < £ |div ut\2 -\—- /

JdG On JdG £ JdG

is the same as in Sec. 2.1. — Remember that the theorems 2.10 and 2.11 did not depend
on the boundary condition as long as u and 0 are radially symmetric!

3. Nonlinear thermoelasticity.
3.1. Formulation of the problem. After studying the linearized equations of thermoe-

lasticity, we want to consider the nonlinear case. In general we have no global existence of
solutions. In this section, however, we will show global existence for radially symmetric
initial values and radially symmetric boundary conditions for small initial data.

First we formulate the initial boundary value problem. We start with the nonlinear
equations in the case n — 3. The case n — 2 is similar; the condition n < 4, however, is
necessary as we will see later.

We define (starting with a smooth Helmholtz potential ip):

CiajP(Vu,0) :=

Cjr* . 

<92V(Vu,6>)
d(dui/dxa)d(duj/dxp)'

d2ip(yu,6)
d(duj/dxQ)dO'

a2^(Vu,6>)
a(Vu, 0) := - gQ2
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This leads to the following differential equations:

d2Ui
dt2

= div S(Vu, 0)

d2iLj ~ .. <90<S—+ Ci«(Vu,0)-—.
OXaOXfi OXa

(29) = Ciaj/3(Vu,0)^ 3 +Cia(Vu,e) — , i= 1,2,3.

1 - d2u
(30) a(Vu, 9)0t = --div g(Vu, 0, V0) + Cia(Vu, 0)-6(0) y iav ' 'dxadt

Here we have used the Einstein summation convention again.
For the functions a and b we assume: a > a0 > 0, b € C°°(R), 6(0) = 9 + T0 for

|0| ^ To/2, 0 < bi < b(9) < 62 < 00, —00 < 9 < 00, and To > 0 is the reference
temperature.

For Vu = 0, 9 = 0 the medium should be isotropic, so we assume:

^07/3(0,0) — A6-iqSjfj n(Sij8a0 + Saj6i0)
ClQ(0,0) = -(36ia

% (0,0,0) _ A
d(d9/dxj) K13

(31) a(0,0) = c.

Furthermore, we assume:

dqi(Wu,e,V9) _ dgj(Vu,8,V9)
d(d0/dxj) d(d9/dxi)

%(Vu,0, V0)
89 0

,0. %(V«,0,V0) .
(32) didnjgxg) = 0

The initial conditions are:

m(0) = uq, ut(0) = U\, 0(0) = 0O.

To formulate the boundary conditions we have to start with (29) and (30).
The easiest boundary condition (Dirichlet in u and 0) was considered in [3]. In this
section we want to look at one of the more delicate boundary conditions: the Dirichlet
condition for 0 together with the Neumann condition for u. (Some ideas to handle the
other possible boundary conditions are sketched in [10].) The difficulties we have to
handle are mainly based on the nonlinearity of this boundary condition

(33) nS(Vu, 0) \sg= 0.

This difference to the Dirichlet case leads to some interesting technical problems.
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Now we want to reformulate the problem (29)-(33) to apply the methods of the last
section. For this aim we define the nonlinearities / and g as follows:

cP"u c)0
(34) fi := (Ctaj/3(Vu,0) - Ciaj0(0,0))^- + (Cia(Vu,6) - Cia(0,0)) —

dqt(Vu,9,V9) 1 <9^(0,0,0)1 d29
9 '■= c I I

( o(Vu, I9)b(9) d(d6/dxj) a(0,0)6(0) d(d6/dxj) J dxidxj

(35)

I Cia(VuJ) C,„(0,0) 32«u c dqi(Vu,0,V0) 80
C | a(S7u,6) a(0,0) J dxadt a(Vu,0)b(O) 00 dxi

c %(Vu,6>,V6>) d2ua
~*~a(Vu,9)b(9) d(dua/dxg) dxidxp

With this we get from (29) and (30):

(36) utt — nAu — (fj, + A)Vdiv u + /3V9 = /(Vu, 9, V2u, V$)
(37) c^t — kA# + /3div u( = g(S7u,9, V2u, V2#, Vut).

(For (36) we will sometimes use the form Utt — V'SVu + 0V9 = /.)
For technical reasons we have to restrict the tensor Ciaj/3 to a special form. We assume:

d2u
(38) Ciaj/3dx ^ = Aij(Vu,0)Auj, i = 1, - ■■ , n.

3.2. Global existence. We want to prove global existence of our problem for radially
symmetric initial datas and boundary conditions by applying a local existence result and
exponential decay of local solutions.

First we need the Poincare and the Korn inequality for u, which we get in the same
way as in the last section:

Lemma 3.1 (Poincare and Korn inequality for u). Assume for «o,ui: (wo, 1) = (iti, 1) =
0, then we have:

(39) IMI < C\\Vu\\, |M| < C||Vu||.
Lemma 3.2 (Estimate for the nonlinear boundary condition). For m = 0,1,2,3 we have,
if u has rotation zero:

dtT

Til

((Af'SVu - AT'09) - nS(Vu, 0)) < C ̂  |(ajVu, d't9)|2.
i=l

Proof. We start with m = 0 and expand S(S7u, 9) = (Sij(Vu,9))ij around (0,0) in a
Taylor expansion. With £(0,0) = 0 we get:

S(Vu,0) = 5v«(0,0)Vu + Sg(0,0)0 + C(|Vu|2 + \9\2)
— {Ciajp( 0,0 )daup + Cij( 0,0 )9)ij + 0(|Vu|2 + \9\2).
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Using the isotropy in (0, 0) — see (31) — we get:

(40)
|(Af'SVu-Af'p6) - nS(X7u,d)I = I{rij (Ciaj0(O,O)dau0 - Cij(O,O)0 - Sij(Vu,d))i \.

v y
=0(]Vu |2 + |0|2)

This leads to the stated estimate.
In the case m = 1 this calculation is quite similar, so we only write down briefly

the case m = 2 (the case m = 3 indeed is again analogous). — The arguments of the
functions are omitted:

d2
d2t

((.hf'SVu - Ar'/30) - nS{Vu, 0))

— \M'ST>utt — Af'pdtt — n (SVuVwtt + SVuVuVutVut + S\/ug\/ut0t + Sg6tt
+SVu6Vutet + Sggdt9t) |

(y)0o0f iiq rijCy%j(0,0)0n 6)dadt 'ilq tijC'i, (V71. 0)0ff
—fi (SvuV«VMtVUi + Syug\/ut6t + S\/ugVutdt + SggOtdt) I

< c(|Vu|2 + \e\2 + \Vut\2 + \et\2 + |V«„|2 + \ett\2).

We just mention that the second order derivatives of S(Vu,0) exist and are bounded
because we have assumed that S is smooth, and we have small Vw and small 0.

We now quote the local existence theorem. It is a special application of the theorem
given in [2],

Theorem 3.3 (Local existence theorem). Let Uj £ Z/4--7, j = 0,... ,4, 0j £ i/4--7, j =
0,1,2, 03 £ £2, where uj := ffj.u |t=0, 9j := dj6 |t=0.
Furthermore, there is a A'o < min{l,T0/2} with |Vu0(x)|, |ui(x)|, |0o(x)|, |V0o(x)| < K0
for all x £ G. Then we have a unique solution {u,Q) of (36), (37), (33) defined on a
maximal existence interval [0,T), T < oo, such that for all t £ [0,T):

ueCj([0,t\,H4-i), j = 0,...,4

0 £CH[0,i\,H4-i), j = 0,1,2
(41) 0ttt e C°([0,t\,C2) n C2{[0,t\, H1).

Furthermore, for all (x, t) £ G x [0, T) we have:

(42) |V-u(x,t)|, \ut(x,t)\, \6(x,t)\,|V0(x,t)| < K0.

Furthermore, there is T = oo, i.e., the solution is a global solution if:

(43)

SUP \'^2\\d3tu\\2H*-i + J2\\diO\\2H*-j +ll^tt||2 ] (<)+ I ||V0ttt(s)||2ds < oo
t€[0,T) ^=0 ^ / -/0

and

(44) sup (|Vu(x,£)|, \ut(x,t)\, \6(x,t)\, |V0(x,t)|) < K0.
x€G,t€[0,T)

We use this to prove the following global existence theorem:
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Theorem 3.4 (Global existence theorem). Let (u, 9) be a local solution of theorem 3.3
being also radially symmetric. Then there exists a 5 > 0 with

4 2

(45) +EINIh*~> + IN|2 < <52,
3=0 j=0

such that a global solution exists, which satisfies:

ll^(^)ll-ff4 0 exponentially as t —* oo.

Remark 3.5. To get radially symmetric solutions we have to assume that for all
Q £ 0{n), the group of orthonormal matrices of dimension n, for all W £ Knx™ and all
x (E G\

s{nTwn, ■) = nTs{w.,-)n
( ' g(Vu,0, V2u,V29,Vut)(Qx) = g(Vu,01V2u,V20,Vut)(x)

In addition, all initial values must be radially symmetric. It follows the radial symmetry
of the solution (u,6). To see this, let (it, 6) be a solution and v(x) := QTu(Slx), <p(x) :=
6(£lx), then (t>, (p) satisfies the differential equations (36) and (37):

/(Vu,0,V2u,V0) = divS(Vu,0)|Vtt=o,e=o-divS(VM)

means that for all Q G 0(n), W £ ]R™xn and all x 6 G we have:

/(Vw,0,V2u,V<9)(ftx) = /(Vu, 9, V2u, X?0)(x).

But (v, </?) satisfies the same initial values like (u, 9), because they are radially symmetric
as we have assumed. Furthermore, we have:

nS{Wv,ip)(x) = TlrSsr kj dm^lc (^3?) ^ mi i

= nrSsr{{(\'uQ,)^rnVlrni){^lx),e{ytx))

= nrQ[sSsr(CVu)(fix), 6(£lx))Clrj

= HTnS(Vu, 9)(Clx)Cl = 0.

So (i>, ip) satisfies the same boundary conditions as (u, 9). Using the uniqueness we have:
(u,9) = (v,tp), but that means especially that (u, 9) is radially symmetric.

There exist indeed functions satisfying our assumptions; for an example see [10].
Proof. First we define:

(47)

M(t) := e7< J £ Mu\\2h^ + £\m\l^ + IIMI* \ (t) + f e^||V9ttt(s)\\2ds
I j=o j=o I

(48)
2

A := 258[(/32 + c2 + l)f]3r(l + k"2) ^ r" 2j

j—O
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Here T is the constant of the exponential decay theorem in Sec. 2. P > 1 is given by the
inequalities:

ll^ll/fJ+2 < f||A/i||^j,
(where h 6 HJQ+2(G), Ah £ C2, j — 0,1,2),

\\v\\2Hj+2 <f||AW||^+CJ3,
(where v € (Hj+1(G))n, nS(v, 0) — 0 on dG, (v, 1) = 0, Av €

(49) j = 0,1,2 and v = u or j — 0,1 and v = Ut.)

(For the second one of these elliptic regularity properties, compare with Sec. 4.)
Then there exists a to € (0, T], such that M(t) < AS2 for all t € [0, to), because we

have assumed A/(0) < 52, it is A > 1 (because V > 1), and A/ is continuous.
Now let

(50) T* := sup{£i > 0 | M(t) < A(52 for t G [0, ii)},

then obviously we have 0 < T* < T.
We consider the cases T* <T and T* = T:
If T = T* the solution is in £°°(G), because we can use the Sobolev imbedding theorem

H4(G) =—> Cb(G) having 4 > n/2. Using lemma 3.3 we therefore have T = oo, i.e., the
solution is a global solution. So it is sufficent to find a contradiction to the second case.

Let T* < T. For t e [0,T*) we now obtain, using (50), that:

U(t),0(t) e h4(G), Ut(t),et(t) e h3(G), uu(t),eu(t) e h2{G).

Applying the Sobolev imbedding theorem H2(G) >—> £°°(G) (where we use explicitly
n < 4) we get for all t e [0, T*):

There are C, 7 > 0, satisfying:

(51)
IN*)||w2.°°<||wt(^)||w1-<». \ \utt(t)\\c°°, ||0tt(i)||£«> < C(5e~75.

We now define an auxiliary energy similar to the energy E(t) in Sec. 2:

(52)

£(P,u,0) := e7t ̂  ll^ll^ + ll^tll2 + j W + ̂  e^\\V0t(s)\\2ds.

In contrast to the linear case we will not be able to prove exponential decay for arbitrarily
large initial data. Nevertheless, we apply the methods we have used in the linear case
to get energy estimates. But these energy estimates contain certain terms with / and g.
Utilizing the smallness of the initial data we can estimate these terms to get exponential
decay at least for small initial data.



16 MARC OLIVER RIEGER

First we prove:

£(t-,u,0)+ [ e7S [
J 0 JdG

dut 2
dn

dx ds < r£(0; u, 9) + Ce7t||g(t)||^

rl
+C' f e7S {ll/IKIMI + INI + ||A«|| + ll/ll) + ||<7||(||0|| + ||W|| + ||A0|| + \\g\\)ds}

J 0

+c{| J els{ft,utt)ds\ + | J els(f, Aut)ds\ + \ j els(gt,9t)ds\ + | J eJS{ft,akdkut)ds\j

/■t
+ [ e^s [ |Vu|4 + f e^s f |V«,

JO JdG Jo JdG
(53) :=T£(0-,u,6) + P{t;u,ej,g), £e[0,T*).

For the proof we use the energy method in the same manner as in the linear case. This
is a rather long but straightforward calculation, so we only want to mention that we can
take advantage of the generalized nature of corollary 2.10. (For a complete proof see

[10].)
Using the auxiliary energies Fi(t) defined in the previous section we finally get:

jt(vFi+vF2+F3) < -K»j(||V0|r + ||V0t||2)-K||A0||2

+V( f fut + [ g0 + [ ftuu + [ gtdt)
Jg Jg Jg Jg

- [ gAO- [ fAut + -\\(Vu,ut,V0,Vut,utuV6t,f)\\2
r r V

C [ n K2 d f K3 d fH— / JtOkOkUtA ~77 / utakdku-\ — / uttcrkdkutV JG V dt Jg t1 dt Jg

+ ^||(V0,0t)||2 + £||divUt||2 + C£|KVut)^,V0t,S)||

(54) +Kl^t I utt°kdkUt-Ce

+ -II5II l|V0|| + f (|Vuf|4 + |V«|4) +Ce [ ftakdkut
£ T JdG Jg

Lu
dG

2

where we have used this lemma:

Lemma 3.6. Let v = w(|x|)x be radially symmetric; then we have:

r dG

dv
dn < -t f |divv\2 + C||(v, Vi;)||2.

2 JdG

Proof. The idea is similar to the proof of the theorems 2.10 and 2.11: Here we multiply
Av = div Vv with akdkv, integrate by parts and calculate the boundary integrals using
explicitly the radial symmetry.
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We now define similar to the linear case the energy

H(t) := r/F\ + t]F2 + F3 - J uttakdkut - (^K\£ + + K4aj J utakdku

+E1/4 / UtU + e1/2 / divudivMt.
JG JG

The constants A'4 and A'5 will be given later.
Again like in the linear case we show three auxiliary estimates:

Lemma 3.7. Under the given assumptions we have:

(55) jf f ut u < ™^||Vw||2 + C||(0,Ut)||2 + C f |Vw|4+ H/II ||u||
J G J dG

JGd[v Ut dW u - ~^HAull2 +C|IV<?H2 + ||Au|| 11/11 + ||Vut||2

+a{^4^ J uttakdkut + \\(utt,Vut,VOt)\\2 + J ftakdkutj

(56) + a / Ut(TkdkU + IKUt' V", V6»,/)||2|

(57) - ^||Au||2 < -JllA^H2 - ^||ut(||2 + ^||W||2 + ^||/||2.

Proof. The proofs correspond to the linear case in the previous section. □
Now we can derive an energy estimate for H(t). For this purpose we use (54), (55),

(56), and (57) to arrive at:

(58)

—H(t) < — k?7(||W||2 + ||V0t||2) — k||A6>||2 + 77 |y fut + J g9 + J ftutt + J

- f gA9- f fAut+C\\(V0,et)\\2 + Ce\\(\7ut,utt,Ve,f,g)\\2
JG JG e

+ -||fflll|V0|| + -||K,Vu,V0,/,Utt,Vut,V^)||2 + - [ ftakdkut£ V V Jg

+ Cri2 [ |Vu\4 + CV2 [ \Vut\4+Ce [ ft*kdkut
JdG J dG JG

+ £1/4 {c||(6>,-Ut)||2 + ll/ll \\u\\ »™||Vu||2}

+ e1!2 {C||(V0, Vut)||2 + ||Au|| 11/11}

+ e^e1'8 |c||(u«, Vut) S79t)\\2 + £ ftak8kut J

+ s1/2^\\(ut,Vut,Vej)\\2

-£V2-||Au||2_£l/2^|K||2+£l/2g||w||2 + £l/2^

- Ce
I dG

dut 2
dri
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Using the Poincare inequality, Eq. (37), and lemma 2.5, we get:

(59)
-Kri(\\ve\\2+\\vet\\2)-K\\Ae\\2<-cv\\(W9,ey9t,et)\\2-c\\(M,vut,ut)\\2+c\\g\\2.

We insert (59) into (58), choose a small s > 0 and a large 77, such that we arrive at:

~H(t) < -C\\(ut,utt,Vu,VuuAu,6,et,Ve,V6t)\\2 + C\\f\\2 + C\\g\\2at

+C / f fut + f + f ftUtt + f 9t@t
\ J G J G J G J G

- f gA9- f fAut + C\\g\\\\V9\\+C [ ftakdkut
Jg Jg Jg

+C f |Vu|4 + C f \Vut\4 + C [ ftakdkut
JdG JdG JG

+CII/II IHI + C||A«|| ll/ll + C f ft°kdkut - C [
Jg JdG

du, 2
dn

Now we can use the Gronwall inequality. To show the equivalence of £(t-,u,0) and H{t)
for large rj we have to use some kind of elliptic regularity property. For a nonlinear
Neumann boundary condition, however, there is no such analogy. Nevertheless for the
radially symmetric case we have a similar result proved in Sec. 4:

(60) \\u\\2H2<C\\Au\\2 + C [ \Vu\4.
JdG

Taking this all together we can prove (53).
If we consider the differential equations (36) and (37), we see that they are fulfilled

by d[u and dlt6 if the nonlinearities / and g are replaced with d[f resp. d\g. Using this
and (53), we get:

£(t,dltu,dlt6)+ /V /
J 0 JdG

iL. aln\ 1 Tttt. aL. aln al t

di+idu 2
1 dn

dxds

(61) < T£(0',dtu,dt6) + V(t;dtu,dt6,dtf,dtg), 1 = 0,1,2.

We now want to estimate V(t; d[u, dlt9, d[f, d[g) to get a priori estimates for all derivatives
of u and 9 up to order four with not more than order two in space. It is useful to divide
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V(t;dltu,dlt9,dltf,dltg) into six terms X0-X5:

V(t;dltu,dlte,dltf,dltg) = C f e^{\\dltf\\(\\dltu\\ + \\dltut\\ + ||A^|| + \\dlJ\\)
/o

+ 11^511(11^11 + IIV^H + ||A^|| + \\dltg\\)ds} +c
—'■To

f e^(dltf,Adltut)ds
Jo

+

=-Ti
t

[ e,s(d\f,Adltut)ds + [ els{d\ft,(Tkdkdltut)ds + f e7S(dltgt,dltet)ds
Jo Jo Jo

= --T2 =:T3 =:T4

(62) +
J + l nt /*

£ / eW mufds
,_i JO JdG1—1 V.   

=:T5

We have To < Ce3 + Ce4 because using (38) and denoting

A:=A(Vu,9) := (Aij(S7u,0) - Alj(0,0))ij,
C:=C(Vu,9) := (C^Vu, 9) - <5^(0,0))^,

we get:

ft = dt(A(Vu,9))Au + A{Vu,9)Aut + dt(C{Vu,9))\>9 + C(Vu,9)\79t
= Ayu{Vu, 9)VutAu + Ag(Vu, 9)9tAu + ,4(Vu, 9)Aut

+CVu(Vu, 9)VutV9 + Ce(Wu, 9)9tV9 + C(Vu, 9) V6»t.

And if we differentiate this with respect to t, we get:

ftt = dt{Ayu)VutAu + AVuVuttAu + AvuX7utAut
+dt(Ag)6tAu + AgOtfAu + Ag6tAut

A\/u\7 Ut Aut + Ag9fAut + AAutt
+dt(Cvu)VutV9 + C^uVutt^9 + CvuVutV^t

+dt(Ce)0tV0 + Ce9ttX79 + Cg9tV9t
(63) +CVuVutV9t + Ce9tV9t + CV9tt.

Using that / is continuous and applying (51), we get: ||A(Vu, 0)||oc < C'GIVuHoo +
||0||oo) < CSe~2s and also ||C(Vu,6')||00 < C7(||VuHoo +110|!«,) < C8e-is. We therefore
are able to estimate in each of the terms all functions but one with respect to the C^-
norm. So we can prove:

\\ftt\\<CS2e-^.
A similar calculation for g leads to:

T0 < CS3.
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We now consider T\. Here we only want to discuss the case I = 2. The terms of lower
order make fewer difficulties.

Using the special form (51) of /, the symmetry of A(Vu,9), the Leibniz formula, the
mean theorem of differentiation, and the Cauchy-Schwarz inequality, we have:

Ti < CS3 +

pt
CS3 +

[ eys(ftf Auttt)ds
Jo

[ e'1s(A(\/u,e)dfAu,d'fAu)ds
Jo

ft f]
/ e^sT(A(yu,6)d2tAu,d2tAu)dsJo dt< cs**1-

< ^e7t \(A(\7u,0)d?Au,d?Au)\

[ e'ys(A(Vu,e)d2Au,dfAu)di
J 0

< cs3.

To estimate T2 we need the following lemma for radially symmetric functions:

Lemma 3.8. Let v = w(\x\)x be a radially symmetric function; then we have:

/ |V^|2 < /IdG JdG

dv 2
dn

+ c|H Hl '

Proof. Direct calculation and using the Sobolev trace theorem.
Now we can argue similarly to the estimate of T\. Again we use the special form of

/, integrate by parts, but now we use lenuna 3.8 to estimate the boundary integrals. We
arrive at:

2
dxds.(64) T2 < CS3 + CS

In a similar way we also estimate T3 and get:

/J0 JdG

du ttt
dn

T3 < CS3+ [e'ys(A(Vu,e)d3S/u,dyu)di
Jo

(65) +CS ( e?s f d3Vudfunds
Jo JdG

The boundary integral we have to estimate, using lenuna 2.5 and corollary 2.12, as
follows:

f d3^ud^un < C i f |divuttt|2+ f + C\\(Vuttti wtttt)||2
JdG IJdG JdG J

(J f
< C— / utttt&kdkuttt + C\\(utttt, Viiftt, V6*tit)||2dt JG

(66) +C I fttt&kdkUttt-
Jg
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Here we can use the estimate for T2 and get, using Leibniz formula and the mean theorem
of differentiation:

rt
T3 < CS3 + CS2' f e-*s [

Jo Jac
d 2

on
dxds.

/ dG

To estimate T4 we use a similar method utilizing that 6 vanishes on the boundary and
get:

T4 < CS3.

To estimate the boundary terms of order four summarized in X5, we have to use a very
different and somewhat unusual method. The key observation is that in the linear and
radially symmetric case we can estimate the derivatives of a function on the boundary by
the function itself. Then we show that the nonlinear boundary condition for small data
approximates the linear one, so we can get a similar estimate using the implicit function
theorem.

For the proof we want to consider an easy case, so let G := 0,1) C K2. Let v := d™u
be radially symmetric with m = 0,1, 2, 3 and v(x) = w(|x|)a;. Then on dG we have:

d\V\ = w'x\ + W, diV2 = W'X\X2,

d2vi = w'xix2, d2v2 = w'x\ + w,

where we have defined w' := w'( 1) and w := w(l).
We now consider the linear boundary condition Af'SVu = 0 on dG, e.g., in x = (0,1),

where we have:

t(w' + w) + A wN'SVv = [ Ul(TdlVl + ^^2^2) + n2^idiv2 + ^d2vi) \ _
\ n2{XdiVi + Td2v2) + ni(^div2 + iid2vi) J 0

If v satisfies the linear boundary condition it follows:

(67) tw' + (r + A )w = 0.

So we could estimate w' by w. We now want to transfer this for the nonlinear case.
Therefore we define the following functions for x = (xi,x2) £ dG:

g : R2 —> M4, g(a, b) := (ax\ + b, axix2, ax 1X2, ax\ + b) ,

fi : M2 -> R, fi(a, b) := (nS(g(a, b), 0))i=i,2,
where n is the normal in x.

Obviously g is in C°° and fi is also smooth, if we assume S to be smooth. We have g
defined such that g(w',w) = Vv.

Remembering M(t) < AS2 we have: ||v(t)||^i = ||3[nu(i)|||/1 < A^2 for t e [0,T*).
Using the Sobolev trace theorem we get: f,j(, |v|2 < CM2.

Using the radial symmetry of u we have |w|2 locally constant on dG (and constant for
G = B(0,1)), so we have:

sup \v(x,t)\2 = \\d™u(t)\\2Ccx>(dG) < CAS2 =: KS2 for t £ [0,T*).
xedG

Now we consider the nonlinear boundary condition fi(a,b) — 0 in x — (1,0). We know:

|Af'SVv - nS{v, 0)| = 0{|Vw|2) for |Vu| ^ 0 and 9 = 0.
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Together with (67) we get:

ra + (r + A)b — fi{a, b) = 0(a2 + b2).

We calculate the derivative of /i with respect to the first argument in (0, 0). Let ip(a) :=
/i(a, 0), then we have:

d\fi{a,b) |a=o,6=o = ^'(0) = lim
h—>0 tl

rh + 0(h2)
= lim     = r > 0.

h->0 h

Using /i e C1(M2,K) we know that there exists a U(0) C K, such that: c?i/i(0,6) =/=
0 for b £ U(0). Furthermore, we have: /i(0,0) = 0. So we can use the implicit function
theorem for /i, and therefore there exists a (j> G C1([/(0),R), such that <j>(b) — a with
fi(a,b) — 0 for b e U{0). If we choose 6 such that [—KS2, +K82] C U(0), then we can
estimate T5 as follows:

2

2\w[
IdG

f \d"lVu\A = [ \w'\2+ 2w'w + \2w\2 <C [ | w' \2 +C f
JdG JdG JdG JdC

=<t>(w)

[ H2 +c [ H2 <c\\\d?u\\2H112 <c\\d?u\fH1 <cs*.
JdG JdG

< C

One can check that this proof is also applicable for other radially symmetric domains.
Summarizing the estimates for Tq-T,5 we get using (45):

J^1 2

)f e»fJo J 8

dxds

2
dxds.J^+1 '2

£(t;dltu,dlt9)+ f e's [
Jo Jd

< rs2 + C53 + (C5 + cs

For small 6 we get with t G [0,T*):

2

(68) ]T £(t\dltu,d\6) < 3r«52 + C63.
1=0

So we have estimated all derivatives up to order four with order one or two in space. To
conclude we have to estimate the missing derivatives of order three and four in space.

Using the elliptic regularity property (see (49)), the differential equation (36), and
(68), we get:

|h||H3 < f ||Aut(t)||^i + CS3

< — ^2 ~ (I l^ttt 11?/1 + ll^^ill//2 + ll/tllw1 ) + CS3

(69) < — 258T(/32 + c2 + l)3f V 2 T~2jS2 = ^-A 62.86 86
3=0
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Here we have also used that /(Vu, 6, V2u, V0) = 0(\(Vu,0,V2u,V9)l2). Using (37) we
get in a similar manner:

+ II^IIh3 ^ r*(||A^||^f2 + ||A0t||^i)

< 3f(°2 +f2 + ^ (||«t|^3 + 3r<52 + CS3).

Here we have used that g(Vu, 9, V2u, V29, Vut) = 0((Vu, 9, V2u, V2#, Vut)2). We now
use the inequality (69) and the definition of A to derive:

Mh* + \Mm < 3^(c2 +J2 +^ ^3F<52^-±^ + 3r<52^ + CS3

(70) < Aa^ + CT3.

For the last term we use (49), (36), and (70) to get:

(71) IMIh4 < ^A S2+C53.
Summarizing (68), (69), (70), and (71), we arrive at:

39
M(t) < —A 62 + 3r<52 + CS3

86
< ^A 52 + CS3.

Choosing <5 > 0 small, we finally get:

M(t) < jUS2 < A82 for all t e [0,T*).

Using the continuity of M, we get the inequality M(T*) < A<52 by taking the limit
t —» T*. This is a contradiction to the definition of T* in (50). So we have proved
3.4. □

4. An elliptic regularity property. To use the elliptic regularity property for the
Neumann boundary condition in (49), we apply theorem 4.4 of [12]. In our situation we
get for j = 0,1, 2: For all v £ iP+2(G) there exist f > 0 and C > 0 with:

(72) IMlL+a < f||A^2HJ + C\\Af'SVv\\lj+1/HdG).
In the nonlinear case the boundary term is non-zero. To estimate it we use (40) in lemma
3.2 and apply the trace theorem Hm+1(G) c—> Hm+1/2(dG) and Eq. 3.2 to derive:

||A/* ST>v\\Hj+i/2(dG) = 11-^* ~~ -A/" 1^+1/2(^(3)

— I \nj(^ijap(0, 0)daUp — Cij(0,0)9 — Sij (Vlt, 9)) I |#j+i/2(,5(3)

< C\\Cijap(O,O)dau0 - Cij{0,0)6 - Sy(VM) ||^+1/2(aG)
V V y

= :<t>{Vu,0)=0(\X7u\2 + \9\2)
2< C||0(Vu, ^)llfl-j-H(G)

j+1 /.
(73) = / |Vm0(Vu,0)|2.
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Using 10(Vu, 6)| = 0(|Vu|2 + |0|2) we know that <6(0, 0) = 4>'(0,0) = 0. Now we calculate
the terms of (73) utilizing (47) and (51):
For the term with m = 0 we get:

[ |0(Vm,0)|2 < c[ \SJu\4 + c( \9\4Jg Jg Jg
< C||Vu||^||Vw||2 + C||0||^||6>||2

< C\\u\\U\Vu\\* + C\\0\\U\0\\2
< cs4.

The cases m = 1 and m — 2 are very similar. For m = 3 we have:

[ |V3^(Vu,6»)|2 < C I \(p"'(S7u,0) V2uV2uV2u|2 + C f |30"(Vu, 6>)V3uV2w|2Jg Jg Jg
+C I \4>'{Vu,9)V4u\2 + C f \4>'"(Vu, 0)V9X76X79\2Jg Jg
+C [ \3<f>"(Vu, 9)V29V9\2 + C [ \4>'(\>u,9)V39\2Jg Jg

< C||V2u|QV2u||2 + CIIV^II^HV^II2 + C||0'||Ll|V4u||2
+C\\V9\\l\\V9\\2 + C||V0|£,||V20||2 + cmtwv^w2

< C,||u||^4||m||^2 + C'||u||^4||«||^3 + C|M|tfi|M|#4 + C\\9\\2\\u\\2H,

+qi^ll4H3||0||2H1+q|^||2H3||0||^ + c|H|2fl||^||2,3 + c||0||2||0||2H3

< cs4 + cs6.

Summarizing these estimates (for small <5 > 0) we arrive at the following elliptic regularity
property:

IMIhj+2 - fi||Au||^j + C64, j = 0,1,2.

For ut we derive in the same way:

\\ut\\2Hj+,<t2\\Aut\\2HJ+C54, j = 0,1.

We now define T := max{ri,F2} to get the estimates used in Sec. 3.
Now we prove (60); see Sec. 3. Starting with (72) we only have to show that in the

radially symmetric case:

||ArSVu\\2H1/2{aG) <c f |Vu|4.
JdG

We show this by explicitly parametrizing dG and calculating the H1(dG)-norm of
Af'SVu.

By an extensive calculation where we use the radial symmetry of u, we obtain the
desired estimate. Together with (72), we finally arrive at:

(74) \\u\\2H2<C\\Au\\2+C f |Vu|4,
JdG

proving (60). □
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