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Exponential Stability and Local ISS
for DC Networks

Joel Ferguson , Member, IEEE , Michele Cucuzzella , Member, IEEE ,

and Jacquelien M. A. Scherpen , Senior Member, IEEE

Abstract—In this letter, we consider the problem of
regulating the voltage of an islanded Direct Current
(DC) network subject to (i) unknown ZIP-loads, i.e., non-
linear loads with the parallel combination of constant
impedance (Z), current (I) and power (P) components, and
(ii) unknown time-varying disturbances. Using the port-
Hamiltonian framework, two decentralized passivity-based
control schemes are designed. It is shown that, using
the proposed controllers, the desired equilibrium is expo-
nentially stable and local input-to-state stable (LISS) with
respect to unknown time-varying disturbances.

Index Terms—Power systems, distributed control, stabil-
ity of nonlinear systems, Lyapunov methods.

I. INTRODUCTION

P
OWER networks can generally be classified into Direct

Current (DC) and Alternating Current (AC) networks. As

a consequence of the wide use of renewable energy sources

and the technological development in the field of power elec-

tronics, the design and operation of DC networks is nowadays

attracting growing interest and receiving research attention.

Indeed, DC networks are generally more efficient and reli-

able than AC networks [1], reducing lossy conversion stages

and overcoming frequency and reactive power control. For

these reasons, DC networks are (recently) deployed in aircraft,

trains, ships, charging stations and data centres.

In order to guarantee a proper functioning of the connected

loads, the main control objective in (islanded) DC networks

is to stabilize the network voltage at the desired value [2].

Several controllers based on different techniques have been

proposed in the literature, e.g., droop [3], plug-and-play [4],
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sliding mode [5] and passivity-based [6] controllers. Moreover,

in [7], [8] an input-to-state stability (ISS)-like Lyapunov

function is obtained and used for control design. However,

these works do not include P-loads and, some of them,

neglect the network or consider it purely resistive. In order to

address the voltage destabilizing effect of the negative incre-

mental impedance introduced by P-loads, several controllers

have been proposed in the literature, including energy-based

approaches [9]–[12]. More specifically, in [9], the authors

provide a suitable port-Hamiltonian (pH) framework [13] to

model electrical circuits including constant ZIP-loads and

investigate their shifted passivity properties. In [10], the

authors show that the controllers proposed in [4] passivate

the generation and constant ZIP-load units of a DC network.

In [11], the authors establish new passivity properties lead-

ing to the design of a voltage controller that is robust with

respect to constant ZIP-loads. In [12], a systematic and con-

structive design based on the pH framework is proposed. We

note that all these works provide stability guarantees only

in presence of constant load components, while loads are in

practice time-varying.

In this letter, inspired by [14], we propose a unified approach

to control design and analysis based on the pH framework.

This approach leads to a simple decentralized control struc-

ture. We nominally treat the unknown IP-loads as constant

unmatched disturbances and the Z-loads as unknown constant

parameters of the damping structure of the system. Then, in

analogy with [9], we shift the considered DC network with

respect to the desired voltage and propose two different decen-

tralized voltage control schemes. The first controller employs

an integral action that rejects the unknown and constant

unmatched disturbances, ensuring that the desired equilibrium

corresponding to zero steady-state voltage error is asymp-

totically stable. Then, motivated by the time-varying nature

of loads in practice, we propose a second control scheme

which differs from the first by the addition of a damping term

into the integrator dynamics. This additional damping term

ensures exponential stability of the desired equilibrium and

local ISS (LISS) [15] of the closed-loop system with respect to

unknown time-varying disturbances acting on any of the state

dynamics. These disturbances may represent, for instance,

time-varying components of the loads or imperfections in the

control signal.
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Fig. 1. Electrical scheme of node i ∈ V and transmission line k ∈ E,

where ILi (qi ) := G⋆
Li

qi
Ci

+ I⋆
Li

+
Ci
qi

P⋆
Li

.

The main contributions of this letter can be summarized as

follows:

C.1 Differently from [10], we present a unified framework

for control design and analysis whilst maintaining a

simple control structure.

C.2 Differently from [12], where the control law com-

prises a model-based disturbance compensation

that, if omitted, compromises the performance (see

[12, Remarks 3 and 4]), we consider unknown load

components.

C.3 Differently from [3]–[12] and other relevant works on the

topic,weproveLISSoftheclosed-loopsystemwithrespect

to unknown time-varying disturbances acting on any of

the state dynamics. This could represent, for example, a

time-varying component of a supplied ZIP-load.

Notation: Function arguments are declared upon definition

and are omitted for subsequent use. 0n×m denotes a n × m

zero matrix whereas In is a n × n identity matrix. For x ∈ R
n,

P ∈ R
n×n, P > 0 we define ‖x‖2

P := x⊤Px. For mappings

H : Rn → R and G : Rn ×R
m → R we denote the transposed

gradients as ∇H := ( ∂H
∂x

)⊤ and ∇xG(x, y) := ( ∂G
∂x

)⊤. For a

real matrix A ∈ R
n×n, we define symm(A) = 1

2
(A + A⊤). For

a symmetric matrix B ∈ R
n×n, λmin(B) and λmax(B) denote

the smallest and largest eigenvalue of B, respectively. Given

a vector v ∈ R
n, diag(v) is a n × n diagonal matrix and the

diagonal elements are equal to the elements of v. Definitions

of comparison functions K∞ and KL follows [16].

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce the considered islanded DC

power network model and formulate the voltage control

problem.

A. System Model

We consider a network represented by a connected and

undirected graph G = (V, E), where V = {1, . . . , n} and

E = {1, . . . , m} are the sets of nodes and edges, respectively.

The network topology is described by its corresponding inci-

dence matrix B ∈ R
n×m. Then, the overall network1 can be

written as a port-Hamiltonian system of the form
⎡

⎣

ϕ̇

q̇

ϕ̇t

⎤

⎦ =

⎡

⎣

−R −In 0n×m

In −G⋆
L B

0m×n −B⊤ −Rt

⎤

⎦∇H +

⎡

⎣

u

0n×1

0m×1

⎤

⎦

1The control input ui may represent for instance the output average voltage
of a buck converter. Then, for the practical implementation, the duty cycle of
the converter i can be obtained from ui.

TABLE I
DESCRIPTION OF THE USED SYMBOLS

−

⎡

⎣

0n×1

I⋆
L + diag(C−1q)−1P⋆

L

0m×1

⎤

⎦ + δ(t),

H(ϕ, q, ϕt) =
1

2
‖ϕ‖2

L−1 +
1

2
‖q‖2

C−1 +
1

2
‖ϕt‖

2
Lt

, (1)

where ϕ, q ∈ R
n, ϕt ∈ R

m and u ∈ R
n. R, Rt, L, Lt, C

are constant positive definite diagonal matrices of appropriate

dimensions. G⋆
L ∈ R

n×n is an unknown positive definite con-

stant impedance and I⋆
L, P⋆

L ∈ R
n are unknown constant current

and power loads. The term δ(t) = [δ⊤
ϕ (t), δ⊤

q (t), δ⊤
ϕt

(t)]⊤ ∈

R
2n+m is an unknown time-varying disturbance.

As the considered time-varying disturbance is very gen-

eral, it could be used to model the effects of many practice

imperfections. For example, if the true ZIP load is time vary-

ing, it could be decomposed into the sum of a constant and

time-varying load. The time-varying component could then be

considered in the term δ(t). Similarly, the term δ(t) can be

used to model time-varying renewable energy injections or

imperfections in the control signal.

B. Problem Formulation

The objective of this letter is to design a control scheme

that regulates the voltage of the DC power network (1). As

the loads are assumed to be unknown, the scheme is required

to adapt the input voltage to compensate for these loads and

losses in the network.

Problem statement: Considering the system (1), design a

dynamic control law

u = û(ϕ, q, xc)

ẋc = x̂c(ϕ, q, xc), (2)

where xc ∈ R
n is the state of the controller, which ensures that

C−1q → V⋆ for some desired constant voltage level V⋆ ∈ R
n.

This objective can be equivalently addressed by regulating the

charge to the set-point q⋆ = CV⋆.

Note that in this letter we focus only on voltage regula-

tion, which is vital to guarantee the safety of the network

and a proper functioning of the connected loads [2]–[12]. The

achievement of also current (or power) sharing (see for exam-

ple [17] and the references therein) is beyond the scope of this

letter and left as a future research work.

III. VOLTAGE REGULATION CONTROLLER

In this section, we propose a solution to the control problem

formulated in Section II-B. First, using techniques similar to

those used in [9], the system (1) is shifted with respect to

the desired voltage level C−1q⋆. The shifted system can be

written as a perturbed pH system affected by an unknown

Authorized licensed use limited to: University of Groningen. Downloaded on December 01,2020 at 11:01:19 UTC from IEEE Xplore.  Restrictions apply. 
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constant unmatched disturbance and an unknown time-varying

disturbance. Then, to compensate for these disturbances, we

design an integral action controller similar to the structure

proposed in [14]. Finally, the proposed integral action con-

troller is extended to include a damping term in the integrator

dynamics, resulting in improved stability performance.

A. Shifted System

The first stage of the development is to shift the system (1)

with respect to the nominal voltage level C−1q⋆. To do this,

we need to provide an alternate representation of the constant

P-load. This representation can be derived from [9, Lemma 1].

Lemma 1: The current resulting from a constant P-load can

be written as

− diag(C−1q)−1P⋆
L = X(q)C−1(q − q⋆)

− diag(C−1q⋆)−1P⋆
L, (3)

where

X(q) := diag(C−1q⋆)−1 diag(P⋆
L) diag(C−1q)−1. (4)

Proof: The proof directly follows from [9, Lemma 1].

Using the representation (3), the system (1) will now be

shifted about the desired voltage level C−1q⋆.

Proposition 1: Let G
eq
L (q) := G⋆

L − X(q). Consider the

system (1) with the input

u = C−1q⋆ + v. (5)

Defining the vector � ∈ R
m as

� = −R−1
t B⊤C−1q⋆, (6)

the closed-loop dynamics can be written as a perturbed port-

Hamiltonian system, i.e.,
⎡

⎣

ϕ̇

q̇

ϕ̇t

⎤

⎦ =

⎡

⎣

−R −In 0n×m

In −G
eq
L (q) B

0m×n −B⊤ −Rt

⎤

⎦∇H̃ +

⎡

⎣

v

0n×1

0m×1

⎤

⎦

−
[

01×n �⊤ 01×n

]⊤
+ δ(t),

H̃ =
1

2
‖ϕ‖2

L−1 +
1

2

∥

∥q − q⋆
∥

∥

2

C−1 +
1

2
‖ϕt − Lt�‖2

L−1
t

,

� = I⋆
L + diag(C−1q⋆)−1P⋆

L + G⋆
LC−1q⋆ − B�. (7)

Proof: The proof follows from direct matching between (7)

and (1). Considering the dynamics of ϕt in (7) we have

ϕ̇t = −B⊤C−1(q − q⋆) − Rt(L
−1
t ϕt − �) + δϕt(t)

= −B⊤C−1q − RtL
−1
t ϕt + δϕt(t), (8)

which agrees with (1). Now, consider the dynamics of q in (7)

which can be rearranged as

q̇ = L−1ϕ − G⋆
LC−1(q − q⋆) + X(q)C−1(q − q⋆)

+ B(L−1
t ϕt − �) − I⋆

L − diag(C−1q⋆)−1P⋆
L

− G⋆
LC−1q⋆ + B� + δq(t)

= L−1ϕ − G⋆
LC−1q + BL−1

t ϕt

− I⋆
L − diag(C−1q)−1P⋆

L + δq(t) (9)

which agrees with (1). Verification of the ϕ dynamics follows

from similar argument.

The feed-forward control (5) simply sets the nominal volt-

age for the DC network. In the absence of losses or loads, this

would be sufficient to regulate the network voltage. However,

due to the network loads, it is not clear if the voltage V⋆

is achieved. Our focus is now to utilise the additional con-

trol input v to design a feedback controller to ensure that the

network voltage is stabilised at the desired voltage level.

B. Integral Action Control Law

The shifted system (7) has a pH structure and is sub-

ject to the unknown constant unmatched disturbance � and

the unknown time-varying disturbance δ(t). In this section,

we design a simple feedback control law to asymptoti-

cally stabilise the network voltage at the desired voltage

level in the absence of the time-varying disturbance, i.e.,

δ(t) = 0(2n+m)×1,∀t ≥ 0. For this development, we follow

the integral action design for constant unknown unmatched

disturbances proposed in [14].

Proposition 2: Consider the electrical system (7) with

δ(t) = 0(2n+m)×1, in closed-loop with the control law

ẋc = −βC−1(q − q⋆)

v = −βRKi(βϕ − xc), (10)

where β ∈ R+ and Ki = K⊤
i > 0 are tuning parameters. The

resulting closed-loop dynamics have the form
⎡

⎢

⎢

⎣

ϕ̇

q̇

ϕ̇t

ẋc

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−R −In 0n×m 0n×n

In −G
eq
L (q) B βI

0m×n −B⊤ −Rt 0m×n

0n×n −βI 0n×m 0n×n

⎤

⎥

⎥

⎦

∇W

W =
1

2
‖ϕ − L�‖2

L−1 +
1

2

∥

∥q − q⋆
∥

∥

2

C−1

+
1

2
‖ϕt − Lt�‖2

L−1
t

+
1

2

∥

∥

∥

∥

βϕ − xc +
1

β
K−1

i �

∥

∥

∥

∥

2

Ki

.

(11)

Proof: The closed-loop dynamics (11) can be verified to

match (7) with the control law (10) by direct matching. First

consider the dynamics of ϕ in (11) that can be rearranged as

ϕ̇ = −R

[

L−1(ϕ − L�) + βKi(βϕ − xc +
1

β
K−1

i �)

]

− C−1(q − q⋆)

= −RL−1ϕ − C−1(q − q⋆) + v, (12)

which agrees with (7). Now, considering the behaviour of q

in (11), we find

q̇ =

[

L−1(ϕ − L�) + βKi(βϕ − xc +
1

β
K−1

i �)

]

− G
eq
L (q)C−1(q − q⋆) + BL−1

t (ϕt − Lt�)

− βKi(βϕ − xc +
1

β
K−1

i �)

= L−1ϕ − � − G
eq
L (q)C−1(q − q⋆)

+ BL−1
t (ϕt − Lt�), (13)

which agrees with (7). The dynamics of ϕt and xc can be easily

seen to match by similar analysis.

Authorized licensed use limited to: University of Groningen. Downloaded on December 01,2020 at 11:01:19 UTC from IEEE Xplore.  Restrictions apply. 
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Remark 1: Noting that R is diagonal, the control law (10)

is decentralised provided that Ki is chosen to be diagonal.

Remark 2: It is clear that the control law (10) includes an

integrator on the network voltage error. However, rather than

directly using the integral state for feedback control, the con-

trol signal mixes the integral state with ϕ. It is precisely this

coupling between states that allows for the closed-loop system

to be written as a pH system.

The closed-loop system has now been expressed as an

autonomous pH system (11). Moreover, the closed-loop energy

W has a unique minimum at

(ϕ, q, ϕt, xc) = (L�, q⋆, Lt�,βL� +
1

β
K−1

i �). (14)

Stability of the point (14) depends on the positivity of the

equivalent load conductance G
eq
L (q), which is formalised in

the following proposition.

Proposition 3: Consider the closed-loop system (11) which

has an equilibrium point (14). If there exists a neighbourhood

of q⋆ such that G
eq
L (q) > 0, the point (14) is asymptotically

stable.

Proof: The derivative of W evaluated along the dynam-

ics (11) satisfies

Ẇ = −∇⊤
ϕ WR∇ϕW − ∇⊤

q WG
eq
L (q)∇qW

− ∇⊤
ϕt
WRt∇ϕtW . (15)

If there exists a neighbourhood of (14) such that G
eq
L (q) > 0,

then Ẇ ≤ 0 on the same neighbourhood. As W is minimised

at (14), there exists positively invariant set containing (14).

Asymptotic stability follows from application of LaSalle’s

theorem [16].

C. Performance Improvement: Integral Action With

Damping Injection

Although the closed-loop dynamics (11) are well-behaved,

they are not necessarily robust against the unknown time-

varying disturbance δ(t), which may represent imperfections

in the control signal or time-varying load components. This

lack of guaranteed robustness is due to the fact that W is not

a strict Lyapunov function for the closed-loop dynamics (11).

In this subsection, the integral action law is extended to add a

damping term into the integrator dynamics, which will ensure

that W is indeed a strict Lyapunov function. Consequently,

this development allows verification of stronger stability prop-

erties of the closed-loop system. Specifically, we will prove

exponential stability of the desired equilibrium point (14) if

δ(t) = 0(2n+m)×1,∀t ≥ 0, and local input-to-state stabil-

ity [15] of the closed-loop system with respect to any bounded

time-varying disturbance δ(t).

Proposition 4: Consider the electrical system (7) in closed-

loop with the control law

xc = z −
1

β
Kd(q − q⋆)

ż =
1

β
KdL−1ϕ − βC−1(q − q⋆) + KdKi(βϕ − xc)

v = −βRKi(βϕ − xc), (16)

where β ∈ R+, Ki = K⊤
i > 0 and Kd = K⊤

d > 0 are tuning

parameters. The resulting closed-loop dynamics have the form
⎡

⎢

⎢

⎣

ϕ̇

q̇

ϕ̇t

ẋc

⎤

⎥

⎥

⎦

= Fcl∇W + δe(t),

Fcl =

⎡

⎢

⎢

⎣

−R − In 0n×m 0n×n

In − G
eq
L (q) B βIn

0m×n − B⊤ − Rt 0n×n

0n×n
1
β

KdG
eq
L (q) − βIn − 1

β
KdB − Kd

⎤

⎥

⎥

⎦

,

(17)

where W is as in (11), and δe(t) = [δ⊤(t), − 1
β
δ⊤

q (t)Kd]⊤.

Proof: Verification of the ϕ, q and ϕt dynamics follows

identically to Proposition 2. The control signal (16) can be

rearranged as

ẋc = ż −
1

β
Kdq̇

= −βC−1(q − q⋆) + KdKi

(

βϕ − xc +
1

β
K−1

i �

)

+
1

β
KdG

eq
L (q)C−1(q − q⋆)

−
1

β
KdBL−1

t (ϕt − Lt�) −
1

β
Kdδq(t)

=

[

1

β
KdG

eq
L (q) − βI

]

∇qW − Kd∇xcW

−
1

β
KdB∇ϕtW −

1

β
Kdδq(t), (18)

which agrees with (17), completing the proof.

Notice that the closed-loop dynamics (17) now have an

additional damping term in the xc coordinate. The existence

of this term allows the verification of some stronger stability

properties of the equilibrium point (14). Let

x :=
[

ϕ⊤, q⊤, ϕ⊤
t , x⊤

c

]⊤
, (19)

and denote the equilibrium point (14) by x⋆. We now recall

the definition of local input-to-state stability (LISS).

Definition 1 (LISS [18]): Let x0 := x(0). The system (17)

is LISS with respect to the disturbance δe if there

exists ρδ, ρ0 > 0, γ ∈ K∞, η ∈ KL such that

∀‖x0 − x⋆‖ ≤ ρ0, ∀‖δe(t)‖∞ ≤ ρδ , ‖x − x⋆‖ ≤

η(‖x0 − x⋆‖, t) + γ (‖δe(t)‖∞).

In lay terms, LISS ensures that in some neighbourhood of

the equilibrium point, the system will have a bounded response

to bounded perturbations. In DC networks, the LISS property

will ensure that the system state remains in some neighbour-

hood of (14), even if the loads include bounded time-varying

components.

Theorem 1: Consider the closed-loop dynamics (17) with

equilibrium point (14). If there exists a neighbourhood of q⋆

such that G
eq
L (q) > 0 and if the tuning parameters β and Kd

are chosen such that

Kd −
1

4β2
KdG

eq
L (q)Kd −

1

4β2
KdBR−1

t B⊤Kd > 0 (20)

Authorized licensed use limited to: University of Groningen. Downloaded on December 01,2020 at 11:01:19 UTC from IEEE Xplore.  Restrictions apply. 
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on the same neighbourhood, then:

1) the equilibrium point (14) is exponentially stable if

δ(t) = 0(2n+m)×1,∀t > 0.

2) The closed-loop system is LISS with respect to

the disturbance δe(t) on some neighbourhood of the

equilibrium (14).

Proof: To verify both of the claims, we will need to verify

that the symmetric part of Fcl, defined in (17), is negative

definite. To verify this, we define D(x) as

D(x) := − symm(Fcl)

=

⎡

⎢

⎢

⎢

⎣

R 0n×n 0n×m 0n×n

0n×n G
eq
L (q) 0n×m − 1

2β
G

eq
L (q)Kd

0m×n 0m×n Rt
1

2β
B⊤Kd

0n×n − 1
2β

KdG
eq
L (q) 1

2β
KdB Kd

⎤

⎥

⎥

⎥

⎦

.

(21)

As R > 0, D(x) is positive definite in some neighbourhood of

x⋆ if the block matrix

D2,2(x) :=

⎡

⎢

⎣

G
eq
L (q) 0n×m − 1

2β
G

eq
L (q)Kd

0m×n Rt
1

2β
B⊤Kd

− 1
2β

KdG
eq
L (q) 1

2β
KdB Kd

⎤

⎥

⎦
(22)

is positive definite in some neighbourhood of x⋆. To ver-

ify that D2,2(x) is positive definite, we consider its Schur

complement, i.e.,

Kd −
1

4β2
Kd[G⋆

L − X(q)]Kd −
1

4β2
KdBR−1

t B⊤Kd, (23)

which is positive precisely when (20) holds. Thus, D(x) is

positive definite in some neighbourhood Nx⋆ of the equilibrium

point (14) and satisfies D(x) > κI3n+m, for some κ > 0, on

the same neighbourhood.

To verify claim 1, notice that the function W in (17) can

be written as

W(x) =
1

2

∥

∥x − x⋆
∥

∥

2

Q
(24)

where Q := A⊤ diag(L−1, C−1, L−1
t , Ki)A and

A :=

⎡

⎢

⎢

⎣

In 0n×n 0n×m 0n×n

0n×n In 0n×m 0n×n

0m×n 0m×n Im 0n×n

βIn 0n×n 0n×n −In

⎤

⎥

⎥

⎦

. (25)

As diag(L−1, C−1, L−1
t , Ki) > 0 and Q is defined as a

quadratic form, Q > 0 and W satisfies 1
2
λmin(Q)‖x − x⋆‖2 <

W(x) < 1
2
λmax(Q)‖x − x⋆‖2. The time derivative of W along

the trajectories of (17) satisfies

Ẇ = −∇⊤WD(x)∇W

≤ −κ
(

x − x⋆
)⊤

QQ
(

x − x⋆
)

≤ −κλmin(QQ)
∥

∥x − x⋆
∥

∥

2
. (26)

Exponential stability of (14) follows by application of

[16, Th. 4.10].

Now to verify claim 2, we consider W as an ISS Lyapunov

function for the dynamics (17). The time derivative of W along

the trajectories of the system satisfies

Ẇ = −∇⊤WD(x)∇W + ∇⊤Wδe(t)

≤ −
κ

2
∇⊤W∇W +

1

2κ
δ⊤

e (t)δe(t)

≤ −
κ

2
λmin(QQ)

∥

∥x − x⋆
∥

∥

2
+

1

2κ
‖δe(t)‖

2
∞

≤ −κ
λmin(QQ)

λmax(Q)
W +

1

2κ
‖δe(t)‖

2
∞, (27)

on the neighbourhood Nx⋆ , where κ is an arbitrary constant

from application of Young’s inequality. Let XW be a sub-level

set of W contained within Nx⋆ and let WL be the value of W

on the boundary of XW . From (27) we have that Ẇ < 0 on

the boundary of XW provided that

‖δe(t)‖
2
∞ < 2κ2 λmin(QQ)

λmax(Q)
WL := ρδ. (28)

Therefore, the sub-level set XW is positively invariant. The

value of ρ0 can be computed as ρ0 =
√

2WL

λmin(Q)
, which

ensures that any initial condition satisfying ‖x − x⋆‖ < ρ0

is contained within the sub-level set XW . Expressions for the

functions η, γ can be derived from the expression (27), but are

omitted in the interest of space. Thus, we conclude that the

closed-loop system (17) is LISS in some neighbourhood of the

point x⋆.

Remark 3: Theorem 1 holds on some neighbourhood of x⋆

where G
eq
L (q) > 0 and (20) is satisfied. The condition (20) can

always be satisfied on an arbitrarily large region for sufficiently

large Kd, β. Thus, the region of applicability of Theorem 1 is

limited only by the region on which G
eq
L (q) > 0. Furthermore,

we notice that G
eq
L (q) > 0 is only a sufficient condition that in

the literature is commonly assumed to be satisfied to establish

local stability properties of the considered system in presence

of P-loads (see [9], [10], [19]). In practice this condition is

verified if the voltage trajectories evolve in a neighbourhood

of the corresponding reference values and the power absorbed

by the Z-load is higher than the one absorbed by the P-load.

Remark 4: In case of only ZI-loads, i.e., P⋆
L = 0n×1,

the results developed in this section can be extended to

hold globally. Indeed, in this case X(q) in (4) is equal to

zero and, as a consequence, the equivalent load conductance

G
eq
L (q) = G⋆

L − X(q) = G⋆
L is always positive definite. The

inequality (20) can then be satisfied uniformly for constant

Kd, β.

IV. EXAMPLE

In this section, the control schemes proposed in Section III

are assessed in simulation. We consider an islanded DC

network composed of 4 nodes in ring topology as shown

in [20, Fig. 2]. For the parameters of each node and line

we refer to [20, Tabs. 2 and 3]. For notation simplicity, let

Vi :=
qi

Ci
denote the voltage at node i = 1, . . . , 4, with ini-

tial condition V(0) = [370, 370, 390, 390]⊤ V. The desired

voltage level at each node is chosen equal to 380 V. The load

components are as follows: G⋆
L = diag(0.08, 0.04, 0.05, 0.07)

S, I⋆
L = [10, 15, 10, 15]⊤ A, and P⋆

L = [10, 2, 6, 10]⊤ kW. We

consider δ(t) = 0(2n+m)×1 in the interval 0 ≤ t ≤ 1 s and a step

variation of the P-loads equal to �P⋆
L = [1,−2, 2,−1]⊤ kW

at the time instant t = 0.5 s. Then, we consider δq1(t) =

−C1
q1

(1.9 (P⋆
L1 + �P⋆

L1) + PL1(t)), PL1(t) = 1.5 sin(5t) kW,
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Fig. 2. Voltage at each node together with the desired value (dashed
line). The performances of controllers (10) and (16) are illustrated in the
top and bottom plot, respectively.

∀ t ≥ 1 s, which is equivalent to consider a time-varying P-load

in node 1. The controller parameters in (10) and (16) are β =

10, Ki = 100 In and Kd = 1000 In. Figure 2 shows the time

evolution of the voltage at each node of the network when (10)

and (16) are applied, respectively. We can observe that in both

cases the system response is bounded, even if we can guar-

antee this property only when (16) is applied (see Theorem

1). Moreover, according to Proposition 3 and Theorem 1, both

the control laws are robust with respect to load step variations

(see at t = 0.5 s). On the other hand, we notice that due to

the difference between the voltage initial conditions and ref-

erence value and due to the time-varying P-load in node 1,

the control law (10) induces an oscillatory behaviour, which

is not desired in practical applications. Specifically, the time-

varying P-load in node 1 induces large and high-frequency

oscillations in all the nodes of the network when the control

law (10) is applied. Differently, when the control law (16) is

applied, it is evident that, due to the damping term injected

into the integrator dynamics, the performance (e.g., in terms

of oscillations and settling time) are excellent and definitely

much better than the ones obtained by implementing (10).

V. CONCLUSION

In this letter, based on the port-Hamiltonian framework, we

have proposed a simple decentralized control scheme to regu-

late the voltage in DC networks. We have proved exponential

stability of the desired equilibrium and local input-to-state

stability of the closed-loop system with respect to unknown

time-varying disturbances. The limitations of this letter stem

from the assumption that G⋆
L(q) > 0 and that the time-varying

component of the disturbance satisfies (28). Future research

will aim to relax these assumptions by considering injection of

damping into the q coordinates and rejection of time-varying

loads generated from known exo-systems.
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