
Exponential Stability for a Class of Uncertain

Linear Hybrid Time-Delay Systems and

Applications

L.V. Hien1, Q.P. Ha2 and V.N. Phat3
∗

1Department of Mathematics, Hanoi University of Education,

136 Xuan Thuy Road, Hanoi, Vietnam
2ARC Center of Excellence for Autonomous Systems

Faculty of Engineering, University of Technology Sydney

PO Box 123, Broadway NSW 2007, Australia
3∗ Institute of Mathematics

Vietnam Academy of Science & Technology

18 Hoang Quoc Viet Road, Hanoi, Vietnam

Corresponding author: vnphat@math.ac.vn

Abstract— This paper provide exponential stability conditions
for a class of uncertain linear hybrid time-delay systems. The
system parameter uncertainties are time-varying and unknown
but norm-bounded. The delay in the system states is also time-
varying. By using an improved Lyapunov-Krasovskii functional,
a switching rule for the exponential stability is designed in terms
of the solution of Riccati-type equations. The approach allows
for computation of the bounds that characterize the exponential
stability rate of the solution. An application to stabilization of
linear control switching systems is given. Numerical examples
are given to illustrate the results.
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I. INTRODUCTION

Switching systems belong to an important class of hybrid

systems, which are described by a family of differential

equations together with specified rules to switch between

them. A switching system can be represented by a differential

equation of the form

ẋ(t) = fσ(t, x), t ≥ 0,

where {fσ(., .) : σ ∈ I} is a family of functions parameterized

by some index set I, which is typically a finite set, and

σ(.), which depends on the system state at each time, is the

switching rule/signal determining a switching sequence for the

given system.

Switching systems arise in many practical processes that

cannot be described by exclusively continuous or exclusively

discrete models, such as manufacturing, communication net-

works, automotive engineering control, chemical processes

(e.g., see [4, 8, 13, 16, 17] and the references therein). During

the last decades, the stability problem of uncertain linear time-

delay systems and applications to control theory has attracted a

lot of attention [2, 3, 5, 12, 14]. The main approach for stability

analysis relies on the use of Lyapunov-Krasovskii functionals

and LMI approach for constructing common Lyapunov func-

tion. Although many important results have been obtained for

linear switched systems, there are few results concerning the

stability of switched linear systems with time delay. Under the

assumption on commutative system matrices, it was shown in

[10] that when all subsystems are asymptotically stable, the

switching system is asymptotically stable under an arbitrary

switching rule. The asymptotic stability for switching linear

systems with time delay has been studied in [21], but the

result was limited to symmetric systems. In [14, 15, 19],

delay-dependent asymptotic stability conditions are extended

to discrete-time linear switching systems with time delay. Con-

sidering switching systems composed of a finite number of lin-

ear point time-delay differential equations, it has been shown

recently in [6], that the asymptotic stability may be achieved

by using a common Lyapunov function method switching rule.

There are some other results concerning asymptotic stability

for switching linear systems with time delay, but most of

them provide conditions for asymptotic stability for arbitrary

switching signal without focusing on exponential stability.

The exponential stability problem was considered in [22] for

switching linear systems with impulsive effects by using the

matrix measure concept, and in [20] for nonholonomic chained

systems with strongly nonlinear input/state driven disturbances

and drifts. On the other hand, it is worth noting that the

existing stability conditions for time-delay systems must be

solved upon a grid of the parameter space, which results in

testing a nonlinear Riccati-type equation or a finite number

of LMIs. In this case, the results using finite gridding points

are unreliable and the numerical complexity of the tests grows

rapidly. Therefore, finding new conditions for the exponential

stability of uncertain linear switching time-delay systems is of

interest.

In this paper, we study the problem of exponential stability

for a class of uncertain linear hybrid time-delay systems.
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Different from [6, 22], the system considered in this paper is

subject to time-varying uncertainties and time-varying delay.

Our objective is to derive delay-dependent conditions for

the exponential stability by using an improved Lyapunov-

Krasovskii functional. The conditions will be presented in

terms of the solution of Riccati-type equations. Comparing

with the previous results, a simple geometric design is em-

ployed to find the switching rule and our approach allows

to compute simultaneously the two bounds that characterize

the exponential stability rate of the solution. The result is

applied to obtain new sufficient conditions for stabilization

of linear uncertain control switching systems. The paper can

be considered as an extension of existing results for linear

switching time-delay systems.

The paper is organized as follows. Section 2 presents

notations, definitions and a technical lemma required for

the proof of the main results. Sufficient conditions for the

exponential stability and application to stabilization together

with illustrative examples are presented in Section 3. The

paper ends with a conclusion followed by cited references.

II. PRELIMINARIES

The following notations will be used throughout this paper.

R
+ denotes the set of all real non-negative numbers; R

n

denotes the n-dimensional space with the scalar product 〈., .〉
and the vector norm ‖.‖; R

n×r denotes the space of all

matrices of (n × r)− dimension. AT denotes the transpose

of A; I denotes the identity matrix; λ(A) denotes the set of

all eigenvalues of A; λmax(A) = max{Re λ : λ ∈ λ(A)};

λmin(A) = min{Re λ : λ ∈ λ(A)}; A matrix A is semi-

positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ R
n; A is

positive definite (A > 0) if 〈Ax, x〉 > 0 for all x �= 0; A ≥ B

means A − B ≥ 0.

Consider a class of uncertain linear hybrid time-delay

systems of the form
{

ẋ(t) = [Aσ + ΔAσ(t)]x(t)+
[Dσ + ΔDσ(t)]x(t − h(t)), t ∈ R

+,

x(t) = φ(t), t ∈ [−h, 0],
(2.1)

where x(t) ∈ R
n is the system state; σ(.) : R

n → I :=
{1, 2, . . . , N} is the switching function, which is piece-wise

constant function depending on the state at each time and will

be designed. Aσ, Dσ ∈ {[Ai, Di], i = 1, 2, . . . , N}, Ai, Bi

are given matrices and φ(t) ∈ C([−h, 0], Rn) is the initial

function with the norm ‖φ‖ = sups∈[−h,0] ‖φ(s)‖; The uncer-

tainties satisfy the following conditions:

ΔAi(t) = E0iF0i(t)H0i ΔDi(t) = E1iF1i(t)H1i,

where Eki, Hki, k = 0, 1, i = 1, 2, . . . , N are given constant

matrices with appropriate dimensions; Fki(t) are unknown,

real matrices satisfying

FT
ki(t)Fki(t) ≤ I, k = 0, 1, i = 1, . . . , N, ∀t ≥ 0.

The time-varying delay function h(t) is assumed to satisfy the

following condition

0 ≤ h(t) ≤ h, ḣ(t) ≤ μ < 1, t ≥ 0,

where h and μ are given non-negative constants. This as-

sumption means that the time delay may change from time

to time but the rate of changing is bounded, i.e. the delay

cannot increase as fast as the time itself.

Definition 2.1. Given β > 0. The system (2.1) is β−
exponentially stable if there exists a switching function σ(.)
and positive number γ such that any solution x(t, φ) of the

system satisfies

‖x(t, φ)‖ ≤ γe−βt‖φ‖, ∀t ∈ R
+, (2.2)

for all the uncertainties.

Definition 2.2. [18] The system of matrices {Li}, i =
1, 2, . . . , N, is said to be strictly complete if for every x ∈
R

n\{0} there is i ∈ {1, 2, . . . , N} such that xT Lix < 0.

Let us define

Ωi = {x ∈ R
n : xT Lix < 0}, i = 1, 2, . . . , N.

It’s easy to show that the system {Li}, i = 1, 2, . . . , N, is

strictly complete if and only if

N⋃

i=1

Ωi = R
n\{0}. (2.3)

Remark 2.1. As shown in [Uhlig(1979)], a sufficient condition

for the strict completeness of the system {Li} is that there

exist ξi ≥ 0, i = 1, 2, . . . , N such that
∑N

i=1 ξi > 0 and

N∑

i=1

ξiLi < 0.

If N = 2 then the above condition is also necessary for the

strict completeness.

Next, we introduce the following lemma, which will be

used in the proof of our results.

Lemma 2.1. [12] For any x, y ∈ R
n, matrices P, E, F, H with

P > 0, FT F ≤ I , and scalar ε > 0, one has

(1) EFH + HT FT ET ≤ ε−1EET + εHT H,

(2) 2xT y ≤ xT P−1x + yT Py.

III. MAIN RESULTS

In the sequel, for the sake of brevity, we will denote σ for

the switching signal σ(.).

For given positive numbers β, h, μ and symmetric positive
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definite matrix P we set

τ = (1 − μ)−1, η = τe2βh + 2β;

Si = E0iE
T
0i + e2βhE1iE

T
1i,

Q =

N∑

i=1

DT
i PDi, R =

N∑

i=1

HT
1iH1i.

Li(P ) = AT
i P + PAi + HT

0iH0i + PSiP + Q + τR + ηP ;
(3.1)

α1 = λmin(P ),

α2 = λmax(P ) + h[

N∑

i=1

λmax(D
T
i PDi) + τ

N∑

i=1

λmax(H
T
1iH1i)]

(3.2)

Theorem 3.1: The system (2.1) is β− exponentially stable

if there exists a symmetric positive definite matrix P such that

the system of matrices {Li(P )}, i = 1, 2, . . . , N is strictly

complete.

Moreover, the solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤

√
α2

α1
e−βt‖φ‖, t ∈ R

+.

Proof: Consider the following Lyapunov-Krasovskii

functional

V (xt) = V1(x(t)) + V2(xt) + V3(xt),

where xt = x(t + s), s ∈ [−h, 0] and

V1(x(t)) = xT (t)Px(t),

V2(xt) =

t∫

t−h(t)

e2β(s−t)xT (s)Qx(s)ds,

V3(xt) =
1

1 − μ

t∫

t−h(t)

e2β(s−t)xT (s)Rx(s)ds.

It’s easy to verify that

α1‖x(t)‖2 ≤ V (xt) ≤ α2‖xt‖
2, t ≥ 0, (3.3)

where α1, α2 are respectively defined by (3.2).

Taking derivative of V1(x(t)) = xT (t)Px(t) along trajec-

tories of any subsystem ith we have

V̇1(x(t)) =xT (t)[AT
i P + PAi]x(t) + 2xT (t)PΔAi(t)x(t)

+ 2xT (t)PDix(t − h(t))

+ 2xT (t)PΔDi(t − h(t)).

Applying Lemma 2.1 gives

2xT (t)PΔAi(t)x(t) ≤ xT (t)PE0iE
T
0iPx(t)

+ xT (t)HT
0iH0ix(t), (3.4)

2xT (t)PΔDix(t − h(t)) ≤ e2βhxT (t)PE1iE
T
1iPx(t)

+ e−2βhxT (t − h(t))HT
1iH1ix(t − h(t)),

2xT (t)PDix(t − h(t)) ≤ τe2βhxT (t)Px(t)

+ τ−1e−2βhxT (t − h(t))DT
i PDix(t − h(t)).

Next, taking derivative of V2(xt) and V3(xt), respectively,

along the system trajectories yields

V̇2(xt) = − 2βV2(xt) + xT (t)Qx(t)

− (1 − ḣ(t))xT (t − h(t))e−2βh(t)Qx(t − h(t))

≤− 2βV2(xt) + xT (t)Qx(t)

− τ−1e−2βhxT (t − h(t))Qx(t − h(t)), (3.5)

V̇3(xt) = − 2βV3(xt) + τxT (t)Rx(t)

− τ(1 − ḣ(t))xT (t − h(t))e−2βh(t)Rx(t − h(t))

≤− 2βV3(xt) + τxT (t)Rx(t)

− e−2βhxT (t − h(t))Rx(t − h(t)). (3.6)

From (3.1), (3.4) - (3.6) we get

V̇ (xt) + 2βV (xt) ≤ xT (t)[AT
i P + PAi

+ Q + τR + PSiP ]x(t)

+ ηxT (t)Px(t) + xT (t)HT
0iH0ix(t)

= xT (t)Li(P )x(t). (3.7)

Let us set

Ωi(P ) = {x ∈ R
n : xTLi(P )x < 0}.

Then by the strict completeness of the system of matrices

{Li(P )}, and from (2.3) it follows that

N⋃

i=1

Ωi(P ) = R
n\{0}.

Defining the sets

Ω̃1(P ) = Ω1(P ),

Ω̃i(P ) = Ωi(P )\
i−1⋃

j=1

Ω̃j(P ), i = 2, 3, . . . , N.

we see that

N⋃

i=1

Ω̃i(P ) = R
n\{0}, Ω̃i(P ) ∩ Ω̃j(P ) = ∅, i �= j.

Therefore, for any x(t) ∈ R
n, t ≥ 0, there exists i ∈

{1, 2, . . . , N} such that x(t) ∈ Ω̃i(P ). By choosing switching

rule as σ(x(t)) = i whenever x(t) ∈ Ω̃i(P ), from (3.7) we

have

V̇ (xt) + 2βV (xt) ≤ xT (t)Li(P )x(t) ≤ 0, t ≥ 0.

This implies that V (xt) ≤ V (φ)e−2βt, t ≥ 0. Taking (3.3)

into account, we obtain

α1‖x(t, φ)‖2 ≤ V (xt) ≤ V (φ)e−2βt ≤ α2e
−2βt‖φ‖2,

i = 1, 2, ..., N, t ≥ 0,

and then

‖x(t, φ)‖ ≤

√
α2

α1
e−βt‖φ‖, t ≥ 0,

which concludes the proof of the theorem 3.1.
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Remark 3.1. Note that by Remark 2.1, the system

{Li(P )} is strictly complete if there exist ξi ≥ 0, i =
1, 2, . . . , N,

∑N

i=1 ξi > 0 such that

N∑

i=1

ξiLi(P ) < 0. (3.8)

In this case, the switching rule can be chosen as

σ(x(t)) = argmin{xT (t)Li(P )x(t)}, t ≥ 0.

Indeed, as shown in the proof of Theorem 3.1, we have arrived

at the estimation

V̇ (xt) + 2βV (xt) ≤ xT (t)Li(P )x(t), t ≥ 0.

Since ξi ≥ 0 and ξ =
∑N

i=1 ξi > 0, so

min
i=1,2,...,N

xT (t)Li(P )x(t) ≤ ξ−1
N∑

i=1

ξix
T (t)Li(P )x(t).

By choosing switching rule as

σ(x(t)) = argmin{xT (t)Li(P )x(t)}, t ≥ 0,

we have

V̇ (xt) + 2βV (xt) ≤

xT (t)Li(P )x(t) ≤ ξ−1
N∑

i=1

ξix
T (t)Li(P )x(t) ≤ 0.

This leads to

‖x(t, φ)‖ ≤

√
α2

α1
e−βt‖φ‖, t ≥ 0,

as desired.

The following procedure can be applied to design the

switching rule.

Step 1. Define the symmetric positive definite matrix P (i.e.

the solution of the matrix inequality (3.8)) such that the system

{Li(P )} is strictly complete.

Step 2. Construct the sets Ωi(P ), and then Ω̃i(P ).
Step 3. The switching rule is chosen as σ(x(t)) = i, whenever

x(t) ∈ Ω̃i(P ).

Example 3.1. Consider the system (2.1), where N = 2, h(t) =
0.5sin2t and

[A1, D1] =

[(
−20 1
−4 6

)
,

(
1 −1
1 −1

)]
,

[A2, D2] =

[(
5 −1
1 −30

)
,

(
1 −1
3 −4

)]
,

E0i = E1i =

(
0.2 0
0 0.2

)
, H0i = H1i =

(
1 0
0 1

)
.

Note that, both matrices A1 and A2 are unstable. In this

case, we have h = 0.5, μ = 0.5, τ = 2, β = 1. We verify that

the symmetric positive definite matrix

P =

(
3.3922 −1.5840
−1.5840 1.8170

)
,

is a solution of (3.8):

L(P ) = 0.5L1(P ) + 0.5L2(P ) < −0.5I,

where

L1(P ) =

(
−78.4218 −10.8561
−10.8561 59.8458

)
,

L2(P ) =

(
75.3468 8.8683
8.8683 −64.6418

)
.

Therefore, the system {L1(P ), L2(P )} is strictly complete.

The sets Ω1(P ), Ω2(P ) are defined as

Ω1(P ) = {(x, y) ∈ R
2 : −78.4218x2−

21.7122xy + 59.8458y2 < 0},

Ω2(P ) = {(x, y) ∈ R
2 : 75.3468x2+

17.7366xy − 64.6418y2 < 0},

which can be represented by Figure 1.

Fig. 1. Representation of regions Ω1 and Ω2

It can be seen that Ω1(P ) ∪ Ω2(P ) = R
2\{0}. Therefore,

the switching regions are given as

Ω̃1(P ) = {(x, y) ∈ R
2 :

− 78.4218x2 − 21.7122xy + 59.8458y2 < 0};

Ω̃2(P ) = {(x, y) ∈ R
2 :

− 78.4218x2 − 21.7122xy + 59.8458y2 ≥ 0,

(x, y) �= (0, 0)}.

We have Ω̃1(P )∪Ω̃2(P ) = R
2\{0}, Ω̃1(P )∩Ω̃2(P ) = ∅. The

switching rule is chosen as

σ(x(t)) =

{
1 if x(t) ∈ Ω̃1(P ),

2 if x(t) ∈ Ω̃2(P ).

By Theorem 3.1, the solution of the system satisfies

‖x(t, φ)‖ ≤ 5.2885e−t‖φ‖, ∀t ≥ 0.

For the case when N = 1 (without switching), Theorem

3.1 gives an exponential estimate for the robust stability of

uncertain linear time-delay systems, as considered in [9, 11].
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Corollary 3.1. The uncertain linear time-delay system

ẋ(t) = [A + ΔA(t)]x(t) + [D + ΔD(t)]x(t − h(t)), t ≥ 0,

(3.9)
is β− exponentially stable if there exists a symmetric positive

definite matrix P such that the following condition hold

AT P + PA + DT PD + PSP + ηP + M < 0,

where S = E0E
T
0 + e2βhE1E

T
1 , M = HT

0 H0 + τHT
1 H1, η =

2β + τe2βh.

Moreover, the solution of the system (3.9) satisfies

‖x(t, φ)‖ ≤

√
α2

α1
e−βt‖φ‖, t ∈ R

+,

where α1 = λmin(P ), α2 = λmax(P ) + h[λmax(D
T PD) +

τλmax(H
T
1 H1)].

For comparison with the condition obtained in [9, 11], we

consider the following example

ẋ(t) = [A + ΔA]x(t) + [D + ΔD]x(t − h),

where

A =

(
−4 1
0 −4

)
, D =

(
0.1 0
4 0.1

)
,

‖ΔA‖ ≤ 0.2, ‖ΔD‖ ≤ 0.2.

Here h = 0.5, μ = 0, E0 = E1 = 0.2I, H0 = H1 = I, then

Corollary 3.1 gives the decay rate β = 0.9539 and the stability

factor γ = 5.9053 with the solution matrix P

P = 1.0e + 005 ∗

(
8.4328 2.7162
2.7162 1.6256

)
,

and the solution satisfies

‖x(t, φ)‖ ≤ 5.9053e−0.9539t, t ≥ 0.

It is interesting to note that the decay rate for this system

by using Corollary 3.1 is greater than decay rate β = 0.476,

obtained by using Theorem 2 in [9] or β = 0.095 from the

matrix measure results in [11].

As an application of Theorem 3.1, we consider stabilization

problem of a linear switching control time-delay system of the

form

ẋ(t) = [Aσ + ΔAσ(t)]x(t)+

[Dσ + ΔDσ(t)]x(t − h(t))+

[Bσ + ΔBσ(t)]u(t), t ∈ R
+,

x(t) = φ(t), t ∈ [−h, 0],

(3.10)

where u(t) ∈ R
m is the control; Bσ ∈ {[Bi], i =

1, 2, . . . , N}, Bi are given constant matrices. The uncertainty

ΔBi(t) satisfies:

ΔBi(t) = E2iF2i(t)H2i, i = 1, 2, ..., N, t ∈ R+,

where E2i, H2i, i = 1, 2, . . . , N are given constant matrices

with appropriate dimensions.

Definition 3.1. Given β > 0. The system (3.10) is

β−exponentially stabilizable if there exist matrices Ki ∈
Rm×n such that the resulting closed-loop system

ẋ(t) = [Aσ + BσKσ+

ΔAσ(t) + ΔBσ(t)Kσ]x(t)+

[Dσ + ΔDσ(t)]x(t − h(t)),

((3.11))

is β−exponentially stable. The control u(t) = Kσx(t) is

stabilizing feedback control of the system.

To proceed with the exponential stabilization condition, we

set

S̃i = E0iE
T
0i + E2iE

T
2i + e2βhE1iE

T
1i;

L̃i(P ) = AT
i P + PAi − PBiB

T
i P + HT

0iH0i

+
1

4
PBiH

T
2iH2iB

T
i P + PS̃iP + Q + τR + ηP,

where

Q =

N∑

i=1

DT
i PDi, R =

N∑

i=1

HT
1iH1i.

Theorem 3.2: The system (3.10) is β− exponentially sta-

bilizable if there exists a symmetric positive definite matrix P

such that one of the following conditions holds

(i) The system matrices {L̃i(P )} is strictly complete.

(ii) There exist ξi ≥ 0,
∑N

i=1 ξi > 0 such that

N∑

i=1

ξiL̃i(P ) < 0. (3.12)

The switching rule is defined as σ(x(t)) = i whenever x(t) ∈
Ω̃i in case (i), and as

σ(x(t)) = argmin{xT (t)L̃i(P )x(t)}, t ≥ 0,

in case (ii). The feedback stabilizing control is given by u(t) =

−
1

2
BT

i Px(t), t ≥ 0.

Proof: For the feedback control u(t) = Kix(t), where

Ki = −
1

2
BT

i P, we define

Ãi = Ai + BiKi, Ẽ0i =
(
E0i E2i

)
,

F̃0i(t) =

(
F0i(t) 0

0 F2i(t)

)
, H̃0i =

(
H0i

H2iK

)
.

Note that

E0iF0i(t)H0i+E2iF2i(t)H2i

=
(
E0i E2i

) (
F0i(t) 0

0 F2i(t)

)(
H0i

H2iK

)
,

the closed-loop system (3.11) becomes

ẋ(t) =[Ãi + Ẽ0iF̃0i(t)H̃0i]x(t)+

[Di + ΔDi(t)]x(t − h(t)), t ≥ 0.

Therefore, the proof of Theorem 3.2 is then completed by the

same arguments used in the proof of Theorem 3.1.
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Remark 3.2. The delay-dependent conditions for the expo-

nential stability and stabilization are derived in terms of the

solution of Riccati-type inequalities (3.8), (3.12). To find the

solution of these Riccati inequalities, one can use various

computationally-efficient techniques, see e.g. [1, 7].

Example 3.2. Consider the switched uncertain time-delay

control system (3.10), where h(t) = 1.5sin2(0.6t), and

[A1, D1, B1] =

[(
−20 1
−4 6

)
,

(
1 −1
1 −1

)
,

(
2
1

)]
,

[A2, D2, B2] =

[(
5 −1
1 −30

)
,

(
1 −1
3 −4

)
,

(
3
5

)]
,

E0i = E1i =

(
0.2 0
0 0.2

)
, E21 =

(
1
0

)
, E22 =

(
0
1

)
,

H0i = H1i =

(
1 0
0 1

)
, H21 =

(
−1
1

)
, H22 =

(
1
−1

)
.

Here, we have h = 1.5, μ = 0.9 and τ = 10, β = 0.5. The

condition (3.12) gives

L̃(P ) = 0.5L̃1(P ) + 0.5L̃2(P ) < 0,

where

P =

(
547.6711 −49.7510
−49.7510 24.8041

)
.

The feedback control can thus be obtained as u(t) = Kix(t),
where

K1 = −
1

2
BT

1 P = [−522.7956 37.3489]

K2 = −
1

2
BT

2 P = [−697.1292 12.6161].

By using Theorem 3.3, the uncertain switching control system

(3.10) is exponentially stabilizable and the solution of the

system satisfies

‖x(t, φ)‖ ≤ 9.979e−0.5t‖φ‖, ∀t ≥ 0.

IV. CONCLUSION

This paper has proposed a switching design for the ex-

ponential stability of uncertain linear switching time-delay

systems. The stability conditions are derived in terms of the

solution of Riccati-type equations. The approach allows for the

use of efficient techniques for computation of the two bounds

that characterize the exponential stability rate of the solution,

as well as the feedback control.
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