
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXIV, NUMBER 3

SEPTEMBER 2006, PAGES 499–513

S 0033-569X(06)01010-4

Article electronically published on April 6, 2006

EXPONENTIAL STABILITY IN LINEAR VISCOELASTICITY

By

VITTORINO PATA

Dipartimento di Matematica “F.Brioschi”, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy

Abstract. We address the study of the asymptotic behavior of solutions to an abstract
integrodifferential equation modeling linear viscoelasticity. Framing the equation in the
past history setting, we analyze the exponential stability of the related semigroup S(t)
with dependence on the convolution kernel, providing a more general sufficient condition
than the usual one present in the literature.

1. Introduction. Given a Hilbert space (H, 〈·, ·〉, ‖ · ‖) and a strictly positive self-
adjoint linear operator A : D(A) ⊂ H → H, we consider, for t > 0, the second-order
linear integrodifferential equation

∂ttu(t) + αAu(t) + β∂tu(t) −
∫ ∞

0

µ(s)Au(t − s)ds = 0, (1.1)

where α > 0, β ≥ 0 and the convolution (or memory) kernel µ is a summable decreasing
function defined on R+ = (0,∞), hence nonnegative, of total mass

κ =
∫ ∞

0

µ(s)ds ∈ (0, α).

Equation (1.1), supplemented by the initial conditions{
u(t) = w0(t), t ≤ 0,

ut(0) = v0,

with w0 and v0 assigned data, serves as a model to describe the dynamics of linearly
viscoelastic solids. In that case, A is the negative Laplacian with Dirichlet boundary
conditions acting on L2(Ω), where Ω is the volume occupied by the viscoelastic body at
rest, and u represents the displacement field relative to the reference configuration. The
term β∂tu accounts for dynamical friction.

Introducing the Hilbert space V = D(A1/2) continuously embedded into H and the
L2-weighted space M = L2

µ(R+; V ), both endowed with their natural inner products,
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500 V. PATA

along with the linear operator T = −∂s on M (derivative in the distributional sense)
defined on the domain

D(T ) =
{
η ∈ M : ∂sη ∈ M, lim

s→0
η(s) = 0

}
,

we can rephrase equation (1.1) as an abstract system of PDEs on the Hilbert space
H = H × V ×M. Precisely,⎧⎪⎨

⎪⎩
∂ttu(t) + κωAu(t) + β∂tu(t) +

∫ ∞

0

µ(s)Aηt(s)ds = 0,

∂tη
t = Tηt + ∂tu(t),

(1.2)

having put

ω =
α − κ

κ
.

This is the so-called past history setting of (1.1), for it is obtained from (1.1), following
a brilliant intuition of Dafermos [4, 5], by introducing the supplementary variable

ηt(s) = u(t) − u(t − s), t ≥ 0, s > 0,

which reproduces the past history of u. Accordingly, the initial conditions for (1.2) read⎧⎪⎪⎨
⎪⎪⎩

u(0) = u0,

ut(0) = u1,

η0(s) = η0(s),

where u0 = w0(0) and η0(s) = w0(0)−w0(−s). We refer the reader to [12] for a detailed
presentation of the historical approach to treating integrodifferential equations of this
kind. The remarkable fact about this latter formulation is that, under quite general
assumptions on the kernel µ, system (1.2) generates a linear contraction semigroup S(t)
on H.

The main question now is the following:

Is S(t) exponentially stable?

This amounts to finding constants M ≥ 1 and ε > 0 such that

‖S(t)‖L(H) ≤ Me−εt,

where L(H) is the Banach space of bounded linear operators on H. This was indeed the
main focus of several works that have appeared over the years (e.g., [7, 8, 10, 11, 13,
14, 16]). The situation is of course more delicate for the case β = 0, where the entire
dissipation is given solely by the memory integral. To the best of our knowledge, all
positive results regarding exponential stability of semigroups arising from problems with
memory have been obtained assuming the following condition on µ (cf. [14]):

µ′(s) + δµ(s) ≤ 0, (1.3)

for some δ > 0 and (almost) every s ∈ R+. In fact, if (1.3) holds, then our semigroup
S(t) is exponentially stable, even when β = 0. This result has been proved first via
Laplace transform methods [7], semigroup techniques [13], and direct energy estimates
[11] (in the latter case, with some restrictions on the behavior of µ in a neighborhood
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of zero). Although it includes many physically interesting kernels, condition (1.3) is
somehow unsatisfactory and certainly too restrictive. For instance, it does not allow µ

to have flat zones, or even horizontal inflection points, when it should be conceivably
true that exponential stability should be conserved if, say, we consider a kernel which
is equal to the negative exponential, except on a small set. The recent paper [2] proves
that a necessary condition for S(t) to be exponentially stable is that there exist C ≥ 1
and δ > 0 such that

µ(t + s) ≤ Ce−δtµ(s), (1.4)

for every t ≥ 0 and almost every s > 0, which is the same as requiring that

lim sup
t→∞

[
sup

s∈(0,S)

µ(t + s)
µ(s)

]
< 1,

where

S = sup
{
s ∈ R

+ : µ(s) > 0
}
.

If C = 1, then (1.4) is equivalent to (1.3). Nonetheless, the gap between the necessary
condition (1.4) and the sufficient condition (1.3) is huge. For example, any compactly
supported kernel µ fulfills (1.4), but it clearly need not satisfy (1.3).

The aim of the present work is to provide a much weaker sufficient condition in order
for exponential stability to occur. Loosely speaking, our main result reads as follow.

Theorem 1.1. Assume that the necessary condition (1.4) holds. If β = 0, then the
semigroup S(t) is exponentially stable, provided that the set where the kernel µ is flat
is sufficiently small, with respect to the measure µ(s)ds. If β > 0, then (1.4) is sufficient
as well in order to have exponential stability.

We now briefly sketch the plan of the paper. In §2 we specify the assumptions on
the memory kernel µ, and we recall the construction of the semigroup S(t). In §3 we
reformulate Theorem 1.1 in a precise way, while §4, §5, and §6 are devoted to the proof
of the main result. Finally, in §7 we discuss further possible applications.

2. The contraction semigroup S(t).
Assumptions on µ. Let µ be a monotone (possibly not strictly) decreasing summable

function on R+ of total mass κ ∈ (0, α). Setting s0 = 0, we suppose that there exists a
strictly increasing sequence {sn} (possibly finite, or even reduced solely to s0) converging
to s∞ ∈ [0,∞] such that, for all n ∈ N, µ has jumps at the point s = sn, and it is
absolutely continuous on each interval In = (sn−1, sn) and on the interval I∞ = (s∞,∞),
unless I∞ is empty. If s∞ < ∞, then µ may or may not have a jump at s = s∞. Under
these conditions, µ′ is defined and is nonpositive almost everywhere. Finally, for n ∈ N,
we denote

µn = µ(s−n ) − µ(s+
n ) and µ∞ = µ(s−∞) − µ(s+

∞),

with µ∞ defined only if s∞ < ∞. Note that µ can be (weakly) singular in a neighborhood
of zero.
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As shown in [2], in the above assumptions, system (1.2) generates a contraction semi-
group S(t) = etL on the phase space H = V × H ×M, normed by

‖(u, v, η)‖2
H = κω‖u‖2

V + ‖v‖2 + ‖η‖2
M.

The domain of the infinitesimal generator L of S(t) is given by

D(L) =
{
(u, v, η) ∈ H : u +

∫ ∞

0

µ(s)η(s)ds ∈ D(A), v ∈ V, η ∈ D(T )
}
.

In particular, the third component of the solution S(t)(u0, v0, η0) = (u(t), ∂tu(t), ηt) has
the explicit representation formula (see [16])

ηt(s) =

{
u(t) − u(t − s), 0 < s ≤ t,

η0(s − t) + u(t) − u0, s > t.
(2.1)

For η ∈ D(T ), we introduce the quantity

J[η] =
∑

n

µn‖η(sn)‖2
V ,

where the sum includes the value n = ∞ if s∞ < ∞. Then, if (u0, v0, η0) ∈ D(L), the
energy equality in H reads (see [2, 12])

d

dt
‖(u(t), ∂tu(t), ηt)‖2

H + 2β‖∂tu(t)‖2 +
∫ ∞

0

−µ′(s)‖ηt(s)‖2
V ds + J[ηt] = 0. (2.2)

3. The main theorem. In order to state the result, we have to introduce some
definitions. Concerning the kernel µ, in light of our purposes we give the following

Definition 3.1. We say that µ is an admissible kernel if it satisfies the above general
assumptions and (1.4) holds.

We construct the probability measure µ̂ on R+ as

µ̂(A) =
1
κ

∫
A

µ(s)ds,

for every measurable set A ⊂ R+.
Definition 3.2. We define the flatness set of the kernel µ as

Fµ =
{
s ∈ R

+ : µ(s) > 0 and µ′(s) = 0
}
,

and we call the quantity
Rµ = µ̂(Fµ)

the flatness rate of µ.
Setting now, for ω > 0,

M(ω) =

{
ω1/2

2 , ω < 1,
1
2 , ω ≥ 1,

we are in a position to state

Theorem 3.3. Let µ be an admissible kernel. If β = 0 and

Rµ < M(ω),

then S(t) is exponentially stable. If β > 0, then S(t) is always exponentially stable.
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A particular instance, albeit quite interesting in view of concrete applications, is the
following

Corollary 3.4. Let µ be an admissible kernel. If µ′ < 0 almost everywhere on the
support of µ, then S(t) is exponentially stable.

Theorem 3.3 provides an optimal result for the case β > 0, whereas, for β = 0, it
locates a threshold for the flatness rate Rµ, above which we cannot say anything. Roughly
speaking, if ω is large enough, we have a positive answer only if the measure of the flatness
set does not exceed the measure of the set where µ is decreasing. Unfortunately, this
threshold seems to be sharp, at least with respect to our techniques. Clearly, it would
be interesting to say something for the case not covered by the theorem.

Remark 3.5. The paper [2] shows that, if β = 0 and Rµ = 1 (i.e., µ is a step function),
then there are particular forms of µ which allow the existence of periodic (hence, purely
elastic) solutions. If in addition H is a separable infinite-dimensional Hilbert space and
A has compact inverse (as in the case of linear viscoelasticity), then exponential stability
never occurs, at least for a wide class of operators A, including the negative Laplacian
on certain domains.

Thus, the question is really what happens when Rµ ∈ [M(ω), 1). We do not have a
sensible conjecture (and there is no satisfactory numerical evidence either), so we leave
it as an open question.

4. Some preliminary results. The proof of Theorem 3.3 is based on sharp esti-
mates of certain auxiliary functionals defined for (u0, v0, η0) ∈ D(L). We first need to
establish some notation.
• We recall the Poincaré inequality, namely,

‖w‖2 ≤ 1
λ
‖w‖2

V , ∀w ∈ V,

where λ > 0 is the infimum of the spectrum of A.
• Given a measurable set F ⊂ R+, we consider the L2-weighted space MF = L2

µ(F ; V ).
• We introduce the new variable

ξt(s) = ηt(s) − u(t).

Note that, in view of the representation formula (2.1), it holds that

ξt(s) =

{
−u(t − s), 0 < s ≤ t,

η0(s − t) − u0, s > t.
(4.1)

• For any fixed s∗ ≥ 0, let ψ = ψs∗ : R+ → [0,∞) be defined as

ψ(s) = µ(s∗)χ(0,s∗](s) + µ(s)χ(s∗,∞)(s).

• Throughout the paper, c ≥ 0 will stand for a generic constant depending only on α, λ,
and the kernel µ. Moreover, given ν ∈ (0, 1), we denote by cν ≥ 0 and εν ≥ 0 generic
constants depending (besides on α, λ, µ) only on ν, such that εν → 0 as ν → 0.
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Then, paralleling some ideas of [11], we introduce the functionals (the first depending
on the choice of s∗)

Φ1(t) = − 1
κ

∫ ∞

0

ψ(s)〈∂tu(t), ηt(s)〉ds

and

Φ2(t) = 〈∂tu(t), u(t)〉.

Observe that, since S(t) is a contraction semigroup,

sup
t≥0

[
|Φ1(t)| + |Φ2(t)|

]
≤ c. (4.2)

In the sequel, we shall often make tacit use of the Young, the Hölder, and the Poincaré
inequalities.

Lemma 4.1. For any ν ∈ (0, 1), there exists s∗ = s∗(ν) ≥ 0 such that, for all measurable
sets F ⊂ R+ and A = R+ \ F , the corresponding functional Φ1(t) fulfills the differential
inequality

d

dt
Φ1 ≤

(
κωµ̂(F) + 2κµ̂(F)2 + εν

)
‖u‖2

V − (1 − ν)‖∂tu‖2 +
(
2µ̂(F) + εν

)
‖ξ‖2

MF

+ ω

∫
F

µ(s)〈u, ξ(s)〉V ds + cν‖η‖2
MA + cν

( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)
.

Proof. If lims→0 µ(s) < ∞, simply set s∗ = 0. Otherwise, choose s∗ ∈ (0, s1) (if µ has
no jumps, s∗ ∈ R+) such that ∫ s∗

0

µ(s)ds ≤ κν

2
. (4.3)

The time-derivative of Φ1 is given by

d

dt
Φ1 = − 1

κ

∫ ∞

0

ψ(s)〈∂tu, ∂tη(s)〉ds − 1
κ

∫ ∞

0

ψ(s)〈∂ttu, η(s)〉ds. (4.4)

We now proceed to the estimate of the two terms in the right-hand side of (4.4).
� The First Term. Using the second equation of system (1.2), we have

− 1
κ

∫ ∞

0

ψ(s)〈∂tu, ∂tη(s)〉ds

= − 1
κ
‖∂tu‖2

∫ ∞

0

ψ(s)ds − 1
κ

∫ ∞

0

ψ(s)〈∂tu(t), Tη(s)〉ds.

Since ψ(s) ≤ µ(s) and equality holds for s ≥ s∗, from (4.3) we get

− 1
κ
‖∂tu‖2

∫ ∞

0

ψ(s)ds ≤ −
(
1 − ν

2

)
‖∂tu‖2.

Integrating by parts in s, and noting that (cf. [12])

lim
s→0

µ(s)1/4‖η(s)‖ = lim
s→∞

µ(s)‖η(s)‖ = 0,
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we obtain

− 1
κ

∫ ∞

0

ψ(s)〈∂tu, Tη(s)〉ds =
1
κ

∫ ∞

0

−ψ′(s)〈∂tu, η(s)〉ds +
1
κ

∑
n

µn〈∂tu, η(sn)〉

≤ 1
κ
‖∂tu‖

( ∫ ∞

0

−ψ′(s)‖η(s)‖ds +
∑

n

µn‖η(sn)‖
)

.

Observe that ψ is continuous in s∗ and that

ψ′(s) = χ(s∗,∞)(s)µ′(s).

Moreover, as s∗ < s1 (if µ has jumps),∑
n

µn ≤ µ(s∗).

Then, we get the estimate∫ ∞

0

−ψ′(s)‖η(s)‖ds +
∑

n

µn‖η(sn)‖

=
∫ ∞

s∗

−µ′(s)‖η(s)‖ds +
∑

n

µn‖η(sn)‖

≤
( ∫ ∞

s∗

−µ′(s)ds

∫ ∞

s∗

−µ′(s)‖η(s)‖2ds

)1/2

+
( ∑

n

µn

∑
n

µn‖η(sn)‖2

)1/2

≤ µ(s∗)1/2

λ1/2

[( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds

)1/2

+ J[η]1/2

]

≤
√

2 µ(s∗)1/2

λ1/2

( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)1/2

.

Therefore,

− 1
κ

∫ ∞

0

ψ(s)〈∂tu, Tη(s)〉ds ≤ ν

2
‖∂tu‖2 +

µ(s∗)
κ2λν

( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)
.

Collecting the above inequalities yields

− 1
κ

∫ ∞

0

ψ(s)〈∂tu, ∂tη(s)〉ds (4.5)

≤ −(1 − ν)‖∂tu‖2 +
µ(s∗)
κ2λν

( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)
.

� The Second Term. From the first equation of system (1.2), it holds that

− 1
κ

∫ ∞

0

ψ(s)〈∂ttu, η(s)〉ds

= ω

∫ ∞

0

ψ(s)〈u, η(s)〉V ds +
1
κ

∫ ∞

0

ψ(s)
(∫ ∞

0

µ(σ)〈η(s), η(σ)〉V dσ

)
ds.
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Let us evaluate the two terms of the above equality separately. Concerning the first one,
we have

ω

∫ ∞

0

ψ(s)〈u, η(s)〉V ds = −ω

∫ s∗

0

[µ(s) − µ(s∗)]〈u, η(s)〉V ds + ω

∫
A

µ(s)〈u, η(s)〉V ds

+ ω

∫
F

µ(s)〈u, ξ(s)〉V ds + κωµ̂(F)‖u‖2
V .

Due to (4.3), we have the estimate

− ω

∫ s∗

0

[µ(s) − µ(s∗)]〈u, η(s)〉V ds

≤ ω‖u‖V

∫ s∗

0

µ(s)‖η(s)‖V ds

≤ ω
(κν

2

)1/2

‖u‖V ‖η‖M

≤ κων1/2‖u‖2
V +

ων1/2

8
‖η‖2

MA +
ων1/2

8
‖η‖2

MF ,

while

ω

∫
A

µ(s)〈u, η(s)〉ds ≤ κ1/2ω‖u‖V ‖η‖MA ≤ κων‖u‖2
V +

ω

4ν
‖η‖2

MA .

Thus, we obtain

ω

∫ ∞

0

ψ(s)〈u, η(s)〉V ds ≤ κω
(
µ̂(F) + ν + ν1/2

)
‖u‖2

V +
(ων1/2

8
+

ω

4ν

)
‖η‖2

MA

+
ων1/2

8
‖η‖2

MF + ω

∫
F

µ(s)〈u, ξ(s)〉V ds.

The remaining term is controlled as

1
κ

∫ ∞

0

ψ(s)
(∫ ∞

0

µ(σ)〈η(s), η(σ)〉V dσ

)
ds

≤ 1
κ

( ∫
A

µ(s)‖η(s)‖V ds +
∫
F

µ(s)‖η(s)‖V ds

)2

≤
(
‖η‖MA + µ̂(F)1/2‖η‖MF

)2

≤ 1 + ν

ν
‖η‖2

MA + (1 + ν)µ̂(F)‖η‖2
MF .

Summarizing, we get

− 1
κ

∫ ∞

0

ψ(s)〈∂ttu, η(s)〉ds (4.6)

≤ κω
(
µ̂(F) + ν + ν1/2

)
‖u‖2

V +
(ων1/2

8
+

ω

4ν
+

1 + ν

ν

)
‖η‖2

MA

+
(
µ̂(F)(1 + ν) +

ων1/2

8

)
‖η‖2

MF + ω

∫
F

µ(s)〈u, ξ(s)〉V ds.
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Plugging (4.5)–(4.6) into (4.4) and noting that

‖η‖2
MF ≤ 2κµ̂(F)‖u‖2

V + 2‖ξ‖2
MF ,

we reach the desired conclusion. �

Lemma 4.2. For any ν ∈ (0, 1) and for all measurable sets F ⊂ R+ and A = R+ \ F , it
holds that

d

dt
Φ2 ≤ −

(
κω + κµ̂(F) − εν

)
‖u‖2

V + ‖∂tu‖2 −
∫
F

µ(s)〈u, ξ(s)〉V ds + cν‖η‖2
MA .

Proof. Using the first equation of (1.2), we have the equality

d

dt
Φ2 = −κ

(
ω + µ̂(F)

)
‖u‖2

V + ‖∂tu‖2 −
∫
F

µ(s)〈u, ξ(s)〉V ds −
∫
A

µ(s)〈u, η(s)〉V ds.

But the last integral can be estimated by

−
∫
A

µ(s)〈u, η(s)〉V ds ≤ κ1/2‖u‖V ‖η‖MA
≤ κν‖u‖2

V +
1
4ν

‖η‖2
MA ,

so that the claim follows. �

Lemma 4.3. Let µ be a given admissible kernel, and let F ⊂ R+ be a measurable set.
Then, for every T > 0 and every (u0, v0, η0) ∈ H, with ‖(u0, v0, η0)‖H ≤ 1, it follows that∫ T

0

‖ξt‖2
MF dt ≤ κµ̂(F)

∫ T

0

‖u(t)‖2
V dt + c.

We stress that c ≥ 0 is independent of F , T , and of the choice of (u0, v0, η0) in the unit
ball of H.

Proof. For every ε > 0, there exists an open set O ⊃ F such that

µ̂(O) < µ̂(F) + ε.

Then O is a disjoint union of open intervals Ij ⊂ R+. Setting

Ot = O ∩ (0, t] and Ot = O ∩ (t,∞),

on account of (4.1) we have, for every t > 0,

‖ξt‖2
MF ≤

∫
Ot

µ(s)‖ξt(s)‖2
V ds +

∫
Ot

µ(s)‖ξt(s)‖2
V ds

=
∫
Ot

µ(s)‖u(t − s)‖2
V ds +

∫
Ot

µ(s)‖η0(s − t) − u0‖2
V ds.

Recalling that ‖S(t)(u0, v0, η0)‖H ≤ 1, in view of (1.4) we obtain∫
Ot

µ(s)‖η0(s − t) − u0‖2
V ds ≤ 2

∫ ∞

t

µ(s)‖η0(s − t)‖2
V ds + 2

∫ ∞

t

µ(s)ds

= 2
∫ ∞

0

µ(t + s)‖η0(s)‖2
V ds + 2

∫ ∞

0

µ(t + s)ds

≤ 2Ce−δt
(
1 + κ

)
.
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Performing a subsequent integration on [0, T ], and since ε is arbitrarily small, we clearly
reach the conclusion if we prove that∫ T

0

( ∫
Ot

µ(s)‖u(t − s)‖2
V ds

)
dt ≤ κµ̂(O)

∫ T

0

‖u(t)‖2
V dt.

But ∫ T

0

( ∫
Ot

µ(s)‖u(t − s)‖2
V ds

)
dt =

∑
j

∫ T

0

( ∫
Ij

µ(s)χ(0,t](s)‖u(t − s)‖2
V ds

)
dt,

and, making a change of variable, it is easy to verify that∫ T

0

( ∫
Ij

µ(s)χ(0,t](s)‖u(t − s)‖2
V ds

)
dt ≤ κµ̂(Ij)

∫ T

0

‖u(t)‖2
V dt.

Summing over j, we complete the proof. �

5. A sufficient condition. We first recall a general sufficient condition for exponen-
tial stability of contraction semigroups. This is really a particular instance of a famous
result due to Datko [6]. For the reader’s convenience, we provide a short proof (in this
case, much easier than Datko’s original argument).

Lemma 5.1. Assume that there exists c ≥ 0 such that∫ ∞

0

‖S(t)ζ‖2
Hdt ≤ c,

for any ζ ∈ D(L) with ‖ζ‖H ≤ 1. Then S(t) is exponentially stable, with a decay rate
(at least) equal to (2ce)−1.

Proof. By a density argument, it is apparent that the above inequality holds for any
ζ ∈ H with ‖ζ‖H = 1. Select � ∈ (0, 1). Given ζ of unit norm, let

t∗ = sup
{
t : ‖S(τ )ζ‖H > �, ∀τ ∈ [0, t]

}
.

Then, it is readily seen that t∗ ≤ c/�2. Therefore, since S(t) is a contraction semigroup,

‖S(t)‖L(H) ≤ �, ∀t ≥ c
�2 .

Using a standard procedure in the theory of linear semigroup (see, e.g., [17]), we conclude
that

‖S(t)‖L(H) ≤
1
�

e−
(

�2
c log 1

�

)
t.

In particular, the best decay rate is (2ce)−1, corresponding to � = e−1/2. �
With regard to our particular semigroup S(t), we can specialize the above lemma in

a more convenient form.

Lemma 5.2. Let µ be a given admissible kernel. Assume that there exists c ≥ 0 such
that ∫ ∞

0

‖u(t)‖2
V dt ≤ c,

for any (u0, v0, η0) ∈ D(L) with ‖(u0, v0, η0)‖H ≤ 1. Then S(t) is exponentially stable.
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Proof. Exploiting the representation formula (2.1) and the fact that S(t) is contractive,
we learn that ∫ ∞

0

‖ηt‖2
Mdt ≤ c.

Indeed, ∫ ∞

0

‖ηt‖2
Mdt ≤ 2κ

∫ ∞

0

‖u(t)‖2
V dt + 2

∫ ∞

0

‖ξt‖2
Mdt,

and the claim follows from Lemma 4.3 for F = R+. In view of Lemma 5.1, we are done
provided that we prove the further estimate∫ ∞

0

‖∂tu(t)‖2dt ≤ c.

To this end, let us consider the functional Φ1(t) for ν = 1/2 and F = ∅. Then, from
Lemma 4.1, we have

d

dt
Φ1 ≤ c‖u‖2

V − 1
2
‖∂tu‖2 + c‖η‖2

M + c

(∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)
.

Setting

Ψ(t) = c‖(u(t), ∂tu(t), ηt)‖2
H + Φ1(t),

by virtue of the energy equality (2.2), we conclude that

d

dt
Ψ +

1
2
‖∂tu‖2 ≤ c‖u‖2

V + c‖η‖2
M.

An integration in t on (0,∞) together with (4.2) entails the sought inequality. �

6. Proof of Theorem 3.3. We will reach our goal by showing that Lemma 5.2
applies. Then let (u0, v0, η0) ∈ D(L), with ‖(u0, v0, η0)‖H ≤ 1. We shall distinguish two
cases.

6.1. The case β = 0. For ν ∈ (0, 1), F ⊂ R+ and A = R+ \ F to be determined later,
let us consider the functional

Φ(t) = Φ1(t) + (1 − ν)Φ2(t).

Combining Lemma 4.1 and Lemma 4.2, we have the differential inequality

d

dt
Φ ≤ −κ

(
ω + (1 − ω)µ̂(F) − 2µ̂(F)2 − εν

)
‖u‖2

V +
(
2µ̂(F) + εν

)
‖ξ‖2

MF + cν‖η‖2
MA

+ (ω − 1 + ν)
∫
F

µ(s)〈u, ξ(s)〉V ds + cν

( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)
.

Hence, using the straightforward estimate∫
F

µ(s)〈u, ξ(s)〉V ds ≤ 1
2
(
κµ̂(F)‖u‖2

V + ‖ξ‖2
MF

)
,
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we end up with

d

dt
Φ ≤ −κ

(
ω +

2(1 − ω) − |1 − ω|
2

µ̂(F) − 2µ̂(F)2 − εν

)
‖u‖2

V

+
(
2µ̂(F) +

|1 − ω|
2

+ εν

)
‖ξ‖2

MF

+ cν‖η‖2
MA + cν

( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)
.

For n ∈ N, consider the sets

An =
{
s ∈ R

+ : nµ′(s) + µ(s) ≤ 0
}
.

Since ⋃
n

An = R
+ \

(
Fµ ∪Nµ

)
,

where Fµ is given in Definition 3.2 and Nµ is the nullset where µ′ is not defined, and
since the sets An are increasingly nested, naming

Fn = R
+ \ An,

it holds that
lim

n→∞
µ̂(Fn) = Rµ. (6.1)

Choosing F = Fn and A = An in the estimates for Φ(t), we introduce the additional
functional (depending on ν ∈ (0, 1) and n ∈ N)

Ψ(t) = cν(1 + n)‖(u(t), ∂tu(t), ηt)‖2
H + Φ(t),

which, in light of (4.2), fulfills the bound

sup
t≥0

|Ψ(t)| ≤ ncν .

Note that ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η] ≥

∫
An

−µ′(s)‖η(s)‖2
V ds ≥ 1

n
‖η‖2

MAn
.

Thus, from (2.2),

d

dt

(
cν(1 + n)‖(u, ∂tu, η)‖2

H
)

+ cν‖η‖2
MAn

+ cν

( ∫ ∞

0

−µ′(s)‖η(s)‖2
V ds + J[η]

)
≤ 0,

and so we conclude that
d

dt
Ψ ≤ −κ

(
ω +

2(1 − ω) − |1 − ω|
2

µ̂(Fn) − 2µ̂(Fn)2 − εν

)
‖u‖2

V

+
(
2µ̂(Fn) +

|1 − ω|
2

+ εν

)
‖ξ‖2

MFn
.

Integrating this inequality in t on the interval [0, T ], with T > 0 arbitrary, by means of
Lemma 4.3 we find the integral estimate(

ω +
(
1 − ω − |1 − ω|

)
µ̂(Fn) − 4µ̂(Fn)2 − εν

) ∫ T

0

‖u(t)‖2
V dt ≤ ncν .
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Since ν ∈ (0, 1) can be chosen arbitrarily small, the theorem is proved if we show that,
for some n ∈ N big enough,

ω +
(
1 − ω − |1 − ω|

)
µ̂(Fn) − 4µ̂(Fn)2 > 0.

This follows from (6.1) and the strict inequality

ω +
(
1 − ω − |1 − ω|

)
Rµ − 4R2

µ > 0,

that is,

Rµ < M(ω).

6.2. The case β > 0. We consider the functional Φ2(t) for F = R+ and ν small enough,
in order to get from Lemma 4.2 the differential inequality

d

dt
Φ2 ≤ −

(κω

2
+ κ

)
‖u‖2

V + ‖∂tu‖2 −
∫ ∞

0

µ(s)〈u, ξ(s)〉V ds

≤ −κ

2
(ω + 1)‖u‖2

V + ‖∂tu‖2 +
1
2
‖ξ‖2

M.

Then, we define

Ψ(t) =
1
2β

‖(u(t), ∂tu(t), ηt)‖2
H + Φ2(t).

Exploiting (2.2), we obtain

d

dt
Ψ ≤ −κ

2
(ω + 1)‖u‖2

V +
1
2
‖ξ‖2

M.

Now we integrate in t on [0, T ], with T > 0 arbitrary. Applying Lemma 4.3 for F = R+,
we conclude that

κω

2

∫ T

0

‖u(t)‖2
V dt ≤ |Ψ(0)| + |Ψ(T )| + c ≤ c +

c

β
,

due to (4.2).

7. Further applications. In this final section, we mention some possible develop-
ments of this theory.

• It is clear that our results also apply to the linear Volterra equation

∂ttu(t) + αAu(t) + β∂tu(t) −
∫ t

0

µ(s)Au(t − s)ds = 0,

which is just a particular case of (1.1), obtained by choosing null past histories. In this
case, we do not talk of semigroups anymore, and the exponential stability condition reads

‖(u(t), ∂tu(t))‖H×V ≤ M‖(u0, v0)‖H×V e−εt,

for some M ≥ 1 and ε > 0. However, it should be noted that the necessary condition
(1.4) is used only in the proof of Lemma 4.3, to control the integral∫

Ot

µ(s)‖η0(s − t) − u0‖2
V ds,
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which disappears in the Volterra case. In fact, it is possible to show that Theorem 3.3
holds if we replace (1.4) with ∫ ∞

s

µ(σ) dσ ≤ Ke−ϑs,

for some K ≥ κ and ϑ > 0. As noted in [1], this is equivalent to requiring that µ have
the exponential decay property; i.e., there exists � > 0 such that∫ ∞

0

µ(s)e�s < ∞,

which (at least for sufficiently regular kernels) has been shown to be necessary for expo-
nential decay of solutions [9]. In particular, this Volterra version of Theorem 3.3 extends
some results of [15] to more general kernels.

• With the techniques introduced here, we can also establish similar results for the
following first-order linear integrodifferential equation, arising in the theory of heat con-
duction with memory:

∂tu(t) + γAu(t) +
∫ ∞

0

µ(s)Au(t − s)ds = 0,

with γ ≥ 0 and A, µ as before, supplemented by the initial condition

u(t) = w0(t), t ≤ 0,

where w0 is an assigned datum. Here, for γ > 0 we have the necessary and sufficient
condition (1.4) for exponential stability, while for γ = 0 we find the constraint Rµ < 1/2.
Again, analogous results hold for the Volterra case.

• We finally mention that the results obtained for the linear case can be exported to
the nonlinear nonhomogeneous case, providing the existence of global and exponential
attractors for the related (nonlinear) semigroup (cf. [3]).

Acknowledgments. I thank Claudio Giorgi for fruitful discussions. I am also in-
debted to Stefania Gatti for many valuable suggestions.

References

[1] J.A.D. Appleby and D.W. Reynolds, On necessary and sufficient conditions for exponential stability
in linear Volterra integro-differential equations, J. Integral Equations Appl. 16 (2004), 221–240.
MR2108285 (2005j:45006)

[2] V.V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear vis-
coelasticity, Asymptot. Anal. 46 (2006), 251–273.

[3] M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure
Appl. Anal. 4 (2005), 705–720. MR2172716

[4] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37 (1970), 297–
308. MR0281400 (43:7117)

[5] C.M. Dafermos, Contraction semigroups and trend to equilibrium in continuum mechanics, in “Ap-
plications of Methods of Functional Analysis to Problems in Mechanics” (P. Germain and B. Nay-
roles, Eds.), pp. 295–306, Lecture Notes in Mathematics, no. 503, Springer-Verlag, Berlin-New York,
1976. MR0521351 (58:25196)

[6] R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970),
610–616. MR0268717 (42:3614)

[7] M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear vis-

coelastic solids, Arch. Rational Mech. Anal. 116 (1991), 139–152. MR1143437 (92k:73040)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=2108285
http://www.ams.org/mathscinet-getitem?mr=2108285
http://www.ams.org/mathscinet-getitem?mr=2172716
http://www.ams.org/mathscinet-getitem?mr=0281400
http://www.ams.org/mathscinet-getitem?mr=0281400
http://www.ams.org/mathscinet-getitem?mr=0521351
http://www.ams.org/mathscinet-getitem?mr=0521351
http://www.ams.org/mathscinet-getitem?mr=0268717
http://www.ams.org/mathscinet-getitem?mr=0268717
http://www.ams.org/mathscinet-getitem?mr=1143437
http://www.ams.org/mathscinet-getitem?mr=1143437


EXPONENTIAL STABILITY IN LINEAR VISCOELASTICITY 513

[8] M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, SIAM Studies in Applied
Mathematics, no. 12, SIAM, Philadelphia, 1992. MR1153021 (93a:73034)

[9] M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory,
Appl. Anal. 81 (2002), 1245–1264. MR1956060 (2004a:45015)

[10] C. Giorgi and B. Lazzari, On the stability for linear viscoelastic solids, Quart. Appl. Math. 55
(1997), 659–675. MR1486541 (98h:73050)
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