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SUMMARY. - We show herein the uniform stability of a thermoe-
lastic plate model with no added dissipative mechanism on the
boundary (uniform stability of a thermoelastic plate with added
boundary dissipation was shown in [3], as was that of the ana-
lytic case—where rotational forces are neglected—in [8]); both the
analytic and nonanalytic cases are treated here. The proof is
constructive in the sense that we make use of a multiplier with
respect to the coupled system involved so as to generate a fortiori
the desired estimates; this multiplier is of an operator theoretic
nature, as opposed to the more standard differential quantities
used for such work. Moreover, the particular choice of multiplier
becomes clear only after recasting the pde model into an associated
abstract evolution equation. With this direct technique, we also
obtain an exponential stability estimate pertaining to the limit
case in which rotational inertia is neglected, and which leads to
an associated analytic semigroup.
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1. Introduction

1.1 Statement of the Problem

Let © be a bounded open subset of R? with sufficiently smooth
boundary I'. We consider here the following thermoelastic system
taken from J. Lagnese’s monograph [3]:

wit — YAwy + A2w + aAf =0
n (0,00) x £;
ﬁ@t—nAO—l—aH—aAwt:O
. (1)
—+X=0 on (0,00) x ', A > 0;
ov
| w(t=10)=u’, w(t=0)=w' 0(t=0)=0"on O
( w:(l—m)a—“’:o

ov on (0,00) x T. 2)
1 k(Aw+ (1 —p)Biw+af) =0

Here, the parameter « is either 0 or 1; o, 8 and 7 are strictly positive
constants; nonegative constant y is proportional to the thickness of
the plate and assumed to be small with 0 < v < M; the constant
o > 0 and the boundary operator B; is given by

0w 0 0%w 00w
ozdy "1 o2 V2 g2 (3)

the constant p is the familiar Poisson’s ratio € (0, %) The given

model mathematically describes a Kirchoff plate — the displacement
of which is represented by the function w — subjected to a thermal
damping as quantified by 8. We are concerned here with the asymp-
totic stability of solutions [w, 8] to (1)—(2).

Blw = 21/11/2

1.2 Preliminaries and Abstract Formulation

As a departure point for obtaining the proofs of well-posedness and
of exponential stability, we will consider the system (1)—(2) as an
abstract evolution equation in a certain Hilbert space, for which we
introduce the following definitions and notations.
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3

e We define A, : L?(Q) D D (A;) — L?(Q) to be A, = A?,

with domain

DA,)={we H Q) NH;(Q):Bw=00onT},

where

0

w

—,ifk=0

Bw = ov

Aw+ (1 — p)Biw, if k = 1;

(4)

(5)

e A, is then positive definite, self-adjoint, and consequently from

[1] we have the characterizations
H2(Q), ifk=0
) —

H2(Q)N H(Q), if K =1;

D(Af) = HY(9).

Moreover, using the Green’s formula in [3], we have that for
1

Yw, @ € D(AR),
(A pw,B) L1/ L

[D(AE )] xD(AL)

where a(-,) is defined by

a (wa a) = / [wz‘z‘amm + wyyayy +p (wmma}yy + wyyamm)
Q

+ 2(1 — p)wayWay|d2,

and in addition

2
L) =a(w,w).

ol 43 = | Az

(8)
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We define Ap : L?(2) D D (Ap) — L?(Q) to be Ap = —A,
with Dirichlet boundary conditions, viz.

D(Ap) = H*(Q) N H}(Q). (10)

Ap is also positive definite, self-adjoint, and

Swi=

D(A2) = HL(9). (11)

Ag : L?(Q) D D(AR) — L%*(Q) will designate the following
second order elliptic operator:

Ap=-A+ 71,
n

(12)
9 00
D(AR) =<60€ H*(Q): —+X0=0;
ov
Ap, is positive definite, self-adjoint, and once more by the char-
acterization of the fractional powers in [1], and we have

g

(VG’ Vé))m(n) +A (9’5) L2(T) + E (0’§)L2(Q) -

1 1
(:A;g,A;@) W)
L2(Q)

Thus, if 0 + A > 0, we have the topological equivalence
A 1 1.
0,9) ~ (420,420 . 14
( HI(Q) ( R R >L2(Q) ( )

We will designate by 7y the Sobolev trace map, whichs yields

for f € C(9Q)
Yf = flp- (15)

We define the elliptic operators G and D as thus:
A2y =0 in (0,00) x

on (0,00) x I';

Gh =v <~ vlp =0 (16)
Av+ (1—pu)Biv=nh
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Av =0 on (0,00) x Q
Dh =v < (17)
v|p =h on (0,00) x T

The classic regularity results of [4] then provide that for s € R,

{ D e £ (H* (D), H*3(Q) s

G e £ (H3(T), H"2(Q)
With the operators A; and G as defined above, one can readily

1
show with the use of Green’s formula that Vw € D(A?) the
< .1
adjoint G*A; € L(D(Af),LQ(I‘)) satisfies

ow

Aw= — 1
G 1w (91/ F, ( 9)
e We define the operator P, by
P, =1+ ~vAp, (20)

and:

(i) In the case v > 0, we define a space Héﬁ(Q) equivalent to
H}(S2) with its inner product as

(wi,w2) gy (@) = (W1, w2) 12() + 7 (Vwri, Vwa) )

Vwi,ws € HY(Q), (21)

and with its dual denoted as HJI(Q) (11) then yields that

Py € L (Hg,(Q),H;'(2)), with (22)
(Pywr,w2) oy yxmy @) = (@Wnw2)py (o). (23)

Furthermore, the H&v(Q)—ellipticity of P, and Lax-Milgram
gives us that P, is boundedly invertible, i.e.

Pl e £ (H;Y (), Hy (). (24)
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Finally, P, being positive definite, self-adjoint as an operator
1
P, : L*(Q) D D(P,) — L*(2) (as Ap is), the square root P}
1
is well-defined with D(Py) = H&J(Q) (using the interpolation
theorem in [4], p. 10); it then follows from (23) that for w and
& e Hy,(Q),

L2
3
Pyw

= lwlZ2o) + 7 [V@l22(y = ol () (25)
L2(Q) v

(Q
1 1
L2(Q) "

(ii) In the case v = 0, (20) gives that Py = I, and we simply
set the spaces

Ho(Q) = Hy ' (Q) = L*(). (27)

With L2, (€) defined by

L§+)\(Q) =

L*(Q), ifo+A>0
{ (28)

Li(Q), ifo+A=0

(where LZ(Q) = {0 € L*(Q) o [,0 =0}), we denote the Hil-
bert space Hy , to be

H,., = D(A7) x H, () x L2,,(9), (29)

with the inner product

w1 w1 1 1

we |, | w2 = Agwl,A£a1 ‘

o |7 s
H.,

1 1 PR
+ (Plw ,Pia) +05(6,0 . 30
( y W2, Ly W2 @) ﬂ( )LQ(Q) ( )
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With the above definitions, we then set A  : Hy y D D(Ax ) »H 4
to be

0 I 0
_ -1 aP,;l(AD(I — D’)’O)—
-Afw = P’Y A"”v 0 _ FGAlG’Yo)
0 —%AD T AT = Dyy) = 21

1 1
D(Awy) ={ lon.2.0 € DAY x DAL x D(Ax) 1 Z,,()
such that A,w; +axA Gyl € H1(Q)
and %Aw + %AH € LgH(Q)}.
(31)
We note that [%AD(I—D%) n %} 0= —"A0+ %0 = Agd for

p B
0 € D(AR)
If we take the initial data [wo, wt, 90] to be in H, ,, then the coupled
system (1)—(2) becomes the operator theoretic model

d [ w w ]
- Wt Wt
dt 0 0
w(0) w?
ERE
6(0) 6°

REMARK 1. For initial data [w® w',6°] in D(A,,), the two equa-
tions of (1) may be written pointwise as

= Ann

Pywy = —Aw— arA1Gyb + aAp(I — D)6 in Hv_l(QX,?I?))

,8015 = —nAD(I — D’)’())e — g — OéADwt in Lg—+,\(Q)- (34)
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1.3 Previous Literature

In [3], J. Lagnese established the well-posedness and exponential
stability of (1) with ~y strictly positive, and with the following B.C.’s
replacing those of (2):

( Ow
WZEZOOD(O,OO)XFO

{ Aw+ (1 —p)Biw + ab = Fi(wt) on (0,00) x I'y

| 88A_Vw + (1 — u)agjw —’y% —I—a% = Fo(wt) on (0,00) x 'y,
(35)
where I' = F(] U Fl, with fo N fl = @, F() 3’é @, and fl (wt), fg(wt)
are appropriately chosen dissipative feedbacks; the proof of Lagnese
is based on the use of differential multipliers, and it exploits the fact
that v > 0. Since, from a physical point of view, the thermal ef-
fects present should induce some measure of energy dissipation (in
fact, one can show the system’s strong stability by routine methods),
a natural question arising in this context is whether the system is
actually (uniformly) stable without the boundary feedbacks Fj (wt),
Fo(wy) in place, i.e. when there are no added mechanical forces. In-
deed, in the case v = 0, the answer to the question is in the affir-
mative and has been provided by several authors. With v = 0, Kim

[2] showed the uniform stability of (1) with the boundary conditions

0
w = a_w =60 = 0 on I', as did Rivera and Racke in [9] with the

v

boundary conditions w = Aw = 8 = 0. Also with v = 0, Liu and
Zheng in [8] proved the exponential stability of (1) with the boundary
conditions

w:g—w:(]on (0,00) x Ty
Y (36)

w=Aw+ (1 —p)Biw+ ab =0 on (0,00) x I'y,
where Iy and 'y are as in (35). The proof of Liu and Zheng is indi-

rect in the sense that it is based on a contradiction argument applied
to the exponential decay stability criterion (due to L.A. Monauni, R.
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Nagel and F.L. Huang), a criterion essentially dictating the uniform
estimate for that part of the resolvent which lies on the imaginary
axis. On the other hand, it is now known that the case v = 0
is rather special as the corresponding system generates an analytic
semigroup (see [7], [12]), a consequence of which will be the exponen-
tial stability of the system (recall that the system is strongly stable).
Given these results, the question of interest now is whether the given
thermoelastic system (without any additional boundary dissipation)
is uniformly stable in the nonanalytic case, viz. v > 0, with conse-
quently the elastic part of the system being of hyperbolic character.
(It is known [11] that the case v > 0 is not analytic.)

The main goal of this paper is to provide an affirmative answer to
the question posed above, pertaining to the case v > 0. In fact, we
shall show that the energy of (1) decays exponentially to zero with
accompanying rates which are uniform with respect to the parameter
7 > 0. (The case of free boundary condition is studied in [10].)

In this way, the stability result for v = 0 is reconstructed, al-
though the cases v > 0 and v = 0 correspond respectively to very
different dynamics (hyperbolic versus parabolic). Our proof is “di-
rect”, based on pseudodifferential (or operator theoretic) multipliers,
in contrast to the contradiction argument supplied in [8], valid for
v = 0. Another advantage of the “direct” proof provided herein is
that it leads to explicit estimates of the decay rates. A preliminary
version of the present paper is given in [13].

1.4 Statement of the Results

We shall begin by giving preliminary results regarding the well-
posedness of the system (1)—(2) and the regularity of its solutions.

THEOREM 1. (well-posedness) Again with the parameters k either
0 orlandy > 0, Ax,, given by (31), generates a Cy-semigroup
of contractions {eA'Wt}t>O on the energy space H, . ; therefore for
initial data [wo,wl,HO] € H, ., the solution [w,w;, 8] to (32), and
consequently to (1)-(2) is given by

w W

Wt = eA”"Yt w!
0 6°

(37)
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The following regularity result is needed to justify the computa-
tions performed below.

THEOREM 2. (%) For initial data [wo,wl,ﬁo] €D (Aiﬁ ), we have
that the solution [w,wy, 0] to (1)-(2) satisfies w € C([0,T]; H*(Q)),
wy € C([0,T); H3(2)) and 0 € C([0,T]; H3(Q)).

(ii) w + axGyof € C([0,T]; D(AL)).

Our main result is:

THEOREM 3. (uniform stability) With k = 0 or 1 and v > 0, the
solution [w,wy, 0] of (1)—(2) decays exponentially; that is, there exist
constants § > 0 and My > 1 (independent of k and 7y) such that for
allt >0

w(t) W
wy(t) < Mse % wll (38)
0t) |llm, 0 |,

REMARK 2. The same result (and the same proof) holds when par-
tially clamped boundary conditions replace those of (2).

As mentioned above, we will prove Theorem 3 by explicitly
applying a suitable operator theoretic multiplier.

2. Proofs

The proofs of well-posedness and of regularity (Theorems 1-2) are
by now fairly routine (see Chap. 7 in [3] for related well-posedness /
regularity results). However, since these preliminaries are critical for
our ultimate end of uniform stability, we provide their concise proofs
for the sake of completeness.

2.1 Proof of Theorem 1

In establishing the semigroup generation of A, we will show that
the conditions of the Lumer-Phillips Theorem are satisfied; namely,
we demonstrate here that A, , is maximal dissipative.
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To show the dissipativity of A ,: For [wi,ws,0] € D(Ax,) we

have
w1 w1 1 1
-An,fy w29 , w9 = (AEWQ,AEQH)LZ Q +
0 0 |)u (@)

o,y
1
+ (P,f Pv_l(—A,.;wl + aAp(I— D)0

1
— axAGyb), Py w2>
L2()

— (ADwg, 0)L2(Q) — (T}AD(I - D’)’Q)H + 0'9, O)LZ(Q) ) (39)
Using the standard result that

<W*1w>H;1(Q)XH%(Q) = <‘U*aw>[ (40)

17/ 1
pAD)| <pA2)

1
for every w* € H;'(Q) and w € D(A2), we have upon taking ad-
joints and using the characterization (19) in the second term on the
RHS of (39),

(39) = (Aéwz,Aéwl)Lz(m — (Awwr,wa) [D(A%)]/XD(A%)

0
+a (AD(I — D’)’O)e, wg)L2(Q) — akK (9, %)
v /L)
—Q (AD(UQ, O)LZ(Q) — (nAD (I — D’)’0)9 + 09, 0)L2(Q)

= (Al Aler) o~ (Blen Aln) |

Oow
—Q (AH, w2)L2(Q) — K (0, 8—V2> Lz(r)

+a (A(A)Q, H)LQ(Q) + (nAH — 0'0, O)LZ(Q)
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1 1
— (A,%wl, A,%wg

= (Aéwg,Aém) >L2(Q)

L2(Q)
+a (VO, Vw) 2(q) — a(Vws, V) 12
—nIVOII22 ) — M 1611220y — o 1011720

< 0

i.e. Ay, is dissipative.

(41)

To show the maximality of A, ,: if for some £ > 0 and arbitrary

[f1, f2, f3] €EHy 4, [w1,w2,0] € D(A,,) solves the equation

w1 fi
w2 = f2 )
6 f3

then this relation holds if and only if

(€1 — Axy)

( §w1 — Wy = f1 in D(Aé),

Ewo + P,y_1 (Anwl + alﬁ)AlG’)/()e — aAD(I — D70)0) = fo
in Hy (),

€6 + 2 Apws + EAD(I — D)0 + %

g g

L 0=f; inL2 ,(Q)

abo

§3P7w1 + §A,€w1 + aHEAlG%H —abARl+ T =
=P fo+ P f i H,(Q),

BEO + afApwi + nArf = Bfs +aApfi  in L*(Q)

(42)

(44)

(given that 8 € D(Ag) as defined in (12)). At this point we bring

forth the following:
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PROPOSITION 1. The operator F defined by

po | €P e, ansAlavo—asAm%r W

afAp BEI+nAR

is an element of

RN

,c(D(Aé) x H'(Q) N L2(Q), [D(A )]/ X [Hl(ﬂ)ﬂLiﬂ(Q)]/)

and is boundedly invertible.

Proof of Proposition 1. We first note (by Green’s Theorem) that
1
for arbitrary @ € D(Ag) and w € D(A2),

ag
(ARf,w) 1 = (V0,Vw) gy + p (0,w) 25 (46)

oA} <ol

the characterization (14) and an extension by continuity will then
have that (46) holds V0 € H'(Q) N L2, ,(€2). (46) in turn, when
coupled with (13), (23) and (19), will yield the asserted bounded-
ness of F, and moreover (40), (23), (13), (19), (46) and Green’s for-
mula will provide the following coercivity inequality for all [w,0] €

D(AZ) x HY(Q) N I2,,(Q) -

rle]5]) -

1
= & fllfam + € IV0lfaq + € | A2

2
£2(Q)
—a€ (VO,Vw) 20y + o€ (VO,Vw) 1)

o ag
—E (eaw)LQ(Q) + E (e’w)LQ(Q) +

+0[[V072() + M 1161720y + BENON720) >

(note the cancellation of boundary terms)

Y

1 2
c 09 ||AL], 0, + 100 @rnz | (D
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1
(where (-,-) in (47) denotes the pairing between D(A2) x H'(Q) N
L2, ,(€) and its dual, the constant C(n,,&) > 0). Thus, by Lax-
Milgram, F~! exists as an element of

/

c([p@ah] [ @nz2n@)] DAk < 1@ L2,@)

and the Proposition is proved. O

To complete the proof of the maximality of A, ., we apply the
inverse assured by Proposition 1 to both sides of (44) to obtain

[ w1 :| = p-! [ £P7f2+§2P’yfl :|
0 | Bfs +aApfi (48)
wy = &wr — fi,

and a fortiori, one has, by using the second equation in (44), that

ARf = —@9 - a_£Ale + b

“fa+ZApfi € LX(Q),

n n n n

viz. 0 € D(Ag) N L2, (). This additional regularity of 6, in con-
junction with that implied in the first equation of (44), and along
with the inclusion given in the third equation of (43), gives that our
constructively acquired solution [wi,ws, 8] to (42) is in D(Ax ) as
defined in (31). Hence, A, , is maximal dissipative and the proof of
Theorem 1 is complete.

2.2 Proof of Theorem 2

1
By definition, if [w® w!,8°] € D (A,,), then w! € D(AZ), 6° €
D(Ag), and it is straightforward to show that

A + anh Gyt = g € H;'(Q) C [D(A;})]/ (49)

/

1
(where if «y is strictly positive, the above containment into [D(A,‘; )]

is actually equality); as A1 : [D(A;;)]/ — D(AZ) C H3(Q) (this

3
4
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last containment deduced by the elliptic characterizations in [1]), we
have after applying A;! to (49), the use of trace theory and the
regularity posted in (18) that

W’ = A;lg — akGy8° € H3(Q). (50)

Thus, for [0’ w',6°] € D (A%, ),

- 1 -

w
w? —P,Y_lAnwO — anP,y_lAlG'yoGO +
Ary | 0t | = +aP Ap(T—Dy)0° | € D (Agp),
g0
~BAp(I— Dyo)°
| ~ 500~ §Apu
(51)
and (51) coupled with (50) implies that
1 3
w € H°(Q). (52)

In addition, the last component on the RHS of (51), (12), and (52)
give that
AR#® = h + aAw! € HY(Q), (53)

where h € H?(Q); applying Ag~! to both sides of (53) thus yields
0° € H3(9). (54)

Moreover, (51) also has

P{lAnwO + anP{lAlG'yOGO =g+ aPJlAD(I — Dv)8°  (55)
1
where g € D(AZ2) C D(Ap), or equivalently

A+ akA1Gyb° = g +yAg — aA® € L2(Q). (56)

A fortiori then, w® + akGy0° € D(A,) C H*(Q). But trace theory
and the smoothing specified in (18) give that Gy,0° € H>(Q), and
thus D(AZ ) C H*(2) x H*(Q) x H*(Q2) with continuous inclusion.
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The solution [w,wy, ] will consequently have the asserted regular-
ity upon consideration of the fundamental property that for £ > 0,

[u)o,wl,GO] eD (.Ai’7 ) =

w wO
o _ () ;,01 eC([O,T];D(.Aiﬁ)). (57)

To prove (ii), we note that with [w’ w!,0°] € D (Aiﬁ ), wy €
1
C ([O,T];D(AE)), so the solution [w,wy, 0] to (1) satisfies

—Aw— akA Gyl = wy — YAwy — aAf (58)

in C([0,T]; L?(€)), which establishes the result. O

REMARK 3. Because of the regularity result posted in Theorem 2 (ii),
we have for sufficiently smooth initial data the valid representation

A w4+ arh Gy = Aw. (59)

2.3 Proof of Theorem 3

In proving Theorem 3, we begin with a preliminary energy identity.

LEMMA 1. Again, with initial data [wo,wl,ﬂo] € H,,, we have
that the component 0 of the solution of (1)—(2) is an element of
L2 (0,00; HY(Q2) N L§+)\(Q)); indeed, we have the following relation
VT>0:

T
—2/0 [77 IV + o 10][72(0) + A ||9||%2(r)] dt = E,(T) — E,(0)
(60)
where the “energy” E.(t) is defined by

2

FPra®|  +BIO@I - (6)

L2(Q)
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Proof. Starting with initial data in D(Ay,) which will provide V
T > 0 that the solution [w,wy, ;] € C([0,T]; D(Ay,y)) and [wy, wy, 0]

€ C([0,T};Hy,,), we have pointwise on (0,T)
d (U( ) ? w(t) w(t)
di wi (1) =2 Aky | wi(t) |, | we(t) ’
0t) g, o(t) 0(t) H,

and for this special choice of initial data we will have the desired
equality (60) upon integration and using the fact from (12) that

(AD(I — Do) + 29, 9) = (—AO +Zo, 9>
L L2(Q) N £2(Q)

= [|VO||Z2) + ||9||L2 +A (617, ., for 6 € D(AR). (62)

For o + A > 0, The asserted L?-regularity follows immediately from
(60), inasmuch as {eAWt} +>o 18 a contraction semigroup; for o +
A =0, (60) will still yield that 6§ € L? (0,00; HY(2) N LE(R2)), after
recalling that [,,|VO|* > C [, 0% for all § € H'(Q) N LZ(Q), and
again using the contraction of the semigroup. A density argument
then concludes the proof. O

REMARK 4. J. Lagnese in [3] first showed the dissipativity prop-
erty (60) through a formal integration and a consequent justification
through variational arguments, and the alternate proof is included
here as a simple consequence of contractive semigroups.

We next derive a trace regularity result for the clamped model
which does not follow from the standard Sobolev trace theory, and
which is critical in our estimates of uniform decay. We note that
related trace regularity results for Euler Bernoulli plates were proved
n [6], and for Kirchoff plates in [5].

LEMMA 2. With k =0 in (1)-(2), one has the component w of the
solution [w,wy, 0] satisfies Aw|p € L2(0,T; L?(T)) with the estimate

[ 18wl i < 0(/0T[Hfiéw 2

_I_
?(9)
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1 2
+ P,yzwt

. + ||v9||§2(9)]dt
(@)

+E,(T) + Ev(O)) ; (63)

where C does not depend on the parameter ~y.

REMARK 5. Note that the above trace estimate does not follow from
the given interior regularity; this is an independently-derived trace
regularity result.

Proof. If we take initial data [wo,wl,GO] in D(Agﬂ), then Theo-
rem 2 provides that [w,wy, ] is a classical pointwise solution of
(1)-(2). We will work to extract the desired estimate (63) in this
special case-and consequently for all initial data after an extension
by continuity—by multiplying the first equation of (1) by the quanity
h - Vw, where h(z,y) = [h1(z,y), ho(z,y)] is a [02(5)]2 vector field
such that h|. = [v1,14], and then integrating from 0 to T ; i.e. we
will work with the equation

T
/ (wtt — YAwy + A%w + oAb, h - Vw) dt = 0. (64)
0

L2 ()
(i) First,
T
/0 (wtt, h- V(U)LQ(Q) dt =

T T
= (CL)t, h V(U)Lz(n) ‘ - / ((L)t; h th)Lz(Q) dt

= (W, h V)| — —/ /dw wih) dtdQ
1 T
+3 / / w? [hiz + hay] dtdQ
0
= (wyh-Vw) L2 / /wt [hig + hoy] dtdS2,

after making use of the divergence theorem and the fact that
w;=0onT.
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(ii) Next

T

/ (—Awtt, h- VM)L2(Q) dt =
0
T T
= (th, Vv (h . Vu)))Lz(Q) ‘ - / (th, Vv (h th))Lz(Q) dt
= (Vw, V(h:Vw)) Lz(Q / / dw |th| h dtd)

/ / wtmhlm t2yh2y
2

0 Q

i /T/ wfthy n wfyhm
o Ja 2 2

T
= (th, h- Vw)Lz(Q) ‘O

+/T/ w%whgy n w?yhlw _ wzwhlx . wt2yh23,l
o Jo| 2 2 2 2

T
[ b + by didr
0 Q

dtdS}

dtdS}

dtdS}

after again using the divergence theorem and the fact that
[;, div (|th|2 h) dQ = [ |Vay[? dT = 0 (as wy(t) € H2(Q)).

(iii) To handle the fourth order term, we use Green’s Theorem and
the B.C. (5) to obtain

T T
/0 (AQw, h - Vw)LQ(Q) dt = / a(w,h-Vw)dt
0

Oh-Vw

- / (Aw+ (1 — p)Biw) dgtar.  (65)
I

We note at this point that we can rewrite the first term on the
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RHS of (65) as

T 1 (T
/ a(w,h-Vw)dt = 2 / / h-V [wfm + w;y + 2pwgzwyy
0 0o Ja

+2(1— u)wgy] dt dQ)
2

+0 ( /O o dt) (66)

dt) denotes a series of terms which

1

Alu

2

where O (fOT Aéw

1
can be majorized by the L?(0,T; D(A¢))-norm of w; in turn
we have by the divergence theorem that

L2(9)

T
/ / h -V (Wi, + why + 2uwaewyy + 2(1 — p)w, ] dtd
0 Q

T
= / / div {h w2y + “{Zy + 2pwggwyy + 2(1 — ,u)w;%y] }
0 Jo

T 2
+0 / dat
0 12(2)

T
= /0 /r (w2, + wa + 2pwgwyy + 2(1 — u)wgy} dtd)

1

Ajw

+0 / Alw dt | . (67)
0 L2(Q)
Ow .
As w|p = o 0, we consequently have (as reasoned in [3],
r
Ch. 4) that

w2, + wzy + 2pwgpwyy + 2(1 — ,u)w?cy = (Aw)?

32
on T'; furthermore Biw = 0, which implies that Aw = 7Y _

ov?

Oh-
TZW'F' We consequently have upon the insertion of (66)
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and (67) into (65) that

T A2 L
0 0
2

4O ( /0 v dt) (68)

(iv) To handle the last term on the left hand side of equation (64),
we again Green’s theorem and the boundary conditions (5) to
obtain

T T
/0 (80,1 - Vw) g dt = — /0 (VO,V (h-Vw)) 2 (q) dt.

1
R 2
Ajw

To finish the proof, we rewrite (64) by collecting the relations
given by (i)-(ii) above, (68) and (iv) to thereby attain the inequality
(63), upon taking norms and majorizing. O

In showing the exponential decay of the semigroup {eAWt} >0
(Theorem 3) it will suffice, as usual, to prove that there exists a time
0 < T < o0 and a corresponding constant C which satisfies for all
initial data in Hy ,

E,(T) < ¢E,(0) with £ < 1 and independent of y > 0. (69)

By a density argument, it will then be enough by Lemma 1 to show
the existence of a time 0 < 7' < oo and constant Cr (independent of
~v) for initial data in [wo,wl, 90] €D (Ain) such that

T
B,(T) < Cr [ 100 yors o (70)

to which end we will proceed to work.

Because ofTheorem 2, we have for initial data [wo,wl,ﬁo] €
D (Aiq) a classical pointwise solution [w,w, 8] of (1)—(2); we can
thus multiply the first equation in (1) by ABIO, integrate from 0 to
T and obtain

T
/0 [(wtt — YAwy + A%w + a0, ABIH)LZ(Q)] dt = 0. (71)

In dealing with this equation, we note the following;:
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(A.1) Using an integration by parts and the second differential equa-
tion of (1) produces

T
A (wtt - ’YAwtta ABI 0) L2(9) dt
T T
= (wt,ADIG)Lz(Q)‘O +7 (th,VADle)mm\o
T
_ /0 [(wt,Aalgt)LQ(Q) + 7 (Vwy, VABIHt)I}(Q)] dt
T 2 2
= o™ [ [l + 7 IVl
T
+87 [ (wnn(@= D)0 + 04510) 1 g
T
670 [ (Ve ¥ (1= D)0 + 0450)) g

T
ol @

as Dyy € L(H'(Q)) (see (15) and (18)) and A} is “smooth-
ing”, viz. HA519|| ) <C ||9||H1(Q), we have the estimates

T
+ (wt,Agle)LQ(m‘o + (Vr, VAG'0)

H3+e(q

I(Z = DY)l 2 (@) + [ 45 0l 12y < C Ol {73)

IV (I = D)l 20y + [ VAR'O|o(g

IN

C 1011 1) {74)

to thereby attain

T
/ (wtt — 'yAwtt, ABIQ) L2(Q) dt
0

T
_aﬁ—lfo [Hwt”%z(ﬂ) +’7||V(Ut||%2(ﬂ)] dt| <

T
< € [ [lotllza 10y +7 1Vl 101 ]



EXPONENTIAL STABILITY OF THERMOELASTIC 23

+ C[E,(0) + Ey(T)]
r T
< 6/0 [ltll 2y +7 [ Vel ey | dt + 06/0 16]] 11
+C[E(0) + Ey(T)], (75)
where the constant C. does not depend on 0 < v < M.

(A.2) Yet another application of Green’s theorem and the character-
ization (7) give

T T
/0 (A%, A7'6) dt = /0 a (w, A7'6)

T A*l
— / (Aw + (1 — p)Byw, ¥> dt  (76)
0 AT

with a(-,-) as defined in (8), where

—ab, ifk=1

Aw+ (1 —p)Biw =
Aw € L2(0,T; L*(T)), ifxk=0

(see Lemma 2).

Therefore, estimating the right hand side of (76) yields

T
/ (A%w, A})'0) dt‘ <

0

Ty.o1
< of [ |ake],, ., 100m e
T T
() Ry

T

(by Lemma 2)

T 1
< of |an
0

o 1Pl
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T 1
a-n [ (ke )a
0 L2(9)
4 1
| 1450] 5

T T

<f [HAng ]dt
0 L2(Q)

+e[E,(0) + E,(T)] + C. /O 1611710 i, (77)

1
+C + P’Yz Wt

LX)

+ C[E,(0) + E,(T)]

1
P»y2 Wi

"

LX)

where we have once more used trace theory and elliptic regu-
larity.

(A.3) Finally, for the last term of (71)
T
a/‘(ADﬂ—aDmﬂ&ABWmeﬂﬁ _
0
T 2
— [ (1812 ~ (D060

0
T
< C i 1611 71q - (78)

Combining (71), (75), (77) and (78) thus results in the following:

(A.4) For € > 0 small enough there exists a constant C > 0 such that
the solution [w, wy, @] of (1)—(2) satisfies

a T 2 2
(B - 26)/0 [||wt||L2(Q) + ||th||L2(Q)] dt

T
<c [ [ 1980 + 161
Ty
+ E,(T) + E,(0)] +e/0 HAgw‘

2
oy e (79)
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where the noncrucial dependence of C' upon € has not been
noted.

To majorize the norm of the component w, we multiply (33)
by w and integrate from 0 to 7" to obtain (after accounting for the
boundary conditions)

T T
J

1 1
(P%wt, P»y2 CL))
@),

T T
= —/0 HAéwH;(Q) dt—om/o (9, g_(;/j)LZ(F) dt

T
+a/ (VO,Vw) 5 q) dt; (80)
0

2

dt
L*(Q)

1
3
Py w;

Since by the trace theorem

(0:5)
v ) )

< O 101 0y 1918 gy + 1821y sl

+ ‘(VH, Vw)Lz(Q)‘ <

2

1
A,%w‘

< Clfll g llwll i) < e + Cel|6ll1 (0 - (81)

L2 ()
we thus arrive at

(A.5) There exists a constant C > 0 such that for ¢ > 0 small enough,
the the solution [w,wy, 0] of (1)—(2) satisfies

(1-¢) /OT HA’%(‘)‘ ;(Q)

T
< O [ [lonlam + 7 IVl o]

dt <

+c(/0 ||9||§{1(Q)dt+E7(T)+E7(0)>, (82)

where the noncrucial dependence of C' upon ¢ has not been
noted.
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Thus, if € of (A.4) and (A.5) is small enough, we then have, upon
combining (A.4) and (A.5), the existence of a constant C' (indepen-
dent of 7) such that

T 1 2
3 2 2
[ 8] gy + ety + 719ty e <

< o[m@+ B+ [ 19080 + 1000 @] 63

To conclude the proof of Theorem 3, we apply the relation (60)
and its inherent dissipativity property (that is, E,(T) < E,(t) V
0 <t < T) to(83) to finally attain the sought-after inequality;
namely, for 7' > 2C (with C independent of vy > 0),

3c+1 [T
Ev(T)<T_2C | IIOII?p(ang(mdt (84)

which, as noted above, will imply (69).

REMARK 6. We note that our proof can easily be adapted to the
situation where boundary conditions are partially clamped, as was
considered recently by Liu and Zheng in [8] (albeit only in the case
v = 0); that is, with ' = To UT'; and Ty N T'; = &, we can show, by
the same direct method employed for Theorem 3, the uniform decay
of solutions of (1) with v > 0 and the boundary conditions

w:g—wzo on (0,00) x I'y
Y (85)

w=Aw+ (1 —p)Biw+abl =0 on (0,00) x I'y.

Indeed, all the arguments presented above will be the same, the
sole exception being that the requisite regularity lemma is applied
only on a portion of the boundary. Thus, instead of Lemma 2, we
will use the following one.

LEMMA 3. The component w of the unique solution [w,wt, 8] to (1),
(85) satisfies Aw|p € L2(0,T; L?(T)) with the estimate

T
/0 AWl dt <

< C (/OT [a(w,w) + ||v9||§2(m] dt + E(T) + E(O)) , (86)
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2

where E,(t) = a(w(t),w(t)) + ‘Péwt(t) + B10®)||72(q), and

L*(Q)
a(-,+) is as defined in (8).

Proof. The same as in Lemma 2, the only difference being that we

make use of a [C’Q(ﬁ)]2 vector field h which satisfies h = v on T,
and h=0on I'y. O
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