
QUARTERLY OF APPLIED MATHEMATICS
VOLUME LV, NUMBER 3
SEPTEMBER 1997, PAGES 551-364

EXPONENTIAL STABILITY OF THE KIRCHHOFF PLATE
WITH THERMAL OR VISCOELASTIC DAMPING
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Abstract. The exponential stability of the semigroup associated with the Kirchhoff
plate with thermal or viscoelastic damping and various boundary conditions is proved.
This improves the corresponding results by Lagnese by showing that the semigroup is
still exponentially stable even without feedback control on the boundary. The proof is
essentially based on PDE techniques and the method is remarkable in the sense that it
also throws light on applications to other higher-dimensional problems.

1. Introduction. The purpose of this paper is to show that the semigroups associ-
ated with linear thermoelastic plates and linear viscoelastic plates of the Kirchhoff type
with various boundary conditions are exponentially stable, which further leads to the
exponential decay of energy of these plates.

Suppose a thin plate of the Kirchhoff type occupies a bounded region fl G R2 with
smooth boundary F = F0 U Ti U F2. The plate is rigidly clamped along r0, simply
supported along Ti, and free along T2. In addition, we assume that

ronrinr2 = 0. (1.1)

If thermal damping is considered, then the vertical deflection w of the plate and the
temperature 6 satisfy the following partial differential equations (see [L]):

w" — ■yAw" + A2w + aA8 = 0, (1-2)

(39' — r/AO + ad — aAw' = 0, (1-3)

with a, P, rj, a > 0,7 > 0 being constants, and the prime being time derivative. Various
boundary conditions could be imposed on 9 depending on what is assumed about the
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temperature dynamics at the edge of the plate. We assume that the temperature is
subject to the Newton law of cooling. Therefore, we have

div
w = —^— =0 on r0) t > 0; (1.4)

ou
w — Aw + (1 — fi)BiW + a6 = 0 on Ti, t > 0; (1.5)

( Aw + (1 — n)Bxw + a0 = 0,
\ dAw , ,dB2W dw" dd on T2, t > 0; (1.6)
W + (I-")^-Tar+^ = 0

30
— = — \6 on T, t > 0, (1.7)
ov

where u = (v\,v2) is the unit outward normal to T, r = {—u2,^1} is the unit tan-
gent vector, A is a constant (A = 0 corresponds to the insulated temperature boundary
condition), /1 (| > /i > 0) is the Poisson ratio and

d2w 2 d2yj 2 d2 w

. 2 2\ ®2w (d2w d2w\
b"» = <"i-^)&5; + ''^(v "a?;-

(1.8)

The initial state of the plate is

w{0)=w°(x,y), w'(0) = w1{x,y), 6(0) = 6°(x,y) (1.9)

with w°,wl,6° being given functions.
The energy of the thermoelastic plate is defined by

E(t) = |{tt(W(i))+ik'wn2+711WW112+m2) (1.10)

where

f \ f d2w\2 (d2w\2 d2wd2w f d2w \21
a{wm) = L\\5?) + U?) +2"a?W +2{1-"){a^«) j*1- <U1)

When viscoelastic damping is considered, the vertical deflection of the plate satisfies

fOO
w"(t) ~ jAw"(t) + A2w(t) + A2 / g'(s)w(t — s) ds = 0 (1-12)

Jo

with 7 > 0, 5(0) = 1 (see [L]). The corresponding boundary conditions are

w = B\ I w

dw
w — —— = 0, on To, t > 0, (113)

ov

^w(t) + J g'(s)w(t — s) ds^j = 0, onTi, t > 0, (1-14)
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and

B\ I w(t) + J g'(s)w(t - s) ds'j = 0
f°° \ dw"

B2 ( w(t) + j' g'(s)w(t - s) dsj - = 0
on r2, t > 0, (1-15)

where

B\w — Aw + (1 - B2W — + (1 - n)^^2W (1-16)
ov or

with the operators Bi,B2 being the same as above and r = {—1>2, v 1}.
The initial state of the plate is

w(0+) = w°, w'(0+) = w1, w(—s) = wil{s) for 0 < s < 00 (1-17)

with w°,w1,wh being given functions.
We shall assume that the relaxation function g(s) satisfies the following conditions:

(gl) g € C2(0,oo) nC[0,oo),
(g2) g(t) > 0,g'(t) < 0,g"(t) > 0, for t > 0,
(g3) 5(00) = 5oo > 0,
(g4) g"[t) + kg'(t) > 0 for some k > 0.
Condition (g4) implies that g'(t) decays exponentially, and (g3) means that the material
behaves like an elastic solid at t = 00.

The total energy corresponding to (1.12) is defined by

E(t) = \ J (9<x>a(w(t)) + [w'(t)]2 + 7[Vw'(t)]2) dfl

— - f ( g'(s)a(w(t)— w(t —s))dClds.
^ Jo Jn

(1.18)

To study the exponential stability of a linear system is of great importance from both the
theoretical and practical point of view. First, needless to say, to show the exponential
stability of a semigroup has its own merit. Second, it is also important for the study
of the global existence of the solution to the corresponding nonlinear system with small
initial data (e.g., see [S]). Moreover, as an application, it is known from optimal control
theory (see [GRT] and the references cited there) that the exponential stability of a
linear system is a sufficient condition for the existence of optimal control for the Linear
Quadratic Regulator problem governed by such a system.

In his monograph [L], Lagnese systematically studied thin plate models, including
the above thermoelastic and viscoelastic plates, and proved exponential stability when
r 1 = 0 and an appropriate feedback mechanism is implemented along the free edge IV
Since systems (1.2)—(1.3) and (1.12) already possess dissipative mechanisms, an open
question is whether they are still exponentially stable without feedback control.

The first result in this direction was obtained by Kim [K] in 1990. He proved the ex-
ponential decay of energy of a linear thermoelastic plate (7 = 0 in (1.2)-(1.3)) for rigidly
clamped and constant temperature boundary conditions, i.e., on the whole boundary T,
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w = ^ =9 = 0. More recently, Rivera and Racke [RR] obtained the same result for the
case of w = Aw; = 9 = 0 on the whole boundary I\ It seems that their methods cannot
be applied to the case of more general boundary conditions (1.4)-(1.7).

Our main purpose in this paper is to give a positive answer to the above open problem
by showing the exponential stability of semigroups associated with the linear thermoe-
lastic plate equation (1.2)—(1.7) and the linear viscoelastic plate equation (1.12)-(1.16)
through a unified treatment. These results are presented in Theorem 2.2 and Theorem
3.2, respectively. We point out that the results by Kim and Racke can easily be proved
by our method. Our method of proof is still a combination of a theorem about the
necessary and sufficient conditions for a semigroup to be exponentially stable (see [H])
and a contradiction argument. This has been successfully applied to the one-dimensional
system with thermal and viscoelastic dampings (see [LZ1], [BLZ], [LZ2]). However, we
would like to emphasize that we are now dealing with two-dimensional problems. The in-
formation about a positive gap of the eigenvalues of the system, which we heavily used in
the proof in our previous papers, is not available. This information is also crucial for the
proof of the exponential stability of one-dimensional elastic systems with local damping
(see [CFNS]). To overcome this mathematical difficulty, we adopt a different approach
without using such information. Therefore, it also throws light on the applications to
other higher-dimensional problems.

2. Linear thermoelastic plate. In this section, we first prove the exponential
stability of the semigroup associated with the linear thermoelastic plate (1.2)—(1.7), then
give a brief discussion to generalize our result to other boundary conditions including the
ones treated by Kim and Racke. We set 7 = 0 for simplicity. The case of 7 7^ 0 is more
delicate and will be treated elsewhere. In what follows, we always assume that T2 ^ F.

Let
Z = h£0(Q) x L2(fl) x L2{fl) (2.1)

be equipped with the energy-related norm which is induced by the inner product

(z, z)z = a(w, w) + (v, v) + /3(6,9) (2.2)

for any z = {w, v,6},z = {w, v, 6} € Z. Hereafter, we denote by Hp. (k = 1,2, j = 0,1)
the subspace of Hk whose elements up to k — 1 order derivatives vanish on Tj in the
trace sense. If we denote w' by v, then the initial boundary problem (1.2)—(1.7) can be
reduced to a first-order evolution equation of the form

z'(t) = Az(t), z(0) = zq (2.3)

where zq = {u>°, w1,9°} and

.4 =
0 / 0

-A2 0 -ctA
0 fA ^(-<t/ + 77a).

(2.4)

w € Hl(n) n HZ(n) n Hi (n),v e Hi (fi) n Hi m,\
V{A) = lzeZ: 0 0 1 0 ri ' \ . (2.5)

9 G H'(fi), w, 9 satisfy (1.4)—(1.7)
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We recall the following Green's formula (see [L]) since it will be used extensively in the
rest of this paper:

J (A2w)wdfl = a(w;w)+J ^ + (1 — n) ̂ w - [Aw + (1 - fi)Biw]^ |
(2.6)

Theorem 2.1. The operator A defined by (2.4)-(2.5) is the infinitesimal generator of a
Co-semigroup, T(t), of contractions on H2g(fl) fl (O) x L2(f2) x L2(Q).

Proof. It is clear that V(A) is dense in Z. For any z = {w,v,9} G ~D(A),

Re(.4z, z)z = Re{a(i), w) + {—A2w — aA9, v) + {aAv — ad + r]A9,9)}

= Re < a(v, w) — a(w, v) —
dAw dB^w 89

+ (I ~ " &
r\ \

-[Aw; + (1 — jj)Biw — aO] —- > dT — a(6, Av) + (aAv — a9 + r)A0,
dv

= -c\\Q\\2 + v{A0,e)

= -a\\9\\2 - t?||V0||2 - J 92 dT < 0
(2.7)

where we have used Green's formula (2.6) and the boundary conditions (1.4)—(1.7). Here-
after, we denote by || • || the usual L2(fl) norm. Thus A is dissipative. It remains to
show that Range(I — A) — Z, i.e., for any F = {fi,fa, fa} G Z, we want to show that
the equation

(I - A)z = F (2.8)

has a unique solution z. Instead of (2.8), we look for w G H4 and 0 G H2 satisfying

w + A2w + aA9 = fa + fa, (2.9)
(39 - aAw + a9 - r]A9 = fa - aAfi, (2-10)

and the boundary conditions (1.4)-(1.7).
Let y = {w,9}. We associate this problem with the following bilinear form on H2o fl

Hi xH1:i 1

KViV) = / ww dfl + a(w, w) + a / (9Aw — 9Aw)dn
Jn Ju

((3 + a) [ 99dtt + r] [ V9S79 dVl + 77A /
J o J n J r

(2.11)
>dr.

Then by the well-known Lax-Milgram theorem, there is a unique solution y G H20 fl
i?r x H1 such that

KV,V) = [ [(fi + fa)u> + (fa - *Afr)9] dSl, Vy G H2o n x H1. (2.12)
Jn
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This implies that 6 G H1 is a weak solution of the following elliptic boundary-value
problem:

(0 + cr)0 — r]A9 = f3 — aAfi + aAw € L2(Cl), (2-13)
'90

dv+X° 0. (2.14)
r

By the regularity theorem (see [LM]), 9 € H2.
On the other hand, (2.12) also implies that w e H2 n is a weak solution of the

following elliptic boundary-value problem:

w + A2w = fi + f-2 ~ otA9 € L2, in f2, (2-15)
duu

w--^=0, on r0, (2.16)

w — 0, Aw + (1 — n)B\w =—a9 £ H? (Ti), on Tj, (2-17)

Aw + (1 — [i)B\w = —a6 € (r2),
dAw dB2w d0 i on r2. (2-18)
IhT + (1 ~ = ""i e ,r2>i

Thus by the regularity theorem again, we have

we H4f] Hlo n . (2.19)

Let
v — w — f1 £ H2o n . (2.20)

Combining (2.20) with (2.13)-(2.19) yields that z = {w,v,6} belongs to T>(A) and sat-
isfies (2.8). □

Theorem 2.2. Suppose r2 = 0. Then the semigroup T(t) in Theorem 2.1 is exponen-
tially stable, i.e., there exist M, 6 > 0 such that

\\T(t)\\C(z,z) <Me-St, t> 0. (2.21)

Proof. By a result of Huang [H], the exponential stability of T(t) is equivalent to

sup{ReA : A 6 spectrum of A} < 0 (2.22)

and
sup{||(A/ - A)-1 \\L(ZiZ) : Re A > 0} - K < oo. (2.23)

Hence if the conclusion in Theorem 2.2 is false, then one of (2.22) and (2.23) must fail
to hold. Assume that (2.23) fails. There must exist a sequence of A„ € C and a sequence
of zn — {wn,vn,6n} € T>(A) with ReAn > 0, ||zn||z = 1 such that

(A„7 - A)zn -> 0 in Z (2.24)
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a(Xnwn vn) * 0, (2.25)

Xnvn + A2wn + aA0n —y 0 in L2(fl), (2.26)

AnfiOn ~ «A«„ + <70n - r]A9n -> 0 in L2(0). (2.27)

By (2.7), we have

Re((A„J - A)zn, zn)z = Re An + a\\enf + V\\V0n||2 +r,X J^02n dT. (2.28)

Since each term on the right side of (2.28) is nonnegative, it follows from (2.24) that

Re A„ —> 0, 0„-> 0 in H1^), (2.29)

which further leads to
a(wn) + ||v||2 —> 1. (2.30)

It is easy to see (e.g., [Re]) that

a(w)>c\\wfH2, Vwe^0(n)n^(n) (2.31)

for some constant c > 0. Therefore (2.25) implies

Xnwn — vn —> 0 in L2(fl). (2.32)

Taking the complex conjugate of the inner product of (2.32) with vn in L2(Q), then
adding it to the inner product of (2.26) with wn in L2(fi), we obtain

2 Re A„ • (v,w) + a(wn) - ||wn||2 + a{0n, Awn) -y 0. (2.33)

It follows from (2.29) that the first term in (2.33) goes to zero. The last inner product in
(2.33) also converges to zero because ||Awn|| < 1 and 10n\ —> 0. Combining (2.33) with
(2.30) yields

a(wn) -» \\vn\\2->^- (2.34)

In the rest of the proof, we shall show (2.34) is a contradiction. We first claim that
|A„| > £ > 0 for all n large enough. Otherwise, there exists a subsequence of A„, still
denoted by An, which converges to zero. We obtain from (2.25) that

a{vn) -y 0. (2.35)

Thus vn must converge to zero in L2(ft), which contradicts (2.34).
Now we divide (2.27) by An and apply (2.25) and (2.29) to get

aAwn + -?-A9n —y 0 in L2(fl). (2.36)
An,
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It is easy to see from (2.36) that the term ||^"-|| is bounded uniformly in n. Thus

combining this with (2.26) yields the uniform boundedness of || AxWr> || in n. Taking the
inner product of (2.36) with Awn in L2(fi) yields

a||Aw„||2 + r] , Awn\

IIA H2 , f AWndOn f Ond{Awn) / A2wn \ (2.37)
=11 +u-at ^dr~71 h K~d^dV+Vvn'^r/
-> 0.

Now it follows from (2.29) that the last inner product of (2.37) must converge to zero.
We estimate the two boundary integrals in (2.37) as follows. By the trace theorem, we
have

AwnI Awn d0n

< A

< c

a / —^ endr
/ r
Aw

An

Am
K

•pnWmr) (2.38)
£2(r)

• ||#n||//i(fi)-
h1^ n)

Hereafter, C is a positive constant which may vary in different places. Notice that wn
satisfies the boundary conditions (1.4)-(1.6). Thus the standard estimates for the elliptic
boundary-value problem and the trace theorem (see [LM]) lead to

II||//4(O) < C(I|A2W„|| + Mn||„§(r))
< C(||A2wn|| + ||0„|| «2(n))

< C(||A2wn|| + ||A0n|| + ||0Jtf1(n)), (2.39)

A r)
< C

H4(n)

A2i
Art

Adn
Ari

+ (2.40)

Thus it follows from (2.38), (2.40), and (2.29) that

Aw„ dOr,I
Similarly, we have

It turns out from (2.37) that
I

Xn du

en d{Awn)

dr

r A„ du
dT

0. (2.41)

(2.42)

Awn -»0 in L2(fl). (2.43)

Since = 0, wn = 0 on the whole boundary T. By the estimates of the elliptic
boundary-value problem, we have

a{wn) < C • llwn||>/2(n) — C ' llAw«ll2 > (2-44)
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This contradicts (2.34).
Now we prove that (2.22) also holds. Because T(t) is a Cq semigroup of contractions,

p(A) contains the set {A | Re A > 0}. For any a G [0, and w£E, we have

(-cr + iu) — A) 1 = ( ^ + ico - A

2 K

1 - 1 <T + 37?) (jk + ,w-a

Thus,
sup{Re A; A £ a (A)} < - —,

Thus the proof of Theorem 2.2 is completed. □
Remark 2.1. It is easy to see that if w = Aw = 6 = 0 on the whole boundary F,

as considered by Rivera and Racke [RR], the conclusion of Theorem 2.2 remains true
without any modifications of the proof.

If the boundary conditions are w=|^=0 = Oon the whole boundary T, as consid-
ered by Kim [K], then we modify our proof as follows.

The proof until (2.36) still works. From (2.36), we have

awn + —
Af

< c
H2(Cl)

A ( awn + —
An.

0. (2.45)

Combining it with (2.29) yields

wn —* 0 in H1(fi). (2-46)

We divide (2.26) by A„ and then take the inner product with — Awn in L2(fl) to obtain

1 a2
(vn,-Awn) - —(A2wn,Awn) H ||Awn||2 -> 0. (2.47)

Here we have also used (2.36).
Taking (2.32) into consideration and noticing that

r A
~(A2wn,Awn) = - J n ■ AwndT + ||V(Auin)||2 (2.48)

is a real number, we obtain

ReA„ • ||Vu>n||2 + ^||V(Aw„)||2 - jT + ^||AWn||2 -> 0. (2.49)

Owing to (2.29) and (2.46), the first term on the left-hand side of (2.49) converges to
zero. Since || xWn || is bounded, by the estimates of elliptic boundary-value problems and
the trace theorem,

1 r\\V(Awn)\\2- [ ?^A^dr
|A„|2 v Jr du

is also bounded. Therefore, the second term in (2.49) also converges to zero. It turns
out that

a{wn) < C • |KH^(Q) < C • ||Awn||2 ->■ 0, (2.50)
a contradiction. Thus the result by Kim [K] can also be proved by our method.

Remark 2.2. It is still an open question whether the exponential stability remains
true if T2 7^ 0.
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3. Linear viscoelastic plate. In this section, we turn to the exponential stability
of the semigroup associated with the linear viscoelastic plate (1.12)—(1.15). We choose
the function spaces

Z = H*0(n)nH±1(n)xL2(n)xL2(0,oo-,\g,(')\-,H*0(n)nH*1(n)) (3.1)

equipped with the norm

/ roo \ 1/2

\\{w,v,h}\\z = f goca(w) + |H|2 + ^ \g'(s)\a(h)dsj . (3.2)

If we introduce the variables

v = w', h — w(t) — w(t — s), (3.3)

then the space Z is a "finite energy space" of the type first introduced for viscoelastic
problems by Dafermos ([Dl], [D2]), where the norm square of the state variables is exactly
twice that of the system energy defined in (1.18).

System (1.12)—(1.15) corresponds to the abstract evolution equation

z' = Az, z( 0) = z0. (3.4)

Here, z = {w, v, h}, zq = {u;0, w1, Wh) and

Az= ( -g00A2w + /0°° g'(s)A2hds ] , (3.5)
V v-fih J

with
V(A) = {z e Z | Az e Z, h\s=o = 0, w satisfies (1.13)—(1.15)}. (3-6)

Theorem 3.1. The operator A defined by (3.5)-(3.6) is an infinitesimal generator of a
Co-semigroup T(t) of contractions on H2o (fi) xL2(£l) xi2(0, oo; | g'(-) |; H2o(fl)n

hft(n)).
Proof. Actually, the fact that T(t) is a Co-semigroup has already been proved in [FI]

in an abstract setting. Moreover, as in [LZ2], for any z = {w,v,h} £ T>(A),

Re(Az, z)z = Re jc/ooaK if) - (^gocA2w + J g'(s)A2h(s), v^

= Rej-^ B\ ̂ uu(t) + J g'(s)w(t - s) i dv
d~vdT

J B2 (w(t) + J g'(s)w(t — s) ds^j vdT + J g'(s)a ds^j
1 r00- / g"(s)a(h) ds < 0. □
2 Jo

(3.7)
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We also refer to [L] for a slightly different framework. Lagnese [L] obtained exponential
stability for a slightly restrictive kernel g by imposing an appropriate feedback boundary
control on T2 and assuming Fi = 0. He also conjectured that various asymptotic decay
rates for the solution of (1.12) may be obtained without recourse to boundary feedback,
i.e., based only on the properties of the kernel g(s). Our following theorem gives a
positive answer to his conjecture.

Theorem 3.2. Suppose T2 7^ T. Then the Co-semigroup T(t) in Theorem 3.1 is expo-
nentially stable, i.e., there exist constant M; S > 0 such that

\\T(t)\\c(z,z) <Me~6t, t> 0. (3.8)

Proof. Suppose (2.23) is not true. Then, there exists a sequence An £ C and a
sequence of unit vectors zn — {wn,vn,hn} G X>(-4) with ReAn >0 and ||zn||z = 1 such
that

(An7 - A)zn —> 0 in Z as n —> oo. (3.9)

This is equivalent to

d(\n'Wn ^n) * 0, (3.10)
/■oo

AnVn + gocA2wn + / g'(s)A2hn ds -> 0 in L2(fi), (3.11)
Jo

A

Anhn ~vn + —hn —> 0 in L2(0, oo; |ff'(s)|; #r0(ft) n (SI)).
(3.12)

On the other hand, by (g4) and (3.9), we have

k f°° 1 f°°
/ g'(s)a(hn) ds < Re An + - / g"(s)a(hn)ds

* Jo * Jo
= Re((A nI-A)zn,zn)z (3'13)

< ||(A„/ - A)zn\\z -> 0.

Therefore,

Re A„ —+ 0,

which implies that

rOO

/ g'(s)a(hn) ds -> 0, (3.14)
Jo

rOO

/ g"(s)a(hn) ds —> 0, (3.15)
Jo

gxa(wn) + H'L'tx ||2 —> 1. (3.16)

Since r2 ^ T, it follows from (3.10) that

\nwn - vn —> 0 in H2(Sl). (3-17)
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Taking the inner product of (3.17) with vn and (3.11) with wn in L2(f2), and applying
Green's formula and the boundary conditions, we obtain

K(wn,vn) - ||v„||2 -> 0, (3.18)
nOC

K{vn,wn) + goca{wn) + g'(s)a(hn,wn)ds -» 0. (3.19)
Jo

The last term in (3.19) converges to zero since

poo

/ g'{s)a(hn,wn)ds
Jo

poo

< [a(wn)}1/2 / -g'{s)[a{hn)]l/2 ds (3.20)
Jo
/»oo

< (1 -Qoc) / -g'(s)a(hn) ds —> 0.
J o

By adding the complex conjugate of (3.18) to (3.19), we obtain

Re An • (vn,ivn) -H goc^i^ri) ll^nll * 0- (3*21)

Now (3.16) and (3.21) imply that

gooa{wn) -> ||un||2 -> i. (3.22)

In what follows, we shall show that (3.22) is a contradiction. We first claim that
|Xn| > e > 0 for n large enough. Otherwise, there exists a subsequence, denoted by
An again for simplicity, such that An —» 0. By (3.17), vn must converge to zero in L2(f2).
Contradiction.

Next, we divide (3.12) by An, then take the inner product with in L2(0, oo; |<?'(s)|;
H'pn fl Hfi(fl)) to obtain

a ( ^ ) ds -> 0.

(3.23)

I '3'ts)a(h-vi)d'-u{^)L s9'(s,,,s+ii VWa(^'£)

The first and third term in (3.23) can be estimated as follows:

J sg'{s)a^hn,~^j ds < a J -sg'{s)[a(hn)}% ds

(£) 2 (I°°"sV(s)dS)2 (I" ~9'(s)a(/l")ds)
/ roc \ 1/2

<C-( —g'(s)a(hn) ds) —> 0

(3.24)
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and

J -sg'(s)a y) ds - \ J (s9"(s) +g\s))a (hn, ds

/°° \ / f00 \s2g"(s) ds) (J g" (s)a(hn) ds)1< -
e

+
/oc \ 1/2 / poo \ 1/2

-g'(s)ds) IJ ■ g'(s)a(hn) ds)

/°° \ / /-°°g"(s)a(hn) ds) + (J -g'(s)a(hn) ds<C-

(3.25)

0.

Here we have used uniform boundedness of in n by (3.17) and the condition on
g{s) as well as the convergence results in (3.14)-(3.15). Thus the second term in (3.23)
must also converge to zero, which is equivalent to

Finally, by (3.17) again, we have

a ( y- ) -*• °. (3.26)

a(wn) 0. (3.27)

This is a contradiction. Condition (2.22) can be verified by the same argument as in the
proof of Theorem 2.2. □
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