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EXPONENTIAL STABILITY OF TIMOSHENKO BEAM SYSTEM
WITH DELAY TERMS IN BOUNDARY FEEDBACKS ∗

Zhong-Jie Han1 and Gen-Qi Xu1

Abstract. In this paper, the stability of a Timoshenko beam with time delays in the boundary input
is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in
which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral
analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system
operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum
determined growth condition. Then we conclude the exponential stability of the system under certain
conditions. Finally, we give some simulations to support our results.
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1. Introduction

Time delay is a universal phenomenon existing in almost every engineering practices, such as electrical and
mechanical engineering, biology and so on (see [8,14,15]). Normally, the presence of delays makes the systems
less productive, less optimal and less stable (see [2,10]). However, sometimes it also can play a positive role in
the performance of the systems (see [4,16]).

Due to the effect of time delays, it is necessary to take the delays into account when we discuss the control
problem of the systems. For elastic systems, such as wave equations and beam equations, there have been
some nice results on control problem with time delays. For example, Liang et al. in [5] introduced the modified
Smith predictor to the boundary control of wave equation and Euler-Bernoulli beam equation with a delayed
boundary measurement. Xu et al. in [21,24] considered the Riesz basis property, exact controllability and
stability of the string systems with time-delayed boundary feedback control. Mörgul in [9] designed a class
of dynamical controllers to robustly stabilize the wave equations against small time delays in the feedback
loop. Nicaise and Pignotti in [11] get the exponential stability of the wave equation with boundary or internal
distributed delay.

However, at present, there is few result about the stability of Timoshenko beam with time-delayed feedback
control. Timoshenko beam model constitutes a weakly coupled system. This weakly coupled property causes
that it is usually difficult to consider the control problem for this kind of system. Our aim in this paper is

Keywords and phrases. Timoshenko beam, exponential stability, time delay, Riesz basis, feedback control.

∗ This research is supported by the Natural Science Foundation of China grant NSFC-60874034.

1 Department of Mathematics, Tianjin University, Tianjin 300072, P.R. China. zjhan@tju.edu.cn

Article published by EDP Sciences c© EDP Sciences, SMAI 2010

http://dx.doi.org/10.1051/cocv/2010009
http://www.esaim-cocv.org
http://www.edpsciences.org


STABILITY ANALYSIS OF TIMOSHENKO BEAM SYSTEM 553

to discuss the stability of a Timoshenko beam with time delays in the boundary control. What we are interested
in is that, under the time-delayed feedback controls, whether the system is still exponentially stable, since it
can get the exponential stability without time delays (see [19]).

Let us recall the Timoshenko beam model:{
ρwtt(x, t) − k(wxx − ϕx)(x, t) = 0, x ∈ (0, 1), t > 0,
Iρϕtt(x, t) − EIϕxx(x, t) − k(wx − ϕ)(x, t) = 0, x ∈ (0, 1), t > 0, (1.1)

where ρ, Iρ, EI, k are mass density, moment of mass inertia, rigidity coefficient and shear modulus of elastic
beam, respectively. For more precise physical meanings of them, see Timoshenko’s book [17]. In the sequel, we
shall use the abbreviations wt = ∂w

∂t and wx = ∂w
∂x .

The beam is clamped at the left end, i.e.,

w(0, t) = ϕ(0, t) = 0, t > 0. (1.2)

The external shearing force and bending moment in which there exist time delays are applied at the right end,{
k(wx − ϕ)(1, t) = μ1v1(t) + (1 − μ1)v1(t− τ1), t > 0,
EIϕx(1, t) = μ2v2(t) + (1 − μ2)v2(t− τ2), t > 0, (1.3)

where μi ∈ (0, 1), i = 1, 2. vi(t− τi) := f̃i(t− τi), t ∈ (0, τi), and f̃i(θ), i = 1, 2 are the given functions.
The control design (1.3) has been used in [12,24], in which the authors considered 1-d wave systems with

time delays. When μi = 1, i = 1, 2, Xu and Feng [19] and Kim and Renardy [3] have used the feedback control
laws {

v1(t) = −α1wt(1, t), t > 0, α1 > 0,
v2(t) = −α2ϕt(1, t), t > 0, α2 > 0 (1.4)

to exponentially stabilize the system (1.1)–(1.3). However, if μi �= 1, the stability of the system (1.1)–(1.3) is
unknown. In this paper, we shall discuss this case. Under certain conditions, we prove that the system is still
exponentially stable when μi �= 1.

In addition, the initial conditions are given as follows:{
w(x, 0) = w̃0(x), wt(x, 0) = w̃1(x),
ϕ(x, 0) = ϕ̃0(x), ϕt(x, 0) = ϕ̃1(x).

(1.5)

Thus, under the feedback control laws (1.4), we get the following closed loop system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρwtt(x, t) − k(wxx − ϕx)(x, t) = 0, x ∈ (0, 1), t > 0,
Iρϕtt(x, t) − EIϕxx(x, t) − k(wx − ϕ)(x, t) = 0, x ∈ (0, 1), t > 0,
w(0, t) = ϕ(0, t) = 0, t > 0,
k(wx − ϕ)(1, t) = −α1μ1wt(1, t) − α1(1 − μ1)wt(1, t− τ1), t > 0,
EIϕx(1, t) = −α2μ2ϕt(1, t) − α2(1 − μ2)ϕt(1, t− τ2), t > 0,
w(x, 0) = w̃0(x), wt(x, 0) = w̃1(x), ϕ(x, 0) = ϕ̃0(x), ϕt(x, 0) = ϕ̃1(x),
wt(1, t− τ1) = −α−1

1 f̃1(t− τ1), ϕt(1, t− τ2) = −α−1
2 f̃2(t− τ2), t ∈ (0, τi), i = 1, 2.

(1.6)

Set

p(x, t) := wt(1, t− xτ1), q(x, t) := ϕt(1, t− xτ2).
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Then the system (1.6) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρwtt(x, t) − k(wxx − ϕx)(x, t) = 0, x ∈ (0, 1), t > 0,
Iρϕtt(x, t) − EIϕxx(x, t) − k(wx − ϕ)(x, t) = 0, x ∈ (0, 1), t > 0,
τ1pt(x, t) + px(x, t) = 0, τ2qt(x, t) + qx(x, t) = 0, x ∈ (0, 1), t > 0,
w(0, t) = ϕ(0, t) = 0, t > 0,
p(0, t) = wt(1, t), q(0, t) = ϕt(1, t), t > 0,
k(wx − ϕ)(1, t) = −α1μ1wt(1, t) − α1(1 − μ1)p(1, t), t > 0,
EIϕx(1, t) = −α2μ2ϕt(1, t) − α2(1 − μ2)q(1, t), t > 0,
w(x, 0) = w̃0(x), wt(x, 0) = w̃1(x), ϕ(x, 0) = ϕ̃0(x), ϕt(x, 0) = ϕ̃1(x),
p(x, 0) = −α−1

1 f̃1(−xτ1), q(x, 0) = −α−1
2 f̃2(−xτ2), x ∈ (0, 1).

(1.7)

Note that this system is too complex to construct a Lyapunov function or a multiplier to analyze its stability.
Herein we mainly employ the Riesz basis approach. For a vibrating system, the Riesz basis generation is the
most profound result. It forms a basis not only for the expansion of the solution in terms of the (generalized)
eigenvectors of the system but also for the spectrum determined growth condition. Since the spectral analysis
is a key to develop Riesz basis property, we shall have the complete spectral analysis for the system (1.7).
Based on the distribution of the spectrum of this system, we prove that there exists a sequence of (generalized)
eigenvectors of the system (1.7) that forms a Riesz basis for the state space. Hence, the spectrum determined
growth condition holds, i.e., the growth order of the system is determined via its spectral bound. Therefore,
we conclude the exponential stability by showing that the imaginary axis is not an asymptote of the spectrum
of the system operator.

The remaining part of this paper is organized as follows. In Section 2, the system (1.7) is formulated in a
Hilbert space setting and the well-posedness of the system is proved. Section 3 is devoted to the spectral analysis
of the system. In Section 4, the completeness as well as the Riesz basis property of the (generalized) eigenvectors
of the system operator is presented. The exponential stability of the system is discussed in Section 5. Finally,
in Section 6, some simulations are given to support our results.

2. Well-posedness of the system

In this section, we shall study the well-posedness of the closed loop system (1.7). To this end, we formulate
this system in an appropriate Hilbert space setting.

Set
V k(0, 1) := {f ∈ Hk(0, 1)|f(0) = 0},

where Hk(0, 1) is the usual Sobolev space of order k.
Let the state space be

H := V 1(0, 1) × L2(0, 1) × L2(0, 1) × V 1(0, 1) × L2(0, 1) × L2(0, 1) (2.1)

endowed with an inner product: for Wi = (wi, zi, pi, ϕi, ψi, qi) ∈ H, i = 1, 2

(W1,W2)H :=
∫ 1

0

k(w1,x − ϕ1)(w2,x − ϕ2)dx+
∫ 1

0

EIϕ1,xϕ2,xdx+
∫ 1

0

ρz1z2dx

+
∫ 1

0

Iρψ1ψ2dx+
∫ 1

0

p1p2dx+
∫ 1

0

q1q2dx (2.2)

where k, ρ, Iρ, EI are all positive parameters in the system (1.7). A direct verification shows that (H, ‖ · ‖H) is
a Hilbert space.
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We define the operator A in H as follows

A(w, z, p, ϕ, ψ, q)τ =

⎛⎜⎜⎜⎜⎜⎜⎝

z
ρ−1k(wxx − ϕx)

−τ−1
1 px

ψ
I−1
ρ EIϕxx + I−1

ρ k(wx − ϕ)
−τ−1

2 qx

⎞⎟⎟⎟⎟⎟⎟⎠ (2.3)

with domain

D(A) =
{
(w, z, p, ϕ, ψ, q)τ ∈ V 2(0, 1) × V 1(0, 1) ×H1(0, 1) × V 2(0, 1) × V 1(0, 1)×H1(0, 1)∣∣∣∣ k(wx(1) − ϕ(1)) = −α1μ1z(1) − α1(1 − μ1)p(1), z(1) = p(0)
EIϕx(1) = −α2μ2ψ(1) − α2(1 − μ2)q(1), ψ(1) = q(0)

}
·

Consequently, the problem (1.7) can be rewritten as an evolutionary equation in H:{
d
dtW (t) = AW (t), t > 0,

W (0) = W0,
(2.4)

where W (t) = (w(x, t), ẇ(x, t), p(x, t), ϕ(x, t), ϕ̇(x, t), q(x, t))τ and

W0 = (w̃0, w̃1,−α−1
1 f̃1, ϕ̃0, ϕ̃1,−α−1

2 f̃2)τ .

We have the following result:

Lemma 2.1. Let A and H be defined as before. Then for any αi, μi ∈ R+, i = 1, 2, 0 ∈ ρ(A) and A−1 is
compact on H.

Proof. Clearly, D(A) is dense in H. Let μi, αi ∈ R+, i = 1, 2 be given. For any F = (f1, f2, f3, f4, f5, f6) ∈ H,
we consider the solvability of equation AW = F , where W = (w, z, p, ϕ, ψ, q)τ ∈ D(A), i.e.,⎧⎪⎨⎪⎩

z(x) = f1(x), ρ−1k(wxx − ϕx)(x) = f2(x),

τ−1
1 px(x) = −f3(x), ψ(x) = f4(x),

I−1
ρ EIϕxx(x) + I−1

ρ k(wx − ϕ)(x) = f5(x), τ−1
2 qx(x) = −f6(x)

(2.5)

with the boundary conditions ⎧⎪⎨⎪⎩
w(0) = ϕ(0) = 0, p(0) = z(1), q(0) = ψ(1),

k(wx(1) − ϕ(1)) = −α1μ1z(1) − α1(1 − μ1)p(1),

EIϕx(1) = −α2μ2ψ(1) − α2(1 − μ2)q(1).

(2.6)

Solving the ordinary differential equations (2.5)–(2.6) yields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(x) = f1(1) − τ1

∫ x

0
f3(s)ds, q(x) = f4(1) − τ2

∫ x

0
f6(s)ds,

ϕ(x) = −EI−1α2f4(1)x+ EI−1α2(1 − μ2)τ2x
∫ 1
0
f6(s)ds−EI−1

∫ x

0

∫ 1
s
(Iρf5(r) −G1(r))drds,

w(x) = −EI−1α2f4(1)
x2

2
+ EI−1α2(1 − μ2)τ2

x2

2

∫ 1
0
f6(s)ds−EI−1

∫ x

0

∫ s

0

∫ 1
r
(Iρf5(ξ) −G1(ξ))dξdrds

+ k−1
∫ x

0
G1(s)ds,

(2.7)
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where

G1(x) :=
[
−α1f1(1) + α1τ1(1 − μ1)

∫ 1

0

f3(x)dx
]
−
∫ 1

x

ρf2(s)ds.

For these p(x), q(x), ϕ(x), w(x), which are given by (2.7), we see that W = (w, f1, p, ϕ, f4, q) ∈ D(A) ⊂ H
and A(w, f1, p, ϕ, f4, q) = F . Hence A−1 exists. Thus, the Sobolev’s Embedding Theorem implies that A−1 is
a compact operator on H. �

As a direct consequence of Lemma 2.1, we have the following result.

Corollary 2.1. Let A and H be defined as before. Then the spectrum of A only consists of isolated eigenvalues
of finite multiplicity.

Suppose that

μi ≥ 1
2
, i = 1, 2. (2.8)

Under this condition, we shall show that A is dissipative in H. To this end, we choose the positive real
constants ηi, i = 1, 2 such that

τi(1 − μi)αi ≤ ηi ≤ τi(3μi − 1)αi, i = 1, 2. (2.9)

These constants ηi, i = 1, 2 exist due to the condition (2.8). Then we introduce a new inner product in H: for
Wj = (wj , zj, pj , ϕj , ψj , qj)τ ∈ H, j = 1, 2,

(W1,W2)1 =
∫ 1

0

k(w1,x − ϕ1)(w2,x − ϕ2)dx+
∫ 1

0

EIϕ1,xϕ2,xdx+
∫ 1

0

ρz1z2dx

+
∫ 1

0

Iρψ1ψ2dx+
∫ 1

0

η1p1p2dx+
∫ 1

0

η2q1q2dx. (2.10)

It is easy to verify that (W1,W2)1 is equivalent to the inner product (W1,W2)H. Then we have the following
result:

Lemma 2.2. Let A and H be defined as before and the condition (2.8) be fulfilled. Then A is dissipative
in (H, ‖ · ‖1).

Proof. For any real W = (w, z, p, ϕ, ψ, q)τ ∈ D(A), we have

(AW,W )1 = k(wx − ϕ)z|10 + EIϕxψ|10 −
τ−1
1 η1
2

p2|10 −
τ−1
2 η2
2

q2|10
= −
(
α1μ1 − η1

2τ1

)
(p(0))2 −

(
α2μ2 − η2

2τ2

)
(q(0))2 − η1

2τ1
(p(1))2 − η2

2τ2
(q(1))2

−α1(1 − μ1)p(0)p(1) − α2(1 − μ2)q(0)q(1)

≤ −
[
α1μ1 − η1

2τ1
− α1(1 − μ1)

2

]
(p(0))2 −

[
α2μ2 − η2

2τ2
− α2(1 − μ2)

2

]
(q(0))2

−
[
η1
2τ1

− α1(1 − μ1)
2

]
(p(1))2 −

[
η2
2τ2

− α2(1 − μ2)
2

]
(q(1))2 (2.11)

with

−α1(1 − μ1)p(0)p(1) ≤ α1(1 − μ1)
2

[(p(0))2 + (p(1))2], −α2(1 − μ2)q(0)q(1) ≤ α2(1 − μ2)
2

[(q(0))2 + (q(1))2].

From (2.9), we get that α1μ1 − η1
2τ1

− α1(1−μ1)
2 , η1

2τ1
− α1(1−μ1)

2 , α2μ2 − η2
2τ2

− α2(1−μ2)
2 and η2

2τ2
− α2(1−μ2)

2 are
all nonnegative. Hence (AW,W )1 ≤ 0, which implies that A is dissipative in (H, ‖ · ‖1). �
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By Lemmas 2.1 and 2.2, the Lumer-Phillips Theorem (see Pazy [13]) asserts the following result.

Theorem 2.1. Let A and H be defined as before and the condition (2.8) be fulfilled. Then A generates a C0

semigroup T (t) of contractions on H. Hence the closed loop system (1.7) is well-posed.

3. Spectral analysis of A
In this section, we shall discuss the asymptotic distribution of the spectrum of A. From Corollary 2.1, we

have known that the spectrum of A only consists of isolated eigenvalues of finite multiplicity. So σ(A) = σp(A).
Thus we only need to discuss the eigenvalues of A. Let λ ∈ σp(A), (w, z, p, ϕ, ψ, q)τ ∈ D(A) be an eigenvector
of A corresponding to λ. Then z(x) = λw(x) and ψ(x) = λϕ(x). Thus, w(x), ϕ(x), p and q satisfy the following
differential equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρλ2w − k(wxx − ϕx) = 0, x ∈ (0, 1),

Iρλ
2ϕ− EIϕxx − k(wx − ϕ) = 0, x ∈ (0, 1),

τ1λp+ px = 0, τ2λq + qx = 0, x ∈ (0, 1),

w(0) = ϕ(0) = 0, p(0) = λw(1), q(0) = λϕ(1),

k(wx − ϕ)(1) = −α1μ1λw(1) − α1(1 − μ1)p(1),

EIϕx(1) = −α2μ2λϕ(1) − α2(1 − μ2)q(1).

(3.1)

3.1. Fundamental matrix solution

In order to calculate the eigenvalues of A, we shall find the fundamental matrix solution to the following
differential equation: {

ρλ2w − k(wxx − ϕx) = 0, x ∈ (0, 1),
Iρλ

2ϕ− EIϕxx − k(wx − ϕ) = 0, x ∈ (0, 1). (3.2)

Setting

Y1 := (w,ϕ)τ , Y2 :=
Y ′

1

λ
, Y :=

[
Y1

Y2

]
, (3.3)

we have

dY
dx

= ÃY, Ã :=

⎡⎢⎢⎣
0 0 λ 0
0 0 0 λ

ρ
kλ 0 0 1
0 Iρ

EIλ+ k
EIλ − k

EI 0

⎤⎥⎥⎦ . (3.4)

Under the following transformation:

Y (x) = T0Z(x), T0 :=

⎡⎢⎢⎢⎣
1 0 1 0
0 1 0 1√

ρ
k 0 −√ρ

k 0

0
√

Iρ

EI 0 −
√

Iρ

EI

⎤⎥⎥⎥⎦ , (3.5)

(3.4) is transformed into the following equation:
dZ(x)

dx
= T−1

0 ÃT0Z(x). (3.6)

A direct calculation leads to T−1
0 ÃT0 := λΛ̃1 + Λ̃0 + 1

λ Λ̃−1, where

Λ̃1 := (Λ̃ij
1 )4×4 =

⎡⎢⎢⎢⎢⎣
√

ρ
k

0 0 0

0
√

Iρ

EI
0 0

0 0 −√ ρ
k

0

0 0 0 −
√

Iρ

EI

⎤⎥⎥⎥⎥⎦ , Λ̃−1 := (Λ̃ij
−1)4×4 =

⎡⎢⎢⎢⎣
0 0 0 0
0 k

2
√

IρEI
0 k

2
√

IρEI

0 0 0 0
0 − k

2
√

IρEI
0 − k

2
√

IρEI

⎤⎥⎥⎥⎦
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and

Λ̃0 := (Λ̃ij
0 )4×4 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

√
Iρk

2
√

ρEI
0 −

√
Iρk

2
√

ρEI

−
√

kρ

2
√

IρEI
0

√
kρ

2
√

IρEI
0

0 −
√

Iρk

2
√

ρEI
0

√
Iρk

2
√

ρEI√
kρ

2
√

IρEI
0 −

√
kρ

2
√

IρEI
0

⎤⎥⎥⎥⎥⎥⎥⎦ .
Therefore, we have

dZ(x)
dx

=
[
λΛ̃1 + Λ̃0 +

1
λ

Λ̃−1

]
Z(x). (3.7)

Set

Z(x, λ) :=
∞∑

k=0

P−k(x)
λk

E(x, λ), (3.8)

where
E(x, λ) := exp(xλΛ̃1). (3.9)

We shall identify P−k, k = 0, 1, 2, . . . so as to get the expression of Z(x, λ). Substituting (3.8) into (3.7) leads
to

∞∑
k=0

P ′
−k(x)
λk

E(x, λ) +
∞∑

k=0

P−k(x)
λk

E′(x, λ) = [λΛ̃1(x) + Λ̃0 + λ−1Λ̃−1]
∞∑

k=0

P−k(x)
λk

E(x, λ).

Then each coefficient with the same power of λ in both sides of above equation must be equal, i.e.,

λ : P0(x)Λ̃1(x) = Λ̃1(x)P0(x), (3.10)

1 : P ′
0(x) + P−1(x)Λ̃1(x) = Λ̃1(x)P−1(x) + Λ̃0P0(x), (3.11)

λ−1 : P ′
−1(x) + P−2(x)Λ̃1(x) = Λ̃1(x)P−2(x) + Λ̃0P−1(x) + Λ̃−1P0(x), (3.12)

λ−k : P ′
−k(x) + P−(k+1)(x)Λ̃1(x) = Λ̃1(x)P−(k+1)(x) + Λ̃0P−k(x) + Λ̃−1P−k+1(x). (3.13)

(3.10) implies that P0 is a diagonal matrix. By (3.11), we have P ′
0 = diagΛ̃0 ·P0(x). From the expression of Λ̃0,

a direct calculation yields P0 = I.
Now let us calculate P−1. Assume that √

Iρ
EI

�=
√
ρ

k
· (3.14)

Firstly, by (3.11), we get the expression of the non-diagonal entries of P−1 = (P ij
−1)4×4 given as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 12
−1 =

√
Iρk√
EIρ

2

(√
Iρ
EI −

√
ρ
k

) , P 13
−1 = 0, P 14

−1 =

√
Iρk√
EIρ

2

(√
Iρ
EI +

√
ρ
k

) ,
P 21
−1 =

√
ρk√

IρEI

2

(√
Iρ
EI −

√
ρ
k

) , P 23
−1 =

√
ρk√

IρEI

−2

(√
Iρ
EI +

√
ρ
k

) , P 24
−1 = 0,

P 31−1 = 0, P 32−1 =

√
Iρk√
EIρ

−2

(√
Iρ
EI +

√
ρ
k

) , P 34−1 =

√
Iρk√
EIρ

−2

(√
Iρ
EI −

√
ρ
k

) ,
P 41−1 =

√
ρk√

IρEI

2

(√
Iρ
EI +

√
ρ
k

) , P 42−1 = 0, P 43−1 =

√
ρk√

IρEI

−2

(√
Iρ
EI −

√
ρ
k

) ·

(3.15)
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Then, let us calculate diagP−1. From (3.12), we have

dP ii
−1

dx
= Λ̃ii

0 P
ii
−1 +

4∑
j=1,j �=i

Λ̃ij
0 P

ji
−1 + Λ̃ii

−1P
ii
0

which yields that the diagonal entries of P−1 are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P 11−1 = x

[
4∑

j=1,j �=1

Λ̃1j
0 Λ̃j1

0√
ρ
k−Λ̃jj

1

]
, P 22−1 = x

[
4∑

j=1,j �=2

Λ̃2j
0 Λ̃j2

0√
Iρ
EI −Λ̃jj

1

+ k

2
√

IρEI

]
,

P 33
−1 = x

[
4∑

j=1,j �=3

Λ̃3j
0 Λ̃j3

0

−
√

ρ
k−Λ̃jj

1

]
, P 44

−1 = x

[
4∑

j=1,j �=4

Λ̃4j
0 Λ̃j4

0

−
√

Iρ
EI −Λ̃jj

1

− k

2
√

IρEI

]
·

(3.16)

Thus, all entries of P−1 have been identified. Similarly, we can calculate P−i, i = 2, 3, . . . by (3.13). Therefore,
the following result holds.

Lemma 3.1. Suppose that condition (3.14) is fulfilled. Under the transformation Y (x) = T0Z(x), the expression
of the asymptotic fundamental matrix solution to (3.6) is given as follows

Ẽ(x, λ) =
∞∑

k=0

P−k(x)
λk

E(x, λ), (3.17)

where E(x, λ) is defined by (3.9), P0 = I, P−1 are given by (3.15) and (3.16) and P−k, k=2,3,... can be calculated
similarly. Thus, by the inverse transformation, the fundamental matrix solution to (3.4) is T0Ẽ(x, λ).

3.2. Asymptotic spectrum of A
In this subsection, we shall consider the distribution of the spectrum of A using the Birkhöff asymptotic

technique (see [7]). According to (3.1), we have

p(1) = p(0)e−τ1λ = λw(1)e−τ1λ, q(1) = q(0)e−τ2λ = λϕ(1)e−τ2λ. (3.18)

Substituting (3.18) into the last two boundary conditions of (3.1) yields

k(wx − ϕ)(1) = −α1μ1λw(1) − α1(1 − μ1)λw(1)e−τ1λ, EIϕx(1) = −α2μ2λϕ(1) − α2(1 − μ2)λϕ(1)e−τ2λ. (3.19)

Let Y be defined by (3.3). Together with (3.4), we translate (3.1) into the following matrix form{
dY
dx = ÃY,

B1Y (0) +B2Y (1) = 0

where Ã is given by (3.4) and

B1 :=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , B2 :=

⎡⎢⎢⎣
0 0 0 0
0 0 0 0

α1μ1 + α1(1 − μ1)e−τ1λ − k
λ k 0

0 α2μ2 + α2(1 − μ2)e−τ2λ 0 EI

⎤⎥⎥⎦ .
Set

H(λ) := B1T0 +B2T0Ẽ(1, λ)

where T0 and Ẽ(1, λ) are given by (3.5) and (3.17), respectively.
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Then, similarly with the proof in [23], we get the following result:

Lemma 3.2. Let A and H be defined as before. Then λ ∈ σ(A) if and only if λ satisfies

Δ(λ) := detH(λ) = 0. (3.20)

Since all coefficients in Δ(λ) are real constants, we have:

Corollary 3.1. Let A and H be defined as before. Then the eigenvalues of A distribute in conjugate pairs on
the complex plane, i.e., σ(A) = σ(A).

In order to get the spectrum of A, from Lemma 3.2, it is sufficient to identify the zeros of Δ(λ). For
convenience, set

[B]1 := B + O(λ−1).

Then Ẽ(1, λ) can be rewritten as follows

Ẽ(1, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[1]1eλ
√

ρ
k [0]1eλ

√
Iρ
EI [0]1e−λ

√
ρ
k [0]1e−λ

√
Iρ
EI

[0]1eλ
√

ρ
k [1]1eλ

√
Iρ
EI [0]1e−λ

√
ρ
k [0]1e−λ

√
Iρ
EI

[0]1eλ
√

ρ
k [0]1eλ

√
Iρ
EI [1]1e−λ

√
ρ
k [0]1e−λ

√
Iρ
EI

[0]1eλ
√

ρ
k [0]1eλ

√
Iρ
EI [0]1e−λ

√
ρ
k [1]1e−λ

√
Iρ
EI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence,

H(λ) = B1T0 + B2T0Ẽ(1, λ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[1]1 + [0]1e
λ
√

ρ
k [0]1e

λ

√
Iρ
EI

[0]1e
λ
√

ρ
k [1]1 + [0]1e

λ

√
Iρ
EI

[α1μ1 + α1(1 − μ1)e−τ1λ +
√

ρk]1e
λ
√

ρ
k −[0]1e

λ

√
Iρ
EI

[0]1e
λ
√

ρ
k [α2μ2 + α2(1 − μ2)e−τ2λ +

√
IρEI]1e

λ

√
Iρ
EI

[1]1 + [0]1e
−λ
√

ρ
k [0]1e

−λ

√
Iρ
EI

[0]1e
−λ
√

ρ
k [1]1 + [0]1e

−λ

√
Iρ
EI

[α1μ1 + α1(1 − μ1)e−τ1λ − √
ρk]1e

−λ
√

ρ
k −[0]1e

−λ

√
Iρ
EI

[0]1e
−λ
√

ρ
k [α2μ2 + α2(1 − μ2)e−τ2λ −√IρEI]1e

−λ

√
Iρ
EI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
4×4

.

Therefore, when 	λ→ +∞,∣∣∣∣∣∣ lim
�λ→+∞

Δ(λ)

e
λ

(√
ρ
k +

√
Iρ
EI

)
∣∣∣∣∣∣ = (α1μ1 +

√
ρk)(α2μ2 +

√
IρEI). (3.21)

Similarly, when 	λ→ −∞,∣∣∣∣∣∣ lim
�λ→−∞

Δ(λ)

e
−λ

(√
ρ
k +

√
Iρ
EI +τ1+τ2

)
∣∣∣∣∣∣ = α1α2(1 − μ1)(1 − μ2). (3.22)

Since μi < 1, i = 1, 2, (3.21) and (3.22) together with the dissipativity of A imply the following result:



STABILITY ANALYSIS OF TIMOSHENKO BEAM SYSTEM 561

Theorem 3.1. Let A and H be defined as before. Then the spectrum of A is contained in a strip parallel to
imaginary axis, i.e., there exists a sufficiently large positive constant h such that

σ(A) = {λ ∈ C|Δ(λ) = 0} ⊂ {λ ∈ C| − h ≤ 	λ ≤ 0}.
Thus, when |	λ| ≤ h and |λ| is large enough, we have

Δ(λ) = det(B1(0)T0 + B2(1)T0Ẽ(1, λ))

= det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[1]1 + [0]1e
λ
√

ρ
k [0]1e

λ

√
Iρ
EI

[0]1e
λ
√

ρ
k [1]1 + [0]1e

λ

√
Iρ
EI

[α1μ1 + α1(1 − μ1)e−τ1λ +
√

ρk]1e
λ
√

ρ
k −[0]1e

λ

√
Iρ
EI

[0]1e
λ
√

ρ
k [α2μ2 + α2(1 − μ2)e

−τ2λ +
√

IρEI]1e
λ

√
Iρ
EI

[1]1 + [0]1e
−λ
√

ρ
k [0]1e

−λ

√
Iρ
EI

[0]1e
−λ
√

ρ
k [1]1 + [0]1e

−λ

√
Iρ
EI

[α1μ1 + α1(1 − μ1)e
−τ1λ − √

ρk]1e
−λ
√

ρ
k −[0]1e

−λ

√
Iρ
EI

[0]1e
−λ
√

ρ
k [α2μ2 + α2(1 − μ2)e−τ2λ −√IρEI]1e

−λ

√
Iρ
EI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
4×4

= Δ1(λ)Δ2(λ) + O(λ
−1

)

where

Δ1(λ) := det
[

1 1

[α1μ1 + α1(1 − μ1)e
−τ1λ +

√
ρk]e

λ
√

ρ
k [α1μ1 + α1(1 − μ1)e

−τ1λ − √
ρk]e

−λ
√

ρ
k

]
(3.23)

and

Δ2(λ) := det
[

1 1

[α2μ2 + α2(1 − μ2)e−τ2λ +
√

IρEI]e
λ

√
Iρ
EI [α2μ2 + α2(1 − μ2)e−τ2λ −√IρEI]e

−λ

√
Iρ
EI

]
. (3.24)

According to the discussion above, we have:

Lemma 3.3. Let A and H be defined as before. Then the asymptotic values of the spectrum of A can be
determined by Δ1(λ) = 0 and Δ2(λ) = 0 which are given by (3.23) and (3.24).

Hence, let us discuss the zeros of Δ1(λ) and Δ2(λ), which can imply the asymptotic distribution of the
spectrum of A.

Lemma 3.4. Let A and H be defined as before and the condition (3.14) be fulfilled. Then the zeros of Δi(λ),

i = 1, 2 are at most of degree two and separated. Furthermore, if
√

ρ
k/τ1 and

√
Iρ

EI /τ2 are irrational constants,
then all of the zeros of Δi(λ), i = 1, 2 are simple.

Proof. Firstly, we consider the zeros of Δ1(λ). A direct calculation yields

Δ1(λ) = −2α1μ1 sinhλ
√
ρ

k
− 2
√
ρk coshλ

√
ρ

k
− 2(1 − μ1)α1e−τ1λ sinhλ

√
ρ

k
· (3.25)

Then differentiating (3.25), we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δ′
1(λ) = − 2α1μ1

√ ρ
k coshλ

√ ρ
k − 2ρ sinhλ

√ ρ
k − 2
√ ρ

k (1 − μ1)α1e−τ1λ coshλ
√ ρ

k

+ 2(1 − μ1)α1τ1e−τ1λ sinhλ
√

ρ
k ,

Δ′′
1(λ) = − 2α1μ1

ρ
k sinhλ

√
ρ
k − 2 ρ

k

√
ρk coshλ

√
ρ
k − 2(1 − μ1)α1

ρ
ke−τ1λ sinhλ

√
ρ
k

+ 4
√

ρ
k (1 − μ1)α1τ1e−τ1λ coshλ

√
ρ
k − 2(1 − μ1)α1τ

2
1 e−τ1λ sinhλ

√
ρ
k .

(3.26)
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We shall show that the zeros of Δ1(λ) are at most of degree two. It only needs to prove that for any λ̃ ∈ C, if
Δ1(λ̃) = Δ′

1(λ̃) = 0, it must hold that Δ′′
1(λ̃) �= 0.

Since Δ1(λ̃) = 0 implies sinh λ̃
√ ρ

k �= 0, we have

Δ1(λ̃)

sinh λ̃
√

ρ
k

= −2α1μ1 − 2
√
ρk

cosh λ̃
√

ρ
k

sinh λ̃
√

ρ
k

− 2(1 − μ1)α1e−τ1λ̃, (3.27)

Δ′
1(λ̃)

sinh λ̃
√

ρ
k

= −2α1μ1

√
ρ

k

cosh λ̃
√

ρ
k

sinh λ̃
√

ρ
k

− 2ρ− 2(1 − μ1)α1

√
ρ

k
e−τ1λ̃ cosh λ̃

√
ρ
k

sinh λ̃
√

ρ
k

+ 2(1 − μ1)α1τ1e−τ1λ̃. (3.28)

Hence, Δ1(λ̃) = 0 yields

(1 − μ1)α1e−τ1λ̃ = −α1μ1 −
√
ρk

cosh λ̃
√

ρ
k

sinh λ̃
√

ρ
k

· (3.29)

Then, substituting (3.29) into (3.28) leads to

Δ′
1(λ̃)

sinh λ̃
√ ρ

k

= 2ρ
(

cosh λ̃
√

ρ
k

sinh λ̃
√ ρ

k

)2

− 2τ1
√
ρk

cosh λ̃
√

ρ
k

sinh λ̃
√ ρ

k

− 2ρ− 2τ1α1μ1.

Thus, from Δ′
1(λ̃) = 0, it holds that

cosh λ̃
√

ρ
k

sinh λ̃
√

ρ
k

=
τ1
√
ρk ±√τ2

1 ρk + 4ρ(ρ+ τ1α1μ1)
2ρ

· (3.30)

According to (3.26), we have

Δ′′
1(λ̃)

sinh λ̃
√

ρ
k

=
ρ

k

Δ1(λ̃)

sinh λ̃
√

ρ
k

+ 4(1 − μ1)α1τ1e−τ1λ̃

√
ρ

k

cosh λ̃
√

ρ
k

sinh λ̃
√

ρ
k

− 2(1 − μ1)α1τ
2
1 e−τ1λ̃

= 2(1 − μ1)α1τ1e−τ1λ̃

[
2
√
ρ

k

cosh λ̃
√

ρ
k

sinh λ̃
√

ρ
k

− τ1

]
.

Therefore, (3.30) leads to Δ′′
1 (λ̃)

sinh λ̃
√

ρ
k

�= 0, which implies that the zeros of Δ1(λ) are at most of degree two.

Now, we suppose that λ̃ is a zero of Δ1(λ) of degree two. Then (3.29) and (3.30) must hold.
From (3.30), a direct calculation yields

e2λ̃
√

ρ
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ρ− 1

2

(
τ1

√
ρk+

√
τ2
1 ρk+4ρ(ρ+τ1α1μ1)

)
ρ− 1

2

(
τ1

√
ρk+

√
τ2
1 ρk+4ρ(ρ+τ1α1μ1)

) , take + sign in (3.30),

−ρ− 1
2

(
τ1

√
ρk−

√
τ2
1 ρk+4ρ(ρ+τ1α1μ1)

)
ρ− 1

2

(
τ1

√
ρk−

√
τ2
1 ρk+4ρ(ρ+τ1α1μ1)

) , take − sign in (3.30).

(3.31)

Substituting (3.30) into (3.29), we get

eτ1λ̃ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2ρ(1−μ1)α1

−2α1μ1ρ−√
ρk
(

τ1
√

ρk+
√

τ2
1 ρk+4ρ(ρ+τ1α1μ1)

) , take + sign in (3.30),

2ρ(1−μ1)α1

−2α1μ1ρ−√
ρk
(

τ1
√

ρk−
√

τ2
1 ρk+4ρ(ρ+τ1α1μ1)

) , take − sign in (3.30).
(3.32)
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Set λ̃ = x+yi, x, y ∈ R. Then by (3.31) and (3.32), we get that eτ1λ̃, e2λ̃
√

ρ
k ∈ R. Thus, sin 2y

√
ρ
k = sin yτ1 = 0,

which leads to

2y
√
ρ

k
= nπ, τ1y = mπ

for some integers n and m. Hence
√

ρ
k/τ1 = n

2m is a rational number. Therefore, if
√

ρ
k/τ1 is an irrational

constant, then all zeros of Δ1(λ) are simple.
Let us now show the separability of the zeros of Δ1(λ), i.e., there is a positive constant δ > 0 such that

inf
ξ̃ �=λ̃, ξ̃,λ̃∈{λ|Δ1(λ)=0}

|λ− ξ| ≥ δ.

We shall show the separability by the following two cases:
Case 1:

√
ρ
k/τ1 = n

2m is rational with some integers n, m.

Set z = e
λ
√

ρ
k

n . Then Δ1(λ) = 0 is equivalent to the following equation:

(α1μ1 +
√
ρk)z2m+2n + (1 − μ1)α1z

2n − (α1μ1 +
√
ρk)z2m − (1 − μ1)α1 = 0.

Since the number of the zeros of the above polynomial equation is at most (2m + 2n) and these zeros are
separated, the zeros of Δ1(λ) are also separated.
Case 2:

√
ρ
k/τ1 is irrational.

From (3.25), we can get that λ̃ ∈ {λ|Δ1(λ) = 0} implies

0 < inf
λ̃∈{λ|Δ1(λ)=0}

∣∣∣∣sinh λ̃
√
ρ

k

∣∣∣∣ ≤ sup
λ̃∈{λ|Δ1(λ)=0}

∣∣∣∣sinh λ̃
√
ρ

k

∣∣∣∣ <∞. (3.33)

(3.33) together with (3.31) and (3.32) yields that when
√

ρ
k/τ1 is irrational, inf

λ̃∈{λ|Δ1(λ)=0}
|Δ′

1(λ)| �= 0, which

yields that the zeros of Δ1(λ) are separated by [20].
A similar method can be used to deal with the zeros of Δ2(λ) and the corresponding result follows. The

proof is complete. �

Applying the Rouché Theorem (see [1]), we have the following result about the asymptotic spectrum of A:

Theorem 3.2. Let A and H be defined as before and the condition (3.14) be fulfilled. Then the asymptotic

eigenvalues of A are at most of degree two and separated. Furthermore, if
√

ρ
k/τ1 and

√
Iρ

EI /τ2 are irrational
constants, then the asymptotic eigenvalues of A are simple.

4. Riesz basis property of the (generalized) eigenvectors

In this section we shall discuss the Riesz basis property of the eigenvectors and generalized eigenvectors of A.
Firstly, let us establish the completeness of the eigenvectors and generalized eigenvectors of A.

To this end, we define an auxiliary operator A0 in H:

A0(w, z, p, ϕ, ψ, q)τ =

⎛⎜⎜⎜⎜⎜⎜⎝
z

ρ−1kwxx

−τ−1
1 px

ψ
I−1
ρ EIϕxx

−τ−1
2 qx

⎞⎟⎟⎟⎟⎟⎟⎠ (4.1)
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with domain

D(A0) =
{
(w, z, p, ϕ, ψ, q)τ ∈ V 2(0, 1) × V 1(0, 1) ×H1(0, 1) × V 2(0, 1) × V 1(0, 1) ×H1(0, 1)∣∣∣∣ kw′(1) = −α1μ1z(1) − α1(1 − μ1)p(1), z(1) = p(0)
EIϕ′(1) = −α2μ2ψ(1) − α2(1 − μ2)q(1), v(1) = q(0)

}
·

Note that there is no coupled term of (w, z, p)τ and (ϕ, ψ, q)τ in A0 and D(A0). Thus, it becomes two wave
systems, i.e.,

A1
0(w, z, p)

τ =

⎛⎝ z
ρ−1kwxx

−τ−1
1 px

⎞⎠ , A2
0(ϕ, ψ, q)

τ =

⎛⎝ ψ
I−1
ρ EIϕxx

−τ−1
2 qx

⎞⎠, (4.2)

where

D(A1
0) =
{

(w, z, p)τ ∈ V 2(0, 1) × V 1(0, 1) ×H1(0, 1)
∣∣∣∣ kw′(1) = −α1μ1z(1) − α1(1 − μ1)p(1), z(1) = p(0)

}
and

D(A2
0) =
{

(ϕ, ψ, q)τ ∈ V 2(0, 1) × V 1(0, 1) ×H1(0, 1)
∣∣∣∣EIϕ′(1) = −α2μ2ψ(1) − α2(1 − μ2)q(1), v(1) = q(0)

}
.

From Xu et al. [24], we get the following lemma:

Lemma 4.1. Let A1
0 and A2

0 be defined by (4.2). Then A1
0 and A2

0 generate a C0 group on V 1[0, 1]×L2[0, 1]×
L2[0, 1], respectively.

Therefore, we have:

Lemma 4.2. Let H and A0 be defined by (2.1) and (4.1). Then A0 generates a C0 group on H.

Now, we shall use the property of A0 to discuss the corresponding property of A. The following result holds.

Theorem 4.1. Let A and H be defined as before. Then A generates a C0 group on H. Furthermore, the
system of the eigenvectors and generalized eigenvectors of A is complete in H.

Proof. We define the transform operator P : H → H as follows:

P(ŵ, z, p, ϕ, ψ, q)τ = (w, z, p, ϕ, ψ, q)τ ,

where w(x) = ŵ(x) + xϕ(1). Then

wx = ŵx + ϕ(1).

Hence, the operator P maps D(A0) onto D(A). Obviously, P is a bijective operator. Then, for (ŵ, z, p, ϕ, ψ, q)τ ∈
D(A0), we have

P−1AP

⎛⎜⎜⎜⎜⎜⎜⎝
ŵ
z
p
ϕ
ψ
q

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
z − xϕ(1)

ρ−1k(ŵxx − ϕx)
−τ−1

1 px

ψ
I−1

ρ EIϕxx + I−1
ρ k(ŵx + ϕ(1) − ϕ)
−τ−1

2 qx

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.3)
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Define the operator B on H as follows:

B

⎛⎜⎜⎜⎜⎜⎜⎝
ŵ
z
p
ϕ
ψ
q

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
−xϕ(1)
−ρ−1kϕx

0
0

I−1
ρ k(ŵx + ϕ(1) − ϕ)

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.4)

Then,
A0 + B = P−1AP . (4.5)

A direction calculation yields that there exists a positive constant M̂ , such that

‖B(ŵ, z, p, ϕ, ψ, q)τ‖ ≤ M̂‖(ŵ, z, p, ϕ, ψ, q)τ‖

which implies that B is a bounded linear operator. Transforming (4.5), we get

A = PA0P−1 + PBP−1. (4.6)

Thus, A is a bounded perturbation of PA0P−1. We know from Lemma 4.2 that A0 generates a C0 group on H.
Therefore, it holds that A also generates a C0 group on H due to perturbation theorem.

Now let us show the completeness of the eigenvectors and generalized eigenvectors of A. We assume that
σ(A) = {λk, k ∈ N} due to Corollary 2.1. The completeness of the eigenvectors and generalized eigenvectors
of A is that

Span(A) =

{∑
k

yk, yk ∈ E(λk,A)H, λk ∈ σ(A)

}
= H,

where E(λk,A) is the Riesz projection corresponding to λk.
Assume that Y0 = (y1, y2, y3, y4, y5, y6)τ ∈ H, Y0⊥Span(A). Then for λ ∈ C, R∗(λ,A)Y0 is a H-valued entire

function. Thus for any F = (f1, f2, f3, f4, f5, f6)τ ∈ H, the function

G(λ) = (F,R∗(λ,A)Y0)H, ∀λ ∈ C (4.7)

is an entire function. Since A generates a C0 group, we have that lim
�λ→∞

G(λ) = 0. In particular, for λ ∈ ρ(A), it

holds that G(λ) = (R(λ,A)F, Y0)H. Then the dissipativity of A ensures that |G(λ)| is bounded on the domain
	λ ≥ α̂ > 0. Since G(λ) is an entire function of finite exponential type, the Phragmén-Lindelöf Theorem
(see [25]) asserts that |G(λ)| is bounded on the sectors region: Ω̂1 = {λ ∈ C

∣∣ 	λ ≤ α̂, �λ ≥ 0} and
Ω̂2 = {λ ∈ C

∣∣ �λ ≤ 0, 	λ ≤ α̂} due to G(λ) is bounded on their boundary lines 	λ = α̂ and �λ = 0.
Therefore, |G(λ)| is uniformly bounded on C, i.e., |G(λ)| ≤M, ∀λ ∈ C.

Then by the Liouville’s theorem, we haveG(λ) ≡ 0 since lim
�λ→∞

G(λ) = 0. Note that G(λ) = (F,R∗(λ,A)Y0)H
holds for any F ∈ H. It must be R∗(λ,A)Y0 = 0, which means Y0 = 0. Therefore, Span(A) = H. The desired
result follows. �

In order to get the Riesz basis property of the (generalized) eigenvectors, we need the following result from [22].

Theorem 4.2. Let H be a separable Hilbert space, and A be the generator of a C0 semigroup T (t) on H.
Suppose that:

(1) σ(A) = σ1(A)∪σ2(A), where σ2(A) = {λk}∞k=1 consists of isolated eigenvalues of A with finite multiplicity;
(2) sup

k≥1
ma(λk) <∞, where ma(λk) = dimE(λk,A)H and E(λk,A) is the Riesz projector associated with λk;

(3) There is a constant α such that sup{Reλ|λ ∈ σ1(A)} ≤ α ≤ inf{Reλ|λ ∈ σ2(A)} and inf
n�=m

|λn − λm| > 0.
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Then the following assertions are true.
(i) There exist two T (t)-invariant closed subspaces H1, H2 with the property that σ(A∣∣H1

) = σ1(A), σ(A∣∣H2
) =

σ2(A), E(λk,A)H2 forms a subspace Riesz basis for H2, and H = H1

⊕H2.
(ii) If sup

k≥1
||E(λk,A)|| <∞, then D(A) ⊂ H1 ⊕H2 ⊂ H.

(iii) H has the decomposition H = H1 ⊕H2 (topological direct sum) if and only if

sup
n≥1

∥∥∥∥∥
n∑

k=1

E(λk,A)

∥∥∥∥∥ <∞.

Applying Corollary 2.1, and Theorems 3.1, 3.2, 4.1, 4.2 to our problem, we get the following result:

Theorem 4.3. Let H and A be defined as before and the condition (2.8) be fulfilled. If (3.14) is satisfied, then
there is a sequence of the eigenvectors and generalized eigenvectors of A which forms a Riesz basis for H.

Proof. Set σ1(A) = ∅, σ2(A) = σ(A). Theorems 3.1, 3.2 and Corollary 2.1 show that all hypotheses in Theo-
rem 4.2 are fulfilled. So the results of Theorem 4.2 are true. Hence, there is a sequence of the eigenvectors and
generalized eigenvectors of A that forms a subspace Riesz basis for H2. Theorem 4.1 says that the (generalized)
eigenvectors is complete in H, i.e., H2 = H. Therefore, the sequence is also a Riesz basis for H. The proof is
complete. �

The Riesz basis property together with the uniform boundedness of multiplicities of the eigenvalues of A
implies that:

Corollary 4.1. Under the conditions (2.8) and (3.14), the closed loop system (1.7) satisfies the spectrum
determined growth condition, i.e., ω(A) = S(A), where ω(A) = lim

t→∞
1
t ln ‖eAt‖ is the growth order of eAt and

S(A) = sup{	λ|λ ∈ σ(A)} is the spectral bound of A.

5. Stability of the system

In this section, the stability of the closed loop system (1.7) is discussed. Under the choice of μi, i = 1, 2, the
asymptotic stability and exponential stability of the system (1.7) are gotten under certain conditions.

When μ1 <
1
2 or μ2 <

1
2 , the following result holds.

Theorem 5.1. Let A and H be defined as before. When μ1 <
1
2 or μ2 <

1
2 , the system (1.7) is always unstable.

Proof. We shall show that there always exists λ ∈ σ(A) such that 	λ > 0 when μ1 <
1
2 or μ2 <

1
2 , which leads

to the instability of the system (1.7).
Let us consider the case μ1 <

1
2 . Set ŷ := τ1√

ρ
k

. If ŷ = 2(2m+1)
2n+1 , n,m ∈ N, we set

λ :=
1√

ρ
k

[√
k

ρ
η̂ + i

(
n+

1
2

)
π + i2s(2n+ 1)π

]
, s ∈ Z (5.1)

with some parameter η̂. Then a direct calculation yields

2

√
ρ

k
λ = 2η̂ + i(2n+ 1)π + i4s(2n+ 1)π, λτ1 =

λ
√

ρ
k√

ρ
k

τ1 = η̂τ1 + i(2m+ 1)π + i4s(2m + 1)π, s ∈ Z.
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Hence,

Δ0
1(η̂) := e−λ

√
ρ
k Δ1(λ)

= e−λ
√

ρ
k

[
−2α1μ1 sinhλ

√
ρ

k
− 2
√
ρk coshλ

√
ρ

k
− 2(1 − μ1)α1e

−τ1λ sinhλ

√
ρ

k

]
= −
√
ρk(1 − e−2η̂) −

(
α1μ1 − α1(1 − μ1)e

−
√

k
ρ

η̂τ1

)
(1 + e−2η̂)

where Δ1(λ) is given by (3.23). Since Δ0
1(0) = −2(2α1μ1 − α1) > 0 and lim

η̂→+∞
Δ0

1(η̂) = −√
ρk − α1μ1 < 0,

there is at least one η̂ > 0 such that Δ0
1(η̂) = 0. Thus, for this η̂, the complex values λ given by (5.1) are the

zeros of Δ1(λ).
Now let ŷ be any positive real value. We can choose a sequence of rational numbers, ŷn,m := 2(2m+1)

2n+1 , such
that lim

n,m→∞ ŷn,m = ŷ. Set ŷ = ŷn,m + εn,m, in which εn,m → 0 when n,m→ ∞. We compare

Δŷ
1(λ) :=

1
λ

[
−2α1μ1 sinhλ

√
ρ

k
− 2
√
ρk coshλ

√
ρ

k
− 2(1 − μ1)α1e−λ

√
ρ
k ŷ sinhλ

√
ρ

k

]

with

Δŷn,m

1 (λ) :=
1
λ

[
−2α1μ1 sinhλ

√
ρ

k
− 2
√
ρk coshλ

√
ρ

k
− 2(1 − μ1)α1e−λ

√
ρ
k ŷn,m sinhλ

√
ρ

k

]
·

Suppose that λn,m is a zero for Δŷn,m

1 (λ) with positive real part and given by (5.1). Then for |λ−λn,m| ≤ 1
2	λn,m,

using Taylor formula, we have

|Δŷ
1(λ) − Δŷn,m

1 (λ)| = 2(1 − μ1)α1

∣∣∣∣λ−1
∣∣∣∣∣∣e−λ

√
ρ
k ŷn,m − e−λ

√
ρ
k ŷ
∣∣∣∣∣∣ sinhλ

√
ρ

k

∣∣∣∣ ≤ |Δŷn,m

1 (λ)|.

Hence, the Rouché theorem says that Δŷn,m

1 (λ) and Δŷ
1(λ) have the same number of zeros in |λ−λn,m| ≤ 1

2	λn,m.
Since Δŷn,m

1 (λ) has at least one zero with positive real part, the same is true for Δŷ
1(λ) which implies that Δ1(λ)

has zeros with positive real part. Let n in (5.1) be sufficiently large. By the Rouché theorem again, there exists
at least one eigenvalue of A with positive real part. Therefore, the system (1.7) is unstable.

For the case μ2 <
1
2 , by the similar discussion, there exists at least one eigenvalue of A with positive real

part which also lead to the instability of the system (1.7). The proof is complete. �

Now, let us consider the stability of the system (1.7) when μi ≥ 1
2 , i = 1, 2. Firstly, from [18], we introduce

the fundamental solution to (3.2) as follows

w(x) = w(0)w1(x, λ) + ϕ(0)w2(x, λ) + wx(0)w3(x, λ) + ϕx(0)w4(x, λ), (5.2)
ϕ(x) = w(0)ϕ1(x, λ) + ϕ(0)ϕ2(x, λ) + wx(0)ϕ3(x, λ) + ϕx(0)ϕ4(x, λ). (5.3)
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The expressions of wi, ϕi, i = 1, 2, 3, 4 can be gotten directly from [18] and given as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 (x, λ) = 1

ζ̃1−ζ̃2

((
ζ̃1 − ã
)

cosh

√
ζ̃2x−
(
ζ̃2 − ã
)

cosh

√
ζ̃1x

)
,

ϕ1 (x, λ) = ãc̃

ζ̃1−ζ̃2

(
1√
ζ̃1

sinh

√
ζ̃1x− 1√

ζ̃2
sinh

√
ζ̃2x

)
,

w2 (x, λ) = b̃

ζ̃1−ζ̃2

(
1√
ζ̃1

sinh

√
ζ̃1x− 1√

ζ̃2
sinh

√
ζ̃2x

)
,

ϕ2 (x, λ) = 1

ζ̃1−ζ̃2

((
ζ̃1 − b̃
)

cosh

√
ζ̃2x−
(
ζ̃2 − b̃
)

cosh

√
ζ̃1x

)
,

w3 (x, λ) = 1

ζ̃1−ζ̃2

((
ζ̃1 − b̃
)

1√
ζ̃1

sinh

√
ζ̃1x−
(
ζ̃2 − b̃
)

1√
ζ̃2

sinh

√
ζ̃2x

)
,

ϕ3 (x, λ) = c̃

ζ̃1−ζ̃2

(
cosh

√
ζ̃1x− cosh

√
ζ̃2x

)
,

w4 (x, λ) = 1

ζ̃1−ζ̃2

(
cosh

√
ζ̃1x− cosh

√
ζ̃2x

)
,

ϕ4 (x, λ) = 1

ζ̃1−ζ̃2

((
ζ̃1 − ã
)

1√
ζ̃1

sinh

√
ζ̃1x−
(
ζ̃2 − ã
)

1√
ζ̃2

sinh

√
ζ̃2x

)
,

(5.4)

where

ã =
ρ

k
λ2, b̃ =

Iρ
EI
λ2 +

k

EI
, c̃ = − k

EI
, (5.5)

and ζ̃i, i = 1, 2 are the two roots of the following quadratic equation:

ζ̃2 − (ã+ b̃+ c̃)ζ̃ + ãb̃ = 0. (5.6)

We have the following result:

Theorem 5.2. Let A and H be defined as before. Then,
(1) when μ1 >

1
2 , μ2 >

1
2 , the system (1.7) is asymptotically stable;

(2) when μ1 = 1
2 , μ2 >

1
2 , if there exists k ∈ Z such that the vectors(

wjx

(
1,

(2k + 1)πi

−τ1

)
, ϕjx

(
1,

(2k + 1)πi

−τ1

)
, ϕj

(
1,

(2k + 1)πi

−τ1

))τ

, j = 3, 4

are linearly dependent, then the system (1.7) is unstable; otherwise, this system is asymptotically stable;
(3) when μ1 >

1
2 , μ2 = 1

2 , if there exists k ∈ Z such that(
wjx

(
1,

(2k + 1)πi

−τ2

)
− ϕj

(
1,

(2k + 1)πi

−τ2

)
, ϕjx

(
1,

(2k + 1)πi

−τ2

)
, wj

(
1,

(2k + 1)πi

−τ2

))τ

, j = 3, 4

are linearly dependent, the system (1.7) is unstable; otherwise, this system is asymptotically stable.

Proof. When μ1 ≥ 1
2 , μ2 ≥ 1

2 , from Section 2, we get that A is dissipative in H. Therefore, according to the
Lyubich and Phóng theorem [6], we only need to verify that there is no eigenvalue of A on the imaginary axis
to get the asymptotic stability of the system (1.7).

If there exists σ ∈ R such that λ = iσ is an eigenvalue of A and W = (w, λw, p, ϕ, λϕ, q)τ is an eigenvector
of A corresponding to λ, then we have

0 = 	λ(W,W )1 = 	(AW,W )1. (5.7)

We consider the asymptotic stability of the system (1.7) under these following cases.
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Case 1: μ1 >
1
2 , μ2 >

1
2 .

From (2.11) and (5.7), we get p(0) = q(0) = p(1) = q(1) = 0. Hence, according to (3.1), we have that λ = iσ
satisfy ⎧⎨⎩

ρλ2w − k(wxx − ϕx) = 0, x ∈ (0, 1),
Iρλ

2ϕ− EIϕxx − k(wx − ϕ) = 0, x ∈ (0, 1),
w(0) = ϕ(0) = w(1) = ϕ(1) = 0, wx(1) = ϕx(1) = 0.

(5.8)

Therefore, w(1) = ϕ(1) = wx(1) = ϕx(1) = 0 together with the fundamental solution (5.2)–(5.6) implies that

w(x) = ϕ(x) = 0.

Thus, (w, λw, p, ϕ, λϕ, q)τ = 0 which contradicts the assumption that λ = iσ is an eigenvalue of A. So there
is no eigenvalue on the imaginary axis. The Lyubich and Phóng theorem [6] asserts that the system (1.7) is
asymptotically stable.
Case 2: μ1 = 1

2 , μ2 >
1
2 .

Similarly, if λ = iσ is an eigenvalue of A, we can get
0 = 2�(AW,W )1

= −2

(
α1μ1 − η1

2τ1

)
p(0)p(0) − 2

(
α2μ2 − η2

2τ2

)
q(0)q(0) − η1

τ1
p(1)p(1) − η2

τ2
q(1)q(1)

−α1(1 − μ1)p(0)p(1) − α1(1 − μ1)p(1)p(0) − α2(1 − μ2)q(0)q(1) − α2(1 − μ2)q(1)q(0).

Since (2.9) implies that η1 = τ1α1
2 ,

2�(AW,W )1 = −α1

2
(p(0) + p(1))(p(0) + p(1)) − 2

(
α2μ2 − η2

2τ2

)
q(0)q(0)

−η2
τ2
q(1)q(1) − α2(1 − μ2)q(0)q(1) − α2(1 − μ2)q(1)q(0)

≤ −α1

2
(p(0) + p(1))(p(0) + p(1)) − 2

(
α2μ2 − η2

2τ2
− α2(1 − μ2)

2

)
|q(0)|2

−2

(
η2
2τ2

− α2(1 − μ2)

2

)
|q(1)|2.

From (5.7), we get
p(0) + p(1) = 0, q(0) = λϕ(1) = 0, q(1) = 0. (5.9)

This implies that λ = iσ is an eigenvalue if and only if the following equation has nonzero solution:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρλ2w − k(wxx − ϕx) = 0, x ∈ (0, 1),
Iρλ

2ϕ− EIϕxx − k(wx − ϕ) = 0, x ∈ (0, 1),
τ1λp(x) + px(x) = 0, τ2λq(x) + qx(x) = 0,
w(0) = ϕ(0) = ϕ(1) = 0,
k(wx − ϕ)(1) = −α1

2 (λw(1) + p(1)) = 0, EIϕx(1) = 0.

(5.10)

Then, using the fundamental solution to Timoshenko beam (5.2)–(5.6), we have

w = cw3(x, λ) + dw4(x, λ), ϕ = cϕ3(x, λ) + dϕ4(x, λ), (5.11)

where c = wx(0) and d = ϕx(0). By (5.9) and the third equation in (5.10), a direct calculation yields

p(0)(1 + e−τ1λ) = 0.

From the proof in Case 1, we know that if p(0) = 0, then λ = iσ /∈ σ(A). Hence, if λ = iσ is an eigenvalue
of A, it must satisfy 1 + e−τ1λ = 0, which implies

λ =
(2k + 1)πi

−τ1 , k ∈ Z. (5.12)



570 Z.-J. HAN AND G.-Q. XU

Then, substituting (5.11) and (5.12) into the boundary conditions in (5.10) yields⎡⎢⎢⎢⎢⎣
w3x

(
1, (2k+1)πi

−τ1

)
w4x

(
1, (2k+1)πi

−τ1

)
ϕ3x

(
1, (2k+1)πi

−τ1

)
ϕ4x

(
1, (2k+1)πi

−τ1

)
ϕ3

(
1, (2k+1)πi

−τ1

)
ϕ4

(
1, (2k+1)πi

−τ1

)
⎤⎥⎥⎥⎥⎦
[
c
d

]
= 0. (5.13)

Therefore, (5.10) has nonzero solution if and only if there exists k ∈ Z such that the vectors
(
wjx

(
1, (2k+1)πi

−τ1

)
,

ϕjx

(
1, (2k+1)πi

−τ1

)
, ϕj

(
1, (2k+1)πi

−τ1

))τ

, j = 3, 4 are linearly dependent, which leads to the instability of the

system (1.7). Otherwise, the system (1.7) is asymptotically stable.
Case 3: μ1 >

1
2 , μ2 = 1

2 .
If λ = iσ is an eigenvalue of A, we have

p(0) = p(1) = 0, q(0) + q(1) = 0.

Similarly with the proof in Case 2, we have that if there exists k ∈ Z such that
(
wjx

(
1, (2k+1)πi

−τ2

)
−ϕj

(
1, (2k+1)πi

−τ2

)
,

ϕjx

(
1, (2k+1)πi

−τ2

)
, wj

(
1, (2k+1)πi

−τ2

))τ

, j = 3, 4 are linearly dependent, the system (1.7) is unstable. Otherwise,

this system is asymptotically stable. The proof is complete. �
Remark 5.1. “μ1 = μ2 = 1

2” is a critical point for the stability of the system (1.7). Under this condition, the
stability of the system (1.7) is very complicated. It can be divided into the following four cases:
(a) p(0) = q(0) = 0.

According to Case 1 in Theorem 5.2, the system is asymptotically stable.
(b) q(0) = 1 + e−τ1λ = 0.

From Case 2 in Theorem 5.2, if there exists k ∈ Z such that vectors
(
wjx

(
1, (2k+1)πi

−τ1

)
, ϕjx

(
1, (2k+1)πi

−τ1

)
,

ϕj

(
1, (2k+1)πi

−τ1

))τ

, j = 3, 4 are linearly dependent, the system (1.7) is unstable. Otherwise, this system is

asymptotically stable.
(c) p(0) = 1 + e−τ2λ = 0.

By Case 3 in Theorem 5.2, if there exists k ∈ Z such that
(
wjx

(
1, (2k+1)πi

−τ2

)
−ϕj

(
1, (2k+1)πi

−τ2

)
, ϕjx

(
1, (2k+1)πi

−τ2

)
,

wj

(
1, (2k+1)πi

−τ2

))τ

, j = 3, 4 are linearly dependent, the system (1.7) is unstable. Otherwise, this system is

asymptotically stable.
(d) 1 + e−τ1λ = 1 + e−τ2λ = 0.

A direct calculation leads to λ = iσ = i(2m+1)π
−τ1

= i(2n+1)π
−τ2

, m, n ∈ Z. From (3.1) and (5.7), we also find
that this λ = iσ must satisfy k(wx − ϕ)(1) = EIϕx(1) = 0. By the fundamental solution to Timoshenko beam,
it yields

Δ̃(λ) :=
∣∣∣∣ w3x(1, λ) − ϕ3(1, λ) w4x(1, λ) − ϕ4(1, λ)

ϕ3x(1, λ) ϕ4x(1, λ)

∣∣∣∣ = 0. (5.14)

Therefore, if τ1
τ2

is a rational number and Δ̃( (2mj+1)πi
−τj

) = 0 for some mj ∈ Z, j = 1, 2, the system (1.7) is
unstable. Otherwise, this system is asymptotically stable.

In order to discuss the exponential stability of the system (1.7), we have the following result:
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Lemma 5.1. Let H and A be defined as before and the conditions (2.8), (3.14) be fulfilled. Then the system (1.7)
is exponentially stable if and only if

inf
λ∈iR

|Δ(λ)| > 0. (5.15)

Proof. Necessity: Under the condition (2.8), we know that A generates a C0 semigroup of contractions on H,
which implies that there is no eigenvalue of A on the right half complex plane. If inf

λ∈iR
|Δ(λ)| = 0, there always

exists a sequence λj , j = 1, 2, . . . , 	λj → 0, �λj → ∞ such that |Δ(λj)| → 0, j → ∞, which implies that the
imaginary axis is the asymptote of σ(A). Since the system (1.7) satisfies spectrum determined growth condition,
this system is not exponentially stable, which is a contradiction. Therefore, (5.15) holds.

Sufficiency: According to the proof of Necessity, it is easy to check that (5.15) implies that the imaginary
axis is not an asymptote of σ(A). Thus, the spectrum determined growth condition of the system (1.7) implies
that this system is exponentially stable. �

Based on this lemma, we get the following result about the exponential stability of the system (1.7).

Theorem 5.3. Let A and H be defined as before and the condition (3.14) be fulfilled. If μ1 >
1
2 , μ2 >

1
2 , then

the closed loop system (1.7) is exponentially stable.

Proof. From Theorem 5.2, we know under the conditions μ1 >
1
2 , μ2 >

1
2 , the system (1.7) is asymptotically

stable. From Lemma 5.1, we only need to check (5.15). To this end, set ξ ∈ R. Since Δ(λ) = Δ1(λ)Δ2(λ) +
O(λ−1), it only needs to show that

Δj(iξ) �= 0, ξ → ∞, j = 1, 2

where Δj(λ), j = 1, 2 are given by (3.23) and (3.24). A direct calculation leads to

Δ1(λ) = 2i

[
−α1μ1 sin

√
ρ

k
ξ − α1(1 − μ1) cos τ1ξ sin

√
ρ

k
ξ

]
+ 2

[
− α1(1 − μ1) sin τ1ξ sin

√
ρ

k
ξ

−
√
ρk cos

√
ρ

k
ξ

]
,

Δ2(λ) = 2i

[
−α2μ2 sin

√
Iρ

EI
ξ − α2(1 − μ2) cos τ2ξ sin

√
Iρ

EI
ξ

]
+ 2

[
− α2(1 − μ2) sin τ2ξ sin

√
Iρ

EI
ξ

−
√
IρEI cos

√
Iρ

EI
ξ

]
.

Then Δ1(iξ) = 0 is equivalent to

α1μ1 sin
√
ρ

k
ξ + α1(1 − μ1) cos τ1ξ sin

√
ρ

k
ξ = 0, (5.16)

α1(1 − μ1) sin τ1ξ sin
√
ρ

k
ξ +
√
ρk cos
√
ρ

k
ξ = 0. (5.17)

Similarly, Δ2(iξ) = 0 is equivalent to

α2μ2 sin

√
Iρ
EI
ξ + α2(1 − μ2) cos τ2ξ sin

√
Iρ
EI
ξ = 0, (5.18)

α2(1 − μ2) sin τ2ξ sin

√
Iρ
EI
ξ +
√
IρEI cos

√
Iρ
EI
ξ = 0. (5.19)
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Now we show Δ1(iξ) �= 0, ξ → ∞ in the following two cases:
Case 1: μ1 = 1.

Under this condition, (5.16) and (5.17) imply that sin
√

ρ
k ξ = cos

√
ρ
k ξ = 0, which is a contradiction. Thus,

Δ1(iξ) �= 0 for any ξ ∈ R, ξ → ∞.
Case 2: 1

2 < μ1 < 1.
From (5.16), we have α1μ1 + α1(1 − μ1) cos τ1ξ = 0 or sin

√
ρ
k ξ = 0. It is easy to check that sin

√
ρ
kξ �= 0.

Hence, we can get
cos τ1ξ = − μ1

1 − μ1
· (5.20)

Substituting (5.20) into (5.17) leads to

±α1(1 − μ1)

√
1 −
( −μ1

1 − μ1

)2

sin
√
ρ

k
ξ −
√
ρk cos
√
ρ

k
ξ = 0.

From (5.16) and (5.17), we have cos
√

ρ
k ξ �= 0. Therefore,

tan
√
ρ

k
ξ = ±

√
ρk

α1(1 − μ1)
√

1 − ( μ1
1−μ1

)2
= ±

√
ρk

α1
√

1 − 2μ1
·

If 1
2 < μ1 < 1,

√
ρk

α1
√

1−2μ1
is an imaginary number, which contradicts the fact that tan

√ ρ
kξ ∈ R for ξ ∈ R.

Therefore, Δ1(iξ) �= 0 for any ξ ∈ R, ξ → ∞ when μ1 �= 1.
By the similar method, we get Δ2(iξ) �= 0 for any ξ ∈ R, ξ → ∞ when μ2 >

1
2 . Based on the discussion

above, by Lemma 5.1, the system (1.7) is exponentially stable. The proof is complete. �

When μ1 = 1
2 or μ2 = 1

2 , from Theorem 5.2 and Remark 5.1, the system (1.7) can be asymptotically stable,
based on which this system is only exponentially stable under strict conditions.

Theorem 5.4. Let A and H be defined as before and the conditions (2.8), (3.14) be fulfilled. Suppose that the
system (1.7) is asymptotically stable. Then

if μ1 = 1
2 , μ2 >

1
2 and
√

ρ
k = τ1, the system (1.7) is exponentially stable;

if μ1 >
1
2 , μ2 = 1

2 and
√

Iρ

EI = τ2, the system (1.7) is exponentially stable;

if μ1 = 1
2 , μ2 = 1

2 and
√

ρ
k = τ1,

√
Iρ

EI = τ2, the system (1.7) is exponentially stable.

Proof. When μ1 = 1
2 , from (5.16) and (5.17), Δ1(iξ) = 0 is equivalent to

1
2
α1 sin
√
ρ

k
ξ +

1
2
α1 cos τ1ξ sin

√
ρ

k
ξ = 0, (5.21)

1
2
α1 sin τ1ξ sin

√
ρ

k
ξ +
√
ρk cos
√
ρ

k
ξ = 0. (5.22)

A direct calculation yields

sin
√
ρ

k
ξ �= 0,

1
2
α1 +

1
2
α1 cos τ1ξ = sin τ1ξ = cos

√
ρ

k
ξ = 0, ξ ∈ R. (5.23)

Then, if
√

ρ
k = τ1, we can not find a sequence ξn ∈ R, such that sin τ1ξn → 0, cos

√
ρ
k ξn → 0 simultaneously,

which leads to inf
ξ∈R

|Δ1(iξ)| �= 0. Similarly, when μ2 = 1
2 we obtain that if

√
Iρ

EI = τ2, then inf
ξ∈R

|Δ2(iξ)| �= 0.
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(a) µ1 = 0.8, µ2 = 0.6
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(b) µ1 = 0.5, µ2 = 0.5

Figure 1. Distribution of the spectrum.

We have known from the proof of Theorem 5.3 that if μj >
1
2 , then Δj(iξ) �= 0, ξ → ∞, ξ ∈ R holds for

each j, j = 1, 2. Thus, if μ1 = 1
2 , μ2 >

1
2 and
√

ρ
k = τ1,

inf
ξ∈R

|Δ(iξ)| = inf
ξ∈R

|Δ1(iξ)Δ2(iξ)| > 0.

Therefore, Lemma 5.1 asserts that the system (1.7) is exponentially stable.

Similarly, we can get that if μ1 >
1
2 , μ2 = 1

2 and
√

Iρ

EI = τ2, the system (1.7) is exponentially stable as well.

If μ1 = 1
2 , μ2 = 1

2 , under the conditions
√

ρ
k = τ1,

√
Iρ

EI = τ2, the system (1.7) is also exponentially stable
by the similar discussion. The proof is complete. �

6. Simulations

In this section, we shall give some simulations of the system (1.7) to support our results. Firstly, we give
each parameter in this system a numerical value as follows:

ρ k Iρ EI τ1 τ2 α1 α2

27 3 8 2 0.5 0.4 5 6

Then let us discuss the distribution of the spectrum of A under the system parameters chosen above. Based
on the fundamental solution to Timoshenko beams (5.2)–(5.6) and the Matlab scientific calculation, we get
many simulations for the distribution of the spectrum of A by changing the value of μi, i = 1, 2. We find
that in these simulations the eigenvalues of A distribute in conjugate pairs in the complex plane and there are
many “vertical” lines which the eigenvalues approach. These lines are in fact the asymptotes of the eigenvalues
of A. Here we only show two figures. Figures 1(a) and 1(b) denote the distribution of the spectrum of A when
μ1 = 0.8, μ2 = 0.6 and μ1 = 0.5, μ2 = 0.5, respectively, in which “ * ” denotes the eigenvalues of A.

We find that if we choose μi >
1
2 , i = 1, 2, the eigenvalues of A are always located in the left hand of the

complex plane and far away from the imaginary axis, which implies the exponential stability of the system. We
see in Figure 1(a) that the eigenvalues of A satisfy that 	λ < −0.1. Since the spectrum determined growth
condition holds, this system is exponentially stable when μ1 = 0.8, μ2 = 0.6. Furthermore, the exponential
decay rate is less than −0.1.

However, when μi → 0.5, i = 1, 2, the distance between the maximum of the real part of the eigenval-
ues and the imaginary axis becomes smaller, which implies that the system (1.7) decays more slowly when
μi → 0.5, i = 1, 2. Furthermore, when μ1 = 0.5, μ2 = 0.5, we see in Figure 1(b) that there is no vertical line
to divide the spectrum and the imaginary axis, which shows that the imaginary axis may be the asymptote
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of the eigenvalues of A. Therefore, the system (1.7) is possibly asymptotically stable but not exponentially
stable when μi = 0.5, i = 1, 2.
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