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ABSTRACT. This paper focuses on the problem of exponential stabiliza-
tion of controllable, driftless systems using time-varying, homogeneous
feedback. The analysis is performed with respect to a homogeneous
norm in a non-standard dilation that is compatible with the algebraic
structure of the control Lie algebra. Using this structure, we show that
any continuous, time-varying controller that achieves exponential sta-
bilization relative to the Euclidean norm is necessarily non-Lipschitz.
Despite these restrictions, we provide a set of constructive, sufficient
conditions for extending smooth, asymptotic stabilizers to homogeneous,
exponential stabilizers. The modified feedbacks are everywhere continu-
ous, smooth away from the origin, and can be extended to a large class of
systems with torque inputs. The feedback laws are applied to an exper-
imental mobile robot and show significant improvement in convergence
rate over smooth stabilizers.

1. INTRODUCTION

In this paper we consider the stabilization problem for driftless control systems
of the form

t=X1(@x)ur 4+ -+ X (2)um r € R™

We assume that the vector fields X; are analytic on R™ and that they are pointwise
linearly independent. We further assume that the system is completely controllable:
given any two points zg and 1 and a time 7" > 0 there exists a control u defined on
the time interval [0, 7] which steers the system between ¢ and z;. Controllability
is easily checked using the Lie algebra rank condition for nonlinear control systems
(see, for example, Nijmeijer and van der Schaft [38] or Isidori [21]).
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Controllable, driftless control systems arise in the study of mechanical systems
with symmetries and nonholonomic constraints, and represent the dynamics con-
sistent with the kinematic constraints placed on the system by the presence of
conservation laws or constraints. Typically, the inputs for a driftless control sys-
tem correspond to the velocities of a mechanical system. Although in practice one
almost always controls forces and torques in a mechanical system instead of veloc-
ities, in many instances it is possible to extend controllers that prescribe velocities
to controllers that command forces and torques. Hence we initially focus our at-
tention on the driftless case and indicate later how to extend controllers to allow
more general inputs.

The stabilization problem for driftless systems represents a challenge for nonlin-
ear control theory because the linearization of the system is not controllable. In
fact, as shown by Brockett [8], for this class of systems there does not exist a smooth
(or even continuous) control law of the form u; = o;(#) which asymptotically sta-
blizes the system to an equilibrium point. As such, one is forced to rely on the
use of strongly nonlinear techniques to stabilize the system. Results on asymptotic
stability typically rely on the use of discontinuous feedback, time-varying feedback,
or a combination of the two.

In this paper we concentrate on the problem of exponential stabilization of drift-
less systems. In this case, it is shown that even if time-varying feedback is allowed,
it 1s still not possible to achieve exponential stability using Lipschitz feedback. In-
deed, as we show below, the usual definition of exponential stability does not readily
apply to this problem and one must use a broader definition of exponential stability.

The approach to exponential stabilization in this paper makes use of the theory of
homogeneous systems with non-standard dilations [15, 19]. Using and extending the
tools available from that area, we show how to construct and analyze exponential
stabilizers for this class of systems. The extra structure which is available through
the use of homogeneous systems allows us to circumvent many of the problems
normally associated with the lack of Lipschitz feedback and provide a very complete
theory for driftless systems as well as provide tools which hold for more general
systems.

The main direct applications of the work presented here are control of mobile
robots and other robotic systems with nonholonomic constraints (see [34] for in-
troductory theory and examples). However, the basic techniques which we develop
here are more broadly applicable and have potential application in a number of
areas, including power converters [25], underwater vehicles [14] and novel robotic
mechanisms [49]. With these and other applications in mind, we have tried to
present many of the results in a context in which they can be applied to other
strongly nonlinear stabilization problems.

This paper is organized as follows. In Section 2 we give a short review of the
literature on stabilization of driftless control systems. This review is intended to
orient the reader who is new to the area and also to describe the context for the
results presented in this paper. Section 3 reviews results for homogeneous systems.
The properties of homogeneous systems form the basis of the analysis in this paper.
Much of the material is well established but a few of the results are new. The
limitations of Lipschitz feedback are discussed in Section 4. The main result of this
section, which is applicable to general C'! control systems, shows that solutions of
a driftless system cannot satisfy an exponential stability bound when the feedback
is Lipschitz continuous in the state. Section b presents a method of improving the
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convergence rate of a driftless system when a smooth stabilizing feedback is already
known. The convergence rate with the modified feedbacks is a modified notion of
exponential stability. This method 1s applied to an experimental mobile robot in
Section 6. Section 7 shows how to extend the exponentially stabilizing feedbacks
through a set of integrators.

Finally, we indicate how the results in this paper apply to more general nonlinear
control systems and indicate some of the directions for future work.

Preliminary versions of some of the results in this paper have appeared in [28,
29, 30, 32, 31, 35]. Additional technical results related to this work, as well as a
more detailed introduction to homogeneous control systems, can be found in [27].

2. RELATED WORK

There have been a number of papers published on stabilization of nonholonomic
systems over the past four years. A survey of the field can be found in the recent
papers by Sgrdalen and Egeland [48] and Samson [45]. We concentrate here on
work that is most directly related to the results presented in this paper.

The basic limitations in stabilization of driftless systems were given in a 1983
paper by Brockett [8], where it was shown, among other things, that driftless control
systems could not be stabilized to a point using continuous, static state feedback (for
a particularly nice proof, see the survey paper by Sontag [47]). In 1990, Samson
presented a paper in which he showed how to asymptotically stablize a mobile
robot to a point using time-varying, smooth state feedback [44]. The use of time-
varying feedback avoided the difficulties captured by Brockett’s necessary condition.
Motivated by these results, Coron proved in 1991 that all controllable driftless
systems could be stabilized to an equilibrium point using smooth, periodic, time-
varying feedback [11] (This result also follows from Sontag’s work on universal
controls [46].)

Coron’s result opened the door to a constructive approaches for stabilizing a
general class of driftless control systems. This first such result was presented by
Pomet [40], who developed a synthesis technique based on Coron’s proof which
held for a fairly general class of systems, including as a special cases mobile robots
and mobile robots towing trailers. This result was extended to the general case by
Coron and Pomet [12]. Additional techniques were given by Teel et al. [50] for a
special class of driftless systems in so-called chained form [36].

A second approach to stabilizing nonholonomic systems involved the use of dis-
continuous feedbacks. One of the early results in this area was given by Bloch,
Reyhanoglu, and McClamroch [7] and involves the use of piecewise analytic feed-
backs for stabilizing a nonholonomic mechanical system to a point. Unlike much
of the other work on nonholonomic systems, the approach proposed by Bloch et al.
allowed the use of either velocity or torque inputs rather than just velocity inputs.
Another discontinuous stabilization approach was given by Canudas de Wit and
Sgrdalen [13], who developed piecewise smooth controllers for a set of low dimen-
sional examples. The main application of their results was to mobile robots and one
of the features was that they could guarantee that the control was discontinuous
at only a finite number of times. Sgrdalen and Egeland extended these results to
systems in chained form [48].
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One of the advantages of the discontinuous stabilization approaches over the
smooth, time-periodic feedbacks is that discontinuous stabilizers usually give ex-
ponential convergence or convergence in finite time. Extending his previous work,
Coron showed it is possible to generate time-periodic feedbacks which gave finite
time convergence and were smooth everywhere except the origin [12]. These results
imply that exponential stabilizers exist which are time-periodic and smooth away
from the equilibrium point. The necessity of non-differentiable feedbacks even in
the time-varying case can be found, for example, in [37], and is based on a straight-
forward linearization argument. One of the contributions of the present paper is to
show more precisely how to construct feedback controllers which give exponential
rates of convergence and are smooth everywhere except at the origin.

The exponential stability results presented in this paper rely on the properties
of homogeneous systems and build off of several previous results on stability of
homogeneous systems. The basic tools for dilations and homogeneous functions and
vector fields are given in the monograph by Goodman [15] (see also Bacciotti [3]).
Hermes has considered the application of homogeneous systems in control theory
and has developed approximations which generalize the usual linear approximation
theorems [18, 20]. The use of homogeneous structure in stabilization problems has
also been considered by Kawski [22], who presented results for low-dimensional
control systems with drift and defined the notion of exponential stability which we
make use of here. Other work on homogeneous control systems includes the work
of Rosier [43] on converse Lyapunov results for autonomous systems and work by
Pomet and Samson [41], who have extended their results on smooth stabilization to
give exponential stabilization using tools similar to those presented in this paper.

In addition to time-varying feedback and discontinuous feedback, there have been
many other approaches proposed for stabilization of driftless systems. Conditions
for stabilization to a submanifold where given by Bloch, Reyhanoglu, and McClam-
roch [7] (see also Montgomery [33]). Maschke and van der Schaft have generated
controllers for stabilization to a submanifold using a Hamiltonian framework [26].
Hybrid strategies, involving the use of both discontinuous and time-varying feed-
backs have been proposed by Pomet et al. [42], using a combination of Pomet’s
time-varying controllers near the origin and discontinuous feedback far away from
the origin, and also Oelen, Canudas de Wit, Berghuis, and Nijmeijer [39], who
presented stabilizers for systems in chained form. Sgrdalen and Egeland [48] have
given controllers which involving switches at discrete instants in time and smooth
feedback between switches. A similar technique has been used by Kolmanovsky and
McClamroch [23], who use a discrete event supervisor to generate switchings for
controllers which give finite time convergence. Sliding mode controllers have been
explored by Bloch and Drakunov [6] and results on adaptive stabilization have been
given by Bastin and Campion [4]. The use of nonsmooth changes of coordinates
followed by smooth feedbacks in the transformed coordinates is a promising new
direction which is being explored by Astolfi [2] and also Casalino, Aicardi, Bicchi,
and Balestrino [9, 1].

Our own work in this area started with convergence analysis for the time-
periodic, smooth controllers proposed by Pomet and Teel et al. These results
showed that the controllers under consideration converged at a rate proportional
to 1/v/t and hence gave very slow convergence. This motivated our work on ex-
ponential convergence and, based on the structure present in both chained and
power form, we focused on the use of non-standard dilations and homogeneous
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structure. Initial analysis tools were presented in [29] and preliminary results on
controller synthesis were given in [32]. Experimental results on the application
of various feedback control laws to a mobile robot system are described in detail
in [28] and will be the subject of a forthcoming article. We have also derived a
number of extensions to the basic work described in [32]. In [31] we describe how
to extend exponentially stabilizing controllers which command the velocity to expo-
nential controllers using torque inputs. In [35] we describe how to convert smooth,
time-periodic, asymptotic stabilizers for driftless systems into exponential stabiliz-
ers which are smooth everywhere except the origin. The present paper integrates
all of these past results as well as presenting new results on control systems using
Lipschitz feedback.

3. HOMOGENEOUS SYSTEMS

We now introduce some background material. To establish notation, functions
will be denoted by lower case letters and vector fields by capital letters. We will
occasionally abuse notation and define the differential equation # = X (¢, #) in local
coordinates on R™ associated with the vector field X. The flow of a differential
equation is denoted ¢ where ¢(t,%p,2p) is the solution, at time ¢, which passes
through the point g at time ¢y. For a linear differential equation, ¢(¢, o) denotes
the principal matrix solution. When it is necessary to distinguish between flows of
vector fields a superscript will be used; i.e. ¢ is the flow of X, ¢} is the flow of
Y, etc.

3.1. Some definitions. This section reviews dilations and homogeneous vector
fields. A dilation A," : R™ x Rt — R™ is defined with respect to a fixed choice of
coordinates = (x1,%2,...,2,) on R” by assigning n positive rationals r = (r; =
1 <ry<---<rp,) and positive real parameter A > 0 such that

= (A, A ey,), A >0,
We usually write Ay in place of Af%.

Definition 1. A continuous function f : R x R™ — R is homogeneous of degree

[ > 0 with respect to Ay if f(t,Axz) = N f(t, z).

Definition 2. A continuous vector field X (¢, ) = > a;(¢t,2)3/0x; on R x R" is
homogeneous of degree m < r, with respect to Ay if a; is degree r; — m for i =
1,...,m.

The variable ¢ represents explicit time dependence and is never scaled in our
applications.
Definition 3. A continuous map from R” to R, z — p(x), is called a homogeneous
norm with respect to the dilation A)when

1. p(x) >0, p(r)=0 <= 2=0,

2. p(Axz) = Ap(x) VA >0.
The homogeneous norm is called smooth when it is smooth on R™\ {0}.

For example, a smooth homogeneous norm may always be defined as

p(l‘) — |xfl3/7‘1 + x;/Tz 4o x;/rn|1/c’ (1)

where ¢ is some positive integer evenly divisible by ;. We are primarily interested
in the convergence of time dependent functions using a homogeneous norm as a
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F1GURE 1. Level sets of smooth homogeneous norm and trajecto-
ries of the Euler vector field Xg.

measure of their size. When a vector field is homogeneous it is most natural to use
a corresponding homogeneous norm as the metric. The usual vector p-norms are
homogeneous with respect to the standard dilation (r; = 1).

Definition 4. The A-sphere is defined as the set
Sa = {zlp(x) = 1},
where p is a smooth homogeneous norm corresponding to the dilation Aj.

Definition 5. The Euler vector field corresponding to a dilation A is defined as

d
XE(l‘) = Zml‘la—xl

Thus the images of trajectories of the system & = Xg(x) are the rays obtained
by scaling the points on the sphere Sa with the dilation. Figure 1 show the level
sets of the smooth homogeneous norm p = (2} + #3)'/* and the trajectories of the
Euler vector field corresponding to the dilation Ay(z) = (Az1, A%x2).

3.2. Homogeneous approximations of vector fields. This section reviews ho-
mogeneous approximations of sets of vector fields. The vector fields are the input
vector fields of the controllable driftless system

t=X1(x)ur + 4 X (@)t (2)

The entire analysis is local so we assume that vector fields are defined on R™.
Furthermore, the vector fields are taken to be analytic. We are interested in ob-
taining an approximation, in the sense described below, of the set of vector fields
{X1,...,Xm}. The Lie bracket of vector fields is [, -].

Let £(X1,..., Xm) be the Lie algebra generated by the set {X1,..., X }. The
following definition specifies a special filtration of the Lie algebra of a finite set of
generating vector fields.
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Definition 6. The control filtration, F* | of L(X1,..., X,s) is a sequence of sub-
spaces defined as
F = {0},
FX =span{Xy,..., X},
FX =span{X1, ..., Xp, [X1, X2), .., [X1, Xa], .o o, [ X1, Xl },
(3)

FX = span{all products of i-tuples from {X1,..., X,,}, fori < k},

and fX = {ij}jZQ.

The set of vector fields is approximated about a specific point, zg € R”. This
point is the desired equilibrium point in the sequel. Now let F;(zq) be the subspace
of R™ (more precisely the tangent space, T, R™, of R™ at xy) spanned by Z(zg)
where Z € FX. This yields an increasing sequence of vector subspaces,

This sequence must be stationary after some integer since it is assumed that the
Lie algebra has full rank at ®zg. In other words, since the system (2) is control-
lable dim Fj(z0) = n for all k greater that some minimal integer N. Now we
count the growth in the dimension of the subspaces and set ny = dim Fy (xg), ne =
dim Fa(zg),...,ny = n = dim Fy(zg). The following dilation is defined:

Definition 7. The dilation adapted to the filtration (at the point g) is the map
o= (A, A ey,
where the scalings satisfy r; = 1 for 1 <i <ny, r; =2 for ny + 1 < i < ngy, etc.

Henceforth, in order to simplify the notation in the expressions to follow it 1s
assumed that xzo = 0. This is achieved with a translation of the origin of the
coordinate system.

Definition 8. The local coordinates adapted to the filtration F* (denoted by y)
are related to the original coordinates (denoted by #) by the local analytic diffeo-
morphism derived from composing flows of vector fields from the filtration,

Xey Xny X,
r=0(y) = ¢y, 0y, 00 gy, (0), (4)
where ¢ (zo) = 6(t,0, zo) denotes the flow of the vector field X and,

1. XmE]-"J»X for n;_1+1<19 < ny,
2. dim{X,,,..., X, } =n.

A vector field written in a local coordinate system will explicitly show the de-
pendence, i.e.; X(z) is written in z-coordinates while X (y) is the same vector field
written in y-coordinates. The importance of the local coordinates adapted to FX
is explained by the following theorem.

Theorem 3.1 ([20, Theorem 2.1]). Let £ be a Lie algebra of vector fields on R"
and F = {F;};>0 an increasing filtration of L at zero with Ay the dilation adapted
to F and y the local coordinates adapted to F. If X € F; then,

X(y) = X'+ X7y + X2 )+
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where X7 (y) is a vector field homogeneous of degree j with respect to A%.

In other words, if X(y) € F is expanded in terms of vector fields which are
homogeneous with respect to Ay, X(y) = Z]_:Ojn XI(y), then X" (y) = --- =
Xt (y) = 0 and the “leading order” vector field, X!(y), is degree | with respect
to Ay. This leading order vector field is termed the F-approzimation of X € F; in
the F-adapted coordinates. An useful property of the F-approximation is given by

the following proposition.

Proposition 3.2 ([20, Corollary 2.2.1]). Let F = {]-"]X} be the control filtration of
L(X1,...,Xm) and {]-"]Y}jzo be the equivalently defined filtration of L(Y1,...,Ym)
where Y; 1s the F-approzimation of X;,i = 1,..., m. Furthermore, let FlX and FlY
be the corresponding increasing sequence of vector subspaces of R™. Then,

FX0)=FY(0), 1=0,1,....

Theorem 3.1 and Proposition 3.2 are very important for analytic driftless control
systems: Theorem 3.1 says that a degree one approximation always exists if the
original system is controllable and Proposition 3.2 says that the degree one approx-
imation is 1tself controllable. Thus, for purposes of control, these approximations
are the correct ones to take (not the Jacobian linearization). When synthesizing
feedbacks for driftless systems we will take advantage of the structure of the ap-
proximation.

Remark 3.3. Bellaiche et al. [5] have defined the notion of local order which they
use to give the approximation a more intrinsic meaning. Their approximation
coincides with the F-approximation when the vector fields are written in local
coordinates adapted to F.

When implementing a feedback law the equations must be written in some co-
ordinate system. Coordinates adapted to F are chosen in this paper since the
homogeneous structure of the F-approximation is exploited.

3.3. Stability definitions. A modified definition of exponential stability is given
below. The point x = 0 is taken to be an equilibrium point of the differential
equation & = X (¢, x). For vectors || - || denotes the Eucldean norm and for matrices
it denotes the induced 2-norm.

The concept of exponential stability of a vector field is now defined in the context
of a homogeneous norm. This definition was introduced by Kawski [22].

Definition 9. The equilibrium point & = 0 is locally exponentially stable with
respect to the homogeneous norm p(-) if there exist two constants «, 5 > 0 and a
neighborhood of the origin U such that

p(d(t,to, 20)) < Bp(ao)e™ 1) Vit > 14, Yy € U. (5)

This stability type is denoted p-exponential stability to distinguish it from the usual
definition of exponential stability.

This notion of stability is important when considering vector fields which are
homogeneous with respect to a dilation. This definition is not equivalent to the
usual definition of exponential stability except when the dilation is the standard
dilation. This is evident from the following bounds on the Euclidean norm in



EXPONENTIAL STABILIZATION 9

terms of the smooth homogeneous norm given in equation (1) on the unit cube
C={w:|z|<1,i=1,... n} (recall ¢ > 2 in Definition 1),

pc/z(x) <|e| < Mp(z) for some M >0, x €C,

for some M > 0. Hence, the solutions of a p-exponentially stable system which
remain in the unit cube also satisfy

16(t,to, zo)|| < BM||aol| et (6)

Thus, each state may be bounded by a decaying exponential envelope except that
the size of the envelope does not scale linearly in the initial condition as in the usual
definition of exponential stability. Exponential stability with respect to p allows for
non-Lipschitz dependence on the initial conditions. The expression in equation (5)
will in general depend upon the particular coordinate system. However the form
of the bound in equation (6) remains the same under smooth diffeomorphism. Tt
is useful to view the relation in (6) as broader notion of exponential stability and
p-exponential stability as a special case.

3.4. Properties of homogeneous degree zero vector fields. Some useful facts
concerning degree zero vector fields are reviewed in this section. A homogeneous
degree zero vector field X (¢, z) is invariant with respect to the dilation since

(AN X (1, 2) = X(t, Axz) VA > 0.

Thus, solutions scale to solutions with the dilation: Ax¢(¢,to, z0) = ¢(¢, 10, Arzo).
Some other properties are specified in the lemma below. Let 7 denote the projection
onto the homogeneous sphere S(A"_l) embedded in R”, 7 :R"\ {0} — S%7*,

me) = (p’“f(ll‘) Y p’“fT(Ll‘)) '

Lemma 3.4. Let X(t,2) be a homogeneous degree zero vector field. Then

1. X s m-related to a vector field Y defined on S(An_l), te, X =Yom,

2. uniform asymptotic stability s equivalent to global p-exponential stability.

Proof. Suppose the differential equation associated with X is given by the set of
equations &; = a;(t,x),i=1,...,n where each a; is a degree r; function since X is
degree zero. Furthermore, the homogeneous norm p is taken to be the smooth norm
defined in equation (1). The differential equation describing the vector field Y on
S(A"_l) may be explicity constructed by differentiating the coordinate functions of
the projection y; = x;/p"i (x). Skipping the tedious details it may be shown that
the differential equation on the sphere 1s
n
Y = ai(t,y) — vi Z

k=1

D) (), i=1,..
Tk

The solutions of the original vector field X are recovered from x;(t) = p" (¢)y; ().
Thus the differential equation specifying p(t) is required. The equation is

j= (Z y y>) o), (7)

k=1
and may be obtained by differentiating p(x(¢)) with respect to time. In the sequel
we write p = Q(t, y)p in order to simplify notation.



10 M’CLOSKEY AND MURRAY

The second item is proven by noting that the differential equation for p is linear
in p. Hahn [17] observed that uniform asymptotic stability implies that the integral
of the coefficient ) in the p equation has the following bound

t
/ Q(t,y(t)) < Ky — Ko(t —to) Ky €R,Ky>0,
to

where K7 and K, are independent to #y5. This bound implies that p — 0 exponen-
tially. In other words, # = 0 is p-exponentially stable. The result is global since any
solution of the differential equation has a “local” analog which may be obtained via
the dilation. O

3.5. Uniqueness of solutions. Uniqueness of solutions of ordinary differential
equations 1s an important property for a mathematical model of any physical pro-
cess. Uniqueness of solutions gives a precise mathematical interpretation of the
physical concept of determinism. The models of the driftless systems considered
in this paper are analytic so the only possible way for nonunique solutions to arise
occurs when the control designer specifies feedback functions which do not have
sufficient regularity to guarantee uniqueness in the closed-loop model. We will see
below that in order to obtain exponential convergence the feedbacks must be non-
Lipschitz. We establish some sufficient conditions that the feedbacks must satisfy
in order to guarantee unique solutions of the closed-loop system.

A homogeneous vector field is completely specified by the values assumed on
the set {z : p(x) = 1} so any smoothness imposed on the vector field here is
automatically extended to R™\ {0} via the dilation. We will assume that the
vector field is locally Lipschitz on R™\ {0}, i.e., for every € R"\ {0} there exists
a neighborhood of # and some 0 < L < oo such that the vector field satisfies
[[X(t,y) — X(t, 2)]] < L||ly — #|| for all y and z in this neighborhood. However,
this does not imply that the vector field is Lipschitz in any neighborhood of the
origin. Degree zero vector fields are of interest so we will concentrate on this
case. The first component of a degree zero vector field is a degree one function
(since r1 = 1). Denote this component by a(, ) and assume that it is a locally
Lipschitz function on R™\ {0}. For # # 0 the Dini derivative with respect to the
tth variable, D;"a(t, ), exists by virtue of the local Lipschitz bound. A straight
forward calculation shows that D a(t, Ayz) = A'=" D a(t, x) for all A > 0. If the
dilation has some r; > 1 then limy_,q |D;|'a(t, Ajxg)| = oo and the vector field is
not Lipschitz at the origin. However, it 1s still possible to conclude uniqueness of
solutions in this case. This 1s proven in the next lemma.

Lemma 3.5. Suppose X (t,2) : R x R? =5 R” is a continuous homogeneous degree
zero vector field with respect to the dilation Ay, uniformly bounded with respect to
t, and @ = 0 s an 1solated equilibrium pownt. Furthermore suppose that X 1is locally
Lipschitz everywhere except @ = 0. Then the flow of X s unique.

Proof. The point & = 0 is the only point where uniqueness may fail since X is not
necessarily Lipschitz there. However no solution through a point p # 0 can reach
the origin in finite time because this implies that p(¢(¢,40,p) — 0 in finite time.
This is not possible since the equation describing the evolution of p is p = Q(¢, y)p,
where () is a continuous function of y and uniformly bounded in ¢. The point y
evolves on a compact set so the there always exists a bound

m = sup [|Q(t, y)]|-
t,y
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The following inequalities on p hold as a result of the bound on @,

cre~m(t=to) <plz(t—1ty)) < ot t0)

bl

where the ¢;’s are positive constants. Similarly a solution cannot leave the origin in
finite time. If this were possible then the time reversed vector field (which has the
same bounds on p(x(t —1g)) as its forward time counter part) has a solution which
reaches the origin in finite time. This contradicts the above result. Thus solutions
cannot leave or reach the origin in finite time and so #(¢t) = 0 for all ¢ is the only
solution passing through the origin. O

3.6. Lyapunov functions for homogeneous degree zero vector fields. This
section reviews converse Lyapunov stability theory for homogeneous systems and
gives an extension for degree zero periodic vector fields. These results are important
since the feedbacks derived in this paper exponentially stabilize an approximation
of the driftless system and the higher order (with respect to a dilation) terms ne-
glected in the approximation process are shown to not locally change the stability of
the system. The main theorem by Rosier in [43] states that given an autonomous
continuous homogeneous vector field & = f(z) with asymptotically stable equi-
librium point = 0, there exists a homogeneous Lyapunov function smooth on
R"™\ {0} and differentiable as many times as desired at the origin. His theorem has
been extended to time-periodic degree zero systems in [41] and [27]. The extension
1s simple so the theorem is stated below without proof.

Theorem 3.6. Suppose the differential equation & = X (¢, x) satisfies the following
properties:

1. X s continuous int and x,

2. X(t,0) =0 forallt,

3. X+ T,2) = X(t,2) for all x € R",

4. X is homogeneous degree zero (in x) with respect to the dilation

Ay =Ny, o ATy,

5. the solution x(t) = 0 is asymptotically stable.
Let k be a positive integer. Then there exists a function V : R x R® — R such that,
) V(t,z) is smooth for x € R™\ {0},
) V(,0)=0, V(t,z) >0 when z £ 0
) V is degree k with respect to Ay i.e. V(t, Ayz) = NV (¢, z),
d) V(t+T,2) =V (t,z) for all 2 € R™ and smooth with respect to t,
e) D(t,x) =20t x)+ VV(t,x) X(t,x) <0 for all x # 0.

@

=p

Finally the following proposition concerning the stability of perturbed degree
zero vector fields concludes this section. The proof is elementary and follows the
time-invariant case in [43].

Proposition 3.7. Let x = 0 be an asymptotically stable equilibrium point of the
T-periodic continuous homogeneous degree zero vector field # = X (t,z). Consider
the perturbed system

&= X(t x)+ R(t ). (8)
Assume each component of R(t,x) may be uniformly bounded by,

|Rl(t’x)|§mprl+1(x) i:]‘""’n’ xEU’
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where U is an open neighborhood of the origin and p(-) is a homogeneous norm com-
patible with the dilation that leaves the unperturbed equation invariant. Then x = 0
remains a locally exponentially stable equilibrium of the perturbed equation (8).

4. LipscHITZ FEEDBACK

The p-exponentially stabilizing feedbacks presented in Section 5 are not Lip-
schitz at the equilibrium point (which is taken to be the origin without loss of
generality). However, we show that Lipschitz feedbacks which vanish at the origin
cannot exponentially stabilize, in the standard sense, a driftless system. This is
a consequence of the main theorem in the section which essentially states that a
C! system, # = X(z,u), which has a linearized uncontrollable mode on the jw-
axis, cannot be exponentially stabilized with Lipschitz feedback that vanishes at
the origin. This result is obvious in the case when the feedback is restricted to be
continuously differentiable. Our theorem extends this situation to include Lipschitz
feedback.

Some results from nonsmooth analysis will be reviewed (see [10]). The generalized
Jacobian at © € R™ of a Lipschitz function 7 : R™ — R™ is defined as the set

IF(x) = co{limDF (x;)|w; = 2, 2; & Qr},

where QF is the set of measure zero where the standard Jacobian of F', DF| is not
defined. In general, 9F is a set valued map when F is Lipschitz but not C''. Some
useful properties of JF are:

1. OF is upper semicontinuous and

2. 9F (x) is a convex compact subset of R for all # € R™.
Additional properties are given in [10]. When X (¢, z) is measurable in ¢ and Lips-
chitz in z denote the flow of the corresponding differential equation & = X (¢, z) as
é(t, 7, ). The linearization of X about the trajectory ¢(¢, 7, ) is represented by
the differential inclusion

y(s) € 9. X (s, 0(s, 7, 2))y(s), s€[rt].

Define ®(¢, ) as the set of all linear matrix solutions to this differential inclusion.
The plenary hull of ®(t, 1), denoted R(t, 1), is the set

R(t,7) = {M|{v, Mw) < max[{v, Nw)| N € ®(t,7)] Vv,w € R"}. (9)
Clarke has established the following relationship between the generalized Jacobian
of the flow and the plenary hull of the linearization solutions.
Theorem 4.1 ([10, Theorem 7.4.1]). The map F(x) = ¢(t,7,x) is Lipschitz for
all t, T and satisfies OF (x) C R(t, 7).

We will also make use of the following mean value theorem for set valued maps:
Theorem 4.2 ([10, Proposition 2.6.5]). Suppose F : R™ = R™ is a Lipschitz map.
Then

Fy) = F(x) € co 0F ([, y)(y — ),
where the set co {OF ([x,y])} is the convex hull of all points in OF (z) with z on the
straight line segment joining x and y.

With these preliminaries established we state the main result of this section.
This theorem will be used to demonstrate that solutions of driftless systems with
Lipschitz feedback do not satisfy an exponential stability bound. However the
theorem is also applicable to general control systems.



EXPONENTIAL STABILIZATION 13

Theorem 4.3. Consider the control system & = X(x,u). Assume that X is C*
in both arguments and X (0,0) = 0. Furthermore assume that the linearization
around © = 0 and v = 0 has an uncontrollable mode with real part of the eigenvalue
equal to zero. Then solutions of the closed-loop system with Lipschitz feedback
u(t, z) and u(t,0) = 0 do not satisfy the exponential stability bound ||¢(t, zo,t0)|| <
Bllzolle= =) for any a, 3 > 0.

The proof of this theorem is aided by the following proposition.
Proposition 4.4. Suppose a Lipschitz map F' : R™ — R"™ satisfies the bound

1
1F @) < SNl (10)
Then for any v € R™ there exists 7 € 0F(0) such that ||Zv|| < 1/2||v]|.

Proof of Proposition 4.4. We first show that given € > 0, there exists a § > 0 such
that

co OF ([y,«]) C OF(0) + eB,V||z|| < 4, |y|| <4,
where B is the unit ball of n x n matrices measured by the Frobenius norm. From
the upper semicontinuity of the generalized Jacobian, given € > 0 there exists § > 0
such that

OF (x) C 0F(0) + ¢B,V||z|| < 4.

Pick # and y with norm less than ¢ and choose arbitrary elements X € 9F (»),Y €
dF(y). Combining the following relationships,

tX € t(0F(0) + ¢B)
(1-1)Y € (1-1)(0F(0) + e¢B),
yields with ¢ € [0, 1],
tX+ (1 -1)Y €co{0F(0) + eB}.
However, the set {0F(0) + eB} is convex since dF(0) is convex. Thus the convex

combination of any matrices in dF(z) and 0F(y) is also in the set 9F(0) + ¢B.
Since

co OF ([y,x]) = co U IF(z)| ,
z€[z,y]
then
co OF ([x,y]) COF(0)+eB, V|z|| <4,y <.
Now choose v € R™ and a decreasing sequence {¢; } such that lim;_, . ¢; = 0 and
e; > 0. There exists a sequence {4;]}, J; > 0, such that

co OF ([z,y]) COF(0)+ B V|| < &, Y|y < 6.

Define A; > 0 such that [|Av]] < & for all & From Theorem 4.2, F(\v) €
co OF ([0, \;u])Asv for ¢ = 1,2,.... Thus there exists a sequence {Z;} with Z; €
co OF([0, A;v]) such that F(Awv) = Z;Awv for i = 1,2,.... The bound in equa-
tion (10) implies that || Z; A;v]] < %||/\Zv|| or that || Z;v|| < %||v|| Define the distance
between a point © € R™ and set A C R” as dist (¢, A) = inf{|jlt —y|| : y € A}
Then, dist (Z;, 0F(0)) < ¢; since Z; € OF (0)+¢; B. {Z;} is bounded so a convergent
subsequence {7, }, with lim; Zr, = Z, may be chosen such that ||Z7 — Z,|| < €.
Now dist (7, 8F(0)) = 0 since

dist (Z,0F(0)) < dist (7, Zz,) + dist (Zr,,0F(0)) < 2¢,,,
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and so 7 € 9F(0) since 9F(0) is compact. Lastly, || Z7v|| < %||v|| since

1
120l <11 Zpi,vll + (2 = Zz)ol| < (5 + €x)

o]
O

Proof of Theorem 4.3. Assume that the linearization of X (z, u) about (0, 0) is given
by & = A¢ + Bv. Since there 1s an uncontrollable mode, after a coordinate change,
A and B may be partitioned as

By

0 bl

[An A12:|
where “0” represent maftrices of zeros of appropriate dimension. Now construct a
non-zero positive semidefinite matrix P such that the time derivative of ¢7 P¢ is zero
along solutions of the linearization, i.e. £T (AT P+ PA)¢ + &7 PBu+u?f BT PE = 0.
This construction is simple because if A2 has a mode with eigenvalue zero and left
eigenvector a then choose P as

If the mode corresponds to an “oscillator” then there exists a non-zero positive
semidefinite P such that A§2P 4+ P Ass = 0. This is easily confirmed by placing As»
into real Jordan canonical form. In this case P is chosen as

0 0
P = ~ .
Now consider the original system & = X (x, u) with feedback u(t, ). Suppose u

is Lipschitz in # and (¢, 0) = 0 for all . The linearization of this system about the
solution #(t) = 0 is the differential inclusion

y(t) € 0, X (0, u(t,0))y(t).

Using the definition of generalized Jacobian and a chain rule for Lipschitz functions,
the right hand side of the differential inclusion is

0, X (0, u(t,0)) = {A + Bd,u(0,1)}
= A+ {B,u(0,1)}.

The notation is clear: any element of 9, X (0, u(¢,0)) can be written as A plus an
element of B,u(t,0). Thus if () is a measurable selection of 3, X then ¥(t) =
A+ () where y(t) is a measurable selection of Bdyu(t,0). Note that for any
element N € Bd,u(t,0), the product PN = 0, where P is the matrix constructed
above, so Py(t) = 0 for all ¢.

Let A+ 41(t) and A + v2(t) be two measurable selections. Define & (¢) and
&3(t) as the (absolutely continuous) solutions to the corresponding linear differen-
tial equation, i.e. €Z(t) = (A4 7vi(1)&(t) almost everywhere (a.e.). Consider the
function V' (¢) = &F (1) P&5(t). The time derivative of V is

V= Pé+ &l Pé
=& ({ P+ Py + ATP + PAYG,

=0a.e..
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Thus V is constant since it is absolutely continuous. By choosing arbitrary initial
conditions for the two equations we obtain

V(t) = & (1)é7 (t, 7) Péa(t, 7)éx()
=& (M1 (7, 7) Poa(r, )G (7)
=] (1) Péy(r) for allt, T,
where ¢1 and ¢ are principal matrix solutions of the two linear systems (¢1, ¢o €
®). This expression holds for arbitrary & and €3 so Nf PNy = P for all Ny, N5 €
O(t, 7).
Next we show that every element M of the plenary hull R(¢, 7) satisfies MT PM =
P. Recall that for any v, w € R”?

Muw) < Nuw).
(v, Mw) < max(v, Nw)

Setting v = P Ngvg where Ny € ® and vy € R” yields

vOTNOTPMw < mavaTNOTPNw
Ned
= vl Pw.

Replacing vy with —vg gives us the inequality in the other direction. Thus vl NI PMw =
vl Pw for arbitrary vo and w, or what is the same

NIPM =P.
Using this expression, NI PM = P = N& PNy and since Ny is invertible
PM = PNy, = P'Y?’M=P'"’N, = MTPM =P,

where P1/2 is the unique square root of P.

If solutions of the original closed-loop systems satisfy the standard exponential
stability bound, i.e., ||¢(t,t0, 2)|| < B||#| exp(—a(t — ty)), for some o > 0 and
G > 0, then the difference ¢t — {5 may be chosen large enough so that the constant
Beclt=to) < 1/2. The map F(x) = ¢(t,to,2) then satisfies ||F(x)|| < %Hx”
Choose w € R™ to be the eigenvector of P corresponding to the largest eigenvalue.
Proposition 4.4 implies that there exists a matrix Z € 9F(0) such that ||Zw| <
1/2||w||. However, from the relations established above ZTPZ = P since Z €
R(t,t5). From the choice of w we have w! Pw = || P|| - ||w||?>. But this value is equal
to

w? 727 PZw = ||PY? Zw||?
1] 1 Zw])?

IN

IN

1
22 flell®.

This is clearly a contradiction. The contraction property of Z is inconsistent with
the property that Z7 PZ = P which was derived from the fact that the linearization
of the system has an uncontrollable mode with real part equal to zero. O

The linearization of the driftless system (1) about # = 0 and v =0 is
£=X1(0)v1 4 -+ X (0) .
If the number of input vector fields is less than the state dimension the conditions

Theorem 4.3 are always satisfied. Thus a Lipschitz feedback which is zero at the
origin cannot exponentially stabilize the origin.
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An example of a system with drift vector field is the Euler equations with two
“inputs”

(.L)l = Uy
(.L)z = Uy (11)
(.L)3 = Wiws.

If the origin is an equilibrium point then necessarily u;(¢,0) = 0. The linearization
of these equations about # = 0, u = 0 is the system

g1 oo o]fa] [ o],
§2200052+01[”1]

¢ 0 0 0] & 0 o] L*

This linearization satisfies the hypothesis of Theorem 4.3 and so cannot be expo-
nentially stabilized with Lipschitz feedback.

A result by Gurvitz and Li [16] states that an exponentially stabilizing (in the
standard sense) feedback must be Holder continuous with Holder exponent equal to
the inverse of number of Lie brackets required to achieve full rank in the control Lie
algebra. This result is tighter than Theorem 4.3 when applied to driftless systems
but Theorem 4.3 also applies to systems with drift. In addition, the feedbacks
derived in the next section p-exponentially stabilize the driftless system. It is still
an open question as to whether standard exponential stability can be achieved for
driftless systems using non-Lipschitz feedback.

5. SYNTHESIS METHODS

We now consider how to obtain exponentially stabilizing feedbacks. The use
of homogeneous feedback is strongly motivated by the existence of a controllable
homogeneous approximating system. If homogeneous degree one control func-
tions w;(t, ) can be found such that # = 0 is a uniformly asymptotically sta-
ble equilibrium point of the closed-loop system then # = 0 1s exponentially sta-
ble with respect to the homogeneous norm p since the closed-loop vector field is
degree zero (Lemma 3.4). Thus, the stability type is not the familiar exponen-
tial stability definition but rather p-exponential stability. As pointed out in Sec-
tion 3.3, p-exponential stability can be locally recast into the bound [|¢(Z, g, 0)||2 <

M||x0||§/ge_°‘(t_t0) for some M > 0,a > 0,0 > 1. Thus each state is bounded
by a decaying exponential envelope but the dependence on the initial condition is
allowed to be more general than that in the usual definition of exponential stability.
The standing assumption in the remainder of the paper is that the system (2) has
been transformed to the adapted coordinates and that a degree one homogeneous
approximation has been computed. The dilation associated with the input vector
field approximations and feedbacks will always have r,, > 1 since at least one level
of Lie brackets is required to achieve controllability of the system. Thus the de-
gree one feedbacks are not Lipschitz at the origin even though they may be locally
Lipschitz on R"\ {0}.

Our objective is not to derive methods applicable to general controllable driftless
systems but rather to concentrate on cases that model true engineering systems.
Several researchers have either given explicit smooth controllers or constructive
algorithms that produce smooth time-periodic feedbacks which asymptotically mo-
bile robot and satellite models [50, 40, 51]. A desirable aspect of these methods
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is the fact that, in many instances, the control laws can be written in terms of
algebraic operations between simple functions. The implication of this fact should
not be underestimated: implementation of such a control law is very straight for-
ward. However, Theorem 4.3 implies that in some neighborhood of the equilibrium
point the convergence of the system in slow. If this neighborhood is sufficiently
small for the particular application then no improvement of the convergence rate is
required. However, we shall demonstrate in Section 6 that a standard smooth feed-
back applied to an experimental mobile robot does not perform satisfactorily. The
algorithm in Theorem 5.1 gives sufficient conditions under which smooth asymp-
totically stabilizing feedbacks can be rescaled into homogeneous p-exponentially
stabilizing feedbacks. The design procedure is systematic in the sense that if the
conditions of the theorem are satisfied then the homogeneous feedback may be com-
puted directly from the original feedback. This algorithm is applied to the smooth
feedback used for the mobile robot and results in an enormous improvement in
convergence rate. Furthermore, implementing the homogeneous feedback requires
only slightly more programming effort than the smooth feedback since the rescaling
1s performed in real-time.

A more direct method of computing p-exponential stabilizers, based on an ex-
tension of Pomet’s original algorithm [40], is briefly noted at the end of this section.

Recall the Euler vector field, Xg(z), corresponding to this dilation is given by
the equations @; = 7;z;, ¢ = 1, ..., n. The following theorem specifies the conditions
under which an asymptotic stabilizer can be modified into an exponential stabilizer.
Most smooth stabilizing controllers are time-periodic so we restrict ourselves to this
case.

Theorem 5.1. Suppose the closed-loop driftless system © = > ;v Xi(z)u;(t, )
satisfies the following conditions
1. the input vector fields are homogeneous degree one with respect to Ay,
2. the feedbacks u;(t, x) are smooth, T-periodic and asymptotically stabilize
the origin,
3. there exists a smooth, positive definite, T-periodic function V (t,x) such
that d%V(t, z) < 0 along non-zero solutions of the closed-loop system,
4. for some constant C' > 0 the family of level sets parametrized by t,

Gf ={z|V(t,2) = C},
are transversal to the Euler vector field for all t.

Under these conditions, the original feedbacks may be modified to the following p-
exponentially stabilizing feedbacks,

Wt z) =plt,0)us (B, ve(w)) i=1,... m,
where p: R x R® — RY 4s a uniquely defined homogeneous degree one function such
that

ﬁ(tax”xEGf =1,

and the map v; : R"\ {0} — GE is defined as

'yt(x):(hx:EEGtC for some A > 0.

Remark 5.2. In many cases the stabilizing feedback is derived from Lyapunov
analysis and so the closed-loop system has a function which may be tested for the
properties given in the theorem.
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Remark 5.3. What makes this method attractive from an implementation point
of view is the fact that the function j(¢,z) is easily computed by searching over
a single scalar parameter A such that V (¢, Ayz) = C. In addition V (¢, Ayz) is a
monotone increasing function of A in a neighborhood of the A which satisfies this
expression. This search may be performed efficiently in real-time.

Remark 5.4. This theorem also suggests a method for modifying smooth feed-
backs for general driftless systems to obtain p-exponential stabilizers. The first
step is to compute the homogeneous approximation of the input vector fields and
write the smooth feedbacks in the new coordinates. If it can be verified with a
Lyapunov function that the smooth feedbacks stabilize the approximation, then
the Lyapunov function can be tested for the properties in Theorem 5.1. The higher
order terms neglected during the approximation process do not affect the local
p-exponential stability of the original system with the modified feedbacks. This
follows from application of Proposition 3.7.

Proof. We first show that p and ~; are well defined quantities. Define the value of
the function g : R x R"\ {0} — R* to be the A\ € R* which solves

F(\t ) = V(t,dre) — C = 0. (12)

In other words, g(t,z) : R™\ {0} — R* returns the dilation scaling factor required
to map the point # # 0 to the point T € G; on the same homogeneous ray
at time t. The point T is unique since the transversality condition implies that
the projection 7T|Gtc LGS — Sg_l is a local diffeomorphism. Furthermore, since
GC is compact and connected [52, Theorem 3.7] there is only one point in the
preimage of (7T|Gtc)_1(y), y € Sz_l. Hence the projection is a global diffeomorphism
between G¢ and SA~! for each fixed t. The map from z to T is (71'|Gtc)_1 o7 and
g(t,x) = p(T)/p(x). The smoothness of g is determined with the implicit function
theorem as shown below. Suppose that (A, ¢, x) satisfies (12), then we compute

Oy B 1 OF
7 be) = (‘ OF/OX W) (t, Axe)

_ Gﬁ%—‘:) (t, Anz).

The quantity dF/0A(t, Ayz) is nonzero since

OF oV
—(t, A = —(t, A
ax (b Aar) = 3t Baz)
= - g—;/i(t,AAl‘)m’/\r’_ll‘i
IR,
=3 %(t,ﬁw)m’/\“l‘i
i=1 ¢

1
= XLXEV(ta Axl‘)

The term Lx, V(t, Ayz) is precisely the transversality condition on the set G& so
OF /oA, Axz) # 0. Similarly, dg/0z;(t,z) # 0 for all z € GE. Thus g is smooth

by the implicit function theorem.
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We now show that g is degree -1. If g(t,2) = A, then g(¢, A,z) is the Ay that
solves V (¢, Ay,Apz) — C' = 0. Since 05,002 = Ay o2 then A = Ayo so g(t,,2) =
Ao =gt z)/o.

The function v : R x R?\ {0} = G¢ is,

Y(t, ) = Aygeoy®.
Note that y(¢, Axz) = v(¢, ) for all A > 0. p: R x R” — R”T is defined as

. . ! x#0
plt,x) = { g(tw) Lo

Furthermore, for any T € Gy, p(t, %) = 1 since 4(t,7) = T. The definitions may be
used to show that (¢, ) is smooth on R™\ {0} and j(¢, ) is continuous on R™ and
smooth R™\ {0}. Furthermore, p is homogeneous degree 1. T-periodicity of p and
~ is evident from the fact that V is T-periodic.

The modified feedbacks are defined as,

ai(t, ) = p(t, o)u (T, (¢, ©)). (13)
These functions are degree one since
ﬂi(t, Axl‘) = pN(t, Aﬂ:)ui(t, ’y(t, AAl‘))
=Mt 2)u (8, y(t, 2))
= /\ﬂi(t, l‘)

These functions agree with the original feedbacks on G¢'; i.e., for € GY | 4;(t,7) =
u;(t, ). We now show that the closed-loop system with the newly defined feedbacks
is p-exponentially stable. The closed-loop system with the new feedbacks is denoted
x = )N((t, z). The closed-loop systems is degree zero since the feedback is degree one
and the input vector fields are degree one. Hence, all we need to show is uniform
asymptotic stability with the modified feedbacks. This is accomplished by using
p(t, ) as a Lyapunov function.

First we show that g is positive definite and decrescent. The assumptions on
V(t, z) imply that there exist two positive definite, strictly increasing functions, ¢,
and ¢, such that ¢1(||z]|) < V(t,z) < ¢2(||z||) for all z and t. Any = € Gf must
satisfy the bounds, ¢5'(c) < ||#|| < ¢1—1. Defining the constants,

cg= min p(z) and c;= max p(x),
llzll=3" (c) lzll=67" (c)
it is straightforward to verify that cip(z) < p(t, ) < ecap(z) for all # and ¢. Thus p
is positive definite and decrescent. Define the function ‘N/(t, z) = p. The time deriv-

ative of V. along non-zero solutions of the system with the feedback in equations (13)

W t2) = (55) e

= _gz(ii’l,) (g—i(w‘) + ng(t,x)(f()) (t, )

) gtz) oV
PEITRS (‘LXEV(t,z)E(t’x)

1 n ov -
- - @ ritl 1 t,x XZ i T=9 x
Lx,V(t,T) ;g ( ’x)ﬁxi( Tl ’x)) T fam € G
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1 IV, =0V, _ -
= S VD ( oD+ L g (t’x)XZ(t"sg(W))

1 oV oV
= Zan+S DX T
D) Ex, VLT ( o (6P + 2 g DNl ))
o(t dv
— p(i’x)__(tj).
LXEV(t, l‘) dt
The only remaining fact to show is that Lx,V(¢,%) > 0. Lx,V (¢, %) has constant
sign from transversity so initially assume that this quantity is negative. For €
sufficiently small the points in the sets Gtc'i'E and Gtc_E also satisfy Lx,V < 0. As
shown above, these sets are diffeomorphic to spheres (for ¢ fixed) and so separate R”
into an exterior and interior domain. Fix an arbitrary tg € [0,T). The trajectory

of Xg pierces each set only once and since Lx,V < 0 then we conclude that Gtco‘i'E

sits inside the interior domain of GtCD which sits inside the interior domain of Gtco_ﬁ.
This holds for all ¢ since ty is arbitrary. If we start the system & = X (¢, #) with
an initial condition (7,z) in the set GS~¢ then at some time later the trajectory
enters the ball radius of min z|| by asymptotic stability. Thus at some

te0,t),ceGTTe
7 > 7 the trajectory crosses G5 but V (', (")) = C + ¢ > V(r,z(r)) = C — ¢
which contradicts the fact that V < 0. Hence, Lx,V(t,Z) > 0 and the system
with modified feedbacks 1s uniformly asymptotically stable. p-exponential stability
follows from the fact that the closed-loop system is degree zero. O

The new feedback is as smooth on ™\ {0} as the original feedback restricted
to the level set of the Lyapunov function in the proof of Theorem 5.1. The original
feedback 1s assumed to be smooth and so solutions of the closed-loop system with
the modified feedback are unique by Lemma 3.5.

The following example demonstrates the algorithm on the prototype driftless
system.

Example 5.5. This example uses the three-dimensional two input driftless system,
i‘l = Ui, i‘z = U2, i‘g = ToUy. (14)
This system is its own homogeneous degree one F-approximation. The dilation is

Ax(r) = (Ax1, Ara, A%23). A smooth asymptotically stabilizing feedback for the
system taken from [50] are the functions

up(t,®) = —x1 + w3 cost, (15)
ua(t,z) = —xa + x% sint. (16)

Asymptotic stability of the closed-loop system can be shown using the Lyapunov
function

2 2 2
Vit,e) = (xl — %(cost —|—sint)) + (xz — %(sint — cost)) + 2.

Thus we need to check the transversality condition with a level set of the Lya-
punov function. V' may be approximated by the quadratic form V' = (z, Bz) for C
sufficiently small, where



EXPONENTIAL STABILIZATION 21

and o = cost +sint € [—\/5, \/5] The inner product between the level sets of 1%
and the Euler vector field is Lx,V = (z,diag[r;]Bz) = (&, Bx), where B is the
symmetric matrix

~ 1 0 —%a
B = 0 1 0
—%a 0 2—1—%0[2

Since B is positive definite for all a € [—\/5, \/5] the Euler vector field 1s transverse
to any level set of V and hence any level set of V for C sufficiently small. Numerical
calculation reveals that value of C' = 1 works well. The modification of the feedbacks
is carried out as specified in the proof. Once the value of A has been computed
which satisfies V' (¢, Ayz) = 1 then we set p(t,2) = 1/Aand T = y(t,z) = Ayx.
The modified feedbacks are

a1(t,2) = — (=%1 + Tz cost)

e o R

=— (—/\xl + X223 cos t)

>

= —x1 + Azzcost

1
Ua(t, ) = 3 (—52 + 73 sint)

1
=X (—/\xz + Al sint)
= —x5 + Nuisint.

Simulations comparing the performance of these feedbacks with the original smooth

feedbacks are shown in Figure 2. The p-exponential stabilizer returns the system
to a small neighborhood of the origin much faster than the smooth controller from
which 1t was derived. The Euclidean norm of control commands are shown in
Figure 3. The maximum effort expended by the p-exponentially stabilizing control
law 1s slightly larger than that smooth controller.

The next example applies Theorem 5.1 to a controller derived with Pomet’s
algorithm [40].

Example 5.6. The control law is derived for the system in equations (14). The
reader is referred to [40] for the details on the algorithm. The open-loop periodic
generator is chosen as us(t) = «(t,#) = x3(t)cost. The Lyapunov function de-
fined with this preliminary input is V(¢,2) = 1/2(2? + (25 — 23sint)? + 23). The
asymptotically stabilizing feedbacks are computed to be

up = —x1 — xa(x3 — (2 — 23sint))
Uy = x£3cost — x9 + x3sint.

The closed-loop system is globally asymptotically stable with this feedback. The
gradient of V' with respect to Xg is a quadratic form

1 0 0 sl
Lx.V =[xy 22 23] |0 1 —%sint Z9

0 —%sint 24+ 92sin?t| |as

This quadratic form is positive definite and implies that Xg is transverse to the
level sets of V. Note that since V' is quadratic the transversality condition holds
globally i.e. any level set of V' may be chosen as the scaling set. A level set of
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Smooth controller from [50]
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FicURE 2. Comparison of system response with smooth feedback
(top figure) and its modified version (bottom figure).
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FicUre 3. Comparison of control efforts between the smooth and
modified controllers.

V(t,z) = 0.5 is chosen since the initial condition z(0) = (0,0, 1) is located on this
set. The results of the simulations are shown in Figures 4 and 5.

Several comments are in order. The first is about a gain scheduling interpretation
of the p-exponential stabilizers. In Example 5.5 the smooth controllers are rescaled
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Smooth controller from [40]
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F1cGURE 4. Comparison of systems responses with another smooth
stabilizer (top figure) and its modified version (bottom figure).
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FicURE 5. Control effort comparison.

into the feedbacks given by equations (17). The parameter A that scales the z3 terms
is a “gain” that varies in such a manner to ensure exponential convergence of the
state. The smooth feedbacks are recovered if A is set to unity. In the p-exponential
case, A = oo as the state converges to the origin. However, the products “Azs”

in 4y and “A323” in 4, converge to zero as x converges to zero so the control law
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remains continuous. A similar interpretation may be given to the p-exponential
stabilizers derived in Example 5.6.

Another important issue is the control effort used in stabilizing the system.
Both the maximum control magnitude and the energy in the control signal are
useful quantities to consider. The control magnitude will be limited by actuator
constraints and the amount of energy available to the controller will be dictated by
the physical power source. It is straightforward to verify that

sup |a(t, )| < sup  |u(t, @)
zeUq teR zeUs teR

where Uy = Ne{z|V(t,2) < C} and Uy = U{z|V(t,2) < C}. Thus the control
effort for the homogeneous feedbacks with initial conditions in Uy will not exceed
the control effort commanded by the original feedbacks with initial conditions in
Uy. If Uy 1s not much “smaller” than Us then the homogeneous feedbacks will
p-exponentially stabilize the equilibrium point, for approximately the same set of
initial conditions as the original controller, with no increase in maximum control
magnitude.

Finally, since the homogeneous controllers have a Holder bound of the form
[|lu(t, z)|| < ||#]|7, o € (0, 1), the energy in the control signal is guaranteed to be
finite. In the examples above, the rate of convergence of the z3 variable with the
smooth controller is approximately 1/v/¢ for large ¢. Thus the smooth controllers
in these examples require an infinite amount of energy to return the system to the
origin.

We conclude this section by briefly mentioning another method to synthesize
locally p-exponentially stabilizing controllers for a class of driftless systems. This
method is an extension of Pomets’s algorithm [40]. If the homogeneous approxima-
tion of the driftless system satisfies the rank condition,

rank {X;I,X;w . ..,X;m,
[X;I’X;Q]’""[X;I’X;m]""’ (18)

7 1 J 1 _
ady, Xi,,. .. ady, Xﬂ_m,...}(l‘o) =n,
1 1

for some permutation, 7, of the set {1,2,... m}, then the steps in [40] may be modi-
fied to produce homogeneous feedbacks, smooth on R™\ {0}, which p-exponentially
stabilize the approximating system [32, 27]. This extended method is appealing be-
cause it is easy to check the condition in equation (18). The drawback of this
approach is that the feedbacks must be stored in look-up tables. This is not an
attractive feature for real-time implementation since the number of points which
must be computed and stored grows exponentially with the power n — 1 where n is
the state dimension.

Certain driftless control systems may be transformed to exactly a nilpotent ho-
mogeneous form. Examples are the “chained form” or “power form” systems [36,
50]. In this case Theorem 5.1 provides a globally d-exponentially stabilizing feed-
back since there are no “higher order” perturbing terms.
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F1GURE 6. Coordinate system for the robot.

6. EXPERIMENTAL RESULTS

Feedbacks derived from the algorithm in Theorem 5.1 are applied to an experi-
mental mobile robot. The objective of the experiments is to verify that the algo-
rithm may be executed in real-time and that the resulting homogeneous feedbacks
actually p-exponentially stabilize the mobile robot.

The robot is configured so that it models the “kinematic wheel”

£ = cos v
y = sin Qv (19)
0=w

where the coordinates (z,y,f) are used to describe the position and orientation
of the robot (see Figure 6). The control input v is the forward velocity of the
robot and w its angular velocity. Forward and angular motion of the robot is
achieved by changing the relative angular velocities of the wheels. Each wheel
is driven by a stepper motor and any desired wheel angular velocity is achieved
by commanding the motors to turn the appropriate number of steps per second.
Sensing the position and orientation is accomplished with a passive two degree of
freedom linkage which is attached to the robot and a fixed base. More details on the
experimental apparatus, results with other p-exponentially stabilizing controllers
and additional trailers, and important controller design issues are related in our
paper [30].
A preliminary coordinate change is performed before deriving the feedbacks.

Define the new coordinates as

1 = )

29 =xcosl + ysinf (20)

23 = axsinf — ycosh.

The system equations transform to

7;'1 = w
Z9 =V — 23V (21)
7;'3 = Z1V.

It is simple to verify that the F-approximation of the system in equation (21) is
obtained by dropping the zzv term from Z5. The input vector fields are X;(z) =
9/0z and Xs(z) = /022 + 210/9z3 and are homogeneous degree one with respect
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to the dilation Ayz = (Az1,Az2,A%23). A smooth homogeneous norm is p(z) =
(214 23 + 23) . This example is an instance where an initial transformation places
the system into a form very close the to homogeneous approximation. Since the
coordinate change in equation (20) is a global diffecomorphism, the feedbacks will
perform well over a large domain of the (z,y,#) state space. Had we taken the
homogeneous approximation directly from the original system (19), the resulting
coordinate change is generally a local diffeomorphism. This would restrict the
region of validity of the control law to the set where the coordinate change is well
defined. In practice, it is always desirable to take advantage of these preliminary
changes of coordinates if they can be found.

The approximate system is the system in equation (14) (by reordering states and
relabeling inputs). A locally stabilizing smooth feedback is given in Equation (16).
The response of the mobile robot with this feedback is the top plot in Figure 7. The
initial conditions are approximately (z(0), y(0),8(0)) = (0m, 0.3 m,0rad). The slow
convergence rate 1s evident from this figure. In an effort to improve the convergence
rate, the smooth control law 1s modified to the homogeneous control law as outlined
in Example 5.5. The rescaling is performed in real time during the experiment and
so the law cannot be written down explicitly. The response of the robot with the
rescaled feedback is the second plot in Figure 7. Note that although the transformed
variables z satisfy a bound of the form,

p(z(t)) < Bp(2(0))e™ some «, 5 > 0,
the physical variables x,y, and @ satisfy the bound
1,5, 0Ol < Ml (2,5, 0)(O)Fe==*  some M >0

The convergence to the origin has shown vast improvement: after fifteen seconds
the robot has returned to its desired configuration with the homogeneous feedback
whereas the y position of the robot is 8 cm from the desired position with the
smooth feedback. Another useful plot is a “top view” of the robot trajectory. This
shown in Figure 8 where y(¢) is plotted with respect to x(t). The trajectory of the
robot with the smooth controller has been reflected about the z-axis in this figure in
order to keep the plots uncluttered. The velocities specified by the control laws are
shown in Figure 9. Each figure shows the “step rate” commanded to each stepper
motor. The maximum control efforts are very close although the homogeneous
control law effort exceeds that of the smooth control law by about twenty percent.
The motors saturate at about 450 steps per second.

7. TORQUE INPUTS AND DYNAMIC EXTENSION

The mobile robot in the previous section is an example of a mechanical system
in which a kinematic model is used for control design. That is, the velocity of
the system is assumed to be a direct input which can be manipulated. In phys-
ical systems, however, actuators exert forces and not velocities. It is desirable
to extend the homogeneous p-exponentially stabilizing kinematic controllers to p-
exponentially controllers that command forces. The models we consider are very
simple,

t=Xi(x)ur 4+ X (2)um reR” (22)
u=v u,v € R™. (23)
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Smooth controller
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F1GURE 7. Response of the experimental mobile robot with the
smooth feedback and the p-exponential stabilizer.

Equation (22) is termed the kinematic system. Equations (22) and (23) together
represent the dynamic system. The kinematic system for mobile robots 1s derived
from the Pfaffian constraints which describe the condition that the wheels roll but
not slide. We model the dynamic portion of the system via a simple set of integra-
tors. For many systems, more complicated dynamic behavior can be converted to
this form using a state feedback control law [7].

The main result of this section gives a set of conditions under which a kinematic
controller (i.e., one which assumes the velocities are the inputs) can be converted to
a dynamic controller (one which uses the torques as the inputs) and still maintain
p-exponential stability.

The hypothesis for the systems in this section are:

A1l. the vector fields X; are degree one with respect to a given dilation Ay,

A2. the controls u; = a;(t,2),¢i = 1,...,m are uniformly asymptotically stabi-
lizing feedbacks (for the kinematic system) which are degree one in z with
respect to Ay, smooth on R™\ {0} and time-periodic in ¢,

A3. rank[X1(0) - X, (0)] = m.

For smooth controllers, extending kinematic controllers to dynamic controllers
has been explored, for example, by Walsh and Bushnell [51]. However, due to
the nondifferentiable nature of exponential stabilizers we consider here, the usual
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Fi1cURE 8. Top view of mobile robot trajectories.

control Lyapunov approach does not directly apply and must be modified to verify
that the extended controller is well-defined and continuous. The use of continuous
functions is important in applications since discontinuous control inputs usually are
smoothed by the control electronics and/or the system dynamics and hence cannot
be applied in practice, possibly resulting in loss of exponential rate of convergence.

Proposition 7.1. Let u = «(t,z) be a feedback satisfying the assumptions Al to
A3. Then the feedback

Ja
ot
globally exponentially stabilizes the dynamic system for k > 0 sufficiently large.

L k(i —w), i=1,...,m (24)

v; = Loxo; +

The notation aX 1s used to denote the vector field El «; X;. Controller (24) is
continuous for all (¢, #,u) and smooth for all x # 0. Furthermore, the control law
is homogeneous of degree one with respect to the extended dilation,

Ax(aj,u):(/\“J:l,...,/\T"xn,/\ul,...,/\um). (25)
Thus the closed-loop system remains degree zero with this feedback.
Proof. The closed-loop kinematic system is time-periodic, degree zero and asymp-
totically stable. This implies that there exists a time-periodic homogeneous Lya-

punov function V'(¢, ) such that V(¢,2) > 0 for all # # 0 and all ¢ which is strictly
decreasing when u = «(t, z). This requires the converse Lyapunov theorem stated
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Smooth controller
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FicUre 9. Controller effort comparison for the experimental mo-
bile robot.

in Section 3.6. The Lyapunov function is chosen to be degree two with respect to
Ay. Thus the following bounds exist:

cip?(z) < V(L z) < cop’(x
% E:ix (t’ l{) S)—63p2p(l(‘),) (26)

for some ¢; > 0 and where p is a homogeneous norm with respect to Aj.
For the dynamic system with feedback (24) we use the following function,

Wi(t,z,u) = %Z (i (t, ) — ui)™ (27)

This function is positive definite on the extended phase space (z,u) and so is a
candidate for a Lyapunov function. W is also degree two with respect to the
extended dilation A defined in (25). Continuous partials of W with respect to
exist when x # 0, so in this case the derivative of (27) along the trajectories of the
dynamic system with feedback (24) is

W=y (22 aalX(‘” i RO
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where Xl(j) represents the j'* component of the [** input vector field. Substituting
the expression for v; the derivative maybe expressed as

. . m m n dovs )
W:V—|—Z Z 3_l‘le(]) (ul —ozl) —k(ai—ui) (Ozl' —ui)
i=1 =1 \j=1

=V + (a —u)T (=kLn + Q(t,2))(a — u).

Iy, denotes the m x m identity matrix and Q(¢, ) is an m x m matrix with i;*
component given by [Q];; = —1/2(Lx,o;+ Lx, ;). Lx,«;  is a degree zero function
and so i1s not necessarily defined at z = 0.

Assumption A3 guarantees that no non-trivial trajectory of the closed-loop sys-
tem is contained in the set 7 = {(z,u) : # = 0,u # 0}. If a trajectory passes
through the set 7 at time ¢* then %(t*) may not be defined, however the continu-
ity of %(t* +¢) for € > 0 implies that the upper right Dini derivative of W (¢) at t*
is given by DT W (¢*) = lim._,o+ dW/dt(t* +€). Substituting the original expression
for W when # 0 into the expression for DTW and noting that V is continuous
in all arguments yields

d
DYW(#*) = lim i + (o —w) T (=kIn + Q)(a — u)

e—0+ | dt t=t* e
dv

=—(t*, 2 (t*)) — kl|a(t*, x(t7)) — u(t*)|]?
Y1 20)) = kllafe" 2(t) = )] o)
+ lim [(oz — u)TQ(a — u)]t*_l_E
dv * * * * *

< 2(17) + (= + ol () — (e

where || - || is the Euclidean norm and ¢ = sup;¢[g on)o20 [|@Q(¢; 2)[|. The bound ¢

is well defined since @) is degree zero and assumes all of its values when restricted
to the homogeneous sphere {z : p(x) = 1}. When & # 0 the expression for the
derivative is continuous so the Dini derivative reduces to the actual derivative.
Thus the bound in equation (28) is valid for all ¢, and w,

DYW () < dV/dt + (—=k + q)||a — u||* Vi, z,u.

Substituting in v yields,

IV = -
DTw < B +I;akLXkV + ;(uk —ap)Lx, V+ (=k+q)||a — u||2 Vi, z, u.
(29)

The first two terms on the right side of the inequality are the time derivative of V'
along trajectories of the system when u = «(t, z) and may be bounded by —c3p%(z)
from equation (26). The third term to the right of the inequality may be bounded
by cap(x)]|u — o| for some ¢4 > 0. Substituting these bounds into equation (29)
yields,

DYW < —esp®(x) + cap(a)llu — all + (= + g)llo — ulf?

C3

=0 le=atol| 32 5% ] |2 ]
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2

This bound is negative definite when k& > £* = ¢ + %Z—f
is degree two with respect to the dilation 6y so DYW < —kW for some k > 0
whenever k& > k*. The differential inequality from [24, Theorem 1.4.1] implies

W) < W(O)e";t. Hence, the system is asymptotically stable. Exponential stabil-
ity follows from the fact that the closed-loop system is degree zero with respect to
the extended dilation dy defined in equation (25). O

Furthermore the bound

The form of the control law shows that it can be regarded as a combined control
law consisting of a feedforward portion, which drives the system along the desired
trajectory when u = a(z,t), and a feedback portion, which stabilizes the extended
state space equation.

8. CONCLUSION

Homogeneous feedbacks are an effective means to improve the convergence rate of
driftless systems. The feedbacks are non-Lipschitz and the states satisfy a modified
definition of exponential stability. An algorithm is presented which gives conditions
under which a smooth asymptotically stabilizing controller may be modified into an
p-exponentially stabilizing feedback. The alogorithm is applied to several examples
and an experimental mobile robot.

Theorem 5.1 also has promising extensions to systems with “drift” vector fields
as the following example shows. Recall that the FEuler equations with two inputs
given in equation (11) cannot be exponentially stabilized in the usual sense with
Lipschitz feedback. We now show that p-exponentially stability is achievable with
non-Lipschitz feedback. The system may be written as w = Xy + Xqju; + Xous
where Xy = wiw20/0ws, X1 = 0/0w; and Xs = J/0ws. Defining the dilation
Aw = (/\wl,/\wz,/\zwg), the drift vector field Xy is degree zero and the input
vector fields, X7 and X, are degree one. For p-exponential stability we would like
to define w; and us to be degree one functions with respect to this dilation since
the closed-loop system will be degree zero in this case. A smooth asymptotically
stabilizing feedback is

uy(w) = —wy —ws (30)

us(w) = —ws + w3,
Asymptotic stability may be verified with the function
V= (w1 +ws)’ + (w2 —w3)” + w3
The Euler vector field
Xp =w10/0w; + wed/0ws + 2w30/dws,

corresponding to Ajis locally transversal to the level sets of V. Thus the smooth
feedbacks in equation (30) may be rescaled according to Theorem 5.1 into p-
exponentially stabilizing degree one feedbacks. These feedbacks are smooth on
R™\ {0} but are not Lipschitz at the origin. Figure 10 compares the performance
of the smooth feedback in equation (30) versus its rescaled version. The value of
the level set used in defining the homogeneous feedback is V' (w) = 1.
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FicURE 10. Response of the Euler equations with smooth feed-
back (top) and a p-exponential stabilizer (bottom).
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