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Abstract. A bound is obtained which generalizes the Carlitz-Uchiyama result,

based on a theorem of Bombieri and Weil about exponential sums. This new

bound is used to estimate the covering radius of long binary Goppa codes. A

new lower bound is also derived on the minimum distance of the dual of a

binary Goppa code, similar to that for BCH codes. This is an example of the

use of a number-theory bound for the problem of the estimation of minimum

distance of codes, as posed in research problem 9.9 of Mac Williams and Sloane,

The Theory of Error Correcting Codes.

1. Introduction

We will consider the Goppa code T(L, G) with Goppa polynomial G(x)

of degree t with coefficients in F = F2 , the finite field of 2m elements, and

L = F - Z , where Z is the set of zeros of G(x) in F . We assume that G(x)

satisfies the following condition:

(A) The polynomial G(x) has distinct roots.

In the past, bounds for exponential sums of the Carlitz-Uchiyama type have

been used by Helleseth [4] and Tietavainen [7] to obtain bounds for the covering

radius of long BCH codes. In this article we derive a generalization of the

Carlitz-Uchiyama bound and use it to obtain the following analogue of the

Helleseth bound for Goppa codes:

Theorem 1. Let c = c(L, G) be the covering radius of the Goppa code T(L, G),

with G and L as above. We have

c<2t+l,
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whenever

A2degG-2^'+2
q>      1-1

V  1 - zq

and where z = Card(Z).

Remark. Observe that, when L = F , the bound above holds when

<7>(2degC7-2)4r+2,

which is remarkably similar to the Helleseth bound for BCH codes.

The proof of this result is based on the following theorem, in the case where

the characteristic is 2. The theorem estimates exponential sums and is of in-

dependent interest. Let R(x) = F(x)/G(x) be a rational function in &~(x)

which satisfies the condition

(B)   R(x) ^ h(x)p - h(x)       for any h e F(x), F the algebraic closure of F.

Theorem 2. Let F be the finite field of q elements and characteristic p ; let

R(x) = F(x)/G(x) be a quotient of two polynomials with coefficients in F that

satisfies condition (B) above. Let s be the number of distinct roots of G(x) in

F. If ¥(a) denotes a nontrivial additive character of F, then we have

x€L

< (max(degF, degt?) + s* - 2)qx'1 + Ô,

where the sum J2 runs over all x eF excluding the zeros of G(x) ; s* = s and

ô = 1 when degF < degG, and s* = s + 1 and ô = 0 otherwise.

In one of the earliest applications of the Carlitz-Uchiyama bound to coding

theory, the minimum distance for W , the dual of a binary BCH code W of

length n = 2m - 1 and designed distance d = 2t + 1, was estimated to be at

least 2m~x - (t - 1)2W' [5, Corollary 20, p. 281]. In this paper we also prove

the following remarkable similar result for binary Goppa codes.

Theorem 3. The minimum distance of Y(L, G)*, the dual of Y(L, G), is at

least 2m~x - (^) - (/ - 1)2W/2, where k is the number of zeros of G(x) in F.

We also obtain the following corollary.

Corollary 1. If G(x) has no zeros in F, then the minimum distance of Y(L, G)*

is at least 2m~x + \ - (t - i)2m'2.

This last estimate gives a slightly better minimum distance than the bound

2m~x -(t- 1)2W/2 that one can obtain for BCH codes [5, p. 281].

The proof of Theorem 1 is given in §2 using the method first used by Helleseth

in [4] (see also [7]) and that of Theorem 2 is given in §3 from the general estimate

of Bombieri-Weil [1, 2]. Theorem 3 is proved in §4 using our estimates for

exponential sums and some well-known results of Delsarte. In an appendix, we

include a precise statement of the theorem of Bombieri-Weil.
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2. Proof of Theorem 1

Throughout this section we assume that F = F2™ is the finite field of q = 2m

elements. Using the notation of the introduction and of [5], we recall that the

parity matrix of the Goppa code T(L, G) with I = {ax, ... , an} = ¥ - Z is

/ G(at)

H =
G>,)

/-i

G(a„)

GK)

i-i
Ï"— /
?(a.) J^G(ax) &(<*„)■

where t = degC7. As in [4], it is easy to see that the covering radius r is

the smallest positive integer such that given arbitrary elements bx, ... , bt e F,

there is a solution to the system

1

(*)

G(xx)

G(xx)

+

+

+

+

1 .

G(xr) - °'

G(x-)=b2

j-\

G(xx)
+ + <1

0{x,)    *'•

If *P is a nontrivial character of F, then recall that the orthogonality relations

state that

£¥(ax) = ^Q;0,

x€F

where ô n is the Kronecker delta. For ease of notation, let us assume that G

does not have zeros in F ; that is, F = L. Now, if Nr denotes the number of

r tuples x = (xx, ... ,xr) in P(F)r that are solutions of the system (*), then

9%' ¿Z   £*(«!
xeP(F)r VQi€f

x...x[£4>L

G(xx)
+ ■■■ + G(x-)+b>

x,-i-i j-i

G(x,
+ ••• +

^a,€F        \ cfe + »'
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(Observe that if xx, ... , xr_x is a solution of the above system, then 7^,

xx, ... , xr_x is also a solution. Also note that, if we add over 7>(F), then we

may apply the full strength of Bombieri's theorem as stated in Corollary 3.) If

ax = ■ ■ ■ = at = 0, then the above sum gives a contribution of q and

(a,,...,a,) \xeP(F)       \     V    ' y    '   .

Now we suppose that the Goppa polynomial G(x) satisfies condition (A), neces-

sary for the validity of Lemma 1 below, which will permit us to invoke Theorem

2. Let

F(x) = a, + a2x H-h atx ~

be an arbitrary polynomial in F[x] so that Theorem 2 yields the estimate:

'F(x)

xkn
<(2de%G-2)qx'2.

The last inequality yields

\qtNr-qr\<(q'-l)[(2degG-2)qX,2]r.

If Nr = 0, then

qr<(q'-l)[aqX/2]r,

with a = 2 deg G - 2 . Recall that deg G = t; hence, a = 2t - 2 . This implies

that
r/2   . /   t      ,\r t   r

Q     < (a - l)a <o a \

hence, if the number of variables r is 2/ + 1, and q is chosen so that

^   2r
a>a   ,

it follows that Nr^0; i.e., the system (*) has nontrivial solutions. In particu-

lar, when the inequality q > a t+ is satisfied, the covering radius of the Goppa

code T(L, G) is < 2t + 1 .

To obtain the claim in Theorem 1, we must exclude the zeros of G(x) from

the sum. The resulting inequality is

\qNr - Card(L)r\ < (q - l)((2degG - 2)^1/2)r,

and since Card(L) = q - z, the system has solutions for

/2degC7-2x4

q>      t -iV    1 - 2tf

and the covering radius is <2t+ 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXPONENTIAL SUMS AND GOPPA CODES: I 527

Lemma 1. Let f(x), G(x) e F2m[x] besuchthat G(x) has distinct roots. Then,

for an arbitrary extension F' of F, we cannot find a(x), ß(x) e F'[x] such

that
f(x) = (a(x)\2     a(x)

G(x)      \ß(x))   + ß(x)+Y-

Proof. Assume that a(x) and ß(x) do exist and, without loss of generality,

suppose further that (a(x), ß(x)) = 1. Then we have

f(x) = (a2(x) + a(x)ß(x) + yß2(x))

G(x) ß2{x)

The right-hand side cannot be simplified; there is no factor of ß(x) that is also
1 1

a factor of the numerator a (x) + a(x)ß(x) + yß (x). If this was not the case,

we would contradict (a(x), ß(x)) = 1 . Now we can conclude from the above

equality that ß2(x) divides G(x), and this contradicts our assumption on the

distinctness of the roots of G(x).

3. A GENERALIZED CARLITZ-UCHIYAMA BOUND

In this section we use Theorem 3 of the appendix to derive our generalization

of the Carlitz-Uchiyama bound given in Theorem 2. Our starting point is the

projective line WQ = AP , and the rational function is the quotient R(x) =

F(x)/G(x) of two polynomials F(x) and G(x) with coefficients in F. The

main auxiliary calculation needed is the degree of the divisor of poles of R(x) ;

here we review the well-known results about points on the projective line AP

and discrete valuations on F(x) (see [6]).

If we denote by x^ = 1 /x the local uniformizing parameter for the point at

infinity P^ on the projective line, then the corresponding valuation

v„:F(x)-*Z

assigns the value v^G) = deg G to the polynomial G(x). The discrete val-

uations vp: F(x) —* Z corresponding to the finite points are in one-to-one

correspondence with the irreducible polynomials in F[x] : with the irreducible

polynomial P(x) associated with the valuation vp, which assigns the value

Vp(R) = e whenever

R(x) = P(x)eA(x)/B(x),

with A(x), B(x) relatively prime to P(x). If we let

F(x) = aflFj(xf
i=l

be the unique factorization of F(x) into irreducible polynomials in 7"[x], then

the divisor of F(x) as a rational function on A?   is

(F) = -(degG)Poo + J2dlPl,
;=1
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where P¡ is the point on AA°X corresponding to the irreducible factor F((x).

Similarly, if

G(x) = bf[G](x)e>
/-i

is the unique factorization of G(x)  in F[x], then its divisor as a rational

function on S5   is also

((?) =-(deg G)PTO+ £*#,,

;=i

where ß is the point on J3 corresponding to G . Thus we obtain the divisor

of the rational function 7?(x) = F(x)/G(x) :

(R) = (F) - (G) = (degG- degF)Poo + ¿</,./>,. - £e,ör
i=i j=i

Therefore the divisor of poles of R is

u

(R)x = (degF - deg (?)/•„ + £e,-ß,-   if de8^ > de%G>

and
u

Y^eßj   if deg F < degG.
7=1

In particular, the degree of (R)^ is

deg(7?)oo = max(deg7", degG).

If we observe that the number of distinct poles of R(x) = F(x)/G(x) over F

is
u

s* := s = £ deg Gj   if deg F < deg G

;=i

(i.e., R(x) is finite at the point at infinity, and s* := s+1, when degF > deg G)

then using the fact that the genus of the projective line is 0, we obtain from the

Bombieri-Weil result (see Theorem 4 of the Appendix), the inequality

£   ¥(z?(x))
x€LU(P)

< (max(degF, degG) + s* - 2)ql/2,

where the sum ¿\2 is taken over all x in the projective line A? (F) = Fu(P00)

excluding the poles of R(x). Now, if we observe that

£    V(R(x)) = £ ¥(*(*)) + SV(R(P00)),

xeLU^) x€L

where ô = 0 if 7^ is a pole of Z?(x) and á = 1 otherwise, we obtain

|£¥(Z?(x))| < (max(deg7-, degG) + s* - 2)qx/2 + 1.
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This establishes Theorem 2. We add the following consequence:

Corollary 1 (Carlitz-Uchiyama [2]). If degG = 0 and R(x) = F(x) is a poly-

nomial in F(x), then

£¥(F(x))  <(degF-l)^1/2.

x€F

Corollary 2. Let G(x)  have distinct roots, and suppose that degG > degF.

Then

-(2degG-2)qxl2 - 1 < £*F(Z?(x)) < (2degG - 2)qx'2 - 1,

xeL

where J2 is taken over all x e F excluding the zeros of G(x).

Note. The sharper inequality in Corollary 2 comes from the fact that 7^ is

actually a zero of F(x)/G(x), and hence its contribution to the sum is +1 .

Corollary 3. Let G(x)  have distinct roots, and suppose that degG > degF.

Then
-(2degG-2)ql/2<    £    W(R(x)) < (2degG - 2)qx'2,

xZLuP^

where J2 is taken over all x e P(F) excluding the zeros of G(x).

4. Proof of Theorem 3

We recall the following results from MacWilliams and Sloane [5]. They are

originally due to Delsarte [3].

We define the generalized Reed-Solomon code as

GRSr(a,y) = {(yxF(ax),...,ynF(an)):F(x)eF[x],degF<r},

where a = {ax, ... , an} is a fixed set of distinct elements in F and y =

{y¡, ... , y„} is a fixed set of n elements in F.

For W a code over F2m , Tnifo) denotes the code over F2 whose elements

are obtained from code words of f by taking the trace from F2™ down to F2

componentwise.

Theorem (MacWilliams and Sloane [5, p. 341]). The dual of a Goppa code is

given by

T(L,G)* = Tm(GRSt(a,y)),

where yi = G(a~x) and t = degG.

From the above theorem we have

Consider the additive character y/(d) = (-1)7"1'0' defined for 6 in F. Now if

we consider an arbitrary polynomial F of degree < / then, using Corollary 2

of §3, we obtain

"£'(&)
<(2degG-2)tf1/2;
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and we note that L is precisely F - Z where Z is the set of zeros of G(x) in

F. Now we observe that if x = (xx, ... , xn) e T(L, G)*, then

x=(t   (*&> T   (££■>
\J'»\G(al)'~"I>»\G(an)

and hence the weight w of x and the number 2 of zero components of x

have the property z + w = n and

Ev/(?M) = z-w = n-2w-
x€L

G(x)

Therefore,

and

l + n + 2w <(2t-2)qx'2

.   n+1    lt    .,1/2w > -j-(t- l)q    .

These inequalities show that the minimum distance is at least

2m-X-{^-)-(t-l)qx'2.

This completes the proof of Theorem 3.

5. Appendix

A precise statement of the Bombieri-Weil estimate for exponential sums in

one variable and the associated Artin-Schreier coverings is given here.

Let W0 be a complete nonsingular curve of genus g defined over F so that

its field of functions F(WQ) can be realized as an algebraic extension of the pure

transcendental extension F(x) with exact field of constants F . Let F^) be

the function field of W0 considered over the algebraic closure F of F. Let

R(x) be a rational function satisfying the condition

(B) R(x) Í h(x)p - h(x)   for h(x) e F(%).

If P is a point on the curve W0 , we denote by R(P) the value of R(x) at

P ; this is an element of the residue class field Fp = Fp(W0). Let %(Fm) be the

rational points of &0 defined over the extension Fm of F of degree m, and

let a: Fp-* F be the relative trace from Fp to F . We define the exponential

sum

P€%(FJ- {poles}

where the sum J2 is restricted to those points P in ^(Fm) that are not poles

of R(x).   This type of exponential sum is related to the zeta function of a

certain Artin-Schreier covering of WQ that we now describe in greater detail.

Let "&' be the curve defined by the equation

W':yp-y = R(x).
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This is a Galois covering n : W' —► W0 , with Galois group Z/pZ acting on W'

by means of the substitution y *-+ y + g . If ^ denotes the normalization of

<&', then the map ?->?' gives the Artin-Schreier covering

71 : <o  —k  ev>

associated with the rational function R(x). In the following, we let (R)^ be

the divisor of poles of R(x) on WQ and write

¡=i

where the Pi are points on ^ and the */; are the multiplicity of the pole of

R(x) at TV. The following is essentially the result of Bombieri-Weil:

Theorem 4 [1, p. 94]. With notation as above, we have

\VJR, %)\ <(2g-2 + t + deg(R)Jqm/2.

Moreover, the above inequality cannot be improved if (d¿, p) = 1 for all i =

1,...,?.
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