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EXPONENTIALLY CONCAVE FUNCTIONS AND A NEW

INFORMATION GEOMETRY1

BY SOUMIK PAL AND TING-KAM LEONARD WONG

University of Washington and University of Southern California

A function is exponentially concave if its exponential is concave. We
consider exponentially concave functions on the unit simplex. In a previous
paper, we showed that gradient maps of exponentially concave functions pro-
vide solutions to a Monge–Kantorovich optimal transport problem and give a
better gradient approximation than those of ordinary concave functions. The
approximation error, called L-divergence, is different from the usual Breg-
man divergence. Using tools of information geometry and optimal transport,
we show that L-divergence induces a new information geometry on the sim-
plex consisting of a Riemannian metric and a pair of dually coupled affine
connections which defines two kinds of geodesics. We show that the induced
geometry is dually projectively flat but not flat. Nevertheless, we prove an
analogue of the celebrated generalized Pythagorean theorem from classical
information geometry. On the other hand, we consider displacement inter-
polation under a Lagrangian integral action that is consistent with the opti-
mal transport problem and show that the action minimizing curves are dual
geodesics. The Pythagorean theorem is also shown to have an interesting ap-
plication of determining the optimal trading frequency in stochastic portfolio
theory.

1. Introduction.

DEFINITION 1.1 (Exponential concavity). Let � ⊂R
d be convex. We say that

a function ϕ : � →R∪ {−∞} is exponentially concave if � = eϕ is concave. (By
convention, we set e−∞ = 0.)

Throughout this paper, we let � be the open unit simplex

(1.1) �n =

{
p = (p1, . . . , pn) ∈ R

n : pi > 0,

n∑

i=1

pi = 1

}
,

regarded as the collection of strictly positive probability distributions on a set with
n elements. This is due to the applications we have in mind, although many gener-
alizations are possible. An interesting property of exponentially concave functions
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is that their gradient maps give a better first-order approximation those of than
ordinary concave functions. In [45], we introduced the concept of L-divergence.
Let ϕ : �n →R be a differentiable exponentially concave function. For p,q ∈ �n,
concavity of eϕ implies that

(1.2) ϕ(p) + log
(
1 + ∇ϕ(p) · (q − p)

)
≥ ϕ(q),

where ∇ϕ is the Euclidean gradient. Clearly this approximation is sharper than
the linear approximation of ϕ itself. The L-divergence of ϕ is the error in this
approximation:

(1.3) T (q|p) := log
(
1 + ∇ϕ(p) · (q − p)

)
−

(
ϕ(q) − ϕ(p)

)
≥ 0.

The extra concavity of exponentially concave functions have found several re-
cent applications in analysis, probability and optimization. For example, in [22],
the equivalence of entropic curvature-dimension conditions and Bochner’s in-
equality on metric measure spaces is established using the notion of (K,N) con-
vexity. When K ≥ 0 and N < ∞, the negative of a (K,N) convex function is
exponentially concave. Better gradient approximation has also led to better algo-
rithms in optimization and machine learning such as those in [29, 30, 35], although
the authors tend to replace the logarithmic term in (1.2) by a quadratic approxima-
tion.

One of our primary applications in mind is related to stochastic portfolio the-
ory. In [23, 24], the author considers the gradient map of an exponentially concave
function as a map from �n to its closure �n. The following restatement can be
found in [45], Proposition 6. Let ϕ be a differentiable exponentially concave func-
tion on �n. For p ∈ �n, define π(p) ∈ R

n by

(1.4) π i(p) = pi

(
1 + ∇ϕ(p) ·

(
e(i) − p

))
, i = 1, . . . , n,

where e(i) = (0, . . . ,1, . . . ,0) is the ith standard basis of Rn. Then, it can be shown
that π : �n → �n. In keeping with standard definitions in the subject we will call
this map the portfolio map. In this vein, also see articles [6, 25, 26, 31, 42, 49, 53,
54].

The L-divergence of ϕ should be distinguished from the Bregman divergence of
ϕ defined by

(1.5) D(q|p) := ∇ϕ(p) · (q − p) −
(
ϕ(q) − ϕ(p)

)
.

Bregman divergence was introduced in [12] and is widely applied in statistics
and optimization. To see the difference, consider two fundamental examples. For
q,p ∈ �n, the Kullback–Leibler divergence (also known as relative entropy) is
given by

H(q|p) =

n∑

i=1

qi log
qi

pi

.
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It can be shown that the relative entropy is the Bregman divergence of the Shannon
entropy H(p) = −

∑n
i=1 pi logpi . On the other hand, fix π ∈ �n and consider the

cross entropy ϕ(p) =
∑n

i=1 πi logpi . This is an exponentially concave function of
p whose associated portfolio map (1.4) is constant: π(p) ≡ π . The corresponding
L-divergence is given by

(1.6) T (q|p) = log

(
n∑

i=1

πi

qi

pi

)
−

n∑

i=1

πi log
(

qi

pi

)
.

This quantity is sometimes referred to as the free energy in statistical physics. In
finance it is called the diversification return in [9, 14, 21, 52], the excess growth
rate in [23, 27, 44], the rebalancing premium in [10], and the volatility return in
[28].

In [45], we introduced a Monge–Kantorovich optimal transport problem on
R

n−1 which can be solved using exponentially concave functions on the unit sim-
plex. The cost function is defined for (θ,φ) ∈ R

n−1 ×R
n−1 by

(1.7) c(θ,φ) := ψ(θ − φ), where ψ(x) := log

(
1 +

n−1∑

i=1

exi

)

is strictly convex on R
n−1. We will recall the details of this transport problem in

Section 2.1 and its relationship to exponentially concave functions. It suffices to
say for now that, given a pair of Borel probability measures P and Q on R

n−1

the optimal coupling of the two with respect to the above cost can be expressed in
terms of the portfolio map of an exponentially concave function on the simplex.
A related cost function appears in [41] in the completely different context of find-
ing polytopes with given geometric data. It also appears to be related to the study
of moment measures as introduced in [15] (see page 3836 in particular).

1.1. Our contributions. In this paper, we show that information geometry
provides an elegant geometric structure underlying exponential concavity, L-
divergence and the optimal transport problem. Here is a motivating question which
is the starting point of this work. Suppose ϕ is an exponentially concave function
on �n with its associated L-divergence T (·|·). Can we geometrically characterize
triplets (p, q, r) ∈ (�n)

3 such that T (q|p)+T (r|q) ≤ T (r|p)? The answer to this
question determines the optimal frequency of rebalancing the portfolio generated
by ϕ (see Section 5.4). Also see Section 3.3 for a transport interpretation of this
inequality.

Using tools of information geometry, we show that exponentially concave func-
tions on �n and their L-divergences induce a new geometric structure on the sim-
plex �n regarded as a smooth manifold of probability distributions. Let ϕ be an ex-
ponentially concave function on �n. We only require that ϕ is smooth and the Eu-
clidean Hessian of eϕ is strictly positive definite everywhere (see Assumption 2.5).
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FIG. 1. Generalized Pythagorean theorem for L-divergence.

The induced geometric structure consists of a Riemannian metric g and a dual pair
of affine connections ∇ and ∇∗. These connections define via parallel transports
two kinds of geodesic curves on �n called primal and dual geodesics. Interest-
ingly, the duality in this geometry goes hand in hand with the duality in the related
Monge–Kantorovich optimal transport problem, and this work is the first which
exploits this connection. We summarize our main results as follows. First, we give
the answer of the motivating question.

THEOREM 1.2 (Generalized Pythagorean theorem). Given (p, q, r) ∈ (�n)
3,

consider the dual geodesic joining q and p and the primal geodesic joining q and
r . Consider the Riemannian angle between the geodesics at q . (See Proposition 4.4
which expresses the Riemannian metric g as a normalized Euclidean Hessian of
� := eϕ .) Then the difference

(1.8) T (q|p) + T (r|q) − T (r|p)

is positive, zero or negative depending on whether the angle is less than, equal to,
or greater than 90 degrees (see Figure 1).

We also prove other remarkable properties of the geodesics: (i) There exist
explicit coordinate systems under which the primal and dual geodesics are time
changes of Euclidean straight lines (Theorem 5.1). In other words, the new geom-
etry is dually projectively flat. In particular, the primal geodesics are Euclidean
straight lines up to time reparameterization. Moreover, the primal and dual con-
nections have constant sectional curvature −1 with respect to the Riemannian
metric, and thus satisfy an Einstein condition (Corollary 4.10). The primal and
dual geodesics can also be constructed as time changes of Riemannian gradient
flows for the functions T (r|·) and T (·|p) (Theorem 5.5). This is remarkable be-
cause while the geodesic equations depend only on the local properties of T (ξ |ξ ′)

near ξ = ξ ′, the gradient flows are global as they involve the derivatives of T (r|·)
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and T (·|p). Indeed, this relation is known only for limited families of divergence
including Bregman divergence and α-divergence [5].

As shown in [2], Chapter 1, the generalized Pythagorean theorem holds for
any Bregman divergence which induces a dually flat geometry. We will prove that
the resulting geometries from L-divergences are not flat for n ≥ 3 (Theorem 4.9).
While some extensions of the generalized Pythagorean theorem hold in certain
nonflat spaces (see, e.g., [2], Theorem 4.5), they involve some extra terms. To the
best of our knowledge Theorem 1.2 is the first exact Pythagorean theorem that
holds in a geometry which is not dually flat. The difference (1.8) can also be given
an optimal transport interpretation (Section 3.3).

(ii) We extend the static transport problem (1.7) to a time-dependent transport
problem with a corresponding convex Lagrangian action. In Theorem 6.2, we show
that the action minimizing curves are the (reparametrized) dual geodesics which,
in addition, satisfy the intermediate time optimality condition. This allows for a
consistent displacement interpolation formulation between probability measures
on the unit simplex. Previously, such studies focused almost exclusively on the
Wasserstein spaces corresponding to the cost functions C(x, y) = d(x, y)α (here
d is a metric on a Polish space with suitable properties and α ≥ 1). Displacement
interpolation and the related concept of displacement convexity were introduced
in [38] and in the thesis [37]. These ideas have grown to be immensely impor-
tant in classical Wasserstein transport with fundamental implications in geometry,
physics, probability and PDE. See [51], Chapter 7, for a thorough discussion. Our
Lagrangian, although convex, is not superlinear, and, therefore, is not covered by
the standard theory. However, we expect it to lead to many equally remarkable
properties.

These results suggest plenty of problems for further research. Generalizing The-
orem 1.2 to more than three points is of interest in stochastic portfolio theory.
Displacement interpolation has become an extremely important topic in optimal
transport theory. Extensions to Riemanninan manifolds, done in [16], have led
to new functional inequalities. In another vein, [34] defines Ricci curvatures on
metric measure spaces in terms of displacement interpolation and displacement
convexity. We expect that the displacement interpolation in this paper will lead
to a new Otto calculus ([51], Chapter 15) and related PDEs (such as Hamilton–
Jacobi equations). It appears that Bregman divergence and L-divergence are only
two of an entire family of divergences with special properties and corresponding
optimal transport problems. For example, see [43] which extends the optimal trans-
port problem (1.7) via the cumulant generating function of a general probability
distribution. We also believe that this new information geometry will be useful in
dynamic optimization problems where the objective function is multiplicative in
time. Finally, it is naturally of interest to study exponential concavity on general
convex domains.
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1.2. Related literature. We have mentioned the L-divergence and the Breg-
man divergence. In general, a divergence on a set (usually a manifold of probability
distributions) is a nonnegative function D(q|p) such that D(q|p) = 0 if and only
if p = q . Divergences are not metrics in general since they may be asymmetric and
may not satisfy the triangle inequality. Apart from Bregman divergence, many fam-
ilies of divergences (such as α-divergence and f -divergence) have been applied in
information theory, statistics and other areas; see the survey [7] for a catalog of
these divergences. Among these divergences, Bregman divergence plays a special
role because it induces a dually flat geometry on the underlying space. First studied
in the context of exponential families in statistical inference by [40], it gave rise to
information geometry—the geometric study of manifolds of probability distribu-
tions. Furthermore, Bregman divergence enjoys properties such as the generalized
Pythagorean theorem and projection theorem which led to numerous applications.
See [2, 3, 13, 32, 39] for introductions to this beautiful theory. The related concept
of dual affine connection is also useful in affine differential geometry (see [17,
33, 47]). In [36], dually projectively flat manifolds are characterized in terms of
the Bartlett tensors and conformal flatness. Here we identify a new and important
class of examples and show that they have concrete applications.

This work is motivated by our study in mathematical finance. Recently optimal
transport has been applied to financial problems such as robust asset pricing; see,
for example, [1, 8, 18]. This line of work has a somewhat different flavor than
ours although they share the same goal: development of model-free mathematical
finance. Portfolios generated by exponentially concave functions generate profit
due to fluctuations of a sequence in �n representing the stock market. This idea
is sometimes called volatility harvesting and leads naturally to the transport prob-
lem (1.7), as shown in [45]. In this philosophy, our work can be interpreted as
developing a notion of model-free volatility.

1.3. Outline of the paper. In the next section, we recall the optimal transport
problem formulated in [45] using the exponential coordinate system. Its relation
with functionally generated portfolio is also reviewed. In Section 3, we relate ex-
ponential concavity with c-concavity and give a transport-motivated definition of
L-divergence. Here duality plays a crucial role. After reviewing the basic concepts
of information geometry, we derive in Section 4 the geometric structure induced by
an exponentially concave function. The properties of this new geometry are then
studied in Section 5. In particular, we characterize the primal and dual geodesics
and prove the generalized Pythagorean theorem which has an interesting applica-
tion in mathematical finance. Finally, in Section 6 we apply the geometric structure
to construct a displacement interpolation for the associated optimal transport prob-
lem. Some technical and computational details are gathered in the Appendix.

2. Optimal transport and portfolio maps. In this section, we recall the op-
timal transport problem in [45] using the exponential coordinate system. We also
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review the definition of functionally generated portfolio and explain how it relates
to the transport problem.

2.1. Exponential coordinate system. The exponential coordinate system de-
fines a global coordinate system on �n regarded as an (n−1)-dimensional smooth
manifold [2], Section 2.2.

DEFINITION 2.1 (Exponential coordinate system). The exponential coordi-
nate θ = (θ1, . . . , θn−1) ∈ R

n−1 of p ∈ �n is given by

(2.1) θi = log
pi

pn

, i = 1, . . . , n − 1.

We denote this map by θ : �n →R
n−1. By convention, we set θn ≡ 0. The inverse

transformation p := θ−1 is given by

(2.2) pi = pi(θ) = eθi−ψ(θ), 1 ≤ i ≤ n,

where ψ(θ) = log(1 +
∑n−1

i=1 eθi ) = log(
∑n

i=1 eθi ) as defined in (1.7).

The exponential coordinate system is the first of several coordinate systems we
will introduce on the simplex. By changing coordinate systems, any function on
�n can be expressed as a function on R

n−1 and vice versa. Explicitly, a function ϕ

on �n can be expressed in exponential coordinates by θ → ϕ(p(θ)). To simplify
the notations, we simply write ϕ(p) or ϕ(θ) depending on the coordinate system
used. For example, if ϕ(p) =

∑n
i=1 πi logpi is the cross entropy where π ∈ �n,

then ϕ(θ) =
∑n−1

i=1 πiθi − ψ(θ).

2.2. The transport problem. We refer the reader to the books [4, 51] for in-
troductions to optimal transport and its interplay with analysis, probability and
geometry. Let X = Y = R

n−1 be equipped with the standard Euclidean metric and
topology. Let P and Q be Borel probability measures on X and Y, respectively.
By a coupling of P and Q we mean a Borel probability measure R on X × Y

whose marginals are P and Q, respectively. Let �(P,Q) be the set of all cou-
plings of P and Q. This set is always nonempty as it contains the product measure
P ⊗ Q.

Given P and Q we consider the Monge–Kantorovich optimal transport problem
with cost c defined by (1.7):

(2.3) inf
R∈�(P,Q)

E
[
c(θ,φ)

]
.

Here the expectation is taken under the probability measure R under which the
random element (θ,φ) has distribution R. If an optimal coupling takes the form
(θ,F (θ)) for some measurable map F : X → Y , we say that F is a Monge trans-
port map.
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In general, we may consider the optimal transport problem (2.3) with c replaced
by a general cost function denoted by C(·, ·) and X , Y are general Polish spaces.
The classical example is where X = Y and C is a power of the underlying met-
ric: C(x, y) = d(x, y)α (especially α = 1 and 2). For these costs rich and del-
icate theories have been developed on Euclidean spaces, Riemannian manifolds
and geodesic metric measure spaces. However, we consider the cost function c

defined by (1.7).

REMARK 2.2. The cost function

c̃(θ, φ) := log

(
1

n
+

1

n

n−1∑

i=1

eθi−φi

)
−

n−1∑

i=1

1

n
(θi − φi)

differs from c(·, ·) in a linear term which plays no role in optimal transport. Thus
we may consider c̃ instead. The advantage of c̃ is that it is nonnegative and, by
Jensen’s inequality, equals zero if and only if θ = φ. To be consistent with the
notations in [45], we will use the cost function c in this paper.

DEFINITION 2.3 (c-cyclical monotonicity). A nonempty subset A ⊂ X ×Y is
c-cyclical monotone if and only if it satisfies the following property. For any finite
collection {(θj , φj )}

m
j=1 in A and any permutation σ of the set {1,2, . . . ,m}, we

have

(2.4)
n∑

j=1

c(θj , φj ) ≤

m∑

j=1

c(θj , φσ(j)).

It is well known that c-cyclical monotonicity is, under mild technical conditions,
a necessary and sufficient solution criteria of the general optimal transport problem
(see [4], Chapter 1). In particular, a coupling R of (P,Q) is optimal if and only if
the support of R is c-cyclical monotone.

2.3. Functionally generated portfolio. At this point, it is convenient to intro-
duce the concept of functionally generated portfolio. Although it is possible to
present the theory without reference to finance-motivated concepts, we stress that
the portfolio map gives an additional structure to the transport problem not found
in other cases. Also, the main examples of the theory as well as the key quantities
(such as the induced Riemannian metric) are best expressed in terms of portfolios.
Mathematically, the portfolio can be regarded as a normalized gradient of ϕ. In
Section 5.4, we apply our information geometry to functionally generated portfo-
lios.

Functionally generated portfolio was introduced in [24] and the following re-
fined definition is taken from [45].
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DEFINITION 2.4 (Functionally generated portfolio). By a portfolio map, we
mean a function π : �n → �n. Let ϕ : �n →R be exponentially concave. We say
that a portfolio map π : �n → �n is generated by ϕ if for any p,q ∈ �n we have

(2.5)
n∑

i=1

π i(p)
qi

pi

≥ eϕ(q)−ϕ(p).

We call ϕ the log generating function of π and � := eϕ (which is positive and
concave) the generating function. It is known that ϕ is unique (for a given π ) up
to an additive constant. If ϕ is differentiable, then π is necessarily given by (1.4).

Throughout this paper, we impose the following regularity conditions on the
exponentially concave function ϕ.

ASSUMPTION 2.5 (Regularity conditions). (i) The function ϕ is smooth (i.e.,
infinitely differentiable) on �n.

(ii) The (Euclidean) Hessian of � = eϕ is strictly negative definite everywhere
on �n. In particular, � is strictly concave. Moreover, it can be shown that the
function π defined by (1.4) maps �n into �n.

Let us discuss these conditions briefly. Differentiability is needed to define dif-
ferential geometric structures on �n in terms of the derivatives of the L-divergence.
Our theory requires the L-divergence T (·|·) to be three times continuously differ-
entiable, and for convenience we simply assume that ϕ is smooth. Strict concav-
ity guarantees that the L-divergence is nondegenerate, that is, T (q|p) = 0 only
if q = p, and strict positive definiteness of the Hessian implies that the induced
Riemannian metric is nondegenerate.

Henceforth, we let ϕ : �n →R be an exponentially concave function satisfying
Assumption 2.5 and let π : �n → �n given by (1.4) be the portfolio map generated
by ϕ. The cost function c always refers to the one defined in (1.7), and a general
cost function is denoted by C. Using (1.4), it can be shown that the L-divergence
(1.3) of ϕ can be expressed in the form

(2.6) T (q|p) = log

(
n∑

i=1

π i(p)
qi

pi

)
−

(
ϕ(q) − ϕ(p)

)
.

Now we give several examples of functionally generated portfolios and their
log generating functions. Many more examples can be found in [23], Chapter 3. In
particular, the constant-weighted portfolios play a special role and will be taken as
the basic example of the theory.

EXAMPLE 2.6 (Examples of functionally generated portfolios). (i) (Mar-
ket portfolio) The identity map π(p) ≡ p is generated by the constant function
ϕ(p) ≡ 0. (Here Assumption 2.5 does not hold.)
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(ii) (Constant-weighted portfolio) The constant map π(p) ≡ π ∈ �n is gener-
ated by the cross-entropy ϕ(p) =

∑n
i=1 πi logpi . The special case π = ( 1

n
, . . . , 1

n
)

is called the equal-weighted portfolio.
(iii) (Diversity-weighted portfolio) Let λ ∈ (0,1) be a fixed parameter. Consider

the portfolio map π : �n → �n defined by

π i(p) =
pλ

i∑n
j=1 pλ

j

, i = 1, . . . , n.

It can be shown that the generating function is ϕ(p) = 1
λ

log(
∑n

j=1 pλ
j ).

(iv) (Convex combinations) It is known that the set of functionally generated
portfolios is convex. Indeed, let π (1) be generated by ϕ(1) and π (2) be generated by
ϕ(2). Then for λ ∈ (0,1), the portfolio map π = (1−λ)π (1)+λπ (2) is generated by
ϕ = (1 − λ)ϕ(1) + λϕ(2). Its generating function � = eϕ is then the geometric
mean (�(1))1−λ(�(2))λ. This fact was used in [53, 54] to formulate and study
nonparametric estimation of functionally generated portfolio.

The following result is taken from [45].

PROPOSITION 2.7. For any portfolio map π : �n → �n the following state-
ments are equivalent.

(i) There exists an exponentially concave function ϕ on �n which generates
π in the sense of (2.5).

(ii) The portfolio map is multiplicatively cyclical monotone (MCM) in the fol-
lowing sense: for any sequence {μ(t)}m+1

t=0 in �n satisfying μ(m + 1) = μ(0), we
have

m∏

t=0

(
n∑

i=1

π i

(
μ(t)

)μi(t + 1)

μi(t)

)
≥ 1.

(iii) Define a map θ → φ by

(2.7) φi = θi − log
π i(θ)

πn(θ)
, i = 1, . . . , n − 1.

Here π is regarded as a function of the exponential coordinate. In words, we define
φ in such a way that the exponential coordinate of π(θ) is θ − φ. Then the graph
of this map is c-cyclical monotone.

Using this result, we showed in [45] how the optimal transport problem (2.3)
can be solved in terms of functionally generated portfolios. Here is a simple but
interesting explicit example which is a direct generalization of the one-dimensional
case treated in [45], Section 4.
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EXAMPLE 2.8 (Product of Gaussian distributions). In the transport problem
(2.3), let P be a product of one-dimensional Gaussian distributions:

P =

n−1⊗

i=1

N
(
ai, σ

2
i

)
,

where ai ∈ R and σi > 0. Also let

Q =

n−1⊗

i=1

N
(
bi, (1 − λ)σ 2

i

)
,

where bi ∈ R and 0 < λ < 1. Then the optimal transport map for the measures P

and Q is given by the map (2.7), where the portfolio map π is the following variant
of the diversity-weighted portfolio discussed in Example 2.6(iii):

(2.8) π i(p) =
wip

λ
i∑n

j=1 wjp
λ
j

, ϕ(p) =
1

λ
log

(
n∑

j=1

wjp
λ
j

)
,

where the coefficients wi are chosen such that (1 − λ)ai − log wi

wn
= bi for all i.

3. Optimal transport and duality.

3.1. c-Concavity and duality. Now we make use of the notion of c-concavity
in optimal transport theory. The definitions we use are standard and can be found in
[4], Chapter 1. Again, c refers to our cost function (1.7). Also recall that X = R

n−1

and Y =R
n−1 are the underlying spaces of the variables θ and φ, respectively. For

f : X →R∪ {±∞} we define its c-transform by

f ∗(φ) := inf
θ∈X

(
c(θ,φ) − f (θ)

)
, φ ∈ Y.

Similarly, the c-transform of a function g : Y →R∪ {±∞} is defined by

g∗(θ) := inf
φ∈Y

(
c(θ,φ) − g(φ)

)
, θ ∈ X .

We say that f : X → R ∪ {−∞} is c-concave if there exists g : Y → R ∪ {−∞}

such that f = g∗ (similar for c-concave functions on Y). A function h (on X or
Y) is c-concave if and only if h∗∗ = h.

If f :X →R∪ {−∞} is c-concave, its c-superdifferential is defined by

(3.1) ∂cf :=
{
(θ,φ) ∈ X ×Y : f (θ) + f ∗(φ) = c(θ,φ)

}
.

For θ ∈ X we define ∂cf (θ) := {φ ∈ Y : (θ,φ) ∈ ∂cf }. If this set is a singleton
{φ}, we call φ the c-supergradient of f at θ and write φ = ∇cf (θ). Similar defi-
nitions hold for a c-concave function g on Y .

Let f :X →R∪ {−∞} be c-concave. By definition of f ∗, we have

(3.2) f (θ) + f ∗(φ) ≤ c(θ,φ)
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for every pair (θ,φ) ∈ X × Y , and equality holds in (3.2) if and only if (θ,φ) ∈

∂cf . This is a generalized version of Fenchel’s identity (see [46], Section 12) and
will be used frequently in this paper.

Our first lemma relates exponential concavity on �n with c-concavity on X and
on Y . Note that the cost function is asymmetric, and c-concavity on X is equivalent
to c-concavity on Y after a change of variable.

LEMMA 3.1 (Exponential concavity and c-concavity). For ϕ : �n → R ∪

{−∞} the following statements are equivalent.

(i) ϕ is exponentially concave on �n.
(ii) The function f : X →R∪ {−∞} defined by

f (θ) = ϕ
(
p(θ)

)
+ ψ(θ)

is c-concave on X .
(iii) The function g : Y →R∪ {−∞} defined by

g(φ) = ϕ
(
p(−φ)

)
+ ψ(−φ),

where −φ is the exponential coordinate, is c-concave on Y .

PROOF. We prove the implication (i) ⇒ (ii) and the others can be proved
similarly. Suppose (i) holds and consider the nonnegative concave function � =

eϕ on �n. By [46], Theorem 10.3, we can extend � continuously up to �n, the
closure of �n in R

n. We further extend � to the affine hull H of �n in R
n by

setting �(p) = −∞ for p /∈ �n. The extended function � is then a closed concave
function on H . By convex duality (see [46], Theorem 12.1), there exists a family
C of affine functions on H such that

(3.3) �(p) = inf
ℓ∈C

ℓ(p), p ∈ �n.

Since � is nonnegative on �n, each ℓ ∈ C is nonnegative on �n. Replacing ℓ by
the sequence ℓk = ℓ + 1

k
, k ≥ 1, we may assume without loss of generality that

each ℓ ∈ C is strictly positive on �n. We parameterize each ℓ ∈ C in the form
ℓ(p) =

∑n
i=1 aipi where a1, . . . , an are positive constants. (Note that an extra

constant term is not required since p1 + · · · + pn = 1.) Writing φi := − log ai

an
,

i = 1, . . . , n − 1 and switching to exponential coordinates, we have

logℓ(p) = log

(
n∑

i=1

aipi

)

= log

(
1 +

n−1∑

i=1

ai

an

pi

pn

)
+ logpn + logan

= log

(
1 +

n−1∑

i=1

eθi−φi

)
− ψ(θ) + logan

= c(θ − φ) − ψ(θ) + logan.
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It follows from (3.3) that

(3.4) f (θ) = ϕ(θ) + ψ(θ) = inf
ℓ∈C

(
c(θ − φ) + logan

)
.

Define h : Y →R∪ {−∞} by setting

h(φ) = inf

{
− logan : ∃ℓ(p) =

n∑

i=1

aipi ∈ C s.t. φi = − log
ai

an

∀i

}
,

where the infimum of the empty set is −∞. From (3.4), we have

f (θ) = inf
φ∈Y

(
c(θ − φ) − h(φ)

)
= h∗(θ)

which shows that f is c-concave on X . �

The following is the c-concave analogue of the classical Legendre transforma-
tion [46]. Its proof is standard but lengthy and will be given in the Appendix.

THEOREM 3.2 (c-Legendre transformation). Let ϕ be an exponentially con-
cave function ϕ satisfying Assumption 2.5, and let π , defined by (1.4), be the port-
folio map generated by ϕ. Given ϕ, consider the c-concave function

(3.5) f (θ) := ϕ(θ) + ψ(θ)

defined on X =R
n−1 via the exponential coordinate system.

(i) The c-supergradient of f is given by (2.7), that is,

(3.6) ∇cf (θ) =

(
θi − log

π i(θ)

πn(θ)

)

1≤i≤n−1
, θ ∈ X .

Moreover, the map ∇cf : X → Y is injective.
(ii) Let Y ′ ⊂ Y be the range of ∇cf . Then the c-supergradient of f ∗ is given

on Y ′ by

∇cf ∗(φ) =
(
∇cf

)−1
(φ), φ ∈ Y ′.

In fact, the map ∇cf is a diffeomorphism from X to Y ′ whose inverse is ∇cf ∗.
Also, the function f ∗ is smooth on the open set Y ′.

Although Y ′ is in general a strict subset of Y , by Theorem 3.2 the dual variable
φ = ∇cf (θ) defines a global coordinate system of the manifold �n. In Theo-
rem 5.1, we will use another coordinate system on �n called the dual Euclidean
coordinate system. Thus, we have four coordinate systems on �n: Euclidean, pri-
mal, dual and dual Euclidean (see Definition 3.3). In the following, we will fre-
quently switch between coordinate systems to facilitate computations. To avoid
confusions, let us state once for all the conventions used. We let ϕ and f = ϕ + ψ

be given.
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p ◦ −Id −θφθ p

p∗

�n

primal Euclidean

�n

dual Euclidean

X =R
n−1

primal exponential

Y ′ ⊂ R
n−1

dual exponential

∇cf

∇cf ∗

FIG. 2. Coordinate systems on �n.

DEFINITION 3.3 (Coordinate systems). For the unit simplex �n [defined by
(1.1)], we call the identity map

p = (p1, . . . , pn), pi > 0,

n∑

i=1

pi = 1

the (primal) Euclidean coordinate system with range �n. We let

θ = θ(p) =

(
log

p1

pn

, . . . , log
pn−1

pn

)

be the primal (exponential) coordinate system with range X and

φ = φ(p) := ∇cf (θ)

be the dual (exponential) coordinate system with range Y ′. The dual Euclidean
coordinate system is defined by the composition

p∗ = p∗(p) := p
(
−φ(p)

)
.

See Figure 2 for an illustration. From now on p, p∗, θ and φ always represent
the same point of �n. In particular, unless otherwise specified θ and φ are dual to
each other in the sense that φ = ∇cf (θ). By convention we let θn = φn = 0 for
any p ∈ �n.

NOTATION 3.4 (Switching coordinate systems). We identify the spaces �n,
X and Y ′ using the coordinate systems in Definition 3.3. If h is a function on
any one of these spaces, we write h(p) = h(θ) = h(φ) = h(p∗) depending on the
coordinate system used.

We also record a useful fact. A formula analogous to the first statement is de-
rived in [49].
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LEMMA 3.5. For 1 ≤ i ≤ n − 1, we have

∂

∂θi

f (θ) = π i(θ), θ ∈ X ,

∂

∂φi

f ∗(φ) = −π i(φ), φ ∈ Y ′.

PROOF. The first statement is derived in the proof of Theorem 3.2. The sec-
ond statement can be proved by differentiating f ∗(φ) = c(θ,φ)−f (θ) (Fenchel’s
identity). �

3.2. c-Divergence. By duality, we show that a pair of natural divergences on
�n can be defined for the c-concave functions f and f ∗. Moreover, they coincide
with L-divergence. Clearly we can consider other cost functions C other than c.
When C is the squared Euclidean distance, the analogue of Definition 3.6 below
gives the classical Bregman divergence. This covers both L-divergence and Breg-
man divergence under the same framework. To the best of our knowledge these
definitions, which depend crucially on the interplay between transport and diver-
gence, are new. We will use the triple representation (p, θ,φ) for each point in
�n.

DEFINITION 3.6 (c-divergence). Consider the c-concave function f defined
by (3.5) and its c-transform f ∗.

(i) The c-divergence of f is defined by

(3.7) D
(
p|p′) = c

(
θ,φ′) − c

(
θ ′, φ′) −

(
f (θ) − f

(
θ ′)), p,p′ ∈ �n.

(ii) The c-divergence of f ∗ is defined by

(3.8) D∗(
p|p′) = c

(
θ ′, φ

)
− c

(
θ ′, φ′) −

(
f ∗(φ) − f ∗(

φ′)), p,p′ ∈ �n.

From Fenchel’s identity (3.2) we see that D and D∗ are nonnegative and non-
degnereate, that is, they vanish only on the diagonal of �n × �n. The following is
a generalization of the self-dual expression of Bregman divergence (see [2], The-
orem 1.1).

PROPOSITION 3.7 (Self-dual expressions). We have

D
(
p|p′) = c

(
θ,φ′) − f (θ) − f ∗(

φ′),(3.9)

D∗(
p|p′) = c

(
θ ′, φ

)
− f ∗(φ) − f

(
θ ′).(3.10)

In particular, for p,p′ ∈ �n we have D(p|p′) = D∗(p′|p).
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PROOF. To prove (3.9), we use the Fenchel identity f (θ ′) + f ∗(φ′) =

c(θ ′, φ′). Starting from (3.7), we have

D
(
p|p′) = c

(
θ,φ′) − c

(
θ ′, φ′) −

(
f (θ) − f

(
θ ′))

= c
(
θ,φ′) − f (θ) − f ∗(

φ′).

The proof of (3.10) is similar. �

Now we show that L-divergence is a c-divergence where c(θ,φ) = ψ(θ − φ).

THEOREM 3.8 (L-divergence as c-divergence). The c-divergence of f is the
L-divergence of ϕ. Namely, for p,p′ ∈ �n we have

D
(
p|p′) = T

(
p|p′).

PROOF. Using the primal-dual relation (3.6), we have

ψ
(
θ − φ′) = log

(
n∑

i=1

e
θi−θ ′

i+log
π i (θ

′)

πn(θ ′)

)
= log

(
π

(
p′) ·

p

p′

)
− log

(
πn

(
p′)pn

p′
n

)
.

Next, by Fenchel’s identity [see (3.2)], we have

f ∗(
φ′) = ψ

(
θ ′ − φ′) − f

(
θ ′) = ψ

(
θ ′ − φ′) − ϕ

(
θ ′) − ψ

(
θ ′).

Using these identities and (2.6), we compute

D
(
p|p′) = ψ

(
θ − φ′) − f (θ) − f ∗(

φ′)

= log
(
π

(
p′) ·

p

p′

)
− log

(
πn

(
p′)pn

p′
n

)

−
(
ϕ(θ) + ψ(θ)

)
−

(
ψ

(
θ ′ − φ′) − ϕ

(
θ ′) − ψ

(
θ ′))

= log
(
π

(
p′) ·

p

p′

)
−

(
ϕ(θ) − ϕ

(
θ ′))

= T
(
p|p′). �

For computations it is convenient to express T (p|p′) solely in terms of either
the primal or dual coordinates. We omit the details of the computations.

LEMMA 3.9 (Coordinate representations). For p,p′ ∈ �n we have

T
(
p|p′) = log

(
n∑

ℓ=1

πℓ

(
θ ′)eθℓ−θ ′

ℓ

)
−

(
f (θ) − f

(
θ ′)),

T
(
p|p′) = log

(
n∑

ℓ=1

πℓ(φ)eφℓ−φ′
ℓ

)
−

(
f ∗(

φ′) − f ∗(φ)
)
.
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3.3. Transport interpretation of the generalized Pythagorean theorem. Using
Proposition 3.8, we give an interesting transport interpretation of the expression
(1.8) in the generalized Pythagorean theorem (Theorem 1.2). Let p,q, r ∈ �n be
given. Let (θ (j), φ(j))1≤j≤3 be the primal and dual coordinates of p, q and r re-
spectively. By Proposition 2.7, the coupling (θ,φ = ∇f c(θ)) is c-cyclical mono-
tone. Hence, coupling θ (j) with φ(j) is optimal.

Consider two (suboptimal) perturbations of the optimal coupling:

(i) (Cyclical perturbation) Couple θ (1) with φ(3), θ (2) with φ(1), and θ (3) with
φ(2). The associated cost is

c
(
θ (1), φ(3)) + c

(
θ (2), φ(1)) + c

(
θ (3), φ(2)).

(ii) (Transposition) Couple θ (1) with φ(3), θ (3) with φ(1), and keep the coupling
(θ (2), φ(2)). The associated cost is

c
(
θ (1), φ(3)) + c

(
θ (3), φ(1)) + c

(
θ (2), φ(2)).

Now we ask which perturbation has lower cost. The difference (i)–(ii) is

c
(
θ (2), φ(1)) + c

(
θ (3), φ(2)) − c

(
θ (3), φ(1)) − c

(
θ (2), φ(2)).

By Proposition 3.8, this is nothing but the difference T (q|p) + T (r|q) − T (r|p).
Thus the generalized Pythagorean theorem gives an information geometric char-
acterization of the relative costs of the two perturbations.

3.4. Examples. We consider the portfolios in Example 2.6.

EXAMPLE 3.10 (Constant-weighted portfolio). Let π ∈ �n be a constant-
weighted portfolio. Then ϕ is the cross entropy and we have

f (θ) = ϕ(θ) + ψ(θ) =

n−1∑

i=1

πiθi,

which is an affine function on X . Its c-transform is also affine. Indeed, we have

f ∗(φ) =

n−1∑

i=1

πi(−φi) + H(π),

where H(π) := −
∑n

i=1 πi logπi is the Shannon entropy of π . For this reason,
we say that the constant-weighted portfolios are self-dual. The transport map in
this case is given by a translation: φ = θ − (log π1

πn
, . . . , log πn−1

πn
). Its L-divergence

(1.6) is given in primal coordinates (see Lemma 3.9) by

T
(
p|p′) = log

(
n∑

ℓ=1

πℓe
θℓ−θ ′

ℓ

)
−

n∑

ℓ=1

πℓ

(
θℓ − θ ′

ℓ

)
,
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which is translation invariant. This property is equivalent to the following
numéraire invariance property [44], Lemma 3.2: for any w1, . . . ,wn > 0, we have
T (q|p) = T (q̃|p̃) under the mapping

p → p̃ =

(
wipi

w1p1 + · · · + wnpn

)

1≤i≤n

.

In fact, it is not difficult to show that this property characterizes the constant-
weighted portfolios among L-divergences of exponentially concave functions.
Also see [44], Proposition 4.6, for a chain rule analogous to that of relative en-
tropy.

EXAMPLE 3.11 (Diversity-weighted portfolio). We have f (θ) = 1
λ
ψ(λθ).

Since

log
π i(θ)

πn(θ)
= λθi,

the map θ → φ is a scaling: φ = (1 − λ)θ . For the generalized diversity-weighted
portfolio in Example 2.8, the transport map θ → φ is the composition of a scaling
and a translation.

4. Geometric structure induced by L-divergence. In this section, we derive
the geometric structure induced by a given L-divergence T (·|·). As always we
impose the regularity conditions in Assumption 2.5. Using the primal and dual
coordinate systems (Definition 3.3), we compute explicitly the Riemannian metric
g, the primal connection ∇ (not to be confused with the Euclidean gradient) and
the dual connection ∇∗. We call (g,∇,∇∗) the induced geometric structure. An
important fact in information geometry is that the Levi-Civita connection ∇(0)

is not necessarily the right one to use. Nevertheless, by duality we always have
∇(0) = 1

2(∇ + ∇∗).

4.1. Preliminaries. For differential geometric concepts such as Riemannian
metric and affine connection we refer the reader to [2], Chapters 5, whose nota-
tions are consistent with ours. For computational convenience, we define the ge-
ometric structure in terms of coordinate representations. The geometric structure
is determined by the L-divergence T (·|·) and is independent of the choice of co-
ordinates; for intrinsic formulations we refer the reader to [13], Chapter 11. The
following definition (which makes sense for a general divergence on a manifold)
is taken from [2], Section 6.2.

DEFINITION 4.1 (Induced geometric structure). Given a coordinate system
ξ = (ξ1, . . . , ξn−1) of �n, the coefficients of the geometric structure (g,∇,∇∗)

are given as follows.
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(i) The Riemannian metric is given by

(4.1) gij (ξ) = −
∂

∂ξi

∂

∂ξ ′
j

T
(
ξ |ξ ′)∣∣∣

ξ=ξ ′
, i, j = 1, . . . , n − 1.

By Assumption 2.5, the matrix (gij (ξ)) is strictly positive definite. The Rieman-
nian inner product and length are denoted by 〈·, ·〉 and ‖ · ‖ respectively.

(ii) The primal connection is given by

(4.2) Ŵijk(ξ) = −
∂

∂ξi

∂

∂ξj

∂

∂ξ ′
k

T
(
ξ |ξ ′)∣∣∣

ξ=ξ ′
, i, j, k = 1, . . . , n − 1.

(iii) The dual connection is given by

(4.3) Ŵ∗
ijk(ξ) = −

∂

∂ξk

∂

∂ξ ′
i

∂

∂ξ ′
j

T
(
ξ |ξ ′)∣∣∣

ξ=ξ ′
, i, j, k = 1, . . . , n − 1.

For a general divergence the above definitions were first introduced in [19, 20].
If we define the dual divergence by T ∗(p|p′) := T (p′|p), the dual connection of
T is the primal connection of T ∗. The primal and dual connections are dual to
each other with respect to the Riemannian metric g (see [2], Theorem 6.2). While
any divergence induces a geometric structure, it may not enjoy nice properties. For
the geometric structure induced by a Bregman divergence, it can be shown that
the Riemann–Christoffel curvatures of the primal and dual connections both van-
ish. Thus, we say that the induced geometry is dually flat [2], Chapter 1. We will
show that L-divergence gives rise to a different geometry with many interesting
properties.

4.2. Notations. We begin by clarifying the notations. Following our conven-
tion (see Notation 3.4), we write T (p|p′) = T (θ |θ ′) = T (φ|φ′) depending on the
coordinate system used. The primal and dual coordinate representations have been
computed in Lemma 3.9.

The Riemannian metric will be computed using both the primal and dual co-
ordinate systems. To be explicit about the coordinate system, we use gij (θ) to
denote its coefficients in primal coordinates, and g∗

ij (φ) for its coefficients in dual
coordinates:

gij (θ) := −
∂2

∂θi∂θ ′
j

T
(
θ |θ ′)∣∣∣

θ=θ ′
, g∗

ij (φ) := −
∂2

∂φi∂φ′
j

T
(
φ|φ′)∣∣∣

φ=φ′
.

The inverses of the matrices (gij (θ)) and (g∗
ij (φ)) are denoted by (gij (θ)) and

(g∗ij (φ)) respectively.
The primal connection ∇ will be computed using the primal coordinate system:

Ŵijk(θ) := −
∂3

∂θi∂θj∂θ ′
k

T
(
θ |θ ′)∣∣∣

θ=θ ′
, Ŵk

ij (θ) :=

n−1∑

m=1

Ŵijm(θ)gmk(θ).
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The dual connection ∇∗ will be computed using the dual coordinate system:

Ŵ∗
ijk(φ) := −

∂3

∂φk∂φ′
i∂φ′

j

T
(
φ|φ′)∣∣∣

φ=φ′
, Ŵ∗k

ij (φ) :=

n−1∑

m=1

Ŵ∗
ijm(φ)g∗mk(φ).

The following notations are useful. For 1 ≤ i ≤ n, we define

�i

(
θ, θ ′) :=

π i(θ
′)eθi−θ ′

i

∑n
ℓ=1 πℓ(θ ′)eθℓ−θ ′

ℓ

,

(4.4)

�∗
i

(
φ,φ′) :=

π i(φ)eφi−φ′
i

∑n
ℓ=1 πℓ(φ)eφℓ−φ′

ℓ

.

As always we adopt the convention θn = θ ′
n = φn = φ′

n = 0. Note that �i(θ, θ ′)

involves the portfolio at θ ′ (the second variable) while �∗
i (φ,φ′) involves the port-

folio at φ (the first variable). The partial derivatives of �i and �∗
i are given in the

next lemma and can be verified by direct differentiation. We let δij be the Kro-
necker delta and δijk = δij δjk .

LEMMA 4.2 (Derivatives of �i and �∗
i ). (i) For 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1,

we have

∂�i(θ, θ ′)

∂θj

= �i

(
θ, θ ′)(δij − �j

(
θ, θ ′)),

∂�i(θ, θ ′)

∂θ ′
j

= −�i

(
θ, θ ′)(δij − �j

(
θ, θ ′))

+ �i

(
θ, θ ′)

(
1

π i(θ ′)

∂π i

∂θ ′
j

(
θ ′) −

n∑

ℓ=1

�ℓ

(
θ, θ ′) 1

πℓ(θ ′)

∂πℓ

∂θ ′
j

(
θ ′)

)
.

(ii) For 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1, we have

∂�∗
i (φ,φ′)

∂φj

= �∗
i

(
φ,φ′)(δij − �∗

j

(
φ,φ′))

+ �∗
i

(
φ,φ′)

(
1

π i(φ)

∂π i

∂φj

(φ) −

n∑

ℓ=1

�∗
ℓ

(
φ,φ′) 1

πℓ(φ)

∂πℓ

∂φj

(φ)

)
,

∂�i(φ,φ′)

∂φ′
j

= −�∗
i

(
φ,φ′)(δij − �∗

j

(
φ,φ′)).

We also note the following easy fact which is used several times below. Since∑n
i=1 �i(θ, θ ′) ≡

∑n
i=1 �∗

i (φ,φ′) ≡ 1, the partial derivatives of
∑

i �i and
∑

i �
∗
i

are all zero.
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LEMMA 4.3 [Derivatives of π(·)]. For 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1, we have

∂π i

∂θj

(θ) = π i(θ)
(
δij − π j (θ)

)
− π i(θ)

(
∂φi

∂θj

(θ) −

n−1∑

ℓ=1

πℓ(θ)
∂φℓ

∂θj

(θ)

)
,

(4.5)
∂π i

∂φj

(φ) = −π i(φ)
(
δij − π j (φ)

)
+ π i(φ)

(
∂θi

∂φj

(φ) −

n−1∑

ℓ=1

πℓ(φ)
∂θℓ

∂φj

(φ)

)
.

PROOF. We prove the second formula and the proof of the first is similar.
Using (2.7), we write

π i(φ) =
eθi−φi

∑n
ℓ=1 eθℓ−φℓ

and regard θ as a function of φ (recall that θn = φn = 0). Then

∂π i

∂φj

(φ) =
eθi−φi ( ∂θi

∂φj
(φ) − δij )

∑n
ℓ=1 eθℓ−φℓ

−
eθi−φi

(
∑n

ℓ=1 eθℓ−φℓ)2

n∑

ℓ=1

eθℓ−φℓ

(
∂θℓ

∂φj

(φ) − δℓj

)

= −π i(φ)
(
δij − π j (φ)

)
+ π i(φ)

(
∂θi

∂φj

(φ) −

n−1∑

ℓ=1

πℓ(φ)
∂θℓ

∂φj

(φ)

)
.

Note that the nth term of the sum is omitted because θn = 0. �

Thanks to these formulas, computations in the primal and dual coordinates are
very similar except for a change of sign. In the following, we will often give details
for one coordinate system and leave the other one to the reader.

Last but not least, let ∂φ
∂θ

(θ) = (
∂φi

∂θj
(θ)) be the Jacobian of the change of coordi-

nate map θ → φ. Similarly, we let ∂θ
∂φ

(φ) = ( ∂θi

∂φj
(φ)) be the Jacobian of the inverse

map φ → θ . The two Jacobians are inverses of each other, that is,

(4.6)
∂φ

∂θ
(θ)

∂θ

∂φ
(φ) = I,

where I is the identity matrix. We denote the transpose of a matrix A by A⊤.

4.3. Riemannian metric. For intuition, we first compute the Riemannian inner
product using Euclidean coordinates. We let Tp�n be the tangent space at p.

PROPOSITION 4.4. Let u, v ∈ Tp�n be represented in Euclidean coordinates,
that is, u = (u1, . . . , un) ∈ R

n and u1 + · · · + un = 0, and similarly for v. Then

〈u, v〉 = u⊤(
−Hessϕ(p) − ∇ϕ(p)∇ϕ(p)⊤

)
v

(4.7)

= u⊤

(
−1

�(p)
Hess�(p)

)
v,

where � = eϕ .
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PROOF. By [13], Proposition 11.3.1, we have ‖v‖2 = d2

dt2 T (p + tv|p)|t=0,
where

T (p + tv|p) = log
(
1 + t∇ϕ(p) · v

)
−

(
ϕ(p + tv) − ϕ(p)

)
.

Differentiating two times and setting t = 0 gives the first equality in (4.7) when
u = v, and polarizing gives the general case. The second equality follows from the
chain rule. �

THEOREM 4.5 (Riemannian metric). (i) Under the primal coordinate system,
the Riemannian metric is given by

(4.8) gij (θ) = π i(θ)
(
δij − π j (θ)

)
−

∂π i

∂θj

(θ).

Its inverse is given by

(4.9) gij (θ) =
1

π j (θ)

∂θi

∂φj

(φ) +
1

πn(θ)

n−1∑

ℓ=1

∂θi

∂φℓ

(φ).

(ii) Under the dual coordinate system, the Riemannian metric is given by

(4.10) g∗
ij (φ) = π i(φ)

(
δij − π j (φ)

)
+

∂π i

∂φj

(φ).

Its inverse is given by

(4.11) g∗ij (φ) =
1

π j (φ)

∂φi

∂θj

(θ) +
1

πn(φ)

n−1∑

ℓ=1

∂φi

∂θℓ

(θ).

PROOF. (i) By Lemma 3.9 and Lemma 4.2, we compute

∂

∂θi

T
(
θ |θ ′) = �i

(
θ, θ ′) − π i(θ),(4.12)

∂

∂θ ′
i

T
(
θ |θ ′) = −�i

(
θ, θ ′) + π i

(
θ ′) +

n∑

ℓ=1

�ℓ

(
θ, θ ′) 1

πℓ(θ ′)

∂πℓ

∂θ ′
i

(
θ ′).(4.13)

Differentiating (4.12) with respect to θ ′
j , we have

∂2

∂θi ∂θ ′
j

T
(
θ |θ ′)

= −�i

(
θ, θ ′)(δij − �j

(
θ, θ ′))(4.14)

+ �i

(
θ, θ ′)

(
1

π i(θ ′)

∂π i

∂θ ′
j

(
θ ′) −

n∑

ℓ=1

�ℓ

(
θ, θ ′) 1

πℓ(θ ′)

∂πℓ

∂θ ′
j

(
θ ′)

)
.
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Setting θ = θ ′, we get gij (θ) = π i(θ)(δij − π j (θ)) − ∂π i

∂θj
(θ).

By Lemma 4.3, we have the alternative expression

(4.15) gij (θ) = π i(θ)

(
∂φi

∂θj

(θ) −

n−1∑

ℓ=1

πℓ(θ)
∂φℓ

∂θj

(θ)

)
.

Expressing (4.15) in matrix form, we have

(4.16)
(
gij (θ)

)
= diag

(
π(θ)

)(
I − 1π⊤(θ)

)∂φ

∂θ
(θ),

where here π(θ) = (π1(θ), . . . ,πn−1(θ))⊤, 1 = 1n−1 = (1, . . . ,1)⊤ and I = In−1
is the identity matrix.

To invert (4.16) we use the fact that

(
I − 1π⊤(θ)

)−1
= I +

1π⊤(θ)

πn(θ)
.

This can be verified directly or seen as a special case of the Sherman–Morrison
formula. Using (4.6), we have

(
gij (θ)

)
=

∂θ

∂φ
(φ)

(
I +

1π⊤(θ)

πn(θ)

)
diag

(
1

π(θ)

)
.

Now (4.9) follows by expanding the matrix product.
(ii) The proofs of (4.10) and (4.11) follow the same lines. For later use, we

record the following formulas:

∂

∂φi

T
(
φ|φ′) = �∗

i

(
φ,φ′) − π i(φ) +

n∑

ℓ=1

1

πℓ(φ)

∂πℓ

∂φi

(φ)�∗
ℓ

(
φ,φ′),(4.17)

∂

∂φ′
i

T
(
φ|φ′) = −�∗

i

(
φ,φ′) + π i

(
φ′),(4.18)

∂2

∂φi ∂φ′
j

T
(
φ|φ′) = −�∗

j

(
φ,φ′)(δij − �∗

i

(
φ,φ′))

− �∗
j

(
φ,φ′)

(
1

π j (φ)

∂π j

∂φi

(φ)(4.19)

−

n∑

ℓ=1

1

πℓ(φ)

∂πℓ

∂φi

(φ)�∗
ℓ

(
φ,φ′)

)
.

�

REMARK 4.6. By Lemma 3.5, we have

(4.20)
∂π i

∂θj

(θ) =
∂2

∂θi ∂θj

f (θ) =
∂π j

∂θi

(θ).
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Thus the right-hand side of (4.8) is symmetric in i and j despite its appearance.
Similarly, we have ∂π i

∂φj
=

∂πj

∂φi
.

4.4. Primal and dual connections.

THEOREM 4.7 (Primal and dual connections). (i) Under the primal coordi-
nate system, the coefficients of the primal connection ∇ is given by

Ŵijk(θ) = δijgik(θ) − π i(θ)gjk(θ) − π j (θ)gik(θ),(4.21)

Ŵk
ij (θ) = δijk − δikπ j (θ) − δjkπ i(θ).(4.22)

(ii) Under the dual coordinate system, the coefficients of the dual connection ∇∗ is
given by

Ŵ∗
ijk(φ) = −δijg

∗
ik(φ) + π i(φ)g∗

jk(φ) + π j (φ)g∗
ik(φ),(4.23)

Ŵ∗k
ij (φ) = −δijk + δikπ j (φ) + δjkπ i(φ).(4.24)

PROOF. We prove (ii) and leave (i) to the reader. By (4.19), we have

∂2

∂φk ∂φ′
i

T
(
φ|φ′) = −�∗

i

(
φ,φ′)(δik − �∗

k

(
φ,φ′))

− �∗
i

(
φ,φ′)

(
1

π i(φ)

∂π i

∂φk

(φ) −

n∑

ℓ=1

1

πℓ(φ)

∂πℓ

∂φk

(φ)�ℓ

(
φ,φ′)

)
.

For notational convenience we momentarily suppress φ and φ′ in the computation
(later we will do so without comment). Differentiating one more time, we have

∂3

∂φk ∂φ′
i ∂φ′

j

T
(
φ|φ′)

= −δik

∂�∗
i

∂φ′
j

+ �∗
i

∂�∗
k

∂φ′
j

+ �∗
k

∂�∗
i

∂φ′
j

−
∂�∗

i

∂φ′
j

(
1

π i

∂π i

∂φk

−

n∑

ℓ=1

1

πℓ

∂πℓ

∂φk

�∗
ℓ

)
+ �i

n∑

ℓ=1

1

πℓ

∂πℓ

∂φk

∂�∗
ℓ

∂φ′
j

= δik�
∗
i

(
δij − �∗

j

)
− �∗

i �
∗
k

(
δjk − �∗

j

)
− �∗

k�
∗
i

(
δij − �∗

j

)

+ �∗
i

(
δij − �∗

j

)
(

1

π i

∂π i

∂φk

−

n∑

ℓ=1

1

πℓ

∂πℓ

∂φk

�∗
ℓ

)

− �∗
i

n∑

ℓ=1

1

πℓ

∂πℓ

∂φk

�∗
ℓ

(
δℓj − �∗

j

)
.
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Evaluating at φ = φ′ and simplifying, we get

Ŵ∗
ijk(φ) = −δijkπ i − 2π iπ jπk + δijπ iπk + δjkπ jπ i + δkiπkπ j

(4.25)

− δij

∂π i

∂φk

+ π j

∂π i

∂φk

+ π i

∂π j

∂φk

.

By (4.10), we have ∂π i

∂φj
= g∗

ij −π i(δij −π j ). Plugging this into (4.25) and simpli-

fying, we have Ŵ∗
ijk(φ) = −δijg

∗
ik(φ) + π i(φ)g∗

jk(φ) + π j (φ)g∗
ik(φ). Finally, we

compute

Ŵ∗k
ij (φ) =

n−1∑

m=0

(
−δijg

∗
im(φ) + π i(φ)g∗

jm(φ) + π j (φ)g∗
im(φ)

)
g∗mk(φ)

= −δijk + δikπ j (φ) + δjkπ i(φ). �

REMARK 4.8. It is interesting to note that although the connections are de-
fined in terms of the third order derivatives of T (·|·), the coefficients Ŵk

ij (θ) and

Ŵ∗k
ij (φ) are given in terms of the portfolio π which is a normalized gradient of ϕ.

4.5. Curvatures. It is well known (see [2], Chapter 1) that the induced ge-
ometric structure of any Bregman divergence is dually flat. This is not the case
for the geometry of L-divergence whenever n ≥ 3 (when n = 2 the simplex �2 is
one-dimensional). To verify this, we compute the Riemann–Christoffel curvature
tensors of the primal and dual connections. In this (and only this) subsection, we
adopt the Einstein summation notation (see [2], p. 20) to avoid writing a lot of
summation signs.

The Riemann–Christoffel (RC) curvature tensor of a connection ∇ is defined
for smooth vector fields X, Y and Z by

R(X,Y )Z = ∇X(∇Y Z) − ∇Y (∇XZ) − ∇[X,Y ]Z,

where [X,Y ] is the Lie bracket. Given a coordinate system ξ , its coefficients are
given by Rℓ

ijk which satisfy R( ∂
∂ξi

, ∂
∂ξj

) ∂
∂ξk

=
∑

ℓ Rℓ
ijk

∂
∂ξℓ

. By [2], (5.66), we have

Rℓ
ijk =

∂

∂θi

Ŵℓ
jk −

∂

∂θj

Ŵℓ
ik + Ŵℓ

imŴm
jk − Ŵℓ

jmŴm
ik.

THEOREM 4.9 (Primal and dual Riemann–Christoffel curvatures). Let R and
R∗ be the RC curvature tensors of the primal and dual connections respectively.

(i) In primal coordinates, the coefficients of R are given by

(4.26) Rℓ
ijk(θ) = δℓjgik(θ) − δℓigjk(θ).

(ii) In dual coordinates, the coefficients of R∗ are given by

(4.27) R∗ℓ
ijk(φ) = δℓjg

∗
ik(φ) − δℓig

∗
jk(φ).

In particular, for n ≥ 3 both R and R∗ are nonzero everywhere on �n.
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PROOF. We prove the statements for R. Using (4.21) and suppressing the ar-
gument, we have

∂

∂θi

Ŵℓ
jk = −δℓj

∂πk

∂θi

− δℓk

∂π j

∂θi

,
∂

∂θj

Ŵℓ
ik = −δℓi

∂πk

∂θj

− δℓk

∂π i

∂θj

.

From (4.20), it follows that

(4.28)
∂

∂θi

Ŵℓ
jk −

∂

∂θj

Ŵℓ
ik = −δℓj

∂πk

∂θi

+ δℓi

∂πk

∂θj

.

Next, we compute (with some work)

(4.29) Ŵℓ
imŴm

jk − Ŵℓ
jmŴm

ik = −δℓiδjkπ j + δℓjδikπ i + δℓiπ jπk − δℓjπ iπk.

Combining (4.28) and (4.29), we have

Rℓ
ijk(θ) = −δℓj

∂πk

∂θi

+ δℓi

∂πk

∂θj

− δℓiδjkπ j + δℓjδikπ i + δℓiπ jπk − δℓjπ iπk

= δℓj

(
δikπ i − π iπk −

∂πk

∂θi

)
− δℓi

(
δjkπ j − π jπk −

∂πk

∂θj

)

= δℓjgik − δℓigjk.

To see that R does not vanish for n ≥ 3, suppose on the contrary that R(θ) = 0.
Then Rℓ

ijk(θ) = δℓjgik(θ) − δℓigjk(θ) = 0 for all values of i, j, k, ℓ. Fix i and k.
Letting ℓ = j , we have gik(θ) = δijgjk(θ). Next, let j �= i (here we need dim�n =

n − 1 ≥ 2). Then we get gik(θ) = 0. Since i and k are arbitrary, we have g(θ) = 0
which is a contradiction. �

We end this section by showing that the primal and dual connections have con-
stant sectional curvature −1. See [13], Definition 7.10.5, for the definition of Ricci
curvature.

COROLLARY 4.10 (Primal and dual sectional curvatures). The primal and
dual connections have constant sectional curvature −1 with respect to g. In par-
ticular, the primal and dual Ricci curvatures satisfy the Einstein condition

Ric = Ric∗ = −(n − 2)g.

PROOF. The primal connection ∇ has constant sectional curvature k with re-
spect to g if and only if

R(X,Y )Z ≡ k
(
〈Y,Z〉X − 〈X,Z〉Y

)

for all smooth vector fields X, Y and Z (see [13], (9.7.41)). For the primal
Riemann–Christoffel curvature tensor, we have

R

(
∂

∂θi

,
∂

∂θj

)
∂

∂θk

= Rℓ
ijk

∂

∂θℓ

= −

(〈
∂

∂θj

,
∂

∂θk

〉
∂

∂θi

−

〈
∂

∂θi

,
∂

∂θk

〉
∂

∂θj

)
,
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which implies that the sectional curvature is k = −1. The claim for Ricci curvature
follows immediately by taking trace (see, for example, [48], (4.31)). The proof for
the dual curvatures is the same. �

5. Geodesics and generalized Pythagorean theorem. Armed with the pri-
mal and dual connections we can formulate the primal and dual geodesic equa-
tions. Their solutions are the primal and dual geodesics which will be studied in
this section. The highlight of this section is the generalized Pythagorean theorem
(Theorem 1.2). Along the way we will prove some remarkable properties of the
geometric structure (g,∇,∇∗).

5.1. Primal and dual geodesics. Note that in Figure 1 the primal geodesic is
drawn as a straight line in �n. We now prove that this is indeed the case. The same
is true for the dual geodesic in dual Euclidean coordinates.

Let γ : [0,1] → �n be a smooth curve. We denote time derivatives by γ̇ (t). Let
θ(t) and φ(t) be the primal and dual coordinate representations of γ . We say that
γ is a primal geodesic if its satisfies

θ̈k(t) +

n−1∑

i,j=1

Ŵk
ij

(
θ(t)

)
θ̇i(t)θ̇j (t) = 0, k = 1, . . . , n − 1.

It is a dual geodesic if its satisfies

φ̈k(t) +

n−1∑

i,j=1

Ŵ∗k
ij

(
φ(t)

)
φ̇i(t)φ̇j (t) = 0, k = 1, . . . , n − 1.

By Theorem 4.7, the primal geodesic equation in primal coordinates is

(5.1) θ̈k(t) + 2θ̇k(t)

n−1∑

ℓ=1

πℓ

(
θ(t)

)
θ̇ℓ(t) = 0, k = 1, . . . , n − 1.

The dual geodesic equation in dual coordinates is

(5.2) φ̈k(t) − 2φ̇k(t)

n−1∑

ℓ=1

πℓ

(
φ(t)

)
φ̇ℓ(t) = 0, k = 1, . . . , n − 1.

THEOREM 5.1 (Primal and dual geodesics). (i) Let γ : [0,1] → �n be a
primal geodesic. Then the trace of γ in �n is the Euclidean straight line in �n

joining γ (0) and γ (1).
(ii) Let γ ∗ : [0,1] → �n be a dual geodesic. For each t , let p∗(t) be the dual

Euclidean coordinate of γ (t). Then the trace of p∗ in �n is the Euclidean straight
line in �n joining p∗(0) and p∗(1).

We will prove (i) and leave (ii) to the reader. The proof makes use of the fol-
lowing lemmas.
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LEMMA 5.2. Let q, r ∈ �n and let θq and θ r their primal coordinates respec-
tively. Consider the differential equation

(5.3) h′′(t) − 2
(
h′(t)

)2
n−1∑

ℓ=1

πℓ

(
θ(t)

) θ r
ℓ − θ

q
ℓ

(1 − h(t))eθ
q
ℓ + h(t)eθ r

ℓ

= 0,

where θ(t) is defined by

(5.4) θk(t) = log
((

1 − h(t)
)
eθ

q
k + h(t)eθ r

k
)
, k = 1, . . . , n − 1.

Then there exists a unique solution h : [0,1] → R satisfying h(0) = 0, h′(t) > 0
for t ∈ [0,1], and h(1) = 1.

PROOF. First, we note that if h(t) satisfies (5.3), then for any c > 0 the map
t → h(ct) also does (with domain scaled by 1/c). Also, if h′(t0) = 0 then h(t) =

h(t0) for all t ≥ t0. Let h0(t) be a maximal solution to (5.3) defined on an interval
[0, tmax) with h0(0) = 0 and h′

0(0) > 0. Since the equation can be solved in a
neighborhood of t = 0, we have tmax > 0. By the previous remark, h0 is strictly
increasing on [0, tmax). If h0(t) hits 1 at some t = t0 < tmax, the function h(t) =

h0(t/t0) is a solution with the desired properties. In fact, we claim that

(5.5) lim
t↑tmax

h0(t) = sup
t<tmax

h0(t) = M,

where M is defined by

M := inf
{
s > 0 : min

1≤ℓ≤n−1
(1 − s)eθ

q
ℓ + seθ r

ℓ = 0
}

= min
1≤ℓ≤n−1

(
eθ

q
ℓ

eθ
q
ℓ − eθ r

ℓ

1{θ
q
ℓ >θ r

ℓ } + ∞ · 1{θ
q
ℓ ≤θ r

ℓ }

)
> 1.

Thus as h(t) approaches M from below, at least one of the fractions in (5.3) blows
up to +∞. It follows that M ′ := supt<tmax

h(t) ≤ M . Suppose on the contrary that
M ′ < M . Let h1(t), t ∈ (−ǫ, ǫ) be a solution to (5.3) satisfying h1(0) = M ′ and
h′

1(0) > 0. Note that h1 exists because the fractions in (5.3) are finite and continu-
ous near M ′ < M . Then the range of h1 contains an open interval containing M ′.
Thus, there exists t0 < tmax, c > 0 and t1 < 0 such that ct1 > −ǫ, h0(t0) = h1(ct1)

and h′
0(t0) = d

dt
h1(ct)|t=t1 . This allows us to extend the range of h0 beyond M ′

which contradicts the maximality of M ′. By the uniqueness theorem for ODE [note
that (5.3) has smooth coefficients], the solution h is unique. �

LEMMA 5.3. Let h be the solution in Lemma 5.2, and consider the curve
γ : [0,1] → �n given in exponential coordinates by (5.4). Then γ is a primal
geodesic from q to r . Moreover, the trace of γ in �n is the Euclidean straight line
in �n joining q = γ (0) and r = γ (1).
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PROOF. That γ is a primal geodesic from q to r can be verified directly by
differentiating (5.4) and plugging into the primal geodesic equation (5.1). We omit
the computational details.

To see that the trace of γ is a Euclidean straight line in �n, consider its Eu-
clidean representation p(t) = (p1(t), . . . , pn(t)). By (5.4) we have

eψ(θ(t)) =
1

pn(t)
=

(
1 − h(t)

)
eψ(θq ) + h(t)eψ(θ r ).

Solving for h(t) gives

(5.6) h(t) =
eψ(θ(t)) − eψ(θq )

eψ(θ r ) − eψ(θq )
.

Expressing (5.4) in Euclidean coordinates and using (5.6), we get after some alge-
bra that

pk(t) = eθ
q
k pn(t) +

(
1 − eψ(θq )pn(t)

) eθ r
k − eθ

q
k

eψ(θ r ) − eψ(θq )
, k = 1, . . . , n − 1.

Hence, there exists ak, bk such that

(5.7) pk(t) = ak + bkpn(t), k = 1, . . . , n − 1.

Together with the identity p1(t) + · · · + pn(t) ≡ 1, (5.7) shows that γ is a time
change of the Euclidean straight line from q to r . �

PROOF OF THEOREM 5.1. (i) We have shown in Lemma 5.3 that for any pair
of points (q, r) in �n, there exists a primal geodesic from q to r which is a time-
changed Euclidean straight line. It remains to observe that the geodesic is unique.
Indeed, let γ be any primal geodesic. Then it solves the primal geodesic equation
(5.1). Consider the initial velocity γ ′(0). Let q = γ (0). By varying r ∈ �n as well
as the initial speed, there exists a primal geodesic γ̃ in the form (5.4) from q to
r such that γ̇ (0) = ˙̃γ (0). [This is because Tq�n =

⋃
r∈�n,κ>0 κ(r − q).] By the

uniqueness theorem of ODE, we have γ (·) = γ̃ (·).
Using the dual coordinate system φ and dual Euclidean coordinate system p∗,

(ii) can be proved in a similar way by considering the curve defined by

(5.8) φk(t) = log
(

1

(1 − h(t))e−φ
q
k + h(t)e−φ

p
k

)
, k = 1, . . . , n − 1.

�

A connection is projectively flat if there is a coordinate system under which
the geodesics are straight lines up to time reparameterizations. We say that the
geometric structure (g,∇,∇∗) is dually projectively flat if both ∇ and ∇∗ are
projectively flat. In view of Theorem 5.1, we have the following corollary.

COROLLARY 5.4. The manifold �n equipped with the geometric structure
(g,∇,∇∗) is dually projectively flat, but is not flat for n ≥ 3.
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5.2. Gradient flows and inverse exponential maps. Motivated by the recent
paper [5] we relate the primal and dual geodesics with gradient flows under the L-
divergence. Fix p,q, r ∈ �n. Consider the following gradient flows starting at q:

(5.9)

{
γ̇ (t) = −gradT (r|·)

(
γ (t)

)

γ (0) = q
(primal flow)

and

(5.10)

{
γ̇ ∗(t) = −gradT (·|p)

(
γ ∗(t)

)

γ ∗(0) = q
(dual flow).

Here grad denotes the Riemannian gradient with respect to the metric g. We
call (5.9) the primal flow and (5.10) the dual flow.

It can be verified easily that

d

dt
T

(
r|γ (t)

)
= −

∥∥γ̇ (t)
∥∥2 and

d

dt
T

(
γ ∗(t)|p

)
= −

∥∥γ̇ ∗(t)
∥∥2

.

Since T (q|p) = 0 if and only if p = q , by standard ODE theory it can be shown
that the solutions γ (t) and γ ∗(t) are defined for t ∈ [0,∞) and

lim
t→∞

γ (t) = r, lim
t→∞

γ ∗(t) = p.

In other words, both gradient flows converge to the unique minimizers.

THEOREM 5.5 (Gradient flows). (i) The primal flow γ (t) is a time change of
the primal geodesic from q to r . (ii) The the dual flow γ ∗(t) is a time change of
the dual geodesic from q to p.

Recall the concept of exponential map. For q ∈ �n and v ∈ Tq�n, consider the
primal geodesic γ starting at q with initial velocity v. If γ is defined up to time 1,
we define expq(v) = γ (1). The dual exponential map exp∗ is defined analogously.
As a corollary of Theorems 5.1 and 5.5, we have the following characterization of
the primal and dual inverse exponential maps.

COROLLARY 5.6 (Inverse exponential maps). Let exp and exp∗ be the expo-
nential maps with respect to the primal and dual connections, respectively. For
p,q ∈ �n we have

(i) exp−1
q (p) ∝ −gradT (p|·)(q).

(ii) (exp∗
q)−1(p) ∝ −gradT (·|p)(q).

To prove Theorem 5.5, we begin by computing the Riemannian gradients of
T (r|·) and T (·|p). The computation is somewhat tricky and will be given in the
Appendix. Recall the notations in (4.4).
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LEMMA 5.7 (Riemannian gradients). Let p,q, r ∈ �n.

(i) Under the primal coordinate system, we have

gradT (r|·)(q) =

n−1∑

i=1

(
−

π i(θ
r , θq)

π i(θq)
+

πn(θ
r , θq)

πn(θq)

)
∂

∂θ
q
i

(5.11)

=
1

∑n
ℓ=1 πℓ(θq)eθ r

ℓ −θ
q
ℓ

n−1∑

i=1

(
−eθ r

i −θ
q
i + 1

) ∂

∂θ
q
i

.

(ii) Under the dual coordinate system, we have

gradT (·|p)(q) =

n−1∑

i=1

(
π∗

i (φ
q , φp)

π i(φq)
−

π∗
n(φ

q , φp)

πn(φq)

)
∂

∂φ
q
i

(5.12)

=
1

∑n
ℓ=1 πℓ(φq)eφ

q
ℓ −φ

p
ℓ

n−1∑

i=1

(
eφ

q
i −φ

p
i − 1

) ∂

∂φ
q
i

.

PROOF OF THEOREM 5.5. We prove (i) and leave (ii) to the reader. Let θ(t)

be the primal representation of the primal flow starting at q . By Lemma 5.7, at any
time t we have

θ̇k(t) ∝ eθ r
k −θk(t) − 1 =

1

eθk(t)

(
eθ r

k − eθk(t)
)
,

where the constant of proportionality depends on θ(t) but is independent of k. It
follows that

(5.13)
d

dt
eθk(t) ∝ eθ r

k − eθk(t), k = 1, . . . , n − 1.

Comparing (5.13) and (5.4) we see that the primal flow is a time change of the
primal geodesic. �

5.3. Generalized Pythagorean theorem. Having characterized the primal and
dual geodesics, we are ready to prove the generalized Pythagorean theorem. Our
proof makes use of the Riemannian gradients given in Lemma 5.7. The reason is
that these gradients appear to have the correct scaling which is easier to handle, as
can be seen in the proof [see (5.16)].

PROOF OF THEOREM 1.2. Given p,q, r ∈ �n, consider the primal geodesic
from q to r and the dual geodesic from q to p. Let

(5.14) u = −gradT (·|p)(q) and v = −gradT (r|·)(q).

By Theorem 5.5, u and v are proportional to the initial velocities of the two
geodesics. Thus, it suffices to prove that the sign of (1.8) is the same as that of
〈u, v〉. This claim will be established by the following two lemmas.



EXPONENTIALLY CONCAVE FUNCTIONS 1101

LEMMA 5.8. The sign of T (q|p) + T (r|q) − T (r|p) is the same as that of

(5.15) 1 −

n∑

k=1

�k(q,p)�k(r, q)

πk(q)
.

PROOF. By Lemma 3.9, the sign of T (q|p) + T (r|q) − T (r|p) is the same as
that of

(
n∑

i=1

π i

(
θp)

eθ
q
i −θ

p
i

)(
n∑

j=1

π j

(
θq)

e
θ r
j −θ

q
j

)
−

n∑

i=1

π i

(
θp)

eθ r
i −θ

p
i .

Rearranging, we have

−

n∑

i,j=1

π i

(
θp)(

δij − π j

(
θq))

e
θ r
j −θ

q
j eθ

q
i −θ

p
i .

Since scaling does not change sign, we may consider instead the quantity

−

n∑

i,j=1

π i

(
θp)(

δij − π j

(
θq))�j (θ

r , θq)

π j (θq)

�i(θ
q, θp)

π i(θp)
.

We get (5.15) by expanding. �

LEMMA 5.9. Consider the tangent vectors u and v defined by (5.14). Then

(5.16) 〈u, v〉 = 1 −

n∑

k=1

�k(θ
q, θp)�k(θ

r , θq)

πk(θq)
.

PROOF. For this computation, we use the primal coordinate system. We have

u = −gradT (·|p)(q) = −

n−1∑

i,k=1

gik(q)
∂

∂θ
q
k

T (·|p)
(
θq) ∂

∂θ
q
i

,

v = −gradT (r|·)(q) = −

n−1∑

j,ℓ=1

gjℓ(q)
∂

∂θ
q
ℓ

T (r|·)
(
θq) ∂

∂θ
q
j

.

Using the definition of the Riemannian inner product, we compute

〈u, v〉 =

n−1∑

i,j=1

gij (q)

n−1∑

k,ℓ=1

gik(q)gjℓ(q)
∂

∂θ
q
k

T (·|p)
(
θq) ∂

∂θ
q
ℓ

T (r|·)
(
θq)

=

n−1∑

k,ℓ=1

gkℓ(θq) ∂

∂θ
q
k

T (·|p)
(
θq) ∂

∂θ
q
ℓ

T (r|·)
(
θq)

.
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By (4.9), (4.18) and (A.6), we have

gkℓ(q) =
1

πk(q)

∂θℓ

∂φk

(
φq)

+
1

πn(θq)

n−1∑

α=1

∂θℓ

∂φα

(
φq)

,

∂

∂θ
q
k

T (·|p)
(
θq)

= �k

(
θq, θp)

− πk

(
θq)

,

∂

∂θ
q
ℓ

T (r|·)
(
θq)

=

n−1∑

β=1

∂φβ

∂θ
q
ℓ

(
θq)(

πβ

(
θq)

− �β

(
θ r , θq))

.

Claim. We have

〈u, v〉 =

n−1∑

k,ℓ=1

(
�k

(
θq , θp)

− πk

(
θq))(

πℓ

(
θq)

(5.17)

− �ℓ

(
θ r , θq))( δkℓ

πk(θq)
+

1

πn(θq)

)
.

To see this, write

〈u, v〉 =

n−1∑

k,β=1

(
�k

(
θq, θp)

− πk

(
θq))(

πβ

(
θq)

− �β

(
θ r , θq))

×

n−1∑

ℓ=1

(
1

πk(q)

∂φβ

∂θ
q
ℓ

(
θq)∂θℓ

∂θk

(
φq)

+
1

πn(q)

n−1∑

α=1

∂φβ

∂θ
q
ℓ

(
θq) ∂θℓ

∂φα

(
φq)

)
.

The last expression can be simplified using the identities

∂φβ

∂θ
q
ℓ

(
θq)∂θℓ

∂θk

(
φq)

= δβk,
∂φβ

∂θ
q
ℓ

(
θq) ∂θℓ

∂φα

(
φq)

= δαβ ,

and this gives the claim.
Finally, expanding and simplifying (5.17), we obtain the desired identity (5.16).

�

With these two lemmas the proof is complete. �

5.4. Application to mathematical finance. In this subsection, we explain how
the new information geometry can be applied to finance. For financial background
and further details, we refer the reader to [45]. Consider sequential investment in a
stock market with n stocks. At time t = 0,1,2, . . . , let μ(t) ∈ �n be the distribu-
tion of capital in the market. Explicitly, let Xi(t) > 0 be the market capitalization
of stock i. Then

(5.18) μi(t) =
Xi(t)

X1(t) + · · · + Xn(t)
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is the market weight of stock i.
Let π : �n → �n be a portfolio map. It defines a self-financing investment

strategy such that if the current state of the market is μ(t) = p, we distribute our
capital among the stocks according to the vector π(p). For example, if π(p) =

(0.4,0.5,0.1), we invest 40% in stock 1, 50% in stock 2, and the rest in stock 3.
After each period, we perform the necessary trading such that the proportions of
capitals invested are rebalanced to π(μ(t + 1)). If one chooses the identity map
π(p) ≡ p, the resulting portfolio is called the market portfolio which we denote
by μ. The market portfolio plays the role of benchmark.

Now let π be the portfolio map generated by an exponentially concave function
ϕ (Definition 2.4), and consider the value of the resulting portfolio beginning with
$1 at time 0. Also consider the value of the market portfolio starting with $1.
Consider the ratio

V (t) :=
value of the portfolio π at time t

value of the portfolio μ at time t

called the relative value of the portfolio π . Under suitable conditions (see [44, 45])
it can be shown that V (0) = 1 and

V (t + 1)

V (t)
=

n∑

i=1

π i

(
μ(t)

)μi(t + 1)

μi(t)
.

PROPOSITION 5.10 (Fernholz’s decomposition). [24, 45] For all time t , we
have

logV (t) =
(
ϕ

(
μ(t)

)
− ϕ

(
μ(0)

))
+

t−1∑

s=0

T
(
μ(s + 1)|μ(s)

)
.

In this sense, the cumulative L-divergence measures the volatility harvested by
the portfolio π . See [54] for optimization of this quantity.

The above discussion assumes that the portfolio rebalances every period (say
every week). In practice, due to transaction costs and other considerations, we may
want to rebalance at other frequencies. Let 0 = t0 < t1 < t2 be three time points and
consider two ways of implementing the portfolio π : (i) rebalance at times t0 and
t1 (ii) rebalance at time t0 only. By Fernholz’s decomposition, the relative values
of the two implementations at time t2 are

logV (1)(t2) =
(
ϕ

(
μ(t2)

)
− ϕ

(
μ(t0)

))
+ T

(
μ(t1)|μ(t0)

)
+ T

(
μ(t2)|μ(t1)

)
,

logV (2)(t2) =
(
ϕ

(
μ(t2)

)
− ϕ

(
μ(t0)

))
+ T

(
μ(t2)|μ(t0)

)
.

Letting μ(t0) = p, μ(t1) = q and μ(t2) = r , the difference between the two values
is

logV (1)(t2) − logV (2)(t2) = T (q|p) + T (r|q) − T (r|p).
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FIG. 3. Plots of the region {q ∈ �n : T (q|p) + T (r|q) ≤ T (r|p)} for the equal-weighted portfolio
π ≡ ( 1

3 , 1
3 , 1

3 ), for several values of p and r . Each point q on the boundary gives a ‘right-angled
geodesic triangle’ in the sense of Theorem 1.2.

By the generalized Pythagorean theorem, the sign of the difference is deter-
mined by the angle between the dual geodesic from q to p and the primal geodesic
from q to r . In Figure 3, we illustrate the result for the equal-weighted portfolio
of 3 stocks. In the figure, rebalancing at time t1 creates extra profit if and only if q

lies outside the region. This shows convincingly that rebalancing more frequently
is not always better, even in the absence of transaction costs. More importantly,
our framework provides a geometric and model-independent way of saying that
the sequence (p, q, r) is ‘more volatile’ than the subsequence (p, r).

6. Displacement interpolation. In this final section, we consider displace-
ment interpolation for the optimal transport problem formulated in Section 2.2.
We refer the reader to [50], Chapter 5, and [51], Chapter 7, for introductions to
displacement interpolation.

6.1. Time dependent transport problem. Let P (0) and P (1) be Borel probabil-
ity measures on R

n−1. Consider the transport problem with cost c given by (1.7).
Suppose the transport problem is solved in terms of the exponentially concave
function ϕ on �n. Letting f = ϕ +ψ , the (Monge) optimal transport map is given
by the c-supergradient of f . In particular, P (1) is the pushforward of P (0) under
F := ∇cf :

P (1) = F#P
(0).

The idea of displacement interpolation is to introduce an additional time struc-
ture. We want to define an ‘action’ A(·) on curves such that the cost function is
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given by

c(θ,φ) = min
γ

A(γ ),

where the minimum is taken over smooth curves γ : [0,1] → R
n−1 satisfying

γ (0) = θ and γ (1) = φ. For each pair (θ,φ), a minimizing curve γ gives a time-
dependent map transporting θ to φ along a continuous path. Let F (t) : Rn−1 →

R
n−1 be defined by F (t)(θ) = γ (t), where γ is the minimizing curve for the pair

(θ,F (θ)). We want to define A in such a way that F (t) is an optimal transport map
for the probability measures P (0) and P (t) where

P (t) =
(
F (t))

#P0.

For the classical Euclidean case with cost |x − y|2 the action is A(γ ) =∫ 1
0 |γ̇ (t)|2 dt and the optimal transport map has the form F(x) = x −∇h(x) where

h is an ordinary concave function. The displacement interpolations are linear in-
terpolations:

F (t) = (1 − t)Id + tF.

(See [50], Theorem 5.5, Theorem 5.6.) In particular, the individual trajectories
(minimizing curves) are Euclidean straight lines which can be regarded as the
geodesics of a flat geometry. In this section, we formulate and prove an analogous
statement for our transport problem.

6.2. Lagrangian action and portfolio interpolation. We begin by defining an
appropriate action. Let γ : [0,1] → R

n−1 be a smooth curve with γ (0) = θ . For
each t , define q(t) ∈ �n such that its exponential coordinate is θ − γ (t), that is,

(6.1)
qi(t)

qn(t)
= eθi−γi(t), 1 ≤ i ≤ n − 1.

Equivalently, we have qi(t) = eθi−γi(t)−ψ(θ−γ (t)), for 1 ≤ i ≤ n − 1. Intuitively,
we think of q(t) as the portfolio at time t (in the sense of interpolation). Note that
q(0) = ( 1

n
, . . . , 1

n
).

We define the Lagrangian action by

(6.2) A(γ ) =

∫ 1

0
− log

(
1

n
+ q̇n(t)

)
dt.

We take − log(·) = ∞ if the argument is not in (0,∞). An alternative representa-
tion of the action is

(6.3) A(γ ) =

∫ 1

0
− log

(
1

n
+

d

dt
e−ψ(γ (0)−γ (t))

)
dt.
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LEMMA 6.1. For any θ,φ ∈ R
n−1 we have

(6.4) c(θ,φ) = ψ(θ − φ) = min
{
A(γ ) : γ (0) = θ, γ (1) = φ

}
.

The action is minimized by the curve

(6.5) γi(t) = θi − log
(1 − t) 1

n
+ tqi(1)

(1 − t) 1
n

+ tqn(1)
, 1 ≤ i ≤ n − 1.

In particular, for this minimizing curve we have

(6.6) q(t) = (1 − t)

(
1

n
, . . . ,

1

n

)
+ tq(1).

PROOF. Fix a smooth curve γ : [0,1] → R
n−1 from θ to φ. Since − log is

convex, by Jensen’s inequality we have
∫ 1

0
− log

(
1

n
+ q̇n(t)

)
dt ≥ − log

(
1

n
+

∫ 1

0
q̇n(t) dt

)

= − log
(

1

n
+ qn(1) − qn(0)

)
= − logqn(1)(6.7)

= ψ(θ − φ).

For the curve defined by (6.5), q̇(t) = q(1) − 1
n

is constant and so equality holds
in (6.7). Finally, (6.6) follows by a direct calculation. �

6.3. Displacement interpolation. We work under the following setting. Let
P (0) and P (1) be Borel probability measures on R

n−1. Let ϕ : �n → R be an
exponentially concave function, satisfying Assumption 2.5, such that F (1) := ∇cf

is an optimal transport map (here f is the c-concave function ϕ + ψ). Let π (1) :

�n → �n be the portfolio map generated by ϕ(1) := ϕ.
Consider the flow (t, θ) → φ(t)(θ) defined by the minimizing curves (6.5), that

is,

(6.8) φ
(t)
i (θ) = θi − log

π
(t)
i (θ)

π
(t)
n (θ)

, 1 ≤ i ≤ n − 1, t ∈ [0,1],

where each π (t) : �n → �n is the portfolio map defined by

(6.9) π (t) := (1 − t)

(
1

n
, . . . ,

1

n

)
+ tπ (1), t ∈ [0,1].

The following is the main result of this section. It is interesting to note that the
displacement interpolation can be interpreted naturally as the linear interpolation
between the equal-weighted portfolio and the terminal portfolio.
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THEOREM 6.2 (Displacement interpolation). Consider the setting of Sec-
tion 6.3.

(i) For each t ∈ [0,1], the portfolio map π (t) is generated by the exponentially
concave function ϕ(t) on �n defined by

(6.10) ϕ(t)(p) = (1 − t)

n∑

i=1

1

n
logpi + tϕ(p), p ∈ �n.

(ii) For each t ∈ [0,1], let f (t) = ϕ(t) + ψ and let F (t) = ∇cf (t). If θ is dis-
tributed according to P (0), then θ (t) is distributed according to P (t) where

P (t) =
(
F (t))

#P
(0).

Moreover, F (t) is an optimal transport map for the transport problem for
(P (0),P (t)).

(iii) Endow �n with the geometric structure induced by the L-divergence of ϕ.
We further assume that the c-gradient F (1) = ∇cf : Rn−1 → R

n−1 is surjective.
For each θ ∈ R

n−1 fixed, consider the curve t → φ(t)(θ) in dual coordinates. Then
the trace of the curve is the dual geodesic joining θ and φ(1)(θ).

PROOF. (i) Follows directly from Example 2.6(iv).
(ii) It is clear that (θ,F (t)(θ)) is a coupling of (P (0),P (t)). By Proposition 2.7,

the graph of the map F (t) is c-cyclical monotone. This proves that F (t) is an opti-
mal transport map.

(iii) We write (6.8) in the form

e−φ
(t)
i = e−θi

(1 − t) 1
n

+ tπ i(θ)

(1 − t) 1
n

+ tπn(θ)

=
(1 − t) 1

n

(1 − t) 1
n

+ tπn(θ)
e−θi +

tπn(θ)

(1 − t) 1
n

+ tπn(θ)
e
−θi+log

π i (θ)

πn(θ)

=:
(
1 − h(t)

)
e−θi + h(t)e−φ

(1)
i (θ).

By (5.8), we see that t → φ(t) is a time change of a dual geodesic. The surjec-
tivity assumption guarantees that the curve lies within Y ′, the range of the dual
coordinate system. �

6.4. Another interpolation. From the financial perspective, there is another
natural interpolation, namely the linear interpolation between the market portfolio
μ [Example 2.6(i)] and the portfolio π :

(6.11) π (t) = (1 − t)π + tμ.

The corresponding log generating function is ϕ(t) = (1 − t)ϕ. From the transport
perspective, the market portfolio corresponds to the trivial transport map F(θ) ≡ 0
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[recall in Proposition 2.7(iii) that the portfolio has exponential coordinate given by
θ − F(θ)]. By the argument of Theorem 6.2, we have the following result.

PROPOSITION 6.3. Consider the geometric structure induced by ϕ and as-
sume that the range of the dual coordinate system is R

n−1. Consider the flow
(t, θ) → φ(t)(θ) in (6.8) where π (t) is given by the interpolation (6.11). Then for
each θ , in dual coordinates, the trace of the curve t → φ(t)(θ) is a time change of
the dual geodesic from φ(0)(θ) to 0.

APPENDIX: TECHNICAL PROOFS

PROOF OF THEOREM 3.2. In this proof, we treat θ and φ as independent
variables.

We prove (i) and (ii) together. We begin by observing that

(A.1)
∂

∂θi

f (θ) = π i(θ), 1 ≤ i ≤ n − 1.

To see this, write pi = eθi−ψ(θ). Switching coordinates and using the chain rule,
we have

∂

∂θi

f (θ) =

n∑

j=1

∂ϕ

∂pj

(p)(−pipj ) +
∂ϕ

∂pi

(p)pi + pi

= pi

(
1 +

∂ϕ

∂pi

(p) −

n∑

j=1

pj

∂ϕ

∂pj

(p)

)
.

From (1.4) and a bit of computation, we see that this equals π i(θ).
Consider the c-transform of f given by

(A.2) f ∗(φ) = inf
θ∈X

(
ψ(θ − φ) − f (θ)

)
.

Differentiating ψ(θ − φ) − f (θ) and using (A.1), we see that θ ∈X attains the
infimum in (A.2) if and only if

eθi−φi

∑n
j=1 eθj−φj

= π i(θ), i = 1, . . . , n − 1.

Rearranging, we have

(A.3) φi = θi − log
π i(θ)

πn(θ)
, i = 1, . . . , n − 1.

This proves that equality holds in

(A.4) f (θ) + f ∗(φ) ≤ ψ(θ − φ)
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if and only if θ and φ satisfies the relation (A.3). In particular, for θ ∈ X the c-
supergradient ∇cf (θ) is given by (A.3).

Next, we prove that the minimizer in (A.2), if exists, is unique. Consider instead
maximization of the quantity

ef (θ)−ψ(θ−φ) = eϕ(θ)+ψ(θ)−ψ(θ−φ) = �(θ)
eψ(θ)

eψ(θ−φ)
.

Expanding and switching to Euclidean coordinates, this equals

(A.5) �(p)

∑n
i=1 eθi

∑n
i=1 eθi−φi

= �(p)
1

∑n
i=1 aipi

,

where ai = e−φi > 0. Being the quotient of a strictly concave function and an
affine function, the right hand side of (A.5) is strictly quasi-concave, that is, its
superlevel sets are strictly convex (see [11], Example 3.38). This shows that the
minimizer θ in (A.2) is unique if it exists.

Let φ ∈ Y ′. Then there exists unique θ ∈X such that equality holds in (A.4) and
φ = ∇cf (θ). In particular, the c-supergradient ∂cf ∗(φ) is θ and ∇cf ∗(∇cf (θ)) =

θ . This completes the proof of (i) and (ii).
Next, we prove that ∇cf ∗ = (∇cf )−1 is smooth, so that ∇cf : X → Y ′ is

a diffeomorphism. Since ∇cf : X → Y is smooth and injective, by the inverse
function theorem it suffices to show that the Jacobian of ∇cf is invertible on X .
Invertibility of the Jacobian follows from (4.16) and the fact that (gij (ξ)) is strictly
positive definite.

Finally, by Fenchel’s identity we can express f ∗ in the form

f ∗(φ) = c
(
∇cf ∗(φ),φ

)
− f

(
∇cf ∗(φ)

)
.

Since ∇cf ∗ and the cost function c are smooth, we see that f ∗ is smooth as well.
�

PROOF OF LEMMA 5.7. (i) To prove the first formula in (5.11), we compute,
using (4.9) and (4.12),

(
gradT

(
·|θp)(

θq))
i

=

n−1∑

j=1

gij (
θq) ∂

∂θ
q
j

T
(
·|θp)(

θq)

=

n−1∑

j=1

(
1

π j (θq)

∂θi

∂φj

(
θq)

+
1

πn(θq)

n−1∑

k=1

∂θi

∂φk

(
θq)

)
(
�j

(
θq, θp)

− π j

(
θq))

=

n−1∑

j=1

(
�j (θ

q, θp)

π j (θq)
−

�n(θ
q, θp)

πn(θq)

)
∂θi

∂φj

(
θq)

.
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For the second formula, we first prove the following.

Claim. We have

(A.6)
∂

∂θ
q
j

T
(
θ r |θq)

=

n−1∑

ℓ=1

∂φℓ

∂θ
q
j

(
θq)(

πℓ

(
θq)

− �ℓ

(
θ r , θq))

.

To see this, we use (4.13), (4.5), and compute as follows:

∂

∂θ
q
j

T
(
θ r |θq)

= −�j

(
θ r , θq)

+ π j

(
θq)

+

n∑

ℓ=1

1

πℓ(θq)

∂πℓ

∂θ
q
j

(
θq)

�ℓ

(
θ r , θq)

= −�j

(
θ r , θq)

+ π j

(
θq)

+

n∑

ℓ=1

(
δℓj − π j

(
θq)

−

(
∂φℓ

∂θ
q
j

(
θq)

−

n−1∑

m=1

πm

(
θq)∂φm

∂θ
q
j

(
θq)

)
�ℓ

(
θ r , θq)

)

=

n−1∑

ℓ=1

∂φℓ

∂θ
q
j

(
θq)(

πℓ

(
θq)

− �ℓ

(
θ r , θq))

.

Now we compute, using Theorem 4.5 and the symmetry of gij ,

(
gradT (r|·)(q)

)
i

=

n−1∑

j=1

gij (
θq) ∂

∂θ
q
j

T
(
θ r |·

)(
θq)

=

n−1∑

j=1

(
1

π i(θq)

∂θj

∂φi

(
φq)

+
1

πn(θq)

n−1∑

k=1

∂θj

∂φk

(
φq)

)

×

n−1∑

ℓ=1

∂φℓ

∂θ
q
j

(
θq)(

πℓ

(
θq)

− �ℓ

(
θ r , θq))

=

n−1∑

ℓ=1

(
πℓ

(
θq)

− �ℓ

(
θ r , θq))

×

n−1∑

j=1

(
1

π i(θq)

∂φℓ

∂θ
q
j

(
φq)∂θj

∂φi

(
φq)

+
1

πn(θq)

n−1∑

k=1

∂φℓ

∂θ
q
j

(
φq) ∂θj

∂φk

(
φq)

)
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=

n−1∑

ℓ=1

(
πℓ

(
θq)

− �ℓ

(
θ r , θq))( 1

π i(θq)
δℓi +

1

πn(θq)

)

= −
�i(θ

r , θq)

π i(θq)
+

�n(θ
r , θq)

πn(θq)
.

In the second last equality we used (4.6). The proof of (ii) is similar. �
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