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We show that when a suitable entanglement-generating unitary operator depending on a parameter is
applied on N qubits in parallel, a precision of the order of 2�N in estimating the parameter may be
achieved. This exponentially improves the precision achievable in classical and in quantum nonentangling
strategies.
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The Mandelstam-Tamm version of the time energy un-
certainty relation [1] and its rigorous developments [2]
form the basis of quantum enhanced methods for parame-
ter estimation such as those used in evolving frequency
standards [3]. Giovannetti, Lloyd, and Maccone [4] have
done beautiful work to classify methods of such quantum
enhancement. A unitary transformation depending on the
parameter to be estimated is applied to a suitably prepared
system of N probes in parallel and then an appropriate
observable is measured. Their result is that quantum met-
rology parallel strategies can achieve a precision of order
N�1=2 times the classically attainable precision if the
probes are prepared in a suitable entangled state.

We propose here a parallel strategy which exploits the
Hilbert space ofN probes more fully than in previous work
[4] and thereby attains an exponentially enhanced preci-
sion. Previous work only considered applying on the pre-
pared probes a unitary operator which is a direct product of
N unitary operators each acting on a single probe. We will
show here that if instead we consider applying on the
probes, an entanglement-generating unitary operator U �
e�i�H which cannot be written as a direct product of one-
probe operators, then we can obtain an exponentially en-
hanced precision in estimating the parameter �. The fun-
damental reason for this improvement is that there are an
exponentially large number of mutually commuting ob-
servables for the N-probe system whereas the number of
mutually commuting single-probe operators is only of
order N. For instance, for the N-qubit system each qubit
cannot have more than one commuting observable and
hence there are exactly N commuting observables of the
form 1 � � � � � 1 � Aj � 1 � . . .1 each of which acts non-
trivially on only the jth qubit, with j � 1; 2; . . . ; N. We
construct sets of 2N�1 mutually commuting Hermitian
N-body Hamiltonians each of the form A1 � A2 � � � � �
AN which acts nontrivially on all the N qubits. The unitary
entanglement-generating operator is chosen to be a product
(but not a direct product) of the 2N�1 commuting unitaries
which are exponentials of these commuting Hermitian
operators times �i�. Thus we fully exploit the quantum
parallelism which is at the heart of exponential violations

of local realism [5] and of the well-known exponential
speed-up achieved in certain quantum computation tasks
[6]. The parameter � is physically the product of the time
and a coupling constant. For the probe system of N qubits
we obtain the best possible precision in � dictated by the
uncertainty principle for such entanglement-generating
unitary operators, viz., a quantum precision 2��N�1�=2

times the best possible classical precision. In traditional
quantum metrology with direct product unitary operators,
the ratio of quantum to classical precision was at best of
order N�1=2. We are thus led to a new characterization of
eight parallel quantum metrology strategies as XYZ where
each of X, Y, and Z can beQ or C. See Fig. 1. Here X and Z
specify the presence of entanglement (Q) or the absence of
entanglement (C) in the probes and observables, respec-
tively, as in [4], and the new label Y specifies whether the
unitary operator U applied on the probes is an
entanglement-generating operator (Q) or not (C).

We show that the parallel strategy CQC using an
entanglement-generating operator U just described is
enough to obtain the announced enhanced precision; en-
tanglement at the probe preparation stage and measure-
ment stage is inessential. However, practical realization of
the entangling U which is a product of 2N�1 commuting
unitaries is an experimental challenge. Here again, quan-
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FIG. 1. The eight parallel strategies XYZ for estimation of a
parameter occurring in an unitary operator U applied to N
probes. Each of X, Y, Z takes values C or Q. Y � Q if U is
an entanglement-generating operator (as considered in this
Letter) and Y � C otherwise. X, Z specify the presence of
entanglement (Q) or the absence of entanglement (C) in the
prepared probe state and in the measured operator, respectively.
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tum mechanics might come to the rescue. We propose a
quantum-optics model of laser light interacting with an
N-qubit system, say a polyatomic molecule, via a gener-
alized Jaynes-Cummings interaction which, in principle,
could achieve the exponentially enhanced precision. The
practical implementability of this model would be an
interesting subject for further theoretical and experimental
investigation.

Quantum limits on precision.—We recall first the
Mandelstam-Tamm uncertainty relations. Suppose we ap-
ply a unitary operator U � e�i�H to a probe state j�i
where H is a self-adjoint operator and � a parameter to
be estimated. We obtain the state

 j ���i � Uj�i; (1)

and then measure the observable X on this state with a view
to estimating the parameter �. Schwarz inequality yields

 �X�H � jh ���j�H;X	=�2i�j ���ij

�
1

2

��������
@h ���jXj ���i

@�

��������; (2)

where �X, �H denote the dispersions in X,H respectively.
The resulting precision in estimating � is thus given by the
uncertainty relation

 �� 
 �X
���������

@h ���jXj ���i
@�

���������
1

2�H
: (3)

In the case when the parameter � is estimated using an
estimator �est and the estimation is repeated � times, the
Cramer-Rao bound [7] was used in Ref. [2] to prove the
generalized uncertainty relation for the error estimate
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where h� � �iav denotes statistical average. The quantum
limits on precision are obtained by noting that

 �H � 1
2��max � �min�; (5)

where �max, �min denote, respectively, the maximum and
minimum eigenvalues of H which we assume to be finite.
Hence, the Mandelstam-Tamm [1] and Braunstein-Caves
[2] quantum limits on precision are given, respectively, by

 �� �
1

��max � �min�
; (6)

and

 ��� �
1

��max � �min�
���
�
p : (7)

It is clear that quantum parallel strategies to improve
precision should aim to maximize �H on the N-probe
quantum state.

Parallel strategies forN qubits.—Consider first, as in [4]
the operatorH to be a direct sum of the operatorsHj acting

on the jth probe, each Hj having the same maximum
dispersion �Hj � d. Then

 �
MN
j�1

Hj � Nd: (8)

As noted in Ref. [4] this maximum dispersion is in fact
reached when we choose the N-qubit state to be an equally
weighted superposition of the eigenvectors of H with
maximum and minimum eigenvalues. With �max � N�M
and �min � N�m where �M and �m are, respectively, the
maximum and minimum eigenvalues of eachHj we get the
above equation with d � ��M � �m�=2. Note for purposes
of comparison, that the dispersion of a sum of K classical
variablesHj

cl with a factorized joint probability distribution
is given by

 �
XK
j�1

Hj
cl �

�����������������������
XK
j�1

��Hj
cl�
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vuuut : (9)

The maximum quantum dispersion is thus
����
N
p

times the
classical value when K � N and �Hj

cl � d. This has been
exploited in Ref. [4]. We now show that the dispersion ofH
for N qubits can be made exponentially larger by appro-
priate choice of H. Consider the operator identity

 

ON
j�1

��x � i�y�
j � H � iA; (10)

where�jx and�jy are Pauli matrices for the jth qubit, andH
and iA denote, respectively, the Hermitian and anti-
Hermitian parts of the operator on the left-hand side of
the equation. Explicit expressions for H and A are conven-
iently stated in terms of the matrices �j�1� defined by

 �j��1� 
 �jx; �j��1� 
 �jy: (11)

We obtain

 H �
X

r1 ;r2 ;...;rN�1
N��even

H�r1; r2; . . . ; rN�; (12)

 H�r1; r2; . . . ; rN� 
 ��1�N�=2
ON
j�1

�j�rj�; (13)

and

 A �
X

r1 ;r2 ;...;rN�1
N��odd

A�r1; r2; . . . ; rN�; (14)

 A�r1; r2; . . . ; rN� 
 ��1��N��1�=2
ON
j�1

�j�rj�; (15)

and finally

PRL 100, 220501 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
6 JUNE 2008

220501-2



 N� �
XN
j�1

1

2
�1� rj�; (16)

is just the number of j’s with rj � �1 or the number of
�jy’s in the N-fold product of Pauli matrices in H and A.
Both H and A are sums of 2N�1 products of Pauli matrices,
each product having eigenvalues 1 and hence maximum
dispersion

 �
ON
j�1

�j�rj� � 1: (17)

The standard anticommutation rules between Pauli ma-
trices lead to

 �j�rj��
j�r0j� � �j�r0j��

j�rj�rjr
0
j; (18)

for rj, r0j � 1. Note that r1r2 . . . rN � ��1�N� . The anti-
commutation rules then imply that the set of 2N�1 products
of Pauli matrices occurring in H (or A) constitutes a set of
mutually commuting observables. Hence

 e�i�H �
Y

r1 ;r2 ;...;rN�1
N��even

e�i�H�r1;r2;...;rN�; (19)

and

 e�i�A �
Y

r1 ;r2 ;...;rN�1
N��odd

e�i�A�r1;r2;...;rN�: (20)

Further any of these 2N�1 observables in H anticom-
mutes with any of the 2N�1 observables occurring in A. In
contrast with the parallel strategy in Ref. [4], we now have

 �H � 2N�1; �A � 2N�1: (21)

Interestingly, and in contrast with Ref. [4] the maximum
dispersions of H and A are now reached in the separable
N-qubit states

 j"" . . . ""i; j## . . . ##i; (22)

each of which has

 �H � 2N�1; �A � 2N�1; (23)

where we have denoted the eigenstates of �z with eigen-
values �1 and �1 by j"i and j#i, respectively.

For comparison, the maximum classical dispersion for
the sum of 2N�1 classical variables with factorized proba-
bility distribution, each variable having maximum disper-
sion 1, would only be 2�N�1�=2.

Parallel strategy CQC with exponentially enhanced pre-
cision.—We start from one of the factorized N-qubit states
given above and apply one of the unitary operators U �
e�i�H or U � e�i�A given above. In particular, we obtain
 

j H���i � e�i�Hj"" . . . ""i � cos�2N�1��j" . . . "i

� i sin�2N�1��j# . . . #i; (24)

 

j A���i � e�i�Aj"" . . . ""i � cos�2N�1��j" . . . "i

� sin�2N�1��j# . . . #i: (25)

We may now measure the probability that all qubits are in
the up-state given by the expectation value of the direct
product of projection operators

 X �
ON
j�1

1

2
�1� �jz�: (26)

We obtain, for example, for the state j H���i

 hXi � 1
2�1� cos��2N�	; �X � 1

2j sin��2N�j: (27)

Hence, the quantum precision of estimating � is given by

 �� � 2�N; (28)

which achieves the best allowed by the uncertainty relation
since �H � 2N�1. (A similar precision is obtained by
using the state j A���i). This improves by a factor
2��N�1�=2 the best classical precision 2��N�1�=2. We see
that hXi is periodic in �, the period decreasing exponen-
tially as N becomes large. This period and the absolute
precision, however, depend on scale changes in the defini-
tion of �. They are not physically important for compari-
sons between classical and quantum precisions. If we allow
an arbitrary possibly N-dependent scale factor � in the
definition of the coupling constant gN, and set � � t�gN,
the corresponding precisions in measuring time or cou-
pling constant become �t � ��=��gN�, or �gN �
��=��t�. The important point is that both the classical
and quantum precisions scale by the same factor. Our final
result is, both for the time parameter and for the coupling
constant gN, quantum precisions can be 2��N�1�=2 times the
best possible classical precision.

A generalized Jaynes-Cummings model.—We propose a
quantum-optics model of interaction of laser light with N
qubits which could, in principle, be used to obtain expo-
nentially enhanced precision. We apply a unitary operator
to the infinite-dimensional vector space which implies an
entanglement-generating ‘‘operation’’ on the reduced den-
sity operator for N qubits.

Suppose we shine laser light of frequency � � N! on
an N-atom molecule each atom of which can be approxi-
mated to be a two-level atom or qubit with level separation
@!. We assume that on irradiation, the molecule does not
dissociate but gets excited to a higher level in which each
atom is excited to the higher level. The second quantized
interaction Hamiltonian is assumed to be

 Ĥ � Ĥ0 � ĤI; Ĥ0 �
!
2

XN
j�1

�̂jz ��âyâ; (29)

 Ĥ I �
g
2

�
â
ON
j�1

��̂x � i�̂y�j � H:c:
	
: (30)
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Here H.c. denotes Hermitian conjugate, â and ây denote
annihilation and creation operators for photons of fre-
quency �, 1

2 ��̂x � i�̂y�
j denotes the level raising operators

for the jth qubit and g � gN is a real N-dependent cou-
pling constant. It is an exactly solvable Hamiltonian with
eigenvalues

 � � �
�
n�

1

2

�


�1

2
; (31)

where n � 0; 1; 2; . . . and

 �1 �
����������������������������������������������������������
�!N ���2 � g2�n� 1�22N

q
: (32)

The corresponding eigenstates are

 

1���
2
p ��jnij�0i � �jn� 1ij�1i�; (33)

 j�0i 
 j" . . . "i; j�1i 
 j# . . . #i; (34)

 � 

����������������������������������������
1 �!N ���=�1

q

� 
 
����������������������������������������
1� �!N ���=�1

q
;

(35)

and âyâjni � njni. Interesting physics about Rabi oscil-
lations between up and down qubit states may be read off
from these equations even off-resonance, i.e., � � N!.
For the present we specialize to � � N! which implies
�Ĥ0; ĤI	 � 0. We deduce that for r � 0 and r � 1

 e�itĤjn� rij�ri � e�it�n�1=2�N!�cos�2N�1��jn� rij�ri

� i sin�2N�1��jn� 1� rij�1�ri	;

(36)

where � � tg
������������
n� 1
p

. Thus the reduced density operator
for the N qubits obtained by tracing over the photon states
undergoes the positivity and trace preserving transforma-
tion

 	̂�t� �
X
r�0;1

ĥr	̂�0�ĥ
y
r ; ĥr � e�i�Hj�rih�rj; (37)

whereH is theN-qubit spin operator given by Eq. (10). For
measurement of the observable X of Eq. (26) with hXi �
tr	̂�t�X we obtain exactly the same results on precision as
in Eqs. (27) and (28) of the previous section. Hence, for
measurement of t or g, the quantum precision is 2��N�1�=2

times the best possible classical precision.

In conclusion, we have shown that the parameter esti-
mation associated with suitable entanglement-generating
unitary operators may lead to an exponential enhancement
of accuracy over both classical schemes and nonentangling
quantum schemes. The simple physical origin is that the
magnitude of expectation value of the product (10) in a
maximally entangled state is 2N�1, whereas it could not
exceed 2N=2 if the Pauli spin operators were replaced by
classical variables with values1 and arbitrary probability
distribution. Boixo et al. [8] have recently made a nice
application of our ideas of using many-body Hamiltonians
to the measurement of N-independent coupling constants
by replacing our N-body interactions by k-body interac-
tions, with k less than N. They obtain improvements of
order N�k=2 on the classical precision. Our N-body inter-
actions arising from coupling to a rank N tensor field have
an N-dependent coupling constant. This causes no diffi-
culty since the ratio of quantum to classical precisions in
time or coupling constant 2��N�1�=2 can be verified by
measurements at just one large value of N. The exciting
thing is that unlike quantum computation, quantum met-
rology might not face formidable problems of fighting
decoherence.
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