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It is shown that homogeneous Rayleigh-Bénard flow, i.e., Rayleigh-Bénard turbulence with periodic bound-
ary conditions in all directions and a volume forcing of the temperature field by a mean gradient, has a family
of exact, exponentially growing, separable solutions of the full nonlinear system of equations. These solutions
are clearly manifest in numerical simulations above a computable critical value of the Rayleigh number. In our
numerical simulations they are subject to secondary numerical noise and resolution dependent instabilities that
limit their growth to produce statistically steady turbulent transport.
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Much effort has been expended in recent decades in
addressing the problem of heat transfer in Rayleigh-
Bénard thermal convection cells �1�. An asymptotic
high Rayleigh number heat transport scaling behavior Nu
�Ra1/2 �perhaps with logarithmic modifications�, with
Nu=Q���T /H�–1 dimensionless heat flux and Ra
=�gH3�T����–1, has been conjectured as the ultimate re-
gime �2–5,7�. While current experimental data for high Ray-
leigh numbers are controversial �8–12�, numerical simula-
tions have not been very effective in studying this regime
because of difficulties in dealing with the huge number of
degrees of freedom engendered when Rayleigh numbers
reach the order of at least 1012. Recently, some of us �5,6�
have studied a triperiodic convective cell, or homogeneous
Rayleigh-Bénard �HRB� system, in order to bridge such dif-
ficulties, and to investigate the properties of the convective
cell once the effect of boundary layers has been eliminated.
Model systems of this sort with hyperviscosity were first
investigated computationally by Borue and Orszag �13�, and
later by Celani et al. �in two spatial dimensions� �14� with
hyperviscosity and extra large scale dissipation as well.

In this Rapid Communication we point out some peculiar
properties of the HRB model that are particularly striking in
the low Rayleigh number regime, the opposite regime from
that studied in Refs. �5,6�. First we display a family of exact,
exponentially growing, separable solutions of the full nonlin-
ear HRB system. We show that these solutions are clearly
manifest in direct numerical simulations in the Rayleigh
number regime above a computable critical value. Then by
way of a careful numerical precision study we show that
these may be robust and attracting solutions of the full sys-
tem of partial differential equations.

Here we would like to anticipate that recently a cleverly
conducted series of experiments was designed such as to
reduce the influence of top and bottom plates on the physical
core of thermal convection �15�. In these experiments the
temperature gradient in the bulk of the cell is not imposed
but rather, as in fixed-flux convection �16�, measured as a

dependent parameter. Interestingly, the Nu�Ra1/2 and
Re�Ra1/2, Re=urms�L��–1, scalings observed are consistent
with HRB simulations in Refs. �5,6�.

The system to be studied is described in terms of the
following partial differential equations

ut + u · �u + �p = ��u + k�g� , �1�

�t + u · �� = ��� +
�T

H
uz, �2�

where u= �ux ,uy ,uz� is an incompressible velocity field,
� ·u=0, �, �, and �g are, respectively, the kinematic viscos-
ity, thermal diffusivity, and the thermal expansion coefficient
times the acceleration due to gravity. These equations are
used to describe the evolution of the velocity field in a triply
periodic cubic volume �0,H�3 in the presence of a tempera-

ture field T�x , t�= T̄�x�+��x , t�. The temperature is expressed

as a fluctuation � with respect to a mean profile T̄�x� that is
imposed to be equal to the mean conductive temperature pro-
file in such a Rayleigh-Bénard cell; i.e., linear and of the

form T̄�x�=−z�T /H+ 1
2�T.

When nondimensionalizing lengths with H, velocities
with � /H, and temperatures with �T, Eqs. �1� and �2� can be
rewritten as

Ut + U · �U + �P = Pr��U + k Ra �� , �3�

�t + U · �� = �� + w , �4�

where �, P, and U= �u ,v ,w� are the dimensionless tempera-
ture, pressure, and velocity fields, respectively, and Pr
�� /� and Ra��gH3�T����−1 are the Prandtl and Rayleigh
numbers. In this system periodic boundary conditions are
imposed on all the dependent variables on the cube �0,1�3.
We consider the equations of motion �3� and �4� with spa-
tially mean-zero initial data for all U and � so that solutions
subsequently remain spatially mean-zero at all times.
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With these boundary conditions there is a family of non-
linear “separable” solutions of �3� and �4� where U, �, and P
are functions only of x, y, and t but not of the vertical coor-
dinate z. To see this, let v= iu�x ,y , t�+ jv�x ,y , t� and P
=q�x ,y , t�. Then the divergence-free velocity v= �u ,v�, and
q, w, and � satisfy

vt + v · �v + �q = Pr�v , �5�

wt + v · �w = Pr��w + Ra �� , �6�

�t + v · �� = �� + w . �7�

Equation �5� is the unforced two-dimensional Navier-Stokes
equation whose solutions decay to zero exponentially in time
�17�. As v decays away, Eqs. �6� and �7� admit exact solu-
tions of the form

�w�x,y,t�
��x,y,t� � = 	w0

�0

e�t sin�kxx + kyy + 	� , �8�

with the growth rate

� = −
1

2
�Pr + 1�k2 +

1

2
��Pr + 1�2k4 + 4Pr�Ra − k4� �9�

and where 	 is an arbitrary phase. Therefore, for Ra above a
critical value Rac=k4= �2
�4 the exponential solutions are
unbounded; i.e., ��0. Since k=2
�nx ,ny�, where n�x,y are
���-integer wave numbers, we can relabel the exponent �
as ��nx ,ny�. Degenerate values of ��nx ,ny� are possible,
corresponding to different combinations of nx, ny. The
number of positive � grows asymptotically �Ra1/2. These
solutions actually transport unlimited heat because
Nu��w���exp�2�t�. Such runaway solutions and their
possible instabilities may be actually the dominant features
of the simulations in Refs. �13,14�, and in Refs. �5,6� where
a Nu�Ra1/2 dependence was observed. Therefore, the rel-
evance of computations on periodic domains as models for
the bulk of systems with essential boundaries may be argu-
able. Indeed, Borue, and Orszag �13� seemed to hint at this
issue when they remarked “It turns out that in homogeneous
convection �the heat transport, temperature and velocities�
are strongly fluctuating and intermittent in time. This fact
makes reliable measurements of �these variables� difficult.”

One of the purposes of this paper is to show that solutions
in �8� appear to be attracting and may dominate the dynamics
in numerical integrations of Eqs. �1� and �2� on fully periodic
domains at low Ra numbers. Resolution and precision diffi-
culties, however, prevent us from drawing firm conclusions
about the physics behind secondary instabilities that limit the
growth of the runaway solutions to produce statistically
steady turbulent transport in simulations at higher Ra. This
remains an open question subject to further, deeper, investi-
gations.

Indeed while unlimited heat transport could be expected
because of the solutions �8�, even at moderately low Ray-
leigh numbers simulations of the homogeneous convective
system display a statistically stationary behavior where the
growing modes, when they appear, break up due to rapid
destabilization �we limit our investigation to the Pr=1 case�.

Figure 1 shows the time derivative of the logarithm of the
Nusselt number �i.e., the volume average Nu�t�= �w��V� for
Ra�4.5104. The growth rate of Nu�t� appears to bounce
between some of the admissible exponential modes, although
in these simulations the fastest growing modes, ��0, ±1� and
��±1,0�, are never reached. The numerical results in Fig. 1
were obtained by means of a LBE algorithm at a relatively
high resolution, 2403 �see Ref. �6� for details�. The value of
Ra adopted here is a little below, but of the same order as,
the lower values of Ra for data analyzed in Ref. �6�.

To better understand the relevant features of the dynamics
of the exponentially growing solutions we have performed a
series of DNS at values of Ra only slightly above the critical
value �Ra�Rac� where just one distinct positive value of �
exists. These integrations were performed by means of a
fully dealiased pseudospectral algorithm that allows for more
flexibility. It allows the adjustment of the time step size that
is implicitly fixed by the spatial grid in the LBE, and gives
clearer control of the scales involved in the dynamics. Fur-
thermore, because we are interested here in the low-Ra re-
gime, it is reasonable to perform numerical simulations with
lower resolutions �i.e., 323 or 643�. Nevertheless, we caution
that in case of unlimited exponential growth any spatial reso-
lution may be insufficient at some point in time.

Figure 2 displays the temporal behavior of the global
�spatial� rms values of the three velocity components. For
clarity the temperature � has been omitted from the figure
because it is strongly correlated with w, almost coincident
with it. As expected from the unstable analytic solution, w
grows at an exponential rate � exp��t� while the horizontal
components �u ,v� rapidly decrease.

The plateaux in Fig. 1 and the linear growth �on the
linear-log scale� in Fig. 2 indicate the presence of exponen-
tially growing solutions, but it is difficult to determine the
nature of the sudden departures from this state. Secondary

FIG. 1. Derivative with respect to time of the logarithm
of Nu�t�, in a homogeneous convective system at Ra
=4.5104�30Rac. The direct numerical simulation �DNS� is
implemented through a Lattice Boltzmann equation �LBE� algo-
rithm on a cubic grid with resolution 2403, as in Refs. �5,6�. Hori-
zontal lines, from top to bottom, correspond respectively to values
2��0,1�, 2��1,1�, 2��0,2�, 2��0,2�, and the zero level. The time,
here and in the following figures, is dimensionless as for the set of
Eqs. �3� and �4�, i.e., it has been normalized by the thermal diffu-
sion time across the box, H2 /�.
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instabilities are necessary to limit the growth of the runaway
solutions and produce z-dependent states that represent
steady turbulent transport. However, Fig. 3 is a comparison
between floating point and double precision calculations for
the mean squared velocity components indicating the sensi-
tivity of the exponential solutions to random perturbations
generated by round-off noise and discretization errors.

The simulations indicated that the breakdown of the ex-
ponentially growing solutions for w and � and the exponen-
tially decaying solutions for u and v is first signaled in these
horizontal components. It is not clear at this point what are
the relevant scales involved in this process for Ra�Rac, al-
though we observe that the growth of the horizontal compo-
nents destabilizes the exponentially growing modes, leading
to a fast redistribution of energy at all scales. At the peak,
when w and � reach their maxima, almost flat energy spectra
are produced irrespective of the resolution adopted. Subse-
quently the high wave vector dissipation takes over and the
process is repeated, repeating the previous exponential
growth. In summary, our simulations suggest that the expo-

nential solutions may in fact be attracting for a broad class of
initial conditions, although subject to some finite amplitude
instabilities.

There are other problems where extreme limits of models
introduce runaway solutions such as those appearing here. A
distinct example is zero-Prandtl number Rayleigh-Bénard
convection �18,19� where the singular limit of the Bouss-
inesq equations admits exponentially growing solutions even
in the presence of rigid �albeit free-slip� boundaries. It was
long ago observed in double diffusive convection in the ab-
sence of rigid boundaries that linearly unstable modes repre-
senting “salt fingers” are exact solutions of the nonlinear
equations �20,21�.

Another model implemented with fully periodic condi-
tions to avoid boundary layers, in which a similar nonlinear
separation of variables appears, is shear-driven turbulence. In
that model the fluctuations about an imposed mean shear
flow iSy obey

ut + u · �u + Sy�xu + iSv + �p = ��u . �10�

Fully periodic conditions cannot be implemented directly
here, though, due to the presence of the incompatible opera-
tor Sy�x �explicitely nonperiodic in y�. It was noted �22� that
periodic conditions can be imposed on independent variables
x�=x−Syt, y�=y, z�=z, and t�= t, and this transformation has
been used to perform numerical simulations of “homoge-
neous shear flow” �23�.

These periodic conditions also allow for an exact nonlin-
ear separation of the cross-stream and stream-wise compo-
nents. Indeed, the change of variables implies

� → �� − jSt�x� and ut + Sy�xu = ut�. �11�

Thus, acting on functions only of y�, z�, and t�, the operators
�=��= j�y�+k�z� and �=��=�y�

2 +�z�
2 . Hence, the system

�10� separates for solutions depending only on y�, z� and
t�: the two-dimensional divergence-free velocity fields
v= jv�y� ,z� , t��+kw�y� ,z� , t�� and pressure p�y� ,z� , t�� sat-
isfy the unforced Navier-Stokes equation

vt + v · ��v + ��p = ���v , �12�

and the stream-wise component u�y� ,z� , t�� evolves accord-
ing to the linear inhomogeneous equation

ut + v · ��u + Sv = ���u . �13�

These equations do not �apparently� support unbounded ex-
ponentially growing fields but they do display non-normal
transient growth among their fully nonlinear exact solutions.
Indeed, the decaying solutions of �12�

v = �e−��k2
2+k3

2�t� sin�k2y� + k3z� + 	��jk3 − kk2� �14�

produce a stream-wise flow of the form

u = �U − �Sk2t��e−��k2
2+k3

2�t� sin�k2y� + k3z� + 	� , �15�

where U and � are set by initial conditions. The
peak amplitude upeak=−e−1�Sk3 /��k2

2+k3
2� �when U=0�

may be extremely large at high Reynolds number when
Sk3 /��k2

2+k3
2��1. This is consistent with the behavior re-

ported by Pumir and Shraiman based on their direct numeri-

FIG. 2. Linear-log plot of the spatial rms value of the three
velocity component and the thermal fluctuation in the DNS at reso-
lution 323, wrms �solid�, urms �dashed�, and vrms �dotted�.

FIG. 3. A comparison between floating point �solid� and double
precision �dashed� calculations for the root mean squared velocity
component w, and �u2+v2�1/2 vs time, with spatial resolution 323

and second order Adams-Bashforth as time marching algorithm.

EXPONENTIALLY GROWING SOLUTIONS IN¼ PHYSICAL REVIEW E 73, 035301�R� �2006�

RAPID COMMUNICATIONS

035301-3



cal simulations �23�: “The transient regime is characterized
by a violent growth of the kinetic energy¼ While this
growth eventually stops¼the turbulent regime that follows
exhibits large fluctuations of spatially averaged quantities¼
Because of the unusually large level of fluctuations, very
long runs are necessary to get steady averages, which ex-
plains why we chose to work at moderate resolution.”

We conclude that the imposition of periodic boundary
conditions may admit an exact nonlinear separability that
allows for larger fluctuations than are possible in the pres-
ence of rigid boundaries. In full three-dimensional simula-
tions of some of these systems, secondary instabilities are the
only limiting processes that can lead to finite statistically
steady turbulent transport. Among the delicate—and cur-
rently unresolved—issues is the question of how sensitive
the statistics of high Ra �or Re� simulations may be to nu-
merical discretization and noise. Nevertheless the HRB

model, although physically unrealizable because of the
boundary conditions, has stimulated interesting experiments
�15� where the effect of the thermal boundaries has been
reduced to reveal the Nu�Ra1/2 scaling observed in the high
Rayleigh number simulations �5,6�.
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been supported by ORS. C.R.D., J.D.G., and A.T. acknowl-
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