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Re-expansions are found for the optimal remainder terms in the well-known 
asymptotic series solutions of homogeneous linear differential equations of the 
second order in the neighbourhood of an irregular singularity of rank one. The 
re-expansions are in terms of generalized exponential integrals and have greater 
regions of validity than the original expansions, as well being considerably more 
accurate and providing a smooth interpretation of the Stokes phenomenon. They 
are also of strikingly simple form. In addition, explicit asymptotic expansions for 
the higher coefficients of the original asymptotic solutions are obtained. 

1. Introduction 

The general homogeneous linear differential equation of the second order is given 
by 

Lw=O, (1.1) 

where the operator L is of the form 

d2 d 
L = dz2 + f(z) dz + g(z). (1.2) 

If, as we shall suppose, the point at infinity is an irregular singularity of rank 
one, then the functions f(z) and g(z) can be expanded in power series 

00 f. 
f(z) = '°' -, 

L.. z• 
s=O 

00 

g(z)= '°'g., 
L._, zS 
s=O 

(1.3) 

that converge in an unbounded open annulus A centred at the origin. Not all 
of the coefficients / 0 , g0 and 91 vanish, otherwise infinity would be a regular 
singularity. 

The asymptotic theory of solutions of (1.1) in these circumstances is well known 
and will be found, for example, in Olver (1974, eh. 7, §§ 1-2). Following the nota­
tions used in this reference, we shall assume, without loss of generality, that the 
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40 A.B. Olde Daalhuis and F. W.J. Giver 

roots >.1 and ,\2 of the characteristic equation 

>.2 + fo>. + 90 = 0 (1.4) 

are distinct.t Then equation (1.1) has unique solutions w1 (z) and w2(z) such that 

(1.5) 

as z-+ oo in the sector lph{ (>.2 - >-1)z }! ~ ~7r - 8, and 

(1.6) 

as z-+ oo in the sector lph{(>.1 - .A2)z}! ~ ~7r - 8. Here (and elsewhere in this 
paper) 8 denotes an arbitrary small positive constant, and the exponents µi, µ2 

and the coefficients a.,1 , a.,2 may be found by formal substitution in (1.1) (see 
§ 2 below). Any branches may be taken for zµ 1 and zl-'2, provided that they are 
continuous and used consistently throughout. 

In the special case in which L is the confluent hypergeometric differential op­
erator, it is known (Olver 1991b, 1993; Paris 1992b) that the remainder terms 
associated with the expansions (1.5) and (1.6) can be re-expanded in such a way 
that these expansions are exponentially improved in the sense defined in Olver 
{1991a, b); furthermore, the sectors of validity are increased. The purpose of this 
paper is to develop a similar theory for the more general cruse. Earlier work on this 
problem includes the formal research of Berry (1990) and the rigorous analysis 
of Paris (1992a). The latter applies to certain differential equations that can be 
solved exactly in terms of Mellin-Barnes integrals. The investigation whose aims 
are closest to those of this paper is that of McLeod (1992); however, McLeod's 
results are neither so general nor so powerful as the ones we shall develop. 

As in the earlier references, the re-expansions of the remainder terms will be 
expressed in terms of generalized exponential integrals (or incomplete Gamma 
functions), defined by 

e-"' loo e-.zttp-1 
Fp(z) = -2 1 dt, 

7f' 0 +t 
(1.7) 

when !Rp > 0 and !phz! < !rr, and by analytic continuation elsewhere. Relevant 
properties of these functions will be found in Olver (1993, § 2). 

The original intention was to use a direct differential-equation approach as in 
the special case treated in Olver (1993). However, significant difficulties appear 
in the analysis that are absent from the proofs in that reference. Thus it is 
necessary, at first, to match the optimal remainder terms by a double series of F­
functions, rather than a single series; furthermore, the coefficients in the double 
series are unavailable in simple explicit form. To prove that the double series 
may be reduced to a single series, with explicit coefficients, elaborate indirect 
arguments based on limiting forms of the double series have to be used. 

The approach in this paper is quite different. By using the connection formu-

t The case >.1 = >.2 can alwa.ys be handled by application of a preliminary transformation due to 
Fabry (Olver 1974, eh. 7, § 1.3). 
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lae for the solutions and contour integration we construct Stieltjes-type trans­

forms for the remainder terms, from which the desired re-expansions can be 

found directly.:j: Not only is the analysis considerably simpler; it will lend it­

self more readily to further developments and extensions. These include higher 

re-expansions of remainder terms (hyperasymptotics), and differential equations 

of other orders or with other types of singularity. 

We should also add that if the theorems of this paper are applied to the conflu­

ent hypergeometric equation, then the results agree with those of Olver (1993). 

2. Main results 

If we replace the independent variable z by z/(>..2 ->..1), then the essential form 

(1.2) of the differential operator Lis unchanged, but the new characteristic values 

satisfy 

(2.1) 

The effect of this transformation is to simplify considerably the notation in subse­

quent analyses; in consequence, throughout the rest of this paper we 8hall assume 

that the condition ( 2 .1) is satisfied. 

The branches of the asymptotic solutions a.re chosen to be 

00 

wi(z),..., e>-1zzµ1 E a.~ 1 , \phzi ~ ~7r - 8, 
s=O z 

(2.2) 

and 
00 

w2 (z) ""'e>-2""zl-'2 E a•:2 , -~71' + 15 ~ phz ~ ~7r - 8; (2.3) 
s=O z 

compare (1.5) and (1.6). The characteristic values >..1, )...2 are the roots of the 

quadratic equation (1.4), and the exponents µ 1 and µ 2 are given by 

µ1 = !1">..1 + g1, µz = -(!1>..2 + 91). (2.4) 

The coefficients are determined by a0 ,1 = a0,2 = 1 and, when s ~ 1, 

-sas,1 = (s - µi)(s - 1 - µi)as-1,1 

8 

+ :Z::P'ifj+l + 9i+l - (s - j - µi)fi}as-j,1, (2.5) 
j:::l 

s 

+ :Z::PdH1 + 9Hl - (s - j - µ2)fj}as-j,2· (2.6) 
j:l 

A direct consequence of (1.3) is that w1(ze-2"i) and w2(ze2"1) are also solutions 

of (1.1). Note that w1 (z) and e2"iµ 1 w1 (ze-2rri) are dominant solutions in the sector 

:j: These tra.nBforms can be regarded as 'resurgence relations' in the terminology of Berry (1991) and 

Berry & Howls (1991). Perhaps it should be noted that Stieltjes transforms were used by Oiver (1990) and 

Boyd (1990), respectively, in deriving exponentially improved asymptotic expansions for the confluent 

hypergeometric function and a modified Bessel function via integral-representation approaches. 
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42 A.B. Olde Daalhuis and F. W.J. Olver 

~7r + {; ~ phz ~ ~'Tr - o and have exactly the same asymptotic expansion there. 

Similarly for w2 (z) and e-2 :rriµ2 w2 (ze2"i) in the sector jphzj ~ ~11" -8. Thus there 

a.re constants C1 and 0 2 such that 

w1(z) = e2"iµ1w1(ze-2"i) + C1w2(z), 

w2 (z) = e-2'll"iµ.2 w2(ze2";) + C2w1(z). 

(2.7) 

(2.8) 

Formulae (2. 7) and (2.8) are called the connection formulae, and we assume the 

constants C1 and G2 to be known. 

The remainder of this paper is devoted to the proof of the following theorems. 

Theorem 2. 1. Let m be an arbitrary E.xed non-negative integer. Then as 

s-; 00 

6 (µ2-µ1)"' 

aa,1 = (- )8 
2 . 

'][''/, 

x { C1 ~ (-)1aj,2I'(s + µ2 - µ1 - j) + I'(s + µ2 - µ1 - m)O(l) }, (2.9) 

Theorem 2.2. Define R~ 1 1 l(z) and R~ 2 l(z) by 

where 

n-1 

W1(z) = e>.'zzµi L as~1 + R~ll(z), 
s=O z 
n-l 

w2(z) = e>.2zzµ2 L as;2 + R~2l(z), 
s=:O z 

n == izl +a, 

and a is bounded as !zl -; oo. Then 

R~1l(z) = (-r-1ie(µ2-1,,l·•"e>-2•z1-'2 

(2.11) 

(2.12) 

(2.13) 

X {c1 1 ~ (-)'as,2 Fn+µ,~:i-s(z) + R~~~,..(z)}, (2.14) 

•=O 
R~l(z) == (-rie(µ2-µiJ'f'ie>-1zzJ.11 

x {c ~1 (-)8a Fn+µ.1-µrs(ze-"i) + R(2J ( )} (2.15) 
2 ~ s,1 z• m,n Z , 

where m is an arbitrary fixed non-negative integer, and for large lzl 

R~'.n(z) = O(e-\z\-z:z-m), lphz! ~ 7f 1 
(2.16) 

R~~n(z) = O(z-m), 7f ~ jphz! ~ ~11' - 8, (2.17) 

R~~n(z) = O(e-lz\+zz-m), 0 ~ phz ~ 271", (2.18) 

R~~n(z) = O(z-m), - ~1T + 6 ~ phz ~ 0 and 271' ~ phz ~ ~1!' - b,(2.19) 
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Exponentially improved asymptotic solutions. II 43 

uniformly with respect to phz in each case. 
Furthermore if 0 1 and 0 2 are both non-zero, then the sectors of validity are 

maximal. 

Remark (i).The results (2.9) and (2.10) are investigated in Olver (1994) using 
elementary analysis based on the recurrence relations (2.5) and (2.6). 

Remark (ii). In consequence of (2.9) and (2.10), when 0 1 and 02 are non-zero 
the condition that a be bounded in equation (2.13) includes the situation in which 
the series in (2.11) and (2.12) are truncated at their optimal stages. 

Remark (iii). At first sight it may seem remarkable that the coefficients a.,2 that 
appear in the re-expansion (2.14) of the optimal remainder term in the expansion 
(2.2) for w 1 (z) are the same as those in the expansion (2.3) for w2 (z). One way 

to understand this phenomenon is as follows. If an expansion of the form (2.14) 
holds throughout the sector jphzj ~ ~71' - 8, then from (2.17) and Olver (1993, 
eqn (2.11)), we see that in the outermost parts of this sector the contribution 
of (2.14) is dominant when compared with the finite sum in (2.11) and must 
therefore match the expansions for w1(z) in these outer regions obtained by use 
of connection formulae typified by (2.7). A similar observation applies to the 

coefficients as,1 in (2.15). 
Remark (iv). Corresponding results for other phase ranges can be derived easily 

from the stated results. For example, since w2 (ze2,..i) is another solution of (1.1), 
on replacing z by ze2,,.i throughout (2.12), (2.15), (2.18) a.nd (2.19), we obtain a 

similar expansion for a solution in the phase range -111" + 6 ~ phz ~ ~11" - 6. 
Remark (v). If 0 1 == 0, then equations (2.14), (2.16f, (2.17) combine into 

R~l(z) = O(e-lzl+>.1zzµrm), jphzl ~ 71', 

and 
R~ 1 >(z) = O(e>.2zzµ 2 -m), 11" ~ jphzj ~ ~11" - 8, 

for any integer m; compare (2.1). Actually, a stronger result applies in this case 
and it can be derived directly as follows. 

From (2.7) we see that when C1 = 0 we have 

w1(z) = e2,,.iµ'w1(ze-2 .. i). 

Accordingly, the function e->-1 zz-f'1 w1(z) is single-valued and analytic on A. In 

consequence (Olver 1974, eh. 1, § 7.5) the expansion 

converges on A. Let p be any constant tha.t exceeds the radius of the boundary 

of A. Since a •. 1/ p8 -+ 0 as s -+ oo, it follows that 

las,11 ~ Hp•, 

where His assignable independently of s. Hence if lzl > p we have 

!R~ll(z)! = le>.1zzµ' f: a.,1 I~ Hle>-1zzµ1I (_p_)n _lzl_ 
it=n z• [z[ lzl - P 

= (i~I) lzl e>-1zzµ1-"0{l); 
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44 A.B. Olde Daalhuis and F. W.J. Olver 

compare (2.13). Furthermorei this estimate applies without restriction on phz. 

Similarly, (2.18) and (2.19) may be strengthened when C2 = 0. 

3. Stieltjes-type transforms for the coefficients and remainder terms 

Let us define 

v1(z) = e-Aizz-µ'- 1w1(z), v2(z) == e->.izz-µ 1 - 1w2(z), (3.1) 

so that for large lz\ 

jphzj ~ ~7r - 6, (3.2) 

(3.3) 

compare (2.1), (2.2) and (2.3). 

Lemma 3.1. Let p be any constant such that p - 6 exceeds the radius of the 

boundary of A,t and X any constant in the closed interval [-}7r + 6, t7r - 6]. 

Then 
C1 ooe<x+")' V2(t) 1 lpeV!'+>r)i V1(t) 

v1 (z) = --.1 -dt- -. --dt, 
27ri pe(X+>r)i t - z 21fZ pe(X-1r)i t - z 

(3.4) 

valid when z lies in the annular sector 

Jzj > p, X-1f < phz < X+1f. (3.5) 

In (3.4) the path in the first integral is a straight line, and in the second integral 

it is an arc of the circle Jtj = p described in the positive sense. 

Pmof. From (2.7) and (3.1) we have 

C1v2(t) = v1(t) -v1(te-2"i). 

Accordingly, if r is any positive number exceeding p and jzl, it follows that 

j re<x+n)< V (t) re<x+ .. )i V (t) re<X+w)i (t -2rri) 

C1 - 2- dt = 1 -1-dt - f vi e dt 
pe(X+w)< t - Z pelX+.-Ji t - Z Jpe(X+,,)i t - Z 

re<x+,,)i Vi(t) rc(X-w)> Vi(t) 
= r -dt- r -dt. (3.6) 

lpe(X+,,)i t - Z } 1,,,(X-,,)i t - Z 

By .application of Cauchy's theorem to the contour indicated in figure 1, we 

obtam 

1 (lre<x+.-)1 reCX-,,.)l peCX-"J' perx+,.)i) V (t) 

V1(z)=--, +1 +1 +j -1-dt. (3.7) 
27T'i pe(X+n)i re(Xt.-)i reCX-,,)i pe<X-•)i t - Z 

Let r -t oo. Since X - .7r ~ -~71' + 8 and X + rr ~ ~71' - 5, it followfj from (3.2) 

that v1(t) == 0(1/r), uruformly on the circular arc of radius r. Hence the limiting 

t Actually, until §4 it would suffice for p to exceed the radius of the boundary of A. 
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Figure 1. t-plane. Contour for equation (3.7). 

value of the integral around this arc is zero. The desired result (3.4) is obtained 

by combining (3.6) and (3.7), and then taking the limit. 

Lemma 3.2. Assume the conditions of Lemma 3.1, and let n be an arbitrary 

non-negative integer. Then 

1 { OOCXi pe(X+1')i } 

aa,1 = -2 . (-)s-lC1 { , V2(te"')t" dt + { , V1(t)t8 dt , 
7ri } peX• }pe(X-·•» 

(3.8) 

Proof. To prove this result, we substitute into (3.4) by means of the expansion 

1 n-1 ts in 

t-z =-2= z•+l + zn(t-z)' 
s=O 

and subsequently replace t by te71'i in the integrals along the straight-line paths. 

We obtain 
n-1 -

w1(z) = e>. 1zz"1 I: a•:1 + fl~l(z), 
s=O Z 

(3.10) 

(3.11) 

and 
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46 A.B. Olde Daalhuis and F. W.J. Olver 

Obviously, Lemma 3.2 will follow if we can show that ii8,1 = a •. 1 and .R~l(z) = 
R~ 1 )(z). For this purpose we assume temporarily that n is fixed and z is large 

with phz = 0. With the aid of (3.3) we easily deduce from (3.12) that in these 

circumstances we have 

R~)(z) = e>-1 zzµ 1 0(z-n). (3.13) 

On comparing (3.10) and (3.13) with (2.2) and recalling that asymptotic expan­

sions of Poincare type are unique, we deduce that iis,1 == as,l> s = 0, 1, ... , n - 1, 

and hence from (2.11) and (3.10) that R~ 1 l(z) = R~ 1 l(z), (if phz = 0 or not). 

4. Proof of Theorem 2.1 

Lemma 4.1. Let m be a.n arbitrary flxed non-negative integer, and t lie in 

the annular sector 

It! ?- P - o, Jphti ~ ~7!' - o. ( 4.1) 

Then 

v2(te'") = -e(µ.2-1L1)11"ie-ttµ2-µ1-1 {'I:\-)i af;2 + <P;~t)}' ( 4.2) 

3==0 

where 

)cPm(t)j ~ Pm, 

and ~m is assignable independently oft. 

(4.3) 

This result is an immediate consequence of (3.3) and the fact that v2 (te,..;) is 

analytic on the annular sector (4.1). 

To prove Theorem 2.1 we set X = 0 in (3.8). We obtain 

C oo 1 pe"' 

a .• ,1 = (-) 8 -
1 -2 

1. J v2(te.,,.i)t8dt+ -2 . f v1(t)t 3 dt. (4.4) 
11'2 p 11'2 }pe-"i 

In the second integral, v1 ( t) is bounded on the path of integration; accordingly 

l fJ<l"' 

pe-"' v1(t)t•dt = O(p3
), s-> oo. 

In the first integral, we may substitute in the integrand by means of Lemma 4.1. 

This yields 

Now, 

(
00 

-tts+1.1:0-;ii-j-ldt I'( + ') ( . ) 
JP e = s µ2 - µ1 - J - Is+ µ2 - µ1 - J, p 

= I'(s + µ2 - µ1 - j) + s-1o(p•), s __. oo. 

Proc. R. Soc. Lond. A (1994) 



Exponentially improved asymptotic solutions. II 47 

(This step follows from the well-known power-series expansion for the incomplete 

Gamma function, given for example in Olver (1974, eh. 2, §5.1).) For the other 
integral in (4.5) we have 

I loo e-tts+µz-µi-m-1</Jm(t) dtl ~ {Pm i"" e-tt•+~µz-~µ,-m-1 dt 

< PmI'(s + lR.µ,2 - ~µ1 - m), 

provided that s > !Rµ1 - !Rµ2 + m. 
On combining the foregoing results we arrive at 

e(µ2-1.Li)rri { m-1 . } 

as,1=(-)" 2 . C1'L:(-)3a1,2I'(s+µ2-µ1-j)+em,•, 
7ft j=O 

where, for large s, 

em,•= O(p") + C1I'(s + ~µ2 - ~µ1 - m)O(l) ~ I'(s + µ2 - µ1 - m)O(l). 

This establishes (2.9). The proof of (2.10) is similar.t 

5. Proof of Theorem 2.2 for w1 (z) when [phzj ~ 7r - 8 

From (3.9) with X = 0 we obtain 

>.1z l'l { 1"" (t 'lri)t" 1pe"i (t)t" } 
R~ll(z) = - e . :_1 (-)"C1 V2 e dt + . _v1 __ dt ' 

2mz p t + z pe-"' t - z 
(5.1) 

valid when lzl > p and jphz[ < 7f. For the second integral we note that it - z[ ~ 
lzl - p and that \v1 (t)i is bounded on the integration path. In consequence, when 

lzl--+ oo with l[zi - nl bounded (compare (2.13)), we derive 

[Pe"' vi(t)t" dt = ~O(p"), (5.2) 
Jpe-"' t - Z Z 

uniformly for all values of phz. 
In the first integral in (5.1) we may substitute by means of Lemma. 4.1. From 

(1.7) we see that when n > !R(µ 1 - µ,2 ) + m - 1 

[phzi < 7r. (5.3) 

- sg;n(z) + s~;;n(z) }, (5.4) 

t Alternatively, we can interchange the roles of w1(z) and w2(z) as indicated in§ 7 below. 
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48 A.B. Olde Daalhuis and F. W.J. Olver 

where 

and 

3(2) (z) = (00 e-ttn+µ.rµ,1-m-l <Pm (t) dt. 

m,n }P t + z 

In S~,;-!n(z) we have Jt + z[ ~ [z! - p. Hence 

1 m-1 1 

js;;~,.(z)I ~ -1 I - _L laj,2l'Y(n + 'iRµ2 - ~µ1 - j, p) = -1 1-o(pn) (5.5) 
Z p j=O Z n 

as [z!-+ oo with llzl-nl bounded, uniformly for all values of phz; compare (4.6). 

For s~;n(z) we restrict !phz[ ~ 1r - 6(< 7r). Then It+ zl ~ lzlsin8 on the 

integration path. Using also the bound (4.3), we find that when n > 1R(µ 1 -µ2)+m 

13(2) (z)I ~ <P':' ["'° e-ttn+!Rµ,2-!Rµ 1-m-l dt < WmI'(n + 1Rµ~ - lRµ1 - m). 
I m,n \z\smo }11 Jz[sm6 

On combining the foregoing results and referring to (2.1) and (2.14), we perceive 

that 

R~'.n(z) = e-•z-n-M+"1 { O(pn) + I'(n + 1Rµ2 - lRµ1 - m)O(l) }. 

Applying Stirling's formula and recalling again that Jzl and n are related by 

(2.13), with a bounded, we see that when !phz[ ~ 7f - S we have 

R;;;_:n(z) = e-.. z-n-µ. 2+µ,e-nnn+!Rµ.,-!Rµ, 1-m-!0(1) ~ e-z-lziO(z-m-!). (5.6) 

This result agrees with (2.16); indeed, in the present circumstances it is stronger 

by a factor O(z-!). 

6. Proof of Theorem 2.2 for w1(z) when jphz\ ~ ~1r-3c5 

Lemma 6.1. Let A 1 and A 2 denote the closed annular sectors 

Then 

A1 = { r : [rj ~ p, - ~'lr + 2c5 :::; phT ~ ~7r - 28}, 

A2={r: Jrj~p+8, -~71"+3c5:::;phT~~n-3c5}. 

(6.1) 

where <Pm(t) is denned as in Lemma 4.1 and Wm is assignable independently oft 

and z, provided that t E A 1 and ze-,,-i E A 2 • 

Proof. This result can be proved in various ways. We shall proceed as follows. 

Write ( = ze-,,-i, so that 

(6.2) 

Pree. R. Sec. Lond. A (1994) 
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/ l•-sl=2a 

@- lr-~= 

Figure 2. T-plane. &Ao is the boundary of Ao, etc. 

Also define 

Because p - 8 exceeds the radius of the boundary of A (Lemma 3.1), we have 

A ~ Ao :.) A1 :.) A2· 

From figure 2 it is clear that we can find a positive constant rr such that if 

( E A 2 , then the closed disc \r - (I ~ CT lies in A1 and the closed disc lr -(\ ~ 2a 

lies in A0.t Accordingly, if ( E A2 and 0 < It - (\ ~ CT, then 

<Pm(t) - efJrn(() = _1 1 c/>m(r) dr. 

t - ( 2?ri IT-(1=2<r ( T - t)( T - () 

With the aid of Lemma 4.1 we then derive 

I <f>m(t) - c/>m(() I~ 2 0"~ = {Pm. 
t - ( a · 2a CJ 

(6.3) 

On the other hand, if ( E A 2 and t E A 1 with It - (I > rr, then we have directly 

I </>m(t) - ef>m(() I ~ 2{flm. 
t -( a 

(6.4) 

Combination of (6.2), (6.3) and (6.4) establishes (6.1) (with Wm = 2Wm/u), 

provided that t f. ze-"i. The last condition is removed on replacing the left­

hand side of (6.1) by its limiting value. 

t In fact, it suffices that a be bounded by S and ( ~ p + ~S)sin28. 
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p 

Figure 3. t-plane. 

To continue the proof of Theorem 2.2 we set X = tn - 28 in (3.9). We obtain 

e>-1•z1J.1 { 1ooe(!,,-26)i V (terri)t" lpe<~ ... -26)> V (t)tn } 
RC1l(.z) = - (-)'1-C 2 dt+ - 1--dt 

n 2?rizn-I 1 pel !.--26)i t + Z pe<-!,.-26)1 t - z ' 

(6.5) 
valid when \z\ > p and - ~7f - 26 < phz < ~7f - 28. As in (5.2) it follows that 

pa(~.--26)i Vi(t)tn 1 n 
f --dt = -O(p ) 
Jpe<-~"-26)1 i - Z Z 

(6.6) 

as \zl -+ oo with /Jzl - n/ bounded. 
Next, by substitution of ( 4.2) we obtain 

j oocC!n-26)1 V2 (te71'i)f" dt 

pee !"-26)< t + z 

+ roo~(~ ... -26)< e-ttn+1•2-µ.1-m-l <Pm(t) dt}. (6.7) 

Jpe('tn-26)> t + Z 

Bearing in mind that \ze-"i\ > p and -~1T - 28 < ph(ze-"i) < ~7!' - 2b we 

may deform the path for the integrals under the summation sign, as indicated in 
figure 3. Thus we have 
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By analytic continuation of (5.3) it follows that 

1ooec!.--26)i e-ttn+µ2-µ,-j-l 

------dt = 21rezzn+µ,,-µ,,-j-l Fn+µ 2 -µ,,-j(z). 
o t+z 
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And as in the derivation of (5.2) and (5.5) we see that the contributions of 
the second and thi;rd integrals in the right member of (6.8) are z- 10(pn) and 

(zn)- 10(pn) respectively. Hence we have 

m-1 . jooe<!"-26Ji e-ttn+µ,2-µ1-j-l 

?::: ( - )3 aj,2 c !,,--26>• t + z dt 
J=O pe 

m-1 . F. ·(z) 1 
= 27rezzn+µ2-µ1-l '\:""'(-)1a·2 n+µ,-µ,-3 +-O(pn). (6.9) 

{--; 3' zJ z 
J=O 

To estimate the remaining integral in (6.7) we decompose it as follows: 

j
ooe<!,..-2s)< e-tt"i+µ2-µ1-m-1 ,i, (t)dt - T(l) (z) + T(2) (z) (6.10) 

pec! .. -26)i t + z 'I'm - m,n m,n ' 

where 
cJ,,,_26)i 

. jooe • e-ftn+µ2-µ1-m-l 

r<1l (z) = <Pm(ze-"') dt (6.11) 
m,n pe<,,,.-26)i t + z ' 

(~ .. -26)< ) ( . 
r<2) (z) = jooe e-ttn+µ2-µ1-m-1 <Pm(t - cPm ze-"') dt (6.12) 

m,n pe<!•-26)i t + Z ' 

and until the final paragraph of this section we restrict 

(6.13) 

or, equivalently, ze-"' E A 2 . 

From Lemma 4.1 we know that l<Pm(ze-"'i)\ ~ Wm when conditions (6.13) are 
satisfied. Hence we have 

1 r<1l (z) = e"zn+µ.-µ,-m-lp (z)O(l) + -O(pn)· 
m,n n+µ2-J•1-m z > (6.14) 

compare ~6.8) and (6.9). 
For T~,n(z) we observe that the integrand in (6.12) is analytic at t = ze-'d. 

Therefore we may deform the integration path in the following way: 

1 ooe(~n-26)i ::;:: rpoo - rppe(,.n-2S)i; 

pe<!>r-2S)I Jn Jn 

again see figure 3. By application of Lemma 6.1 we have 

1100 e-ttn+µ2-µ1-m-l cPm(t) - tPrn.(ze-Tri) dtl 
p t+z 
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pe< ~tr-2o)< 

~ Wm 1 je-ttn+µr~'1-m-ldtl = O(pn). 

On combining the foregoing results we obtain 

Tg1.~(z) = I'(n + µ2 - µi - m)O(l) + O(pn). (6.15) 

If we substitute into (6.10) by means of (6.14) and (6.15) and then combine 
the 0-terms, we derive 

ooe<~"- 26 li -t n+µ2-µ1-m-l 

j e t <f>m(t)dt=e"zn+µ 2 -µ)-m- 1Fn+.urµ 1 -m(z)V(l) 
,..,,~T-2o)f t + z 

+I'(n + µz - µi - m)O(l). (6.16) 

The results (6.9) and (6.16) enable us to evaluate the right-hand side of (6.7). 
Thus we have 

(~"-2B)i ( ') rooe V2 te>ri t"' dt = -27re(IL2-pi)1l'iez zntµ2-µ1-l 
Jpe(~'<-26)i t + z 

X {~«-)jaj, 2 Fn+µ 2 ~; 1 -j(z) + Fn+;i 2 ~~-m(z) O(l)} 

J=O 

+I'(n+µ2-µ1-m)O(l). (6.17) 

We now return to (6.5). On substituting by means of (6.6) and (6.17) we see 
that equation (2.14) applies with the estimate 

R~~n(z) = C1z-mFn+1, 2 -;i1 -m(z)O(l) 

+ C1e-zz-n-µ2+µ.i+ 1r(n + µ2 - µ 1 - m)O(l) + e-zz-n-1' 2 +µ 1 0(pn). (6.18) 

From equations (2.9) and (2.11) of Olver (1993), we have 

-m _ { O(e-•-J.:r:lz-m), -~7r + 38 ~ phz ~ rr, 
z Fn+µ2-µ.1-rn(z) - O(z-m), 7f' ~ phz ~ ~7!' - 36. 

Furthermore, from Stirling's formula we deduce that 

e-zz-n-µ2+1L1+l I'(n + µ2 - µl - m) = o{ e-•-l•lz~-m }; 

compare (5.6). And the remaining term in (6.18) is absorbable in these estimates. 
Accordingly, we arrive at 

R(z) (z) = { O(e-•-1.z\zt-m), -~7!' + 36 ~ phz ~ 11", 

m,n O(z~-m) 7r & phz ~ ~11" - 36 
' . "<:: -.;:: 2 . 

These results agree with (2.16) and (2.17) in the corresponding phase ranges, ex­

cept that z-m is replaced by z,_,,,. To strengthen the estimates into the required 
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form we re-expand the remainder term in the usual manner; thus 

R(l) (z) =(-)me a Fn+µrµ1-m(z) + R(l) (z). 
m,n l m,2 zm m+l,n 
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This completes the proof of Theorem 2.2 for the solution w1 (z) in the phase 

range -~7r + 38 ~ phz ~ ~7r - 35. The corresponding extension to the range 

-~7r + 36 ~ phz ~ ~?r - 36 rnay be carried out in an analogous manner: for 

example, the integration paths everywhere are replaced by their conjugates, and 

ef>m(ze-"'i) is replaced by <Pm(ze"i). Alternatively, we can appeal to symmetry. 

7. Completion of the proof of Theorem 2.2 

On replacing 38 by 8 in the results of §6, we see that equations (2.11), (2.14), 

(2.16) and (2.17) are established, except that the region of validity in (2.17) is 

restricted to 7r ~ lphzl ~ ~?r - 8. 
The corresponding results for the solution w2(z) can be arrived at by replacing 

the in.dependent variable in the original equations (1.1) and (1.2) with ( = ze_.,,.i. 

Thus we have 

~~~ + f*(() ~~ + g*(()w = 0, 

where 

Hence 

f*(() = f)-)s-1f:, 
s=D ( 

(EA; 

compare (1.3). In the expansions that correspond to (2.2) and (2.3) the character­

istic values are .A~ and ->-2, where >-t = ->.2 , >.; = ->.1. Accordingly, ,\2, - >-i = l; 
compare (2.1). Similarly, the exponents are found to be µi = µ2, µ~ = µ 1• If we 

apply the part of Theorem 2.2 that we have established so far and then restore 

the variable z = (e"\ we arrive at (2.12), (2.15), (2.18) and (2.19) except, again, 

the region of validity of (2.19) is restricted: in this case to the union of the sectors 

- ~71' + 8 ~ phz ~ 0 and 27!' ~ phz ~ ~7!' - 8. The analysis is straightforward and 

there is no need to record the details. 

The remaining task is to attain the full regions of validity of (2.17) and (2.19). 

As in the case of the confluent hypergeometric function (Olver 199lb, 1993) we 

shall achieve this by use of connection formulae. 

First, we consider the solution w1 (z). From (2.5) of Olver (1993), with k = -1 

and p = n + µ2 - µ 1 - s, we obtain 

F (ze-2"'i) = (-)n-s-1ie(µ2-µi)1'i + e2(µ2-µ1)"'ip (z) 
n+µ2-µ1-• n+µ2-µ1-s • (7.1) 

Hence from (2.14) we have 

e2µ.1 rri R~)(ze-2rri) = (-t-1ie(µrµ.1J"'iC 1e>-2z zl-'2 ~ (- )"a.,2 Fn+µ.r~1-s(z) 
s=O z 

m-1 

-C1e>-2zzµ2 L ~~2 - (-tie(J.11-J.12)"ie>.2zzµ2R~'.n(ze-2"'i). (7.2) 
s=O 
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On substituting into (2.7) by means of (2.11) and (2.12) then referring to (2.14) 

and (7.2), we find that on reduction 

R~~,_.(z) = e 2 (µ.i-µ"J}ll'i~~ 11 (ze- 2 "i) + R~~,.(z) + ~l(z), (7.3) 

where 
n.-1 

il,(l) (z) = (- )"ie{µ1-~)ll'i01 " as,2 
m,n £...., za ' 

s=m 

R~ 2 l(z) = (-)nie<,. 1 -,.. 2 lll'•c1c~ 2 .. z-µ 2 R~ 2 >(z). 

We now let z -+ oo in the sector ~'11' - 6 ~ phz ~ ~11" - 8 with !lzl - nl bounded. 
From (2.16) we immediately derive 

e2(µ1-µ2}1'i R!;~n(ze-2'"i) = O(e-lzl-zz-m) ~ O(z-m). (7.4) 

Next, consider R}!~,.(z). If we write & =sup a, then we have !zl ~ n - &; see 

(2.13). From Theorem 2.1 we know that 

as,2 = o{ I'(s + µl - µ2) }. s --too. 

Let M be the least positive integer that satisfies M ;;;::: m and M ;;;::: &. Applying 

Stirling's formula, we see that there is an assignable constant A such that 

ja,,,21 ~ Ae-•sa+!R(µi-µ 2 l-!, s ~ M. 

Therefore when n ~ M we have 

I ~ aa,21 ~ ~1 la.a,2! + A ~ e-sss+!R(µ1-J.1.2)-! 

(;;:,. Zs ~ ~L TzF izjM s=M (n - &)s-M 

M-1 la I A oo e-sss+!ll(µ,-µ.2)-! 
~ ~ s,2 + "\:"' ___ _ 
~ s~ W lzlM s7:M (s + 1 - &)s-M • 

The infinite sum converges; hence we see that 

~~ 11 (z) = O(z-m). (7.5) 

Lastly, in the second paragraph of this section we showed that the region of 

validity of (2.18) includes the sector ~71' - 6 ~ phz ~ 21!", and that of (2.19) 

includes 21!" ~ phz ~ i?l'-8. Substituting into (2.15) by means of these estimates 

and using also Olver (1993, eqns (2.9) and (2.11)) with z replaced by ze-1l'i and 

p = n + µ1 - µ2 - s, we arrive at 

R~ 2 >(z) = O(e>.'zzµ 1 ez-lzl), ~1r- 8 ~ phz ~ 2rr, 

.m2>(z) = O(e>.1 zzµ 1 ), 211' ~ phz ~ ~11' - o. 
Correspondingly1 

~2l(z) = O(e-lzlzµ1-µ2), 

R~2l(z) = O(e-"z.u1-µ2), 

Thus in both cases we may assert that 

~11' - 6 ~ phz ~ 271', 

27!" ~ phz ~ ~11' - c5. 

f4.2l (z) = O(z-m). 
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On substituting into (7.3) by means of (7.4), (7.5) and (7.6), we obtain the 

required result 

R~'.,Jz) = O(z-m), ~7f - 8 ~ phz ~ ~7f - o. (7.7) 

The extension of the region of validity of (2.17) to the sector -~?r + 8 ~ phz ~ 

-~7r + o may be carried out by similar analysis. And the extension of (2.19) to 

the sectors -~?r+o ~ phz ~ -~n+8 and ~n-8 ~ phz ~ ~n-8 is then achieved 

by the procedure outlined in the second paragraph of this section. 

Another extension of the foregoing analysis shows that if 0 1 0 2 -:j:. 0, then ( 7. 7) 

breaks down when phz crosses ~1f. This is because (7.4) and (7.5) continue to 

hold, but in the vicinity of phz = t1r we have 

R~2)(z) = -e2(µrµ1),..ie-'1"z"'1{C2 + O(z-1)}; 

compare again (2.15), (2.19) and Olver (1993, eqn (2.11)). Hence 

R~zl(z) = (- r-1ie<l-'2-µ1)1riC1e-"z"'1-"'~ { C2 + O(z-1 )}, 

and this is exponentially large when phz exceeds ~71'. A similar observation applies 

to the other bounda.ry phz = - ~7!" + o, and also to the boundaries phz = - ~11" + o 
and phz = 'J.7r - 6 in (2.19). 

The proor of Theorem 2.2 is complete. 

8. Conclusions 

In this paper we have considered the asymptotic expansions of solutions of 

the general homogeneous linear differential equation of the second order in the 

neighbourhood of an irregular singularity of rank one. We have shown that if these 

expansions are truncated at (or near) their optimal stage, then the remainder term 

can be re-expanded as a series of F-functions (generalized exponential integrals), 

divided by rising powers of -z, z being the independent variable. Furthermore, 

the coefficients are the same as those in the original asymptotic expansion of the 

complementary solution. 

The total sector of validity of each of the new expansions has an angle of 57r - 28, 

compared with 371' - 26 for the original Poincare forms, 6 being an arbitrary small 

positive constant. Moreover, the new expansions a.re considerably more accurate 

and also provide a smooth interpretation of the Stokes phenomenon. 

We have also shown how to construct explicit asymptotic expansions for the 

higher coefficients in the original asymptotic solutions of the differential equation 

in terms of inverse factorials. Again, the coefficients are the lower coefficients of 

the complementary solution. 

Our method of proof is to construct Stieltjes-type transforms for the remainder 

terms from the standard connection formulae for the solutions, and then to de­

rive the required results by appropriate expansions of the integrands. Necessary 

extensions of the regions of validity are found by use, again, of the connection 

formulae. The method appears to be fairly general, and could be applied, for 

example, to linear differential equations of other orders or with other types of 

singula.ri ty. 

We are indebted to the referees for several improvements in the presentation of the results. The 
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